04.05.2013 Views

View/Open - AgEcon Search

View/Open - AgEcon Search

View/Open - AgEcon Search

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Biological Control of Weeds:<br />

Southeast Asian Prospects<br />

D.F. Waterhouse<br />

(ACIAR Consultant in Plant Protection)<br />

ACIAR<br />

(Australian Centre for International Agricultural Research)<br />

Canberra<br />

AUSTRALIA<br />

1994


The Australian Centre for Intemational Agricultural Research (ACIAR) was established in June 1982 by an<br />

Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing<br />

countries and to commission collaborative research between Australian and developing country researchers<br />

in fields where Australia has special competence.<br />

Where trade names are used this constitutes neither endorsement of nor discrimination against any product<br />

by the Centre.<br />

ACIAR MONOGRAPH SERIES<br />

This peer-reviewed series contains the results of original research supported by ACIAR, or deemed relevant<br />

to ACIAR's research objectives. The series is distributed internationally, with an emphasis on the Third<br />

World.<br />

O Australian Centre for Intemational Agricultural Research<br />

GPO Box 157 1, Canberra, ACT 260 1.<br />

Waterhouse, D.F. 1994. Biological Control of Weeds: Southeast Asian Prospects<br />

ACIAR Monograph No. 26, vi + 302pp., 27 figs., 28 maps<br />

ISBN . 186320099 1<br />

Typset in 11/13 Times using a Macintosh IIvx running Quark XPress by K & B Publications<br />

Printed by Bmwn Prior Anderson Pty. Ltd.


Foreword<br />

Contents<br />

Abstract<br />

Estimation of biological control prospects<br />

Introduction<br />

Target weeds<br />

Ageratum conyzoides<br />

Amaranthus spinosus<br />

Bidens pilosa<br />

Chromolaena odorata<br />

Commelina benghalensis<br />

Echinochloa crus-galli<br />

Eichhornia crassipes<br />

Eleusine indica<br />

Euphorbia heterophylla<br />

Euphorbia hirta<br />

Fimbristylis miliacea<br />

Marsilea minuta<br />

Melastoma rnalabathricum<br />

Mikania micrantha<br />

Mimosa invisa<br />

Mimosa pigra<br />

Mimosa pudica<br />

Monochoria vaginalis<br />

Nephrolepis biserrata<br />

Panicum repens<br />

Paspalurn conjugatum<br />

PassiJlora foetida<br />

Pennisetum polystachion<br />

Pistia stratiotes<br />

Portulaca oleracea<br />

Rottboellia cochinchinensis<br />

Sphenoclea zeylanica<br />

References<br />

Index of scientific names of insects<br />

General index


Foreword<br />

From its very beginning in 1982 ACIAR has been a strong supporter of biological control<br />

as a sustainable and environmentally friendly alternative to the steadily growing use of<br />

pesticides. This alternative has achieved great success in regions of the world<br />

(e.g. Australia, New Zealand, Oceania, California) where many of the major insect pests<br />

and weeds have been introduced from outside the region. Although a smaller proportion<br />

of the major weeds in Southeast Asia are introduced than in many other regions, a recent<br />

survey commissioned by ACIAR (Waterhouse 1993a) identified 28 major weeds that<br />

merited evaluation as possible targets for biological control. Even if only half of these<br />

weeds proved to be attractive targets, this number would require several decades of<br />

research, major resources in personnel and equipment and strong support within the<br />

region.<br />

The aim of the present volume is to summarise for the major exotic weeds of agri-<br />

culture in Southeast Asia what is known about their natural enemies and the prospects for<br />

classical biological control. The book is intended to serve two purposes. Firstly, to facili-<br />

tate, for the countries of the region, the selection of promising, individual or collabora-<br />

tive, priority weed targets. Secondly, to provide donor agencies with an overall perspec-<br />

tive of the region's major exotic weed problems and prospects for their amelioration; and<br />

thus to aid in the selection of projects for support that are best suited to their terms of ref-<br />

erence.<br />

It is hoped that it may be possible in the near future to produce a companion volume<br />

dealing with major arthropod pests exotic to Southeast Asia.<br />

G.H.L. Rothschild<br />

Director<br />

Australian Centre for International<br />

Agricultural Research, Canberra


Abstract<br />

Biological control programs have already been mounted in some region of the world<br />

against 6 of the 28 major weeds that are exotic to Southeast Asia. Substantial or partial<br />

success has been achieved in one or more countries for all of these except Mikania<br />

micrantha, which is still under investigation. A substantial amount of information on<br />

their natural enemies in the region where the weeds evolved is available on all 6. This is<br />

in stark contrast with the situation for most of the remaining 22 weed species. Indeed, for<br />

more than half of these, so little relevant information is available that it is not possible to<br />

evaluate the chances of mounting a successful program. For this group of weeds the first<br />

step would be a survey in the centre of origin of the weed. It is probable that surveys<br />

could be mounted simultaneously of several candidate weeds in the same region of the<br />

world (e.g. Central America or Tropical Africa). The very minimum period for a prelimi-<br />

nary survey would be several weeks in both spring and late summer. When the organisms<br />

collected had been identified by taxonomists a decision would be facilitated on possible<br />

follow-up surveys.<br />

On the basis of available information there are good to excellent prospects for<br />

reducing, in at least some parts of the region, the weediness of the following:<br />

Chromolaena odorata<br />

Eichhornia crassipes<br />

Mimosa invisa<br />

Mimosa pigra<br />

Pistia stratiotes<br />

Portulaca oleracea<br />

There are also good reasons for believing that there will prove to be valuable natural<br />

enemies for the following:<br />

Ageratum conyzoides<br />

Amaranthus spinosus<br />

Bidens pilosa<br />

Eleusine indica<br />

Melastoma malabathricum<br />

Mikania micrantha<br />

There is insufficient information yet available on the remaining 15 weeds to attempt<br />

to evaluate their prospects for classical biological control.


2 Estimation of biological control prospects<br />

Weed Rating<br />

Ageratum conyzoides<br />

Amaranthus spinosus<br />

Bidens pilosa<br />

Chromolaena odorata<br />

Commelina benghalensis<br />

Cynodon dactylon<br />

Echinochloa crus-galli<br />

Eichhornia crassipes<br />

Eleusine indica<br />

Euphorbia heterophylla<br />

Euphorbia hirta<br />

Fimbristylis miliacea<br />

Marsilea minuta<br />

Melastoma malabathricum<br />

Mikania micrantha<br />

Mimosa invisa<br />

Mimosa pigra<br />

Mimosa pudica<br />

Monochoria vaginalis<br />

Nephrolepis biserrata<br />

Panicum repens<br />

Paspalum conjugatum<br />

PassiJlora foetida<br />

Pennisetum polystachion<br />

Pistia stratiotes<br />

Portulaca oleracea<br />

Rottboellia cochinchinensis<br />

Sphenoclea zeylanica<br />

Any<br />

Family biological<br />

control<br />

successes?<br />

Asteraceae<br />

Amaranthaceae<br />

Asteraceae<br />

Asteraceae<br />

Commelinaceae<br />

Poaceae<br />

Poaceae<br />

Pontederiaceae<br />

Poaceae<br />

Euphorbiaceae<br />

Euphorbiaceae<br />

C yperaceae<br />

Marsileaceae<br />

Melastomataceae<br />

Asteraceae<br />

Mimosaceae<br />

Mimosaceae<br />

Mimosaceae<br />

Pontederiaceae<br />

Nephrolepidaceae<br />

Poaceae<br />

Poaceae<br />

Passifloraceae<br />

Poaceae<br />

Araceae<br />

Portulacaceae<br />

Poaceae<br />

Sphenocleaceae<br />

Attractiveness<br />

as a target in<br />

SE Asia<br />

unsuitable


4 Biological Control of Weeds: Southeast Asian Prospects<br />

3 Introduction<br />

Waterhouse (1 993a) published information, collated from agricultural and weed experts<br />

in the 10 countries of Southeast Asia, on the distribution and importance of their major<br />

weeds in agriculture. Ratings were supplied on the basis of a very simple system:<br />

+++ very widespread and very important<br />

++ not widespread but of great importance where it occurs<br />

+ important only locally<br />

present, but not an important pest<br />

The advantages and limitations of this system are discussed by Waterhouse (1993a). Of<br />

232 weeds nominated, 140 were rated as highly important, and a subset of 40 particularly<br />

SO.<br />

The focus of the present work is on the possibilities for classical biological control<br />

of those of this subset of 40 that evolved outside Southeast Asia. The assumption is that<br />

many of these have been introduced without some of the organisms that help to control<br />

them where they evolved. The chances are very remote indeed, for weeds that evolved in<br />

Southeast Asia, of introducing sufficiently host-specific organisms from outside the<br />

region. Nevertheless, it is possible that useful organisms present in, say, Thailand or<br />

Myanmar may not be present in all of the islands constituting the Philippines or<br />

Indonesia (or vice versa) and this possibility should be borne in mind.<br />

The origin of 12 of the subset of 40 major weeds is believed to be Southeast Asia, or<br />

close by, and these have been excluded from consideration at this stage. The remaining<br />

28 species, 27 of which are treated here, are either known to have evolved in the<br />

Americas or Africa or are postulated to have evolved in both Asia and Africa. This latter<br />

group is considered because the possibility exists that useful organisms at the African end<br />

of the range may not yet have extended their distribution into all of Southeast Asia.<br />

The 28th species, couch grass, Cynodon dactylon, has not been dealt with because,<br />

in many situations, such as lawns and some pastures, it is regarded as a highly desirable<br />

species. Biological control agents would not distinguish between these situations and the<br />

many others where it is a serious weed, so other control measures must be employed in<br />

the latter instances.<br />

Of course, it is not to be expected that all of any one country's top 20 or even top 10<br />

exotic weeds will necessarily be included in this regional priority list. Indeed, at least<br />

some of those omitted might well merit the production of additional dossiers if they are<br />

of such importance locally that resources for a program would be likely to achieve a very<br />

high priority for a particular country. ACIAR would be interested to hear of weeds that<br />

might be considered in this category.<br />

It is not so long ago that Wilson (1964) pointed out that no insects had yet been used<br />

for the biological control of aquatic weeds and that it was not clear "whether in the aquat-<br />

ic environment there exists a sufficient development of that monophagy in phytophagous<br />

insects that has been the main foundation for the biological control of weeds on land". He


Introduction 5<br />

referred to the opinion of Brues (1946) that aquatic insects show little host specificity, but<br />

warned that this view might be the result of lack of information and recommended an<br />

extension of research in this general field. In the intervening 30 years, research on four<br />

major water weeds of South American origin has yielded success and even spectacular<br />

success with the following: Salvinia molesta, Eichhornia crassipes, Alternanthera<br />

philoxeroides and Pistia stratiotes (Room 1993).<br />

It is very probable that a parallel can be drawn between the situation with water<br />

weeds in 1964 and the "conventional wisdom" of today that grassy weeds are unsuitable<br />

targets for classical biological control because of the danger to many major world crops<br />

that also belong to the family Poaceae e.g. rice, wheat, maize, sorghum, millet, sugar-<br />

cane. However, it would be very strange indeed if host specialisation occurred widely in<br />

insects attacking all other plant families, but not amongst those attacking the very large<br />

number of grasses. In view of the fact that 10 of the 18 world's worst weeds are grasses<br />

(Holm et al. 1977) and eight of the 28 major exotic weeds in Southeast Asia are also<br />

grasses (Waterhouse 1992, 1993a), it is evident that the time is long overdue for a<br />

detailed study of the natural enemies of these grasses in the regions where they evolved.<br />

This theme is mentioned further below, in particular in the discussion on Eleusine indica.<br />

For any biological control organisms to be approved for introduction into Southeast<br />

Asia against weedy grasses they would need to be sufficiently specific that they would<br />

not cause economic damage to the crop grasses listed in table 3.1. This list refers to<br />

Thailand, but is believed to be much the same as that for other Southeast Asian countries.<br />

It does not, however, include pasture species. A number of useful grasses are also har-<br />

vested from the wild and some may have to be considered also, although there are impor-<br />

tant weeds (e.g. Zmperata cylindrica) amongst them. There are, of course, many addition-<br />

al crop grasses of importance outside the region, but of little or no importance in most or<br />

all of Southeast Asia. They would certainly have to be taken into consideration in other<br />

regions of the world.<br />

The successful biological control of a weed presents a special problem, seldom<br />

shared by the control of an insect pest, namely that some other plant, perhaps even a<br />

weed that is more difficult to control by other means, will spread to occupy the space<br />

vacated. Reduction to the greatest possible extent of the density of a weed is desirable in<br />

situations such as pastures or national parks. In many other situations, however, all that<br />

may be required is a significant reduction in seeding (for annuals) or in competitiveness<br />

(for annuals and perennials) so that the weed no longer has an opportunity of becoming<br />

dominant and thus, when necessary, is more readily controlled by cultural or other mea-<br />

sures. Thus, even partial biological control (leading to the weed becoming less aggres-<br />

sive) provides desirable plant species with the opportunity to compete more successfully<br />

for sunlight and nutrients and may be of significant value.<br />

Another problem is that many weeds display a good deal of variability throughout<br />

their distribution, resulting in part from polyploidy, hybridisation with closely related<br />

species and other genetic modifications. The taxa thus produced may not be equally sus-<br />

ceptible to natural enemies, so it is desirable, where possible, to match-tb-wlth ixa<br />

encountered in the surveys in the area of origin of the weed. It may also be necessary to


6 Biological Control of Weeds: Southeast Asian Prospects<br />

seek expert taxonomic advice at an early stage, perhaps involving electrophoretic, DNA<br />

and other studies, particularly when commencing a project on a weed that has not yet<br />

been the target of a biological control investigation.<br />

The summary accounts presented are designed to enable a rapid review to be made<br />

of (i) the main characteristics of the major weeds of agriculture that are believed to be<br />

exotic to part or all of Southeast Asia, (ii) what is known of their natural enemies and<br />

(iii) prospects for reducing their weediness by classical biological control.<br />

The material on weed characteristics draws heavily on the publications by Barnes<br />

and Chan (1990), Holm et al. (1977), Noda et al. (1985) and Soerjani et al. (1987).<br />

Additional information is available from these sources, including detailed botanical<br />

descriptions, vernacular names, biology, agricultural importance and herbicidal control.<br />

I am particularly grateful to the University of Hawaii Press for permission to draw<br />

on 21 of the illustrations in its publication 'The World's Worst Weeds' by Holm et al.<br />

(1977) to Ancom Berhad, Malaysia (Barnes and Chan 1990) and the Director of<br />

BIOTROP Indonesia (Soerjani et al. 1987) to draw on 2 and 3 illustrations respectively<br />

from their publications and to the Division of Entomology CSIRO for permission to use<br />

illustration 4.16. The figures have been slightly amended by the omission of inserts that<br />

are mainly of taxonomic interest. Acknowledgement appears on each of the illustrations<br />

used.<br />

In most instances four databases were searched for relevant information:<br />

AGRICOLA (Bibliography of Agriculture) 1 970+<br />

BIOSIS (Biological Abstracts) 1989+<br />

CAB (Commonwealth Agricultural Bureaux) 1984+<br />

DIALOG (Biological Abstracts) 1959+<br />

1 many cases abstracting journals and other sources published prior to the above<br />

cominencement dates were also searched. Useful information was also obtained by<br />

serendipity from these and other references and from unpublished records. Nevertheless,<br />

in many cases the search cannot be described as exhaustive. Even more relevant, howev-<br />

er, than attempting an exhaustive search would be a fresh, detailed field survey targeted<br />

on the known (or presumed) area of origin of the weed. In any event, in most instances a<br />

preliminary investigation would be highly desirable in the area of origin of a weed before<br />

deciding whether or not to embark upon a major project. Several such surveys might well<br />

be carried out simultaneously where more than one weed occurs in the same general<br />

region. Indeed, it is strongly recommended that a pre-project activity be funded to carry<br />

out such surveys, with special reference to selected weeds of major importance in<br />

Southeast Asia.<br />

Surveys of this nature are particularly important, since the amount of useful, pub-<br />

lished information on arthropods or other organisms attacking the target weeds is, in gen-<br />

eral, inadequate to serve as a basis for a sound decision. Although acceptable host speci-<br />

ficity is required for classical biological control, it is possible that some of the less specif-<br />

ic fungi listed might be developed for use as bioherbicides.<br />

In addition to surveys in the region of origin of the weed(s) it will also be necessary<br />

to survey the weed(s) in the country or countries where biological control is to be


Introduction 7<br />

attempted. This is to indicate whether any of the organisms that might be considered for<br />

introduction are already present.<br />

The species treated are drawn from tables 10 and 11 of 'The Major Arthropod Pests<br />

and Weeds of Agriculture in Southeast Asia: Distribution, Importance and Origin'<br />

(Waterhouse 1993a). It is quite possible that additional weeds rating highly in these<br />

tables will prove to be exotic to Southeast Asia (or significant parts of it) and, alternative-<br />

ly, that some considered to be exotic will, on further evidence, be shown to have evolved<br />

in the region.<br />

The natural enemies most commonly involved in classical biological control of<br />

weeds have been arthropods, although there is a growing interest in, and a few striking<br />

successes with, fungi. Because there is a considerable lack of uniformity in the names of<br />

many of the insects involved, a separate index is included listing the preferred scientific<br />

names. These have been used in the text, replacing those used by the authors quoted. On<br />

the other hand, with few exceptions the names used for fungi, bacteria, nematodes and<br />

viruses are those of the authors quoted, although it is probable that some names have<br />

been changed since they were used. Where the name of a weed or an insect given in a<br />

publication is no longer preferred by taxonomists, the superseded name, x, is shown thus<br />

(= x), but this usage is not intended to convey any other taxonomic message. Indeed, the<br />

superseded name may still be valid, but simply not applicable to the particular species<br />

referred to by the author.<br />

I am most grateful for assistance from many colleagues during the preparation of<br />

this book. It is not possible to name them all, but special thanks are due to Dr B.<br />

Napompeth (Thailand), Dr R. Muniappan (Guam), C.J. Davis (Hawaii) and, in Australia,<br />

Dr I.W. Forno, Dr K.L.S. Harley, M.H. Julien, Dr K.R. Norris, J. Prance, Dr D.P.A.<br />

Sands, Dr A.J. Wapshere and A.D. Wright of CSIRO and Dr R.E. McFadyen<br />

(Queensland Department of Lands). Many others who have contributed unpublished<br />

information are acknowledged at appropriate places in the text.<br />

Valuable advice on taxonomic problems has been received from a number of col-<br />

leagues in the Division of Entomology, CSIRO, Canberra, including Dr M. Carver<br />

(Hemiptera), Dr P. Cranston (Diptera), E.D. Edwards (Lepidoptera), Dr I.D. Naumann,<br />

Dr K.H.L. Key (Orthoptera), T. Weir (Coleoptera) and Dr E.C. Zimmerman<br />

(Curculionidae).<br />

Continuing warm support has been provided by Dr P. Ferrar, Research Program<br />

Coordinator, Crop Scienqs, ACIAR, Canberra.<br />

It is a pleasure to acknowledge the expert assistance of Mrs A. Johnstone<br />

(Ms A. Ankers) in converting my manuscripts into presentable form; and also of Mrs S.<br />

Smith and C. Hunt for assistance with the illustrations.<br />

It would not have been possible to continue with these biological control activities<br />

in deep retirement without the support, forbearance and encouragement of my wife, to<br />

whom particular thanks are due.


8<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Table 3.1 Grasses (other than pasture species) that are important in Thailand.<br />

A. Crop Grasses Importance<br />

Bambusa spp.<br />

Coix lacryma-jobi<br />

Cymbopogon spp.<br />

Hordeum spp.<br />

Oryza sativa<br />

Saccharum oficinarum<br />

Setaria italica<br />

Sorghum bicolor<br />

Triticum spp.<br />

Zea mays<br />

Zizania latifolia<br />

B. Grasses harvested from the wild<br />

Arundo donax<br />

Dendrocalamus spp.<br />

Gigantochloa spp.<br />

Imperata cylindrica<br />

Melocanna baccifera<br />

Phragmites spp.<br />

Phyllostachys spp.<br />

Schizostachyum dumetorum<br />

bamboo, construction, furniture,<br />

paper<br />

job's tears, cereal<br />

lemongrasses, flavourings<br />

barleys<br />

rice<br />

sugar cane<br />

foxtail millet<br />

sorghum<br />

wheats<br />

maize<br />

vegetable<br />

giant reed, cane<br />

weaving, vegetables<br />

construction, furniture<br />

paper, roof thatch<br />

paper, furniture, food<br />

reeds, thatch, mats<br />

furniture, vegetable<br />

rope


Target weeds<br />

Ageratum conyzoides<br />

Amaranthus spinosus<br />

Bidens pilosa<br />

Chromolaena odorata<br />

Commelina benghalensis<br />

Echinochloa crus-galli<br />

Eichhornia crassipes<br />

Eleusine indica<br />

Euphorbia heterophylla<br />

Euphorbia hirta<br />

Fimbristylis miliacea<br />

Marsilea minuta<br />

Melastoma malabathricum<br />

Mikania micrantha<br />

Mimosa invisa<br />

Mimosa pigra<br />

Mimosa pudica<br />

Monochoria vaginalis<br />

Nephrolepis biserrata<br />

Panicurn repens<br />

Paspalum conjugatum<br />

Passiflora foetida<br />

Penniseturn polystachion<br />

Pistia stratiotes<br />

Portulaca oleracea<br />

Rottboellia cochinchinensis<br />

Sphenoclea zeylanica


10 Biological Control of Weeds: Southeast Asian Prospects<br />

Ageratum conyzoides<br />

(after Holm et a/. 1977)


Map 4.1 Ageratum conyzoides<br />

4.1 Ageratum conyzoides 11<br />

Ageratum conyzoides<br />

As a member of the Asteraceae, it would be expected that Ageratum conyzoides would<br />

have many natural enemies attacking it in its area of origin in Tropical America.<br />

However, no study has been made and virtually nothing is known of the situation there.<br />

Elsewhere it is attacked by a range of insects, nematodes, fungi and viruses, but almost<br />

all have a very wide host range and are not suitable as biological control agents.<br />

Surveys in Tropical America would be necessary to provide data on which<br />

prospects for its biological control could be evaluated.


12 Biological Control of Weeds: Southeast Asian Prospects<br />

4.1 Ageratum conyzoides L.<br />

Asteraceae<br />

goatweed, ageratum; bandotan (Indonesia), rumput tahi ayam (Malaysia), bulak<br />

manok, kolokong kabayo (Philippines), ya tabsua, ya sap raeng (Thailand),<br />

co c~lt heo, bo xit (Vietnam)<br />

Rating<br />

+++ Myan, Thai<br />

17 ++ Msia, Sing, Phil<br />

+ Laos, Camb, Viet, Brun, Indo<br />

Origin<br />

Tropical America.<br />

Distribution<br />

Pantropical; also in the subtropics and extending into temperate areas from latitude 30°N<br />

to 30's. Widespread in SE Asia. Present in Java prior to 1860.<br />

Characteristics<br />

Ageratum conyzoides is a self pollinated, C3, annual herb. It is erect, often branched,<br />

sometimes decumbent and ranges up to 1.2 m at flowering. Its flowers are light blue,<br />

white or violet and its leaves and stems are hairy.<br />

Importance<br />

A. conyzoides occurs in both light and heavy soils in moister areas in agricultural land,<br />

waste land, roadsides, plantations, pastures and upland rice fields. It may produce<br />

40 000 or more seeds per plant and these are mainly spread by wind and water. They<br />

germinate readily and the life cycle can be completed in less than 2 months. A. cony-<br />

zoides is one of about 300 species in the genus, all of which originated in the Americas.<br />

Goatweed is important in 46 countries in 36 crops and is troublesome in plantations<br />

after grasses have been suppressed (Holm et al. 1977). It is a rapidly colonising, vigor-<br />

ously growing weed in a wide variety of arable crops in which thick carpets of A. cony-<br />

zoides compete strongly for nutrients and moisture. When a stand is destroyed another<br />

rapidly takes its place. It is suspected of poisoning cattle, but this is not confirmed from<br />

Australia. It was rated 19th of the World's Worst Weeds by Holm et al. (1977), as equal<br />

15th in Southeast Asia (Waterhouse 1993a) and 15th in the Oceanic Pacific<br />

(waterhouse unpub.).<br />

Its crushed leaves smell strongly of coumarin and are used as a styptic for wounds,<br />

also for sores, skin diseases, eye inflammation and lung problems (Gonzalez et al. 1991).<br />

It is sometimes used as cut flowers in the home.


Natural enemies<br />

4.1 Ageratum conyzoides 13<br />

Although A. conyzoides is listed by Holm et al. (1977) as a weed in some crops in<br />

Central and South America, it is significant that nowhere in that region (unlike the rest of<br />

the tropical world) is it regarded as a serious or a principal weed. From this it might be<br />

inferred that natural enemies might be controlling its abundance. However, so little infor-<br />

mation on natural enemies (Tables 4.1.1 to 4.1.3) was obtained from the databases<br />

searched that it is not possible to substantiate this claim. Almost all of the records are<br />

from outside its area of origin and one (the agromyzid fly, Melanagromyza metallica) is<br />

known to have a narrow host range. However, M. metallica is already widespread. In<br />

addition to India, it is known also from many places including Taiwan, Philippines,<br />

Vietnam, Thailand, Indonesia, Melanesia, Papua New Guinea, Solomon Is, Micronesia,<br />

Australia and Africa. It lays its eggs on the apical part of the stem. The larva bores into<br />

the pith region, gradually extending towards the root and the final instar larva cuts an exit<br />

hole at the base of the stem. Mines may extend into the roots and pupae are often present<br />

at about ground level in the mines (Singh and Beri 1973).<br />

If A. conyzoides is considered to be an important target it will be necessary to sur-<br />

vey for organisms attacking it in Central America and northern South America.<br />

Table 4.1.1 Natural enemies of Aaeratum convzoides: insects and mites.<br />

Species Location Other hosts References<br />

INSECTS<br />

Orthoptera<br />

ACRlDlDAE<br />

Zonocerus Nigeria<br />

variegatus<br />

Hemiptera<br />

APHlDlDAE<br />

Aphis craccivora<br />

Aphis gossypii<br />

Aphis spiraecola Java<br />

(= A. nigricauda)<br />

Aulacorthum<br />

solani<br />

Brachycaudus<br />

helichrysi<br />

Capitophorus<br />

hippophaes<br />

Hyperomyzus<br />

carduellinus<br />

Myzus ormtus<br />

Myzus persicae<br />

Neomasonaphis<br />

(- Masonaphis)<br />

amphalidis<br />

Uroleucon<br />

(= Macrosiphum)<br />

solidaginis<br />

Vesiculaphis pieridis India<br />

Chromolaena odorata,<br />

Lantana camara<br />

many<br />

many<br />

many<br />

many<br />

many<br />

Eupatorium, Mirabilis,<br />

Polygonum<br />

many<br />

many<br />

many<br />

Lyonia ovalifolia,<br />

Pieris ovalifolia<br />

Raychaudhuri 1983<br />

Raychaudhuri 1983<br />

Patch 1939,<br />

Raychaudhuri 1983<br />

Raychaudhuri 1983<br />

Raychaudhuri 1983<br />

Ghosh et al. 1971<br />

Patch 1939<br />

Raychaudhuri 1983<br />

Raychaudhuri 1983<br />

Raychaudhuri 1983<br />

Patch 1939<br />

Patch 1939<br />

(continued on next page)


14 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.1.1 (continued)<br />

Species Location Other hosts References<br />

ALEYRODIDAE<br />

Bemisia tabaci<br />

DlASPlDlDAE<br />

Mycetaspis personata<br />

LYGAEIDAE<br />

Nysius inconspicuus<br />

Thysanoptera<br />

PHLAEOTHRIPIDAE<br />

Haplothrips gowdei<br />

THRlPlDAE<br />

Calipthrips ipomoeae<br />

Microcephalothrips<br />

abdominalis<br />

Thrips tabaci<br />

Diptera<br />

AGROMYZIDAE<br />

Calycomyza sp.<br />

Melanagromyza<br />

metallica<br />

CHLOROPIDAE<br />

Olcella pleuralis<br />

TEPHRITIDAE<br />

Xanthaciura imecta<br />

Lepidoptera<br />

ARCTll DAE<br />

Pareuchaetes<br />

pseudoinsulata<br />

(= Ammalo insulata)<br />

GELECHllDAE<br />

Dichomeris sp.<br />

NOCTUIDAE<br />

Pseudoplusia includem<br />

(=Plusia 00)<br />

Spodoptera frugiperda<br />

India, a very wide range Ang et al. 1977,<br />

Malaysia, Sastry 1984,<br />

Turkey Shreni et al. 1979<br />

Brazil polyphagous dlAraujo e Silva et al. 1968a<br />

India sesame and many Thangavelu 1978<br />

others<br />

Hawaii vector of pineapple Sakimura 1937<br />

yellow spot virus<br />

Brazil polyphagous dlAraujo e Silva et al. 1968a<br />

India polyphagous Gopinathan et al. 198 1<br />

Hawaii vector of pineapple Sakimura 1937<br />

yellow spot virus<br />

USA Spencer & Steyskal 1986<br />

India, etc no other host Singh & Beri 1973<br />

mentioned<br />

Trinidad C. odorata, C. ivaefolia, McFadyen 1988a<br />

C. iresinoides,<br />

Fleischmannia<br />

microstemon,<br />

Wedelia<br />

caracasana,<br />

Wulfla baccata<br />

Florida, C. odorata,<br />

Trinidad F. microsternon<br />

W. caracasana<br />

McFadyen 1988a,<br />

Needham 1946<br />

Nigeria, C. odorata Bennett & Cruttwell 1973,<br />

Trinidad Olaoye 1974<br />

Trinidad C. odorata Bennett & Cruttwell 1973<br />

Brazil polyphagous d'Araujo e Silva et al. 1968a<br />

Brazil polyphagous d'Araujo e Silva et al. 1968a<br />

(continued on next page)


MITES<br />

4.1 Ageratum conyzoides 15<br />

Species Location Other hosts References<br />

PYRALIDAE<br />

Pionea upalusalis Trinidad, C. odorata, C. ivaefolia, McFadyen 1988a<br />

Puerto Rico, Austroeupatorium<br />

Venezuela inulaefolium,<br />

Fleischmannia<br />

microstemon<br />

Brevipalpus obovatus India cotton, Solanum nigrum, Sadana et al. 1983<br />

Sonchus asper,<br />

Phaseolus vulgaris,<br />

Euphorbia hirta,<br />

Xanthium sp.,<br />

Cichorium intybus<br />

Tetranychus urticae China a very wide range Dong et al. 1986<br />

Table 4.1.2 Natural enemies of Ageratum conzoides: nematodes.<br />

Species Location Other hosts References<br />

Aphelenchoidesfiagariae<br />

Helicotylenchus multicinctus<br />

Meloidogyne sp.<br />

Meloidogyne arenaria<br />

Meloidogyne arenaria<br />

thamesis<br />

Meloidogyne incognita<br />

Meloidogyne javanica<br />

Pratylenchus pratensis<br />

Rotylenchulus reniformis<br />

Hawaii strawberry, Vanda<br />

orchids, Impatiens,<br />

Nephrolepis biserrata<br />

Brazil banana, Portulaca<br />

oleracea and several<br />

weeds<br />

Cuba Eleusine indica,<br />

Croton lobatus,<br />

Cynodon dactylon<br />

Philippines<br />

Philippines<br />

Philippines many vegetables<br />

and weeds<br />

Philippines, many vegetables<br />

Nigeria and weeds<br />

Hawaii<br />

Hawaii, India many weeds<br />

Sher 1954<br />

Zem & Lordello 1983<br />

Acosta et al. 1986<br />

Holm et al. 1977<br />

Valdez 1968<br />

Valdez 1968<br />

Mamaril& Alberto 1989<br />

Mamaril& Alberto 1989,<br />

-Salawu et al. 1991<br />

Valdez 1968<br />

Holm et al. 1977<br />

Linford & Yap 1940,<br />

La1 et al. 1978


Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.1.3 Natural enemies of Ageratum conyzoides: fungi, bacteria and viruses.<br />

Species Location Other hosts References<br />

FUNGI<br />

Cercospora agerati<br />

Colletotrichium sp.<br />

Cylindrocladium<br />

quinqueseptalum<br />

Mycovellosiella perfoliata<br />

Puccinia conoclinii<br />

Sclerotium rolfsii<br />

BACTERIA<br />

Pseudomonas<br />

solanacearum<br />

India<br />

India<br />

India<br />

India<br />

many commercial<br />

hosts<br />

many<br />

India potato, Ranunculus<br />

sceleratus<br />

Stevens 1925<br />

Kulkami & Sharma 1976<br />

Sulochana et al. 1982<br />

Srivastava 198 1<br />

Stevens 1925<br />

Desai et al. 1980<br />

Sathiarajan &<br />

Sasikumar 1977,<br />

Sunaina et al. 1989<br />

VIRUSES<br />

Ageratum vein yellowing India, (transmitted by<br />

Ang et al. 1977,<br />

Malaysia Bemisia tabaci)<br />

Shreni et al. 1979<br />

anemone mosaic<br />

Holm et al. 1977<br />

Bidens mottle several, including<br />

Zinnia, petunia<br />

& Verbena<br />

Logan & Zettler 1984<br />

hibiscus yellow vein India (transmitted by<br />

Jeyarajan et al. 1988<br />

mosaic<br />

B. tabaci)<br />

pineapple yellow spot Hawaii<br />

Sakimura 1937<br />

potato virus Y<br />

India<br />

potato<br />

Joshi & Prakash 1977<br />

tapioca mosaic<br />

India<br />

(transmitted by<br />

B. tabaci)<br />

Jeyarajan et al. 1988<br />

tobacco leaf curl India tomato<br />

Holm et al. 1977,<br />

Reddy et al. 1981<br />

tomato leaf curl Turkey, many weeds<br />

Sastry 1984,<br />

India<br />

(transmitted by<br />

B. tabaci)<br />

Jeyarajan et al. 1988<br />

urd bean yellow mosaic India (transmitted by<br />

B. tabaci)<br />

Jeyarajan et al. 1988<br />

Zinnia yellow net India (transmitted by<br />

B. tabaci)<br />

Srivastava et al. 1977


18 Biological Control of Weeds: Southeast Asian Prospects<br />

Amaranthus spinosus<br />

(after Holm et a/. 1977)


Map 4.2 Amaranthus spinosus<br />

4.2 Amaranthus spinosus 19<br />

Amaran thus spinosus<br />

Mass rearing and release, as required, of the weevil Hypolixus trunculatus is reported to<br />

provide good control of Amaranthus spinosus in Thailand but, of course, this is augmen-<br />

tative rather than classical biological control.<br />

Three other insects (a weevil, a leaf mining fly and a caterpillar) are known which may<br />

prove to be adequately specific for classical biological control.<br />

However, almost nothing is known about the natural enemies of A. spinosus in tropical<br />

America where it evolved and it would thus be necessary to cany out a survey there in<br />

order to evaluate what potential biological control agents are available.


20 Biological Control of Weeds: Southeast Asian Prospects<br />

4.2 Amaranthus spinosus L.<br />

Amaranthaceae<br />

spiny amaranth, spiny pigweed, needle burr; hin nu nive tsu bauk (Myanmar),<br />

phak khom nam (Thailand), phti banla (Cambodia), bayam duri (Malaysia and<br />

Indonesia), orai (Philippines), den gai (Vietnam)<br />

Rating<br />

+++ Myan, Thai, Phil<br />

17 ++ Msia, Sing<br />

+ Laos, Camb, Viet, Indo<br />

Origin<br />

Tropical America.<br />

Distribution<br />

A. spinosus is mainly tropical and subtropical in distribution, but also extends into the<br />

temperate zone from latitude 30°N to 30"s.<br />

Characteristics<br />

A. spinosus is an erect, much branched, annual, growing to 1.2 m. Its stems are angled in<br />

cross section, fleshy, often reddish and bear many spines. Its leaves are alternate, with a<br />

pair of straight spines up to 1 cm long at the base. The inflorescence is long, slender and<br />

terminal or arises from leaf axils. The flowers are small, greenish and unisex. It is propa-<br />

gated by reddish brown seeds.<br />

Importance<br />

Spiny amaranth prospers in warm sunny situations, but not where it is cool or shady. It is<br />

not reported as a problem in the Mediterranean or Middle East. It is a weed in 44 coun-<br />

tries in 28 crops, mainly in the Caribbean, in the west and south of Africa, in India and in<br />

Southeast Asia. Up to 235 000 seeds per plant have been recorded. Seeds are spread by<br />

wind and water. Some germinate soon, others over several months and still others remain<br />

viable in the soil for many years. A. spinosus is abundant in cultivated and abandoned<br />

fields, along roadsides and in waste places. It is a weed of varying degrees of aggressive-<br />

ness in many crops, including upland rice, cotton, cowpeas, groundnuts, maize, mangos,<br />

millet, pineapples, sugarcane and vegetables. The rigid needle-like spines break off in the<br />

hands of workers in sugarcane, cotton and other crops.<br />

A. spinosus may contain high nitrate levels and has been implicated in livestock poi-<br />

soning. It is avoided by most animals because of its spines. Leaves are sometimes used<br />

by humans as a green vegetable. Other Amaranthus species are valuable as a grain crop<br />

in some South American countries and the family Amaranthaceae contains a number of<br />

widely grown ornamental garden species (Purseglove 1968).


4.2 Amaranthus spinosus 21<br />

Natural enemies<br />

A. spinosus is attacked by a number of natural enemies (Tables 4.2.1 and 4.2.2), but most<br />

of the reports come from outside its native range and are of non-specific organisms. The<br />

agromyzid fly Haplopeodes minutus, known in USA from species of Amaranthus and<br />

Chenopodium (Spencer and Steyskal 1986) and both the beetle Cassida nigriventris and<br />

the moth Coleophora versurella, known in Pakistan from these same plant genera (Khan<br />

et al. 1978), may prove to be sufficiently specific to be candidate biological control<br />

agents.<br />

The weevil Hypolixus trunculatus, whose larvae tunnel in the stems and form galls,<br />

is known from Pakistan, India and Thailand and attacks Amaranthus spinosus, A. viridis<br />

and Digera arvensis. Although it has a relatively long life'cycle and low reproductive<br />

capacity, mass rearing and augmentative releases have resulted in a satisfactory level of<br />

control and replaced the use of herbicides in Thailand (Julien 1992, Napompeth 1982,<br />

1989, 1992a). Females deposit eggs singly in cavities scooped out of the shoots. Larvae<br />

tunnel down inside the stem to its base, where a gall develops. Breeding continues<br />

throughout the year but is at its height in late summer. At this time the life cycle is 44 to<br />

50 days. Pupation occurs within the gall. Larvae and pupae are parasitised by larvae of<br />

the pteromalid wasp Oxysychus sp. (Aganval 1985).<br />

Evans (1987) records five fungi from A. spinosus but, except for one which is<br />

unsuitable because it has a wide host range, too little is known about their host specificity<br />

to assess the prospects for their use in classical biological control.<br />

Comment<br />

Almost nothing is known about the natural enemies of A. spinosus in tropical America<br />

where it evolved. A survey in this region would be necessary to document the organisms<br />

attacking it. There are good general grounds for believing that there are some natural<br />

enemies that are specific to the family Amaranthaceae. In most countries, members of<br />

this family have little value as crop plants, so the chances are that some safe natural ene-<br />

mies will be found that are of value as classical biological control agents.<br />

Table 4.2.1 Natural enemies of Amaranthus spinosus: insects and mites.<br />

Species Location Other hosts References<br />

INSECTS<br />

Hemiptera<br />

APHlDlDAE<br />

Myzus persicae Malawi, highly polyphagous Chapola 1980, Napompeth<br />

Thailand 1982<br />

COREIDAE<br />

CIetus fuscescens Nigeria Amaranthus dubius, Ukwela & Ewete 1989<br />

A. cruenrus,<br />

A. hypochondriachus<br />

LYGAEIDAE<br />

Germalus unipunctarus Vanuatu Cock 19841,<br />

Nysius sp. Vanuatu Cock 1984b<br />

(continued on next page)


22 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.2.1 continued<br />

Species Location Other hosts References<br />

MlRlDAE<br />

Horcias nobilellus Brazil ' polyphagous d'Araujo e Silva et al. 1968a<br />

PI ESMATIDAE<br />

Piesma cinereum Brazil polyphagous d'Araujo e Silva et al. 1968a<br />

Thysanoptera<br />

PHLAEOTHRIPIDAE<br />

Haplothrips India Amaranthus viridis, Dhiman 1986<br />

longisetosus A. oleosa, Chenopodium<br />

anthelminthicum<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Cassida exilis<br />

Cassida nigriventris<br />

CURCULIONIDAE<br />

Ceutorhynchus<br />

asperulus<br />

Hypolixus<br />

trunculatus<br />

MELYRIDAE<br />

Astylus lineatus<br />

Pakistan Amaranthus viridis,<br />

Chenopodium album<br />

Pakistan Amaranthus viridis,<br />

Chenopodium album,<br />

Spinucia oleracea<br />

India red gram, Amaranthus<br />

viridis, A. tricolor,<br />

Basella alba<br />

Pakistan, Amaranthus viridis,<br />

India, Chromolaena odorata<br />

Thailand Digera arvensis<br />

Brazil citrus<br />

Baloch et al. 1976<br />

Baloch et al. 1976<br />

Khan et al. 1978<br />

Puttaswamy &<br />

Channabasavannal98 1,<br />

Puttaswamy et al. 198 1<br />

Aganval 1985,<br />

Baloch et al. 1976, 1977,<br />

Ghani 1965, Julien 1992<br />

Napompeth 1982, 1990b,<br />

1992a<br />

d'Araujo e Silva et al. 1968a<br />

Diptera<br />

AGROMYZIDAE<br />

Haplopeodes USA Amaranthus, Spencer & Steyskal 1986<br />

minutus Chenopodium<br />

Lepidoptera<br />

COLEOPHORIDAE<br />

Coleophora<br />

versurella<br />

CURCULIONIDAE<br />

Hypolixus ritsemae<br />

LYCAENIDAE<br />

Zizeeria knysna<br />

Zizeeria krupta<br />

NOCTUIDAE<br />

Neogalea<br />

(= Spodoptera) sunia<br />

Spodoptera eridania<br />

Spodoptera exigua<br />

. Spodoptera litura<br />

1<br />

Pakistan<br />

Vanuatu<br />

Pakistan<br />

Pakistan<br />

Nicaragua<br />

Nicaragua<br />

Nicaragua<br />

Philippines<br />

Chenopodium botrys Khan et al. 1978<br />

Cock 19841,<br />

Baloch et al. 1976<br />

Baloch et al. 1977, Ghani<br />

1965<br />

polyphagous Savoie 1988<br />

polyphagous Savoie 1988<br />

polyphagous Savoie 1988<br />

highly polyphagous Moody et al. 1987<br />

(continued on next page)


4.2 Amaranthus spinosus 23<br />

Species Location Other hosts References<br />

PYRALI DAE<br />

Loxostege sp. Argentina seed heads of<br />

Amaranthus sp.<br />

(the genus Loxostege<br />

Spoladea (=Hymenia)<br />

recurvalis<br />

SCYTHRIDIDAE<br />

Eretmocera<br />

impactella<br />

TORTRICIDAE<br />

Archips sp.<br />

YPONOMEUTIDAE<br />

Plutella xylostella<br />

MITE<br />

TETRANYCHIDAE<br />

Tetranychus<br />

novocaledonicus<br />

India,<br />

Pakistan<br />

Vanuatu<br />

contains pests)<br />

polyphagous<br />

Pakistan Amaranthus viridis,<br />

Chenopodium album<br />

Pakistan<br />

Pakistan<br />

India Amaranthus tricolor,<br />

4. viridis<br />

C.J. Deloach<br />

pers. comm. 1980<br />

Baloch et al. 1976<br />

Chaudhury & Kapil 1977,<br />

Lock 1984b. Ghani 1965<br />

Baloch et al. 1977<br />

Ghani 1965<br />

Ghani 1965<br />

Puttaswav.y dr<br />

Channabasavanna 1981<br />

Table 4.2.2 Natural enemies of Amaranthus spinosus: nematodes, fungi, viruses.<br />

Species Location Other hosts References<br />

NEMATODES<br />

Cactodera amaranthi Cuba spinach, other species Stoyanov 1972<br />

Meloidogyne incognita<br />

Pratylenchus zeae<br />

Pseudocephalobus indicus<br />

Philippines<br />

of Amaranthus<br />

rice, many weeds<br />

India only recorded on<br />

Valdez 1968<br />

Fortuner 1976<br />

Joshi 1972<br />

Rotylenchulus reniformis India, USA<br />

A. spinosus<br />

many weed hosts Inserra et al. 1989,<br />

La1 et al. 1978<br />

FUNGI<br />

Albugo bliti Dominica, many Amaranthaceae<br />

Jamaica, India,<br />

Pakistan, Sudan<br />

Alternaria compacta<br />

Aposphaeria amaranthi<br />

Bipolaris indica (as<br />

Drechslera indica)<br />

India<br />

USA potential bioherbicide<br />

for A. albus; effect on<br />

A. spinosus not known<br />

many, including<br />

Helianthus, Pennisetum,<br />

Portulaca<br />

Baloch et al. 1977,<br />

Evans 1987<br />

Kar & Ashok-Das 1988<br />

Mintz & Weidemann 1992<br />

Evans 1987,<br />

Kenfield et al.<br />

1989<br />

(continued on next page)


24 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.2.2 continued<br />

Species Location Other hosts References<br />

Cercospora brachiata<br />

(= C. amaranthi)<br />

Fusarium oxysporum f.sp.<br />

elaeidis<br />

Phoma tropica<br />

Puccinia sp.<br />

VIRUSES<br />

cucumber mosaic<br />

Digera mosaic<br />

groundnut rosette<br />

tobacco bunchy top<br />

tobacco mosaic<br />

India, Nigeria, many Amaranthaceae<br />

Uganda, Trinidad,<br />

USA, Japan,<br />

China, USSR<br />

Nigeria oil palm, Chromolaem<br />

odorata, Impera ta<br />

cylindrica, Mariscus<br />

alternifolius<br />

India<br />

Hong Kong<br />

India cucumber, Solanum,<br />

nigrum, Tagetes<br />

erecta, etc<br />

India several weeds<br />

Malawi (Myzus persicae<br />

Philippines is a vector)<br />

Evans 1987<br />

Oritsejafor 1986<br />

Evans 1987<br />

Evans 1987<br />

Suteri et al. 1980<br />

Singh et al. 1975<br />

Adams 1967<br />

Chapola 1980<br />

Eugenio & del Rosario 1962


Biological Control of Weeds: Southeast Asian Prospects<br />

Bidens pilosa<br />

(after Holm et a/. 1977)


Map 4.3 Bidens pilosa<br />

4.3 Bidens pilosa<br />

Bidens pilosa is native to tropical America. Preliminary studies, based mainly on<br />

Trinidad, indicate that it is attacked by a number of natural enemies, mainly insects, and<br />

that several of these may be sufficiently host specific to be considered as biological con-<br />

trol agents. Further host specificity studies are required and additional, wider-ranging<br />

searches, particularly in South America.


28 Biological Control of Weeds: Southeast Asian Prospects<br />

4.3 Bidens pilosa L.<br />

Asteraceae<br />

cobbler's pegs, Spanish needle; djaringan ketul (Indonesia), pisau pisau<br />

(Philippines) yah koen jam khao (Thailand)<br />

Rating<br />

++ Thai, Indo, Phil<br />

10 + Myan, Laos, Camb, Viet<br />

Msia<br />

Origin<br />

Tropical America<br />

Distribution<br />

Pantropical. Known from Java before 1835, but apparently not present in Kalimantan or<br />

the Moluccas (Soerjani et al. 1987).<br />

Characteristics<br />

Bidens pilosa is an erect, slender, branching, annual herb growing up to 1.5 m. Its stems<br />

are four-angled in cross section and its leaves opposite and sparsely hairy. The abundant<br />

yellow flowers are borne in heads on long stalks and produce black, barbed seeds charac-<br />

teristically radiating in all directions from a common base. The recurved, 2-toothed barbs<br />

enable the seeds to stick readily to hair and clothing and they are also distributed by wind<br />

and water. Cobbler's pegs prefers moister soils and flowers all year round.<br />

Importance<br />

A very common weed of 31 crops in more than 40 countries, B. pilosa occurs in gardens,<br />

cultivated land, open waste places and along roadsides. It is an important weed of pas-<br />

tures, maize, sorghum, vegetables, cotton, tea, coffee, cassava, coconut, oil palm, citrus,<br />

papaya, rice, rubber and tobacco. Single plants produce up to 6000 seeds, many of which<br />

germinate readily, permitting three or four generations a year in some regions.<br />

Some seeds remain viable in the soil for at least 5 years. When herbicides have<br />

eradicated perennial grasses this weed often becomes dominant.<br />

In South Africa the early spring growth is sometimes eaten by humans, but has low<br />

nutritive value. It has a pungent essential oil that may taint milk.<br />

Natural enemies<br />

These 'are also dealt with in 'Biological Control: Pacific Prospects' (Waterhouse and<br />

Norris 1987) which did not assess B. pilosa a particularly promising target for biological<br />

control. However, more information has since become available (Table 4.3.1 and 4.3.2),


4.3 Bidens pilosa 29<br />

particularly concerning leaf miners and seed head feeders of the fly family Agromyzidae.<br />

This suggests that there may be good prospects for some of these natural enemies.<br />

Few details are available of the natural enemies of B. pilosa in Brazil. The pupal<br />

stage of the chrysomelid beetle Phaedon pertinax (= P. consimilis) lasts 6 to 8 days and<br />

the pentatomid bug Stiretrus erythrocephalus passes through 4 instars in 30 days<br />

(Ribeiro 1953). Thrips killed 22.25% of B. pilosa plants (particularly seedlings) and<br />

Diptera infested 97.8% of flower heads. Parasitisation of these Diptera by wasps and<br />

flies, varied from 40.96% to 58.91 % according to the size of the population (Esposito et<br />

al. 1985).<br />

About half of the 2500 species of the family Agromyzidae have known hosts and<br />

almost all of this group are restricted in their feeding to a single family or genus. Only 16<br />

of the species (0.6% of the total) are truly polyphagous, feeding on a number of unrelated<br />

families (Spencer 1990). Agromyzid flies are, therefore, worth serious consideration as<br />

classical biological control agents. In this context, plants of the genus Bidens appear to be<br />

particularly attractive to agromyzid flies for they support 19 species (Table 4.3.3).<br />

In the tribe Coreopsideae (of the family Asteraceae) only two (Bidens and<br />

Coreopsis) of its 26 genera support Agromyzidae (Table 4.3.4). Coreopsis is native in<br />

North America, but no agromyzids are known on it there, although three polyphagous<br />

species are known to attack it in Europe, India or Australia (Spencer 1990).<br />

Eleven of the above 19 species are known from Bidens pilosa (Table 4.3.1). Of<br />

these, three are restricted to the genus Bidens (perhaps even to B. pilosa), two are<br />

polyphagous, and the remaining six have one or more additional hosts in other genera of<br />

the Asteraceae. Ten of the eleven species are restricted to the Americas and further host<br />

specificity tests may well indicate that many are valuable biological control agents. Four<br />

of the ten form blotch mines (Arnauromyza maculosa, Calycomyza allecta, C. platyptera<br />

and Liriomyza archboldi), one makes long, linear irregular mines (Liriomyza venegasiae),<br />

and three feed in the seed heads (Liriomyza insignis, Melanagromyza bidentis and M.<br />

floris) (Spencer 1990, Spencer and Steyskal 1986).<br />

The flower heads of B. pilosa are also attacked by three species of Tephritidae in<br />

Central America and by one of these in India. Adult weevils of the genera Baris,<br />

Centrinaspis and Promecops feed in the flowers of B. pilosa and other Asteraceae, but<br />

are thought not to breed there. Several other insects (at least three other beetles and a<br />

pierid butterfly) have also been recorded from B. pilosa and sometimes from other<br />

Asteraceae as well.<br />

Table 4.3.4 shows the position of the genus Bidens as a member of the tribe<br />

Coreopsidae, within the family Asteraceae. There may well be natural enemies that<br />

attack it, but not any species of agricultural or special environmental significance.<br />

Attempts at biological control<br />

There have been none.


30 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.3.1 Natural enemies of Bidens pilosa: insects.<br />

Species Location Other hosts References<br />

Hemiptera<br />

ALEYRODI DAE<br />

Dialeurodes vulgaris India coffee, Erythrina<br />

lithosperma<br />

Venkataramaiah 1974<br />

APHlDlDAE<br />

Aphis coreopsidis Brazil soybean Almeida 1979, d'Araujo<br />

e Silva et al. 1968a<br />

d'Araujo e Silva et al. 1968a<br />

Christie et al. 1974,<br />

d'Araujo e Silva et al. 1968a<br />

Aphis illinoisensis Brazil<br />

Uroleucon<br />

(= Dacrynotus) sp.<br />

MlRlDAE<br />

Brazil, USA tobacco, lettuce<br />

Garcanus gracilentus Brazil sweet potato,<br />

polyphagous<br />

d'Araujo e Silva et al. 1968a<br />

Horcias nobilellus<br />

PENTATOMIDAE<br />

Brazil polyphagous<br />

Amaranthus spinosus<br />

d'Araujo e Silva et al. 1968a<br />

Stiretrus erythrocephalus Brazil<br />

Ribeiro 1953<br />

Thyanta perditor Brazil soybean<br />

Grazia et al. 1982<br />

Coleoptera<br />

APlONlDAE<br />

Apion luteirostre<br />

CHRYSOMELIDAE<br />

Chalcophana viridipennis<br />

Chlamisus insularis<br />

Phaedon pertinax<br />

(= P. consimilis)<br />

Physimerus pygmaeus<br />

CURCULIONIDAE<br />

Baris sp.<br />

South America Mikania micrantha Cock 1980<br />

Brazil<br />

Trinidad Chromolaena odorata,<br />

C. ivaefolia<br />

Brazil, Mikania micrantha<br />

(not in Trinidad)<br />

South America Mikania micrantha<br />

d'Araujo e Silva et al. 1968a<br />

McFadyen 1988a<br />

Cock 1980, d'Araujo e Silva<br />

et a]. 1968a, Ribeiro 1953<br />

Cock 1980<br />

Trinidad (feed in B. pilosa<br />

flowers)<br />

Cruttwell 1971a<br />

Centrinaspis sp. Trinidad (feed in B. pilosa<br />

flowers)<br />

Cruttwell 197 1 a<br />

Promecops sp. Trinidad (feed in B. pilosa<br />

flowers)<br />

Cruttwell 197 la<br />

Rhodobaenus<br />

Trinidad adults feed on stems, McFadyen 1988a<br />

cariniventris<br />

and petioles of B. pilosa,<br />

Chromolaena odorata,<br />

C. ivaefolia,<br />

Austroeupatorium<br />

inulaefolium<br />

Rhodobaenus,<br />

Trinidad feed in B. pilosa stems: McFadyen 1988a<br />

tredecimpunctatus<br />

and in several other<br />

Asteraceae<br />

Diptera<br />

AGROMYZIDAE<br />

Amauromyza maculosa Trinidad (also polyphagous, but favours<br />

N&S America, Asteraceae<br />

Hawaii)<br />

Cruttwell 197 1 a,<br />

Spencer 1990, Spencer &<br />

Steyskal 1986<br />

(continued on next page)


4.3 Bidens pilosa 31<br />

Species Location Other hosts References<br />

Calycomyza allecta Trinidad (also<br />

Brazil,<br />

Guadeloupe,<br />

Venezuela)<br />

Calycomyza USA (Florida,<br />

platyptera California)<br />

Liriomyza archboldi Florida<br />

(Bahamas,<br />

Costa Rica)<br />

Liriomyza insignis Costa Rica<br />

Liriomyza trifolii cosmopolitan<br />

Liriomyza venegasiae Southern<br />

California<br />

Liriomyza sp. Argentina<br />

Melanagromyza bidentis Florida,<br />

Caribbean<br />

Melanagromyzafloris Costa Rica,<br />

Mexico,<br />

Trinidad<br />

(also Florida,<br />

Neotropics)<br />

Melanagromyza splendid USA, Hawaii<br />

Phytomyza atricornis Australia<br />

CEClDOMYllDAE<br />

Asphondylia bidens Florida<br />

DROSOPHILIDAE<br />

Cladochaeta nebulosa Florida<br />

TEPHRlTlDAE<br />

Dioxyna sororcula Florida,<br />

(= D. picciola) Trinidad,<br />

widespread<br />

Xanthaciura insecta Florida,<br />

Trinidad<br />

Lepidoptera<br />

ARCTllDAE<br />

Hypercompe Brazil<br />

(=Ecpantheria)<br />

hambletoni<br />

NOCTUIDAE<br />

Cropia (=Dyops) minthe Brazil<br />

Mocis latipes Brazil<br />

Thysanoplusia Kenya<br />

(- Diachrysia) orichalcea<br />

PlERlDAE<br />

Perrhybris phaloe Trinidad<br />

(= Ascia buniae phaloe)<br />

Helianthus, Rudbeckia<br />

and garden Asteraceae<br />

Asteraceae, including<br />

Aster, Helianthus,<br />

Zinnia<br />

restricted to Bidens<br />

restricted to Bidens<br />

polyphagous, including<br />

Chrysanthemum<br />

Venegasia carpesioides<br />

restricted to Bidens<br />

Verbesina sp.<br />

Calendula sp<br />

Asteraceae including<br />

Helianthus, Lactuca<br />

polyphagous, including<br />

Cineraria<br />

attacks several<br />

Asteraceae in India<br />

Ageratum conyzoides,<br />

Chromolaena odorata<br />

Fleischmannia<br />

caracasana<br />

Panicum maximum,<br />

Paspalum notarum,<br />

Hyparrhenia rufa<br />

coffee and other crops<br />

Cruttwell 1971b, Frick<br />

19.56, Spencer 1990,<br />

Spencer & Steyskal 1986<br />

Spencer 1990<br />

Spencer & Steyskal 1986<br />

Spencer 1990,<br />

Spencer & Steyskal 1986<br />

Spencer 1990<br />

Spencer 1990,<br />

Spencer & Steyskal 1986<br />

Spencer 1990<br />

Spencer 1990<br />

Cruttwell 197 la, Spencer<br />

1990, Spencer &<br />

Steyskal 1986<br />

Spencer 1990,<br />

Spencer & Steyskal 1986<br />

Kleinschmidt 1970<br />

Steyskal 1972<br />

Steyskal 1972<br />

Cruttwell 1971 a, 1972a,b,<br />

Steyskal 1972<br />

McFadyen 1988a,<br />

Steyskal 1972<br />

d'Araujo e Silva et al. 1968a<br />

d'Araujo e Silva et al. 1968a<br />

Lourencao et al. 1982<br />

Bardner & Mathenge 1974<br />

Cruttwell 197 1 a


32<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.3.2 Natural enemies of Bidens pilosa: nematodes, fungi, mycoplasmas,<br />

viruses.<br />

Species Location<br />

NEMATODES<br />

Meloidogyne sp. Hawaii<br />

Meloidogyne hapla India<br />

Pratylenchus minutus Hawaii<br />

Rotylenchulus reniformis USA<br />

FUNGI<br />

Cercospora bidenfis Mauritius<br />

Cercospora rnegalopotamica Hawaii<br />

Entyloma guaraniticurn Mauritius<br />

Uromyces bidenticola Hawaii, Mauritius<br />

MYCOPLASMAS<br />

aster yellows Hawaii<br />

Bidens witches broom Brazil<br />

VIRUSES<br />

Bidens mosaic<br />

groundnut rosette<br />

Sonchus yellow net<br />

soybean mosaic<br />

tomato spotted wilt<br />

Brazil<br />

Hawaii<br />

Florida<br />

Brazil<br />

Hawaii<br />

PARASITIC PLANT<br />

Cassytha filiformis Hawaii<br />

Table 4.3.3 Species in Agromyzid genera attacking Bidens.<br />

References<br />

Linford et al. 1949<br />

Singh et al. 1979<br />

Linford et al. 1949<br />

Inserra et al. 1989, McSorley<br />

et al. 198 1<br />

Rochecouste & Vaughan 1959<br />

Stevens 1925<br />

Rochecouste & Vaughan 1959<br />

Anon 1960, Rochecouste &<br />

Vaughan 1959<br />

Holm et al. 1977<br />

Vega et al. 198 1<br />

Kuhn et al. 1982<br />

Adams 1967<br />

Christie et al. 1974<br />

Almeida 1979<br />

Sakimura 1937<br />

Raabe 1965<br />

Genus Specific to Bidens Specific to Coreopsideae Polyphagous<br />

Melanagromyza<br />

Amauromyza<br />

Liriomyza 3<br />

Calycomyza<br />

Chromatomyia<br />

Total 3


4.3 Bidens pilosa 33<br />

Table 4.3.4 Relationship of four major Southeast Asian weeds and some economically<br />

important genera within the family Asteraceae.<br />

Family Asteraceae: 21 000 species (Mabberley 1987)<br />

Tribe Some economically Weed species<br />

important genera<br />

Arctoteae<br />

Carlineae<br />

Echinopsideae<br />

Cardueae<br />

Mutisieae<br />

Lactuceae<br />

Vemonieae<br />

Inuleae<br />

Astereae<br />

Eupatorieae<br />

Calenduleae<br />

Senecioneae<br />

Anthemideae<br />

Heleniae<br />

Madieae<br />

Heliantheae<br />

Tageteae<br />

Coreopsideae<br />

Carthamnus, Cynara<br />

Cichorium, Lactuca<br />

Aster<br />

Cineraria<br />

Chrysanthemum<br />

Dahlia<br />

Cosmos, Helianthus, Zinnia<br />

Ageratum conyzoides,<br />

Chromolaena odorata,<br />

Mikania micrantha<br />

Coreopsis Bidens pilosa<br />

The family Asteraceae, by far the largest in the dicotyledons, has been subdivided into<br />

18 tribes, some 1300 genera and about 21 000 species (Mabberley 1987). It contains sur-<br />

prisingly few economically important crop plants, of which lettuce (Lactuca sativa),<br />

sunflower (Helianthus annuus) and globe artichoke (Cynara scolymus) are the major<br />

species. However, there are a number of commercially important garden plants, espe-<br />

cially in the genus Chrysanthemum.


Biological Control of Weeds: Southeast Asian Prospects<br />

Chromolaena odorata<br />

(after Holm etal. 1977)


Map 4.4 Chromolaena odorata<br />

4.4 Chromolaena odorata 35<br />

Chromolaena odorata<br />

Chromolaena odorata is not a problem weed in the tropical Americas where it evolved. It<br />

is attacked there by more than 200 insects, at least a quarter of which are probably suffi-<br />

ciently host specific to be considered as classical biological control agents. The aggres-<br />

siveness of C. odorata in countries to which it has spread is probably due to the absence<br />

of most of these natural enemies.<br />

The arctiid moth Pareuchaetes pseudoinsulata has been established in India,<br />

Sri Lanka, Philippines, Sabah (Malaysia), the Mariana Is (Guam, Rota, Saipan, Tinian,<br />

Aguijan) and Federated States of Micronesia (Yap, Pohnpei, Kosrae), but only in the two<br />

latter island groups has it had spectacular success in controlling the weed. The mite<br />

Acalitus adoratus has spread naturally to Southeast Asia and Micronesia but, as yet, is<br />

having minor impact.<br />

It is probable that a group of natural enemies will be necessary to bring about effec-<br />

tive biological control of C. odorata in Southeast Asia, but there are a number of species<br />

that are well worthy of attention and longer term prospects for control appear promising.


36<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

4.4 Chromolaena odorata (L.) R.M. King and H. Robinson<br />

(Formerly Eupatoriurn odoraturn)<br />

Asteraceae<br />

Siam weed, devil weed; bizat, tawbizat (Myanmar), tontrem khet (Cambodia),<br />

French weed (Laos), pokok tjerman (Malaysia), kirinyu, kumpai jepang, rumput<br />

go1 kar (Indonesia), hagonoy (Philippines) saab sua, yah sua mop (Thailand), co<br />

hoi (Vietnam)<br />

Rating<br />

+++ Msia, Phil<br />

18 ++ Myan, Thai, Laos, Camb, Viet, Indo<br />

Origin<br />

Central America and tropical South America (from Florida to northern Argentina).<br />

Distribution<br />

C. odorata is a weed throughout Southeast Asia, Irian Jaya, Papua New Guinea, New<br />

Britain, Mariana and Caroline Is, southern China, Taiwan, Sri Lanka, Bangladesh, India,<br />

West, Central and South Africa.<br />

Characteristics<br />

C. odorata is an upright or scrambling, thicket-forming, perennial shrub, growing from<br />

1.5 to 3 m high. Its roots are fibrous with a few well formed anchor roots and many later-<br />

als, the stems round, yellowish, hairy or almost smooth and profusely branched. Its<br />

leaves are opposite, with toothed margins and are conspicuously three veined. The flow-<br />

ers are at the tips of all stems, in clusters of 20 to 60, white or pale lilac. The achenes<br />

consist of 5 mm-long seeds with hooks on their angles, together with a pappus of 5 mm-<br />

long white bristles. The leaves have a pungent odour when damaged. Seed production is<br />

prolific (as many as 2 million per plant) and seeds provide the main mode of reproduc-<br />

tion. The achenes float long distances in the air and the seed hooks cling to hair and<br />

clothing. Germination occurs as soon as there is adequate moisture, although some 66%<br />

of seeds are not viable. Buried seeds lose up to 50% of their viability after 2 years (Yadav<br />

and Tripathi 1982).<br />

Importance<br />

C. odorata is not a serious weed in the Americas and no specific control methods are<br />

necessary (McFadyen 1991a). This is in stark contrast to its serious weed status in the<br />

countries to which it has spread and has been attributed to the many natural enemies that<br />

attack it in the Americas (McFadyen 1989, 1991~). It was introduced to Calcutta in the<br />

1840s, had spread into Sri Lanka, Southeast Asia and Nigeria by the 1940s and into Irian<br />

Jaya, New Britain and Micronesia by the 1980s. It is forecast to spread widely and


4.4 Chromolaena odorata 37<br />

aggressively in equatorial Africa, northern and eastern Australia and the Pacific<br />

(McFadyen 1988b, 1989).<br />

C. odorata grows in many soil types, but prefers well drained conditions and an<br />

annual rainfall above 1000 mm. Although it is not a problem in continuously cultivated<br />

land, it is most common and causes most losses in plantation crops, including coconut,<br />

rubber, oil palm, tea, coffee, cocoa, teak and cashew. It also thrives in areas newly<br />

cleared for planting, in abandoned or neglected fields, wastelands and along roadsides. It<br />

is sometimes a weed in pastures. Its rapid growth enables it to smother most competitors<br />

and it inhibits many with its allelopathic properties. It dies back after flowering in areas<br />

with a pronounced dry season and then becomes a fire hazard. After burning or cutting,<br />

the plants shoot freely from the crown. They are capable of forming dense tangled bushes<br />

two to three metres high, occasionally reaching six metres as climbers on other plants.<br />

The stems branch freely, with 20 or more laterals developing from axillary buds and<br />

often bent over under their own weight. Impenetrable stands of the weed cut off access to<br />

pastures and provide hiding places for rats, pigs and other undesirable animals. C.<br />

odorata is intolerant of shade, so that it dies out when the canopy closes in plantations<br />

(Ambika and Jayachandra 1990, McFadyen 1988b, 199 1 a). The shoots and young leaves<br />

contain nitrate at levels 5 to 6 times those toxic to stock and also pyrrolizidine alkaloids<br />

and cattle deaths occur following grazing. Hand weeding of Chromolaena is reported to<br />

cause skin allergy and scratches to result in infections (Ambika and Jayachandra 1990).<br />

It is interesting that the spread of C. odorata in West Africa has led to a<br />

polyphagous grasshopper Zonocerus variegatus becoming a pest. Although they are<br />

unable to mature on the weed as the only diet, hoppers are strongly attracted to the plant<br />

and especially to its flowers; and thickets are preferred night roosting sites. BopprC<br />

(1 991) hypothesises that the pyrrolizidine alkaloids accumulated from feeding on C.<br />

odorata protect the grasshoppers and their eggs from predators and parasitoids, leading<br />

to increased fitness and population density. However, this only occurs during the dry season,<br />

but not in the wet season when C. odorata does not bloom.<br />

Claims have been made (e.g. Field 1991, Herren-Gemmill 1991) that, under some<br />

circumstances, C. odorata may be beneficial to resource-poor farmers. One potential<br />

advantage, is its ability to outcompete another serious weed, alang-alang (Imperata cylindric~).<br />

However, McFadyen (1992) pointed out that a suitable perennial legume would<br />

be even more beneficial than C. odorata, and she also refuted a number of other claims.<br />

In Sri Lanka the indigenous legume Tephrosia purpurea has been successfully used to<br />

suppress weeds including C. odorata under coconut (Salgado 1972). Whatever potential<br />

benefits there may be in the presence of C. odorata there is an enormous body of fact to<br />

demonstrate that C. odorata has serious adverse effects on agricultural productivity in<br />

countries to which it has been introduced.<br />

Natural enemies<br />

A good deal is known about the insects attacking Chromolaena odorata, mainly as a<br />

result of studies aimed at biological control which started in the late sixties at the<br />

Commonwealth Institute of Biological Control Station in Trinidad. A number of scientists


38<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

were involved, but principally R.E. McFadyen (nee Cruttwell) (Bennett and Cruttwell<br />

1973, Bennett and Rao 1968, Bennett and Yaseen 1975, Cock 1984a, Cock and Holloway<br />

1982, Cruttwell 1973a,b, 1974, 1977a,b, Cruttwell and Bennett 1969, McFadyen<br />

1988a,b, 199 1 a,b, Yaseen and Bennett 1977).<br />

An extensive bibliography dealing with all aspects of C. odorata, including its natural<br />

enemies and biological control, was compiled by Muniappan et al. (1988a), later<br />

supplemented in Chromolaena odorata Newsletters 3 (1990) and 6 (1992). The proceedings<br />

of three International Workshops on Biological Control of Chromolaena odorata,<br />

held in 1988, 1991 and 1993 also contain a wealth of up-to-date information.<br />

In the Americas C. odorata is attacked by at least 207 insect and 2 mite species<br />

(McFadyen 1988a). Of these, about half are probably polyphagous, a quarter are restricted<br />

to the Asteraceae and a quarter specific to Chromolaena. All stages of growth of the<br />

above ground parts of the plants are attacked, but the roots have not been examined<br />

(McFadyen 1991a) and not all regions where C. odorata occurs naturally were visited.<br />

For other regions of the world McFadyen (1988a) quotes records of 42 insect and 9 mite<br />

species, the vast majority of which are, or are likely to prove, polyphagous. Since then a<br />

few additional species have been recorded, all but one of which (an eriophyid mite, see<br />

India below) are likely to be polyphagous.<br />

In Trinidad, the cumulative effect of the natural enemies is great, between 25 and<br />

50% of all growing tips being destroyed. Seed germination is as low as 17% and many<br />

flowerheads fail to produce seed. Seedlings often succumb to the attack of stem and tip<br />

feeding insects and competitiveness and growth of established plants is greatly reduced<br />

by insect attack. At different sites and in different seasons damage is caused by different<br />

insects and, in general, is heaviest in shaded sites. Some of the insects are heavily<br />

attacked by parasitoids and if introduced without these to another country might prove to<br />

be even more effective.<br />

In addition to an arctiid moth (Pareuchaetes pseudoinsulata) and a weevil (Apion<br />

brunneonigrum), which have already had considerable attention paid to them (see next<br />

section), McFadyen (1 99 1 c) has nominated an additional 1 1 insects for priority evaluation<br />

(Table 4.4.1). Furthermore, others (Cruttwell 1974, Cock 1984a, Cock and Holloway<br />

1982, McFadyen 1988c, Muniappan and Viraktamath 1986) have suggested an additional<br />

22 species (Table 4.4.2) which were evidently considered less important by McFadyen<br />

(1991~). It is clear therefore that, if required, there are many promising candidates for<br />

detailed consideration. The additional species of Pareuchaetes suggested by Cock and<br />

Holloway (1982) have not been investigated in detail, but all are believed to breed on C.<br />

odorata or related species and several may be better adapted climatically and biologically<br />

than P. pseudoinsulata to conditions in many overseas countries.<br />

Although no special search has been carried out except in Trinidad and Tobago a<br />

number of fungal pathogens occurring on C. odorata are shown in table 4.4.3. Half of the<br />

records 'come from outside its area of origin and must, therefore, be suspected of having a<br />

wider than desirable host range. Possibly Cionothrix praelonga is of greatest interest,<br />

since preliminary tests indicate that it may be host specific (Ooi et al. 1991). It is autoecious<br />

(i.e. it does not have an alternate host), occurs in the Caribbean and Venezuela and


4.4 Chromolaena odorata 39<br />

Table 4.4.1 Potential biological control agents for C. odorata: insects (after<br />

McFadyen 199 1 c).<br />

Species Part Damage Problem Country found<br />

attacked<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Aulacochlamys sp.<br />

Chlamisus insularis<br />

Pentispa explanata<br />

CURCULIONIDAE<br />

Rhodobaenus<br />

cariniventris<br />

Diptera<br />

AGROMYZIDAE<br />

Melanagromyza<br />

eupatoriella<br />

CEClDOMYllDAE<br />

Clinodiplosis sp.<br />

Perasphondylia<br />

reticulata<br />

TEPHRlTlDAE<br />

Procecidochares sp.<br />

Lepidoptera<br />

BUCCULATRICIDAE<br />

Bucculatrix sp.<br />

NYMPHALIDAE<br />

Actinote anteas<br />

PYRALIDAE<br />

Mescinia parvula<br />

stem<br />

stem<br />

leaf miner<br />

stem<br />

shoot borer<br />

shoot galls<br />

bud galls<br />

stem galls<br />

leaf miner<br />

leaf<br />

shoot borer<br />

moderate<br />

minor<br />

moderate<br />

great<br />

great<br />

great<br />

great<br />

moderate<br />

minor<br />

great<br />

great<br />

Trinidad<br />

all Americas<br />

prefers shade Trinidad<br />

Trinidad<br />

cage mating West Indies, S. America<br />

rearing Trinidad<br />

cage rearing all Americas<br />

parasites Americas<br />

Mexico<br />

cage mating Trinidad, Costa Rica<br />

cage mating all Americas<br />

causes conspicuous leaf lesions. Pseudocercospora eupatorii-formosani is reported to be<br />

common and damaging on C. odorata in Brunei, but is widespread already in South and<br />

Southeast Asia (Chacko 1988, Evans 1987, Peregrine and Ahmad 1982).<br />

Attempts at biological control<br />

Four insects have been released for biological control, the weevil Apion brunneoni-<br />

grurn, the fly Melanagromyza eupatoriella and two moths Mescinia parvula and<br />

Pareuchaetes pseudoinsulata (Table 4.4.4). Of these, only the last has become estab-<br />

lished, fairly readily in Sri Lanka, Guam and other Micronesian islands, but with some<br />

difficulty in India and Sabah (Malaysia) and it 'has since spread unaided to the<br />

Philippines and Brunei. It failed to become established in Thailand, Ghana, Nigeria and<br />

South Africa. It has produced spectacular defoliation and death of many plants in Guam


40 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.4.2 Additional potential biological control agents for C. odorata: arthropods.<br />

Species Part attacked Country found<br />

Coleoptera<br />

CERAMBYCIDAE<br />

Aerenica hirticornis stem borer Trinidad, Bolivia,<br />

Brazil, Argentina<br />

CURCULIONIDAE<br />

Baris sp.<br />

Centrinaspis sp.<br />

Diptera<br />

CEClDOMYllDAE<br />

Asphondylia corbulae<br />

Clinodiplosis eupatorii<br />

Clinodiplosis sp.<br />

Contarinia sp.<br />

Neolasioptera brickelliae<br />

Neolasioptera cruttwellae<br />

Neolasioptera eupatorii<br />

Neolasioptera frugivora<br />

TEPHRITIDAE<br />

Cecidochares jluminensis<br />

Procecidochares connexa<br />

flowers, leaf buds<br />

flowers, leaf buds<br />

flower galls<br />

leaf galls<br />

bud galls<br />

flowers (achenes)<br />

flowers (achenes)<br />

stem galls<br />

stem galls<br />

flowers (achenes)<br />

flowers<br />

stem galls<br />

Trinidad<br />

Trinidad, Costa Rica<br />

El Salvador, Trinidad<br />

Central America, Brazil, West<br />

Indies<br />

Trinidad<br />

Trinidad<br />

Trinidad<br />

Trinidad<br />

USA, Trinidad, Bolivia<br />

Trinidad<br />

Trinidad, SE Brazil<br />

Mexico, Brazil, Bolivia<br />

Lepidoptera<br />

ARCTllDAE<br />

Pareuchaetes aurata aurata leaves. buds Paraguay, Argentina,<br />

Pareuchaetes aurata aurantior<br />

Pareuchaetes arravaca<br />

Pareuchaetes insulata<br />

Pareuchaetes misantlensis<br />

Pareuchaetes sp.<br />

GELECHllDAE<br />

Dichomeris (= Trichotaphe) sp.<br />

leaves, buds<br />

leaves, buds<br />

leaves, buds<br />

leaves, buds<br />

leaves, buds<br />

leaf roller (see<br />

Cruttwell 1973b) Trinidad<br />

SE Brazil, Bolivia<br />

Amazon River<br />

Surinam and French Guiana<br />

Southern USA, Mexico,<br />

Caribbean, Colombia<br />

Mexico<br />

Mexico<br />

LYCAENIDAE<br />

Calephelis laverna leaves Brazil, Trinidad, Venezuela,<br />

Central America<br />

Acarina<br />

ERlOPHYlDAE<br />

Calacarus sp. shoots<br />

India


Table 4.4.3 Natural enemies of C. odorata: fungi.<br />

4.4 Chromolaena odorata 41<br />

Species Country found References<br />

Anhellia niger<br />

Cercospora sp.<br />

Cercospora eupatorii<br />

Cercospora eupatoriicola<br />

Cercospora eupatorii-odoratii<br />

Cionothrix praelonga<br />

Fusarium oxysporum f. sp. elaeidis<br />

Guignardia eupatorii<br />

Mycovellosiella perfoliata<br />

Phoma sp.<br />

Phomopsis eupatoriicola<br />

Phyllosticta eupatoriicola<br />

Pseudocercospora eupatorii-formosani<br />

Septoria sp.<br />

Septoria ekmaniana<br />

Trinidad, Tobago<br />

Peninsular Malaysia,<br />

Sabah<br />

North America, Cuba,<br />

Nepal, India, Ivory Coast<br />

India, Bangladesh<br />

Malaysia<br />

Dominica, Tobago,<br />

Venezuela<br />

Trinidad, Tobago<br />

Sri Lanka<br />

Trinidad, Tobago<br />

Trinidad, Tobago<br />

not recorded<br />

not recorded<br />

India, Myanmar, Thailand,<br />

Malaysia, Borneo, Brunei,<br />

Guam<br />

Trinidad, Tobago<br />

Ooi et al. 1991<br />

Singh 1980<br />

Chacko 1988, Evans 1987<br />

Chacko 1988, Evans 1987<br />

Chacko 1988, Evans 1987<br />

Chacko 1988, Evans 1987<br />

Oritsejafor 1986<br />

Chacko 1988, Evans 1987<br />

Ooi et al. 1991<br />

Ooi et al. 1991<br />

Chacko 1988, Evans 1987<br />

Chacko 1988, Evans 1987<br />

Chacko 1988, Evans 1987<br />

Russo 1985<br />

Ooi et al. 1991<br />

and striking but sporadic defoliation in Sri Lanka. In India, populations have built up but<br />

damage has seldom been great. Where established, it is heavily attacked by a range of<br />

predators and these are believed to have prevented successful establishment in several<br />

countries.<br />

The eriophyid mite Acalitus adoratus causes abnormal growth of the epidermal<br />

hairs on young leaves and stems of C. odorata. Although it was never purposely intro-<br />

duced, it was observed in Thailand in 1984 and the Philippines in 1987, but had probably<br />

been present for some years. It is also widespread in Java and Sumatra, but there is no<br />

information from other Indonesian islands. It is present in Yap and Palau in the Caroline<br />

Islands and was observed on Guam in November 1993 (R. Muniappan pers. comm.). It is<br />

not present in India and it is not known whether it is present in Sri Lanka (Cruttwell<br />

1977b, McFadyen 1991 b, 1993, Muniappan et al. 1988a).<br />

Further details follow of the situation in individual countries and of the biology of<br />

some of the more promising natural enemies.<br />

Asia<br />

INDIA<br />

In one study, 11 insects and 3 mites were found attacking C. odorata. All except<br />

Calacarus sp. (Eriophyidae) are polyphagous (Muniappan and Viraktamath 1986,<br />

Viraktamath and Muniappan 1992). Most eriophyid mites have a highly restricted host<br />

range, so it is not clear whether it may even have accompanied the weed from the


42 Biological Control of Weeds: Southeast Asian Prospects<br />

4.4.4 Introductions for the biological control of Chromolaena odorata.<br />

Species Country Liberated Result References<br />

Coleoptera<br />

BRENTHIDAE<br />

Apion brunneonigrum Ghana 1975 - Cock 1984a, 1985,<br />

Guam 1984 - Nafus & Schreiner 1989<br />

India 1972-83 - Chacko & Narasimham<br />

1988, Cock 1984, 1985<br />

Malaysia 1970 - Ooi et al. 1988a,b<br />

(Sabah)<br />

Nigeria 197CL75 - Cock 1984a, 1985<br />

Sri Lanka 197676 - Cock 1984a, 1985<br />

Lepidoptera<br />

ARCTllDAE<br />

Pareuchaetes aurata<br />

aurata<br />

Pareuchaetes<br />

pseudoinsulata<br />

South Africa<br />

Pohnpei<br />

Ghana<br />

Guam<br />

India<br />

Indonesia<br />

Kosrae<br />

Malaysia<br />

(Sabah)<br />

Northern<br />

Marianas<br />

Nigeria<br />

South Africa<br />

Sri Lanka<br />

Thailand<br />

Yap<br />

Julien 1992,<br />

Kluge & Caldwell 1993<br />

Esguerra et al. 199 1,<br />

Esguerra et al. 1994<br />

Muniappan et al. 1988b<br />

Cock 1985,<br />

Cock & Holloway 1982<br />

Julien 1992<br />

Nafus & Schreiner 1989,<br />

Seibert 1989<br />

Chacko & Narasimham<br />

1988, Cock & Holloway<br />

1982<br />

Chacko & Narasimham<br />

1988, Julien 1992,<br />

Muniappan et al. 1989,<br />

Satheesan et al. 1987<br />

McFadyen pers. comm.<br />

Esguerra et al. 1994<br />

Cock & Holloway 1982,<br />

Ooi et al. 1988a,b,<br />

Syed 1979a<br />

Nafus & Schreiner 1989,<br />

Seibert 1989<br />

Cock & Holloway 1982<br />

Julien 1992, Kluge 1991,<br />

Kluge & Caldwell 199 1<br />

Dharmadhikari et al. 1977<br />

Napompeth et al. 1988<br />

Marutani & Muniappan<br />

199 1 a, Muniappan et al.<br />

1988b<br />

PY RALl DAE<br />

Mescinia parvula Guam Nafus & Schreiner 1989


4.4 Chromolaena odorata 43<br />

Americas. In another study 21 polyphagous insects were recorded from C. odorata, of<br />

which the most widespread and numerous were Aphis fabae and A. spiraecola (Lyla and<br />

Joy 1992, Lyla et al. 1987). Some of these same species are included amongst the 31<br />

insects and 9 mites recorded on Chromolaena by Chacko and Narasimham (1988).<br />

Pareuchaetes pseudoinsulata from Trinidad was cleared of a nuclear polyhedral<br />

virus and mass reared. It was first released in 1973 at several sites in Karnataka, but no<br />

establishment occurred. Observations suggested that two ants, Myrmicaria brunnea and<br />

Oecophylla smaragdina, were major predators (Cock and Holloway 1972). P. pseudoin-<br />

sulata from Sri Lanka (where it had been sent and had already become established) was<br />

next released and appeared to be doing well until unexpectedly wiped out by virus (Cock<br />

1985). However, further material from Sri Lanka was laboratory reared and 36000 larvae<br />

and 1000 adults released from 1984 onwards, this time in Kerala. This procedure resulted<br />

in field establishment (Chacko and Narasimham 1988, Joy et al. 1993, Muniappan et al.<br />

1989, Satheesan et al. 1987). Most recently, the establishment of P. pseudoinsulata at<br />

Sullia Taluk in Karnataka State and defoliation of Chromolaena thickets over about 1000<br />

km2 was reported in December 1992 (R. Muniappan pers. comm. 1993). However the<br />

overall performance of the moth has been unsatisfactory (Joy et al. 1993).<br />

Small releases of the weevil Apion brunneonigrum have been made since 1972, but<br />

establishment has not resulted (Cock 1985, Ooi et al. 1991).<br />

SRI LANKA<br />

R pseudoinsulata was received from India in 1973 and about 2000 larvae released in a<br />

coconut estate in the North Western Province. Six months after release spectacular defo-<br />

liation was observed of a hectare of previously impenetrable growth of C. odorata. In<br />

addition to leaves, terminal buds and tender stems were being consumed. Further releas-<br />

es were made and two years later it was estimated that some 800 ha of C. odorata had<br />

been defoliated (Dharmadhikari et al. 1977). Since then sporadic, heavy defoliation has<br />

mainly occurred at the beginning of the dry season at the time of flowering. This has<br />

caused great damage and, at times, death of the weed. However R pseudoinsulata popu-<br />

lations fluctuate considerably, due in no small measure to natural enemies. Young larvae<br />

are taken by birds and predatory Sycanus bugs. They are also parasitised by the braconid<br />

Apanteles creatonoti and the tachinid Exorista sp. (Kanagaratnam 1976). In one series<br />

of experiments from 63 to 100% of pupae were consumed by ants, termites and lizards<br />

(Mahindapala et al. (1980). Perera (1981) fed P. pseudoinsulata larvae on C. odorata<br />

leaves dipped in 32P labelled sodium orthophosphate, transferred them to C. odorata in<br />

the field and collected predators from pitfall traps. Several carabids and a histerid<br />

showed no radioactivity, nor did the ants Odontomachus simillimus and Diacamma<br />

rugosum which were observed carrying away treated larvae to their nests, indicating that<br />

they do not feed on the larvae soon after capture. There was no unusual preponderance<br />

of predatory wasps, but birds were observed picking up larvae so it is likely that they<br />

were the cause of the sudden decline in larval population (P.A.C.R. Perera pers. comm.<br />

1993).


44 Biological Control of Weeds: Southeast Asian Prospects<br />

How effective the moth is as a control agent is yet to be determined. However,<br />

Perera (1981) calculated that a t? pseudoinsulata larva from hatching to pupation con-<br />

sumes an average of 184.6 cm2 of leaf. Based on measurements of a heavy growth of C.<br />

odorata, there are 22.42x lo8 cm2 of leaf area per ha requiring about 12 million larvae to<br />

produce defoliation. Assuming an average egg production of 200 per female moth and a<br />

1 : 1 sex ratio, 12 million larvae could be produced in two generations (3 months) with a<br />

release of 600 to 700 females. Cock and Holloway (1982) have suggested that there is a<br />

better climate match between Sri Lanka and Trinidad than for most of the other countries<br />

where the moth has been released.<br />

Apion brunneonigrum were released between 1974 and 1976 and, two months after<br />

release, were seen on flower heads but have not been recovered since (Cock 1985,<br />

Kanagaratnam 1976, Ooi et al. 1991).<br />

Southeast Asia<br />

BRUNEI<br />

Although no releases of P. pseudoinsulata have been made, two females were trapped in<br />

the early 1980s, presumably having resulted from the colonies established in neighbour-<br />

ing Sabah (Malaysia) (Cock 1985).<br />

INDONESIA<br />

An aphid has been observed to attack young shoots and cause leaf curl of C. odorata.<br />

Work on biological control of the weed was initiated in 1991 with the introduction of P.<br />

pseudoinsulata to Sumatra, but there is no information on the outcome. There is a current<br />

project (1993) under R.E. McFadyen to study the host specificity of the tephritid fly<br />

Procecidochares connexa and either the moth Mescinia parvula, the stem boring<br />

Melanagromyza eupatoriella or the butterfly Actinote anteas with a view, if judged safe<br />

to do so, to liberation in Indonesia and the Philippines (R.E. McFadyen pers. comm.,<br />

Tjitrosoedirdjo 1991, Tjitrosoedirdjo et al. 199 1).<br />

MALAYSIA (SABAH)<br />

Aphis spiraecola attacks young shoots of C. odorata and causes leaf fall (Bennett and<br />

Rao 1968).<br />

t? pseudoinsulata was introduced from India to Sabah in 1970 and releases made<br />

between 1970 and 1974 of over 4000 eggs, 40 000 larvae and 700 adults. Temporary<br />

establishment occurred in two areas in 1973 and 1974, but both colonies then appeared to<br />

die out over the next couple of years. This was considered to be due to general predators,<br />

such as ants (Cock and Holloway 1982). However, in 1983 and 1987, pockets of larvae<br />

appeared scattered over Sabah and often distant from the sites of original release (Ooi et<br />

al. 1988a,b). There is a good climate match between Sabah and Trinidad, which may<br />

explain the establishment (Cock and Holloway 1982).<br />

Small releases of A. brunneonigrum were made in 1970 and recoveries were report-<br />

ed a year later, but there is no indication that the weevil has survived (Ooi et al. 1988a,b,<br />

Syed 1973, 1975, 1979a,b).


4.4 Chromolaena odorata 45<br />

PHILIPPINES<br />

Aphis gossypii, A. spiraecola (= A. citricola) and the tortricid Homona coflearia were<br />

found attacking C. odorata (Torres 1986) and the total of natural enemies increased to 11<br />

by 8 additional (unspecified) insects (Torres 1988). Although it had not been intentional-<br />

ly introduced, numerous larvae of P. pseudoinsulata were discovered in 1985 in a limited<br />

area near the coast of Palawan. They were feeding on the leaves and stems of C. odorata<br />

under coconut trees and along roads, but surveys elsewhere at the time revealed no evi-<br />

dence of P. pseudoinsulata larvae (Aterrado 1986a,b, Torres and Paller 1989). However<br />

P. pseudoinsulata was discovered later in Zamboanga City, Bohol and northern Leyte<br />

provinces in the Visayas islands (Aterrado and Talatala-Sanico 1988).<br />

The eriophyid mite Acalitus adoratus was discovered in the Philippines in 1987<br />

(McFadyen 1 99 1 b).<br />

THAILAND<br />

A number of insects were found attacking C. odorata: the aphids Aphis craccivora,<br />

A. gossypii and A. spiraecola, the weevil Hypolixus trunculatus, a stem boring cicindelid<br />

larva and the arctiid moth Amsacta lactinea. They were causing little damage<br />

(Napompeth 1990a,b, Napompeth et al. 1988, Napompeth and Winotai 199 1).<br />

P. pseudoinsulata was introduced from Guam from 1986 to 1988 but, despite<br />

repeated field releases in 1987 and 1988, did not become established. The shoot miner<br />

Melanagromyza eupatoriella was introduced from Trinidad in 1978, but could not be<br />

reared and was not released.<br />

The mite Acalitus adoratus, detected in 1984, has since spread to all C. odorata<br />

infested areas, but is not having a significant effect on the weed.<br />

VIETNAM<br />

Infestations of Aphis craccivora and A. gossypii have been recorded on C. odorata, but<br />

no releases of biological control agents have been made (Napompeth and Hai 1988).<br />

Pacific<br />

GUAM<br />

P. pseudoinsulata was introduced from India and Trinidad, mass reared and first released<br />

in Guam in 1984 and later in the Northern Marianas. Initially late instar larvae were<br />

released in batches of up to 800, but were heavily attacked by ants, spiders, toads and<br />

other general predators and failed to become established. Next, groups of 500 or more<br />

adult moths were released at a number of sites, resulting in establishment in all release<br />

areas. Populations built up rapidly, defoliation of Chromolaena soon followed and almost<br />

all plants were stripped. Shoots arising from the crowns were also attacked as they<br />

appeared and, within a year, over 90% of the plants were killed. The moth spread rapidly<br />

and by 1987 had reached almost all infested areas of Guam. Eventually more than<br />

25 000 ha of the weed had been defoliated (Muniappan 1988c, Nafus and Schreiner 1989,<br />

Seibert 1989). A parasitoid Exorista xanthaspa (= E. civiloides) caused up to 30% mor-<br />

tality and predation by ants, spiders, toads and lizards occurred (Seibert 1989).


46 Biological Control of Weeds: Southeast Asian Prospects<br />

It was observed that the feeding of P. pseudoinsulata larvae caused the leaves of C.<br />

odorata to turn yellow, an effect that could not be produced by simply applying larval<br />

excreta to the plant. Yellow leaves were tougher and had a higher level of nitrate and,<br />

when larvae were forced, much against their preference, to feed on yellow leaves, they<br />

exhibited slow growth and high mortality. Furthermore, larvae continued to feed on yel-<br />

low plants both by day and night (exposing them to daytime predators), whereas on green<br />

plants they fed at night and hid at ground level by day (Marutani and Muniappan 1991 b).<br />

Interestingly, the yellow plants appear to lose their allelopathic properties and hence this<br />

major aid to dominance over other vegetation. The yellowing is reversible if the insects<br />

are removed (McConnell et al. 1992, Muniappan and Marutani 1992).<br />

Three additional insects were released to aid in the control of Chromolaena, but<br />

there is no evidence of establishment. Apion brunneonigrum was released early in 1984<br />

at the beginning of the dry season when the above ground growth of Chromolaena dies<br />

back. Because of the unsuitable condition of the host plants the beetle was not expected<br />

to become established. Small numbers of Mescinia parvula were released late in 1984<br />

and again late in 1986 (Seibert 1989). The mite Acalitus adoratus appeared in Guam in<br />

1993 (R. Muniappan pers. comm.).<br />

Larvae of the pyralid moth Eucampyla etheiella were observed attacking young<br />

flower buds and mature flowers and causing extensive damage. Larvae were parasitised<br />

by the eulophid Elachertus sp. and the elasmid Elasmus sp. (Marutani and Muniappan<br />

1 990).<br />

NORTHERN MARIANAS (ROTA, TINIAN, SAIPAN, AGUIJAN)<br />

P. pseudoinsulata has been established from liberations in 1986 and 1987 on all of these<br />

islands (Muniappan et al. 1989, Nafus and Schreiner 1989).<br />

Federated States of Micronesia<br />

KOSRAE<br />

Monthly releases of P. pseudoinsulata larvae in batches of 1000 to 4000 were made from<br />

early 1992 in sunny areas and defoliation of C. odorata was observed six months later.<br />

Predators were less active in sunny than in shady locations (Esguerra et al. 1994).<br />

PA LA U<br />

Although no releases of biological control agents have been made, the mite Acalitus ado-<br />

ratus was found to be present (Muniappan et al. 1988b).<br />

POHNPEI<br />

P. pseudoinsulata larvae were introduced from Guam in 1988, some liberated and others<br />

mass reared during which both larvae and adults were released until 1992. In four release<br />

sites extensive feeding injury and heavy defoliation of C. odorata was observed in 1991<br />

and populations persisted in 1992 in burnt areas where Siam weed was regenerating from<br />

root stocks (Esguerra et al. 1994). Heavy predation, especially in shaded conditions, was<br />

observed on all stages by ants, spiders, birds and lizards (Esguerra et al. 1991, 1994).


4.4 Chromolaena odorata 47<br />

YAP<br />

C. odorata was first reported in 1987. P. pseudoinsulata was released in 1988 at 14 dif-<br />

ferent sites, but failed to become established except at one location where only 100 lar-<br />

vae and 104 adults had been released (Muniappan et al. 1988b). It eventually disappeared<br />

at this site. However releases of 500 larvae in September and October and several hun-<br />

dred in December 1990 to June 1991 resulted in establishment (Marutani and Muniappan<br />

1991a). As on Guam and Rota, larvae of Eucampyla etheiella were found causing exten-<br />

sive damage to buds and mature flowers (Marutani and Muniappan 1990). The eriophyid<br />

mite Acalitus adoratus was found attacking C. odorata late in 1988, although it was not<br />

observed during a survey of the weed in May of that year (Muniappan et al. 1988b).<br />

Africa<br />

GHANA<br />

P. pseudoinsulata from India was used to establish a culture and releases were made<br />

between 1973 and 1978 in a variety of habitats including oil palm plantations. Although<br />

small amounts of leaf damage were observed shortly after release, no recoveries were<br />

made. Failure to establish was ascribed to predators, in particular to ants (Cock and<br />

Holloway 1982).<br />

One small release of Apion brunneonigrum was made in 1975, but it failed to<br />

become established (Cock 1985).<br />

NIGERIA<br />

P. pseudoinsulata shipped from Ghana between 1973 and 1978 were released, but no<br />

establishment occurred (Cock and Holloway 1982).<br />

A. brunneonigrum was sent from Trinidad from 1970 to 1975, but there is no record<br />

of establishment (Cock 1985).<br />

SOUTH AFRICA<br />

Disease-free adults of P. pseudoinsulata originating from Guam were released in batches<br />

of 500 to 1000 at 10 sites in Natal in 1989, but there are no signs of establishment. Very<br />

heavy egg predation (up to 82%) by ants and chrysopids was observed (Kluge 1991,<br />

Kluge and Caldwell 1991). P. pseudoinsulata has been obtained from Florida where the<br />

climate is similar to that in Natal and where there is a rich ant fauna. It is (as of 1991) to<br />

be released as soon as laboratory cultures of larvae have been cleared of microsporida.<br />

The larvae of another arctiid moth, Pareuchaetes aurata aurata, from Chromolaena<br />

jujuensis in Argentina were found to feed voraciously and complete their development on<br />

C. odorata. Females scatter their eggs around the base of the host plant and it is hoped<br />

that this will help to overcome the problem of ant predation. After specificity testing it<br />

has been released in Natal, but no further information is available (Kluge and Caldwell<br />

1993).<br />

'A laboratory culture of the butterfly Actinote anteas has been established with<br />

material collected in Costa Rica and host testing is to commence (Kluge and Caldwell<br />

1991).<br />

Work is also in progress on the host specificity of the weevil Rhodobaenus


48 Biological Control of Weeds: Southeast Asian Prospects<br />

cariniventris and a leaf spot disease caused by Septoria sp. (Kluge and Morris 1992).<br />

Major natural enemies<br />

Acalitus adoratus Acarina: Eriophyidae<br />

Recorded originally from Trinidad, Florida, Brazil and Bolivia, it appeared without spe-<br />

cial assistance in Thailand, Philippines, Indonesia (Java and Sumatra), Caroline Is (Yap,<br />

Palau) Guam and southern China. It was not present in India in the mid 1980s nor in Sri<br />

Lanka or West Africa (McFadyen 1993).<br />

These tiny mites (0.1 4 to 0.1 8 mm long) usually live on the lower surface of leaves.<br />

Their feeding induces abnormal growth of the epidermal hairs, resulting in the formation<br />

of erineum patches, the term given to areas covered with dense twisted hairs amongst<br />

which the mites live. These appear as white patches on the leaves, usually 0.5 to 3 mm in<br />

diameter, and the whole leaf surface may be affected. The patches often turn yellow on<br />

older leaves. The nymphs and adults feed, and the eggs are laid, between the epidermal<br />

hairs. Particularly heavy infestations develop in dry and exposed situations and, although<br />

the damage is not spectacular, heavy attack stunts, distorts and slows growth, thereby<br />

reducing competitiveness. Tests indicated that, as with many other eriophyid mites,<br />

A. adoratus is host specific.<br />

When infested leaves senesce, A. adoratus leave the erineum patches and are preyed<br />

upon by other mites and by the larvae of a cecidomyiid fly, Arthrocnodax meridionalis<br />

(Cruttwell 1977b, McFadyen 199 1 b, Muniappan et al. 1988a,b).<br />

It is suggested that A. adoratus was accidentally introduced to Sabah when field-<br />

collected adults of the weevil Apion brunneonigrum in Trinidad were released directly in<br />

the 1970s; and that it has since spread naturally and on leaves of C. odorata used as<br />

packing material around fruit and other produce (McFadyen 1993).<br />

Actinote anteas Lepidoptera: Nymphalidae<br />

Recorded from Costa Rica and Trinidad. The host specificity of this acraeinine defoliator<br />

is being examined in South Africa (Kluge and Caldwell 1991).<br />

Apion brunneonigrum Coleoptera: Apionidae<br />

This weevil has been recorded from Trinidad, Venezuela and Argentina. Small releases<br />

were made in West Africa, India, Sri Lanka, Sabah and the Marianas, but the weevil per-<br />

sisted only in Sabah and then apparently only briefly. The reasons for these failures have<br />

not been investigated.<br />

Cruttwell (1973a) studied its biology and host specificity and found that it would<br />

feed and develop only on C. odorata and C. ivaefolia. It has never been recorded damag-<br />

ing economic plants either in Trinidad or South America. The life history is closely linked<br />

with the development of its host, the adults becoming reproductively mature at the time<br />

that the plant produces young flower buds which provide food for egg maturation. Eggs<br />

are deposited in the developing flower heads and larvae feed within the flower heads,<br />

destroying the seeds. Pupation occurs in the flowerheads and, until the next flowering,<br />

adults feed on tender growth, usually in shaded situations, and may do considerable dam-


4.4 Chromolaena odorata 49<br />

age (Cock 1984a). An individual larva destroys 30 to 60 seeds during development and<br />

the ovipositing female many young flowers. A. brunneonigrum thus has potential for<br />

causing considerable damage, particularly in lightly shaded conditions.<br />

Aulacochlamys sp. Coleoptera: Chrysomelidae<br />

Widespread and occasionally abundant in Trinidad, where it causes moderate damage.<br />

Eggs are laid singly in a cylindrical ribbed case formed from faeces. These cases form<br />

the apex of a conical larval case which is enlarged as the larva grows. Larvae feed on the<br />

surface of stems and leaf petioles. Mature larvae attach the 3.5 to 3.7 mm long case to a<br />

stem and pupate inside. Adults emerge one to two weeks later. The small black adults<br />

(1.8 to 2.5 mm long) feed on the surface of stems and petioles. No parasitoids are known<br />

(McFadyen 1988a).<br />

Bucculatrix sp. Lepidoptera: Bucculatricidae<br />

Recorded from C. odorata in Mexico and Chromolaena jujuensis (= Eupatorium hooke-<br />

rianum) in Argentina. Larvae are solitary leaf miners and pupate in the mines (McFadyen<br />

1988a).<br />

Chlamisus insularis Coleoptera: Chrysomelidae<br />

Recorded from Mexico, Panama and Trinidad. The life history is similar to that of<br />

Aulacochlamys sp., but this species is somewhat larger. The mature larval case is conical<br />

with a rough surface and 6 to 7 mm long. The adults are black with golden markings and<br />

3.3 to 4.3 mm long. Adults are known to feed on C. odorata, C. ivaefolia and Bidens<br />

pilosa. A black, solitary eulophid egg parasitoid is known (McFadyen 1988a).<br />

Clinodiplosis sp. Diptera: Cecidomyiidae<br />

Recorded from C. odorata and C. ivaefolia in Trinidad. Up to three larvae at a time live<br />

between the bud leaves of stem tips or axillary buds, destroying tissue and preventing<br />

growth. A gall is formed by the slight swelling of the bud leaves which become red and<br />

densely covered with hairs. Mature larvae drop to the ground and pupate just below the<br />

soil surface. Adults emerge 11 to 18 days later. This gall midge is abundant and wide-<br />

spread in Trinidad, breeds throughout the year and causes considerable damage to C.<br />

odorata (McFadyen 1988a).<br />

Mescinia parvula Lepidoptera: Pyralidae<br />

Recorded from Trinidad; similar larvae were found on C. odorata in Mexico and Brazil<br />

and on C. jujuensis in Argentina. A few individuals were released on Guam in 1984, but<br />

there has been no evidence of establishment.<br />

Ovipositing females select leaves with dense hairs (in effect young leaves) with the<br />

result that developing buds are nearby. Eggs are laid individually amongst the epidermal<br />

hairs on the underside of the young leaves and hatch in 5 to 6 days. Young larvae move<br />

to a terminal or axillary bud and several may enter the same bud. They bore down the<br />

stem destroying meristematic tissue and preventing growth. Larvae may leave a stem and<br />

enter a new bud. After 13 or so days larvae leave the stem to spin a flimsy cocoon, either<br />

attached to the plant or among ground litter, in which they pupate. Adults emerge 10 to


50 Biological Control of Weeds: Southeast Asian Prospects<br />

11 days later and live up to 6 days. Attempts to induce mating in cages in Trinidad were<br />

unsuccessful. In specificity tests larvae fed on only a few Asteraceae other than C. odora-<br />

ta and C. ivaefolia but, with the exception of 1 out of 30 larvae placed on Dahlia, no<br />

development was ever completed. Over a three year period in Trinidad, no oviposition or<br />

attack was observed on Dahlia plants growing near C. odorata which was frequently<br />

attacked by M. parvula. Furthermore, since Dahlia leaves are not hairy, it is most unlike-<br />

ly that M. parvula would ever oviposit on them. Larvae in Trinidad are attacked by eight<br />

hymenopterous and one tachinid parasitoid and, if freed from these, might do consider-<br />

ably more damage to C. odorata (Cruttwell 1977a).<br />

Pareuchaetes aurata aurata Lepidoptera: Arctiidae<br />

This subspecies occurs in south-eastem Brazil, Paraguay and northern Argentina at lati-<br />

tudes (26" to 30°S) similar to those of Natal, South Africa. It has an average life cycle of<br />

30 days at 26' to 29OC and 58 days at 22O to 25OC. Its larvae are nocturnal feeders and<br />

shelter at the base of plants during the day. In the laboratory, pupation occurred in a flimsy<br />

cocoon spun between leaves on the plant. Mating may occur on the night of emergence<br />

and an average of 242 eggs are laid over the next eight days. These are laid singly on the<br />

ground and, in the laboratory, newly-hatched first instar larvae were able to walk up about<br />

2m of stem to commence feeding. In the field ?! aurata aurata is found in shaded habitats<br />

near surface water.<br />

In Argentina, larvae and pupae are infected with a microsporidan disease (Nosema<br />

sp.), up to 20% of larvae are parasitised by a complex of braconid, chalcidid and tachinid<br />

parasitoids and all stages are subject to attack by predatory ants.<br />

The usual host plant of ?! aurata aurata is Chromolaena jujuensis, but it has been<br />

successfully reared for more than 10 generations on C. odorata. In the field it has never<br />

been recorded as a pest on any of the many commercially important crops grown in its<br />

natural area of distribution. It was liberated in Natal (South Africa) in 1990 (Kluge and<br />

Caldwell 1993).<br />

Pareuchaetes pseudoinsuhta Lepidoptera: Arctiidae<br />

This moth is native to Trinidad, Tobago and the north-eastern coast of Venezuela. It has<br />

become established in Brunei, Guam, India, Philippines, Sabah, Sri Lanka, the Northern<br />

Marianas and Yap, but has failed to do so in Ghana, Nigeria, South Africa and Thailand. It<br />

was previously misidentified first as Ammalo arravaca and then as A. insulata, which is a<br />

closely related but distinct species (Cock and Holloway 1982).<br />

The moth, which lives up to about 10 days, lays 150 to 250 eggs (maximum 580) in<br />

groups attached to the lower surface of the leaves of C. odorata. Larvae feed on the leaves<br />

and are gregarious until the 3rd instar, but then disperse. From the 4th instar on they feed<br />

at night, hiding by day amongst debris at the base of the plant, where they later pupate.<br />

The life cycle varies from 40 to 60 days and breeding occurs throughout the year. Host<br />

specificity studies in Trinidad showed that development occurred only on Chromolaena<br />

ivaefolium, C. microstemon and C. odoratum. In addition larvae developed, but only as far<br />

as the 3rd instar, on Ageratum conyzoides (Bennett and Cruttwell 1973), although in Sri<br />

Lanka, adults were produced on this weed. However their eggs had a somewhat lower


4.4 Chromolaena odorata 51<br />

hatchability than those from adults bred on C. odorata (Mahindapala et al. 1980). A high<br />

degree of host specificity has since been confirmed by others (e.g. Ahmad and Thakur<br />

1991, Sankaran and Sugathan 1974, Syed 1979a) and no damage to plants other than to C.<br />

odorata has been reported either in the Americas or in the overseas countries where it has<br />

become established.<br />

In Trinidad the eggs are parasitised by a scelionid wasp and the larvae by five<br />

species of tachinid fly. A nuclear polyhedrosis virus also affects the larvae (Bennett and<br />

Cruttwell 1973) and may have been responsible for breeding difficulties in some overseas<br />

countries, although other countries have experienced no problems in establishing cultures.<br />

Pentispa explanata Coleoptera: Chrysomelidae<br />

This hispine beetle is recorded on C. odoratum from Mexico to Colombia and from<br />

Venezuela on Pithecoctenium sp. (Bignoniaceae). In Trinidad adults are widespread on C.<br />

odorata and C. ivaefolia, but would not feed on Pithecoctenium echinatum.<br />

Eggs are inserted singly under the leaf epidermis and covered with a faecal plug.<br />

Larvae hatch after about 12 days and form irregular blotch mines which expand to 2 to 3<br />

cm in diameter 20 to 25 days later when larvae are mature. Pupation occurs in the mine<br />

and adults emerge 5 to 8 days later. Adults disperse and feed on the underside of the<br />

leaves producing characteristic scars. There is one generation a year. Larvae are para-<br />

sitised by a solitary ectoparasitic elasmid Austelasmus sp. and are taken by predatory<br />

wasps (McFadyen 1988a).<br />

Perasphondylia reticulata Diptera: Cecidomyiidae<br />

This gall fly is recorded from C. odorata and C. ivaefolia in Trinidad, Brazil and Bolivia<br />

and from C. odorata and Eupatorium sp. in El Salvador.<br />

Larvae occur singly in a hollow pear-shaped gall, 7 to 9 mm long, in stem tips and<br />

axillary buds. P. reticulata causes considerable damage but is generally uncommon and<br />

confined to the cooler valleys in Trinidad. However it is commoner in Brazil and Bolivia.<br />

It is attacked by several parasitoids in Trinidad and Bolivia (McFadyen 1988a).<br />

Procecidochares connexa Diptera: Tephritidae<br />

This gall fly is recorded from Mexico, Brazil and Bolivia.<br />

Eggs are inserted in the tip of the stem and abnormal growth commences even<br />

before they hatch. One to seven larvae feed in separate curved tunnels in the developing<br />

gall. Mature larvae pupate in the tunnel behind an epidermal window through which the<br />

adult emerges later. The galls slow and distort growth and cause moderate damage.<br />

Larvae are parasitised by a number of wasps throughout their range (McFadyen<br />

1988a).<br />

Rhodobaenus cariniventtis Coleoptera, Curculionidae<br />

This weevil is recorded from Trinidad and USA. Eggs are deposited in a slit between two<br />

rows 'of punctures encircling the stem, which result in wilting of the stem tip. On hatch-<br />

ing, larvae feed for a few days in the wilted portion then tunnel into the sound tissue<br />

below the punctures. Bennett (1955) reports that, after a month, they pupate in the stem<br />

at the base of the plant and adults emerge 10 days later. However, McFadyen (1988a)


52 Biological Control of Weeds: Southeast Asian Prospects<br />

states that, when mature, the larva cuts off from the hollow tip of the stem a piece about<br />

2cm long containing it. This falls to the ground, where the open ends are plugged with<br />

frass, and pupation occurs. Adults feed on stems and petioles of Bidens pilosa,<br />

Chromolaena inulaefolium, C. ivaefolia and C. odorata (all Asteraceae). Larvae tunnel in<br />

the stems of all these except B. pilosa (McFadyen 1988a). Cruttwell (1974) suggested<br />

that the feeding of adults might be insufficiently restricted, but the situation merits fur-<br />

ther investigation.<br />

R. cariniventris is parasitised in Trinidad by an external egg parasitoid Euderus sp.<br />

(Eulophidae) (Bennett 1 955).<br />

Comments<br />

The genus Chromolaena belongs to the tribe Eupatorieae (Table 4.3.4), which is mainly<br />

of American origin. There are no crop plants or important ornamentals in this tribe.<br />

However, it does contain the major weeds Ageratum conyzoides (4.1) and Mikania<br />

micrantha (4.14) and several less important species: Ageratina altissima in eastern USA,<br />

A. adenophora and A. riparia in India to southern China, Australia, Hawaii and South<br />

Africa and Austroeupatorium inulaefolium in Indomalaysia and Sri Lanka. There are 129<br />

species of Chromolaena, all from Central and South America. Chromolaena ivaefolia<br />

and C. laevigata are widespread and occasionally weedy in the Americas, but only C.<br />

odorata has spread elsewhere (McFadyen 1991a). These relationships suggest that many<br />

of the insects that attack C. odorata and its close allies are likely to be sufficiently host<br />

specific to be considered for classical biological control.<br />

There has been discussion concerning the possible reasons for Pareuchaetes<br />

pseudoinsulata establishing fairly readily in Sri Lanka and Guam, with difficulty in India<br />

and Sabah and not at all in Africa (e.g. Cock 1984a, Cock and Holloway 1982, Seibert<br />

1989). The desirability is rightly emphasised of matching, where possible, the climate of<br />

the area from which it (or any other biological control agent) is collected with that of the<br />

area in which it is to be released. Since P. pseudoinsulata has no diapause and breeds all<br />

year round, it will at least experience great difficulty in bridging (or find it impossible to<br />

bridge) the gap created by almost complete leaf loss of C. odorata in areas where there is<br />

a severe and long dry season. However, if this were the only problem, the moth should be<br />

able to establish itself at least briefly before being eliminated by starvation: this sequence<br />

has not, however, been documented. What, however, has been widely reported is the very<br />

high level of predation on eggs, larvae and pupae, in particular by ants and spiders, but<br />

also by other invertebrate and vertebrate predators (e.g. Kluge 1991, Kluge and Caldwell<br />

1991). It seems probable that massive predation has been the cause of rapid demise of<br />

many releases. Thus, release sites should be chosen (or treated) so as to minimise preda-<br />

tion. Although significant predation was also observed on Guam, the lower diversity of<br />

predators (and other organisms) on islands may well have contributed to the compara-<br />

tively ready establishment of P. pseudoinsulata there and on other Pacific islands.<br />

Furthermore, the release of significant numbers (500 or more) of adults rather than of<br />

eggs or larvae may have assisted in avoiding rapid elimination of the released material.


4.4 Chromolaena odorata 53<br />

The general vigour of the released insects and the presence or absence of microsporida or<br />

viruses would also play a crucial role in successful establishment and it is probable that<br />

these factors have not always been adequately considered.<br />

It is possible that the high level of predation and of parasitisation of the biological<br />

control agents will, in many areas, so lessen the potential each has to cause damage to C.<br />

odorata that the combined effects of several will be required to bring about an adequate<br />

and sustained reduction in its weediness. Fortunately, many potentially suitable insects<br />

are available for study.


84 Biological Control of Weeds: Southeast Asian Prospects<br />

Eleusine indica<br />

(after Holm et a/. 1977)


Map 4.8.1 Eleusine indica<br />

4.8 Eleusine indica 85<br />

Eleusine indica<br />

Eleusine indica is of African origin and, except for finger millet, E. coracana, is not<br />

closely related to graminaceous crop plants. Finger millet is a staple crop in India and<br />

some parts of Africa, but relatively unimportant or not grown elsewhere. Little is known<br />

about the insect or other enemies of E. indica in Africa and, elsewhere, almost all records<br />

are of pests with a wide host range. Because it is a major weed (5th) in Southeast Asia<br />

and is only distantly related to crop plants a search for specific natural enemies in Africa<br />

must be regarded as an attractive proposition.


86 Biological Control of Weeds: Southeast Asian Prospects<br />

4.8 Eleusine indica (L.) Gaertn.<br />

Poaceae<br />

crowsfoot grass, goose grass; sin ngo let kya, sin ngo myet (Myanmar), yah<br />

teenka (Thailand), smao choeung tukke (Cambodia) co miin triiu (Vietnam),<br />

rumput sambou (Malaysia), rumput belul8ng (Indonesia), sabung sabungan<br />

(Philippines)<br />

Rating<br />

+++ Viet, Msia, Sing, Indo, Phil<br />

24 ++ Myan, Thai, Laos, Camb<br />

+ Brun<br />

Origin<br />

Africa (Phillips 1972), replacing an alternative view that it was India (Holm et al. 1977,<br />

Waterhouse 1993a).<br />

Distribution<br />

Throughout the tropics, sub-tropics and temperate regions of the world, including Africa,<br />

Asia, SE Asia, Australia, the Pacific and the Americas.<br />

Characteristics<br />

E. indica is a tufted, annual, C4 grass attaining a height of 0.6 m. Its flower spikes mostly<br />

have 2 to 7 spikelets, producing a characteristic windmill-like appearance.<br />

Importance<br />

The genus Eleusine, contains nine annual or perennial grasses all native to Africa except<br />

for the South American E. tristachya (Hilu and Johnson 1992, Phillips 1972). It belongs<br />

to the subfamily Chloridoideae, which is but distantly related to all except one of the<br />

principal grain crops. That exception is finger millet, or ragi, E. coracana (2n = 36),<br />

which is believed to have arisen from E. indica (2n = 18) (Hilu and de Wet 1976, Hilu<br />

and Johnson 1992, Hiremath and Salimath 1992) and is an important staple cereal in<br />

India and some regions of eastern Africa (Rachie and Peters 1977). However, it is worth<br />

noting that E. coracana is regarded as a minor weed in some Southeast Asian countries<br />

(Thailand, Vietnam) (Waterhouse 1993a) and that it is nowhere important in this region.<br />

The genera Eleusine and Dactyloctenium are closely related.<br />

E. indica is an important weed in more than 60 countries in at least 46 crops and, in<br />

these, has the status of a serious weed in 30 countries and 27 crops. It was evaluated as<br />

the fifth worst weed in the world (Holm et al. 1977) and also rated fifth in a recent survey<br />

in Southeast Asia (Waterhouse 1993a). It was rated 15th in 1992 in the oceanic Pacific<br />

(Waterhouse, unpublished). It grows well in sunny or somewhat shaded places, in marsh-<br />

lands,. wastelands, roadsides, along borders of irrigated fields and canals, in lawns and in<br />

pastures, and prospers and is particularly troublesome on arable land. It ranges from near


4.8 Eleusine indica 87<br />

the seashore to an altitude of at least 2000 m and is a major problem in almost all forms<br />

of agriculture between the tropics of Capricorn and Cancer.<br />

E. indica grows and flowers well in all seasons and a single plant may produce more<br />

than 50000 small seeds, which move readily by wind, in mud on the feet of animals and in<br />

the tread of machinery. The seeds are eaten by wild and domestic animals and are occasion-<br />

ally grown for grain in Africa and India, but Eleusine coracana, finger millet, with some-<br />

what larger seeds is far better for this purpose. Although sometimes claimed to be palatable<br />

to grazing animals, crowsfoot grass becomes fibrous too early in the season to be a satis-<br />

factory pasture grass. The seed heads may contain high levels of cyanogenic glycosides<br />

and are believed to be responsible for occasional cases of stock poisoning (Everist 1974).<br />

Natural enemies<br />

Natural enemies restricted to the genus Eleusine and its close relatives might well be con-<br />

sidered for biological control of E. indica except in India or other regions where finger<br />

millet is an important cereal.<br />

E. indica is reported in the literature to be attacked by more than 50 insects, nema-<br />

todes, fungi, bacteria and viruses, all except 6 in continents other than Africa (Tables<br />

4.8.1 to 4.8.4). Further, with few exceptions, all of these organisms are known to have<br />

wide host ranges and to attack important agricultural crops. Indeed, of those recorded,<br />

only one cecidomyiid gall fly and possibly one or two fungi could be considered further<br />

for classical biological control. Figliola et al. (1988) consider that, where they already<br />

occur, two fungi, Bipolaris setariae and Magnaporthe (=Pyricularia) grisea hold<br />

promise as bioherbicides for E. indica, although their host range is a little too wide for<br />

classical biological control.<br />

It is not surprising that the organisms attacking an economic crop, finger millet,<br />

E. coracana, have been investigated in greater detail than those of a weedy relative.<br />

Finger millet is believed to have been domesticated in the East African highlands by<br />

3000 BC or earlier and archaeological data suggests that it may have been introduced to<br />

India as early as 2000 BC (Hilu et al. 1979). Since E. coracana and E. indica are closely<br />

related, Wapshere (1 990b) argues, probably correctly, that most or all of the more specific<br />

organisms infesting finger millet are also likely to attack E. indica. It is very disappoint-<br />

ing, therefore, that almost all of the natural enemies of finger millet so far recorded (again<br />

mostly from outside Africa) have wide to very wide host ranges and are not potential bio-<br />

logical control agents. The very few species that may prove to have a limited host range<br />

are shown in table 4.8.5. Wapshere (1990b) has listed 40 insects that attack E. coracana<br />

and at the same time belong to groups known to have species restricted to a single grass<br />

genus (and there are also many other insects from groups with a wider host range that<br />

attack E. coracana). In addition to the undescribed Orseolia gall midge attacking E. indi-<br />

ca in India, only three insects (two cecidomyiid gall midges, one from Uganda and one<br />

from Nigeria and an aphid from India), a nematode (Heterodera delvii) from India and a<br />

smut fungus (Melanopsichiurn (= Ustilago) eleusinis) may, if shown to attack E. indica<br />

also, prove to be sufficiently host specific to be considered for classical biological control.<br />

It is relevant that cecidomyiid gall flies are believed to have a high degree of specificity to<br />

their host grass genera (Barnes 1946, K.M. Harris pers. comm. 1993, Wapshere 1990a).


88 Biological Control of Weeds: Southeast Asian Prospects<br />

Comment<br />

It has been pointed out above that the majority of records for natural enemies of both<br />

E. indica and E. coracana come from outside Africa and that almost all of these organ-<br />

isms have a wide host range. Indeed, this is to be expected if both Eleusine species are of<br />

African origin. Except for any specific enemies that may have accompanied them, it is<br />

inevitable that they will be attacked in new countries by non-specific natural enemies<br />

that, hitherto, were attacking other plants. Of course, the possibility exists that natural<br />

enemy species in the new country may have evolved a degree of specificity in the four or<br />

five thousand years that the Eleusine species have existed outside Africa.<br />

It is significant that there has not so far been any detailed search in Africa for natur-<br />

al enemies of E. indica to establish whether or not adequately specific species occur<br />

there. A two year (or longer) survey of E. indica in several regions of Africa would prob-<br />

ably be required, together with observations on whether the organisms found attacking<br />

E. indica also attack E. coracana, nearby grasses or other plants. The relevant regions for<br />

study in Africa and Madagascar are indicated in map 4.8.2 based on the distribution data<br />

of Phillips (1 972).<br />

If (i) the African cecidomyiid gall midges (Contarinia (= Stenodiplosis) spp.)<br />

(Tables 4.8.1, 4.8.5) do not already occur in Southeast Asia (they are not known in<br />

Australia), (ii) they prove to be adequately host specific and (iii) the Ugandan species<br />

attacks E. indica in addition to E. coracana, they would appear to be the most promising<br />

of known species for introduction elsewhere. The undescribed species from northern<br />

Nigeria (Table 4.8.1) was collected from E. indica at Zaria in July 1959 and July 1960<br />

(K.M. Harris, pers. comm. 1993). Larvae of the Indian Orseolia sp. nr. fluviatilis proba-<br />

bly induce galls on young shoots of E. indica, so would affect vegetative growth rather<br />

than having a direct impact on seed production. It is as yet known only from India.<br />

To sum up, for an attempt at classical biological control of a grass weed, E. indica<br />

would appear to be the one with most positive factors combined except that, so far, few<br />

adequately specific, natural enemies are known. However, almost nothing is known about<br />

the natural enemies in Africa, not only its centre of origin but also that of the genus<br />

Eleusine. It would, indeed, be most surprising if several natural enemies having a restrict-<br />

ed host range were not discovered during a thorough survey there.<br />

Table 4.8.1 Natural enemies of Eleusine indica: insects.<br />

Species Country Portion Comments: References<br />

attacked other hosts<br />

Hemiptera<br />

APHlDlDAE<br />

Chaetogeoica India<br />

graminiphaga<br />

Geoica lucijiuga India<br />

beans and a Raychaudhuri 1983<br />

number of<br />

grasses<br />

also on rice, Eleusine Raychaudhuri et al.<br />

coracana and many 1978<br />

weeds including<br />

Cynodon dactylon,<br />

Cyperus rotundus<br />

I (continued on next page)


4.8 Eleusine indica 89<br />

Species Country Portion Comments: References<br />

attacked other hosts<br />

Hysteroneura setariae Hawaii rice, maize, wheat<br />

Schizaphis (= Toxoptera)<br />

graminum<br />

Sitobion avenae<br />

(= Macrosiphum<br />

granarium)<br />

Sitobion (= Macrosiphum)<br />

miscanthi<br />

Sregophylla (= Anoecia)<br />

querci<br />

Tetraneura basui<br />

Tetraneura<br />

nigriabdominalis<br />

(= T. hirsuta)<br />

CERCOPIDAE<br />

Prosapia (= Monecphora)<br />

bicincta fraterna<br />

CICADELLIDAE<br />

Nephotettix malayanus<br />

Nephotettix<br />

nigromaculatus<br />

(= N. nigropictus)<br />

Nephotettix virescens<br />

Recilia dorsalis<br />

DELPHACIDAE<br />

Laodelphax striatellus<br />

sorghum, sugar cane<br />

rice, sorghum, maize<br />

and a very wide<br />

host range<br />

rice, wheat, a very<br />

wide host range<br />

India on a very wide range<br />

of crop plants and<br />

weeds<br />

maize and several<br />

weeds<br />

India<br />

on rice, Echinochloa<br />

colona, Paspalum<br />

conjugatum and<br />

other weeds<br />

India<br />

rice, maize, sugarcane<br />

Eleusine coracana<br />

and a very wide<br />

range of weeds<br />

Cuba also on Paspalum<br />

notatum, Brachiaria<br />

subquadripara,<br />

Andropogon annulatus,<br />

Cynodon dactylon<br />

Philippines<br />

Philippines<br />

Philippines<br />

Philippines<br />

rice, many weeds<br />

rice, many weeds<br />

rice, many weeds<br />

rice, many weeds<br />

Beardsley 1962<br />

Patch 1939<br />

Patch 1939<br />

Raychaudhuri 1983<br />

Patch 1939<br />

Raychaudhuri 1983<br />

Patch 1939,<br />

Raychaudhuri 1983<br />

Plana et al. 1986<br />

Khan et al. 1991<br />

Khan et al. 1991<br />

Khan et al. 1991<br />

Khan et al. 1991<br />

China wheat, barley, oats,<br />

sorghum etc<br />

Zhang et al. 1981<br />

Peregrinus maidis India transmitter of<br />

Cherian and Kylasam<br />

Eleusine mosaic 1937, Patch 1939, Rao<br />

virus (see table 4.8.4);<br />

very wide host range<br />

et al. 1965<br />

Sogatella furcijera China can complete<br />

development also on<br />

17 other species of<br />

crops and weeds<br />

including rice, barley,<br />

wheat, Echinochloa<br />

crus-galli<br />

Huang et al. 1985<br />

(continued on next page)


90 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.8.1 (continued)<br />

Species Country Portion Comments: References<br />

attacked other hosts<br />

LYGAEIDAE<br />

Blissus leucopterus<br />

Thysanoptera<br />

PHLAEOTHRIPIDAE<br />

Haplothrips ganglbaueri<br />

Diptera<br />

AGROMYZIDAE<br />

Liriomyza marginalis<br />

Pseudonapomyza spicata<br />

CEClDOMYllDAE<br />

Orseolia sp. nrjluviatilis<br />

Stenodiplosis sp.<br />

Lepidoptera<br />

ARCTllDAE<br />

Cnaphalocrocis medinalis<br />

Cnaphalocrocis<br />

(= Marasmia) patnalis<br />

Creatonotos (= Amsacta)<br />

gangis<br />

NOCTUI DAE<br />

Spodoptera ffugiperda<br />

PYRALI DAE<br />

Ostrinia furnacalis<br />

USA lower damages sorghum and Ahmad et al. 1984,<br />

stem many grasses including Lynch et al. 1987<br />

Cynodon dactylon and<br />

Dactyloctenium<br />

aegyptium, but<br />

particularly damaging<br />

to E. indica<br />

India rice, wheat, sorghum Ananthakrishnan &<br />

Thangavelu 1976<br />

N&S Panicum miliaceum,<br />

America Digitaria, Paspalum<br />

(primary host),<br />

Euchlaena<br />

Australia leaf maize, sugarcane,<br />

grasses<br />

India stem undescribed gall midge<br />

resembling (but not)<br />

the rice stem gall midge<br />

Orseolia<br />

(= Pachydiplosis)<br />

oryzae; no host other<br />

than E. indica known<br />

Nigeria seed undescribed species<br />

heads<br />

Spencer 1990,<br />

Spencer & Steyskal<br />

1986<br />

Kleinschmidt 1970<br />

Barnes 1954a,b, 1956,<br />

Gagnt 1985,<br />

Hegdekatti 1927,<br />

Rachie and Peters,<br />

1977<br />

K.M. Harris pers.<br />

comm. 1993<br />

Philippines leaf rice, many weeds Abenes & Khan 1990<br />

folder<br />

Philippines leaf rice, many weeds Abenes & Khan 1990<br />

folder<br />

Philippines leaves rice, many weeds Catindig et al. 1993<br />

USA<br />

Guam<br />

wide range of crops Pencoe and Martin<br />

and weeds 1982<br />

wide range of crops Schreiner et al. 1990<br />

and weeds


Table 4.8.2 Natural enemies of Eleusine indica: nematodes.<br />

Species<br />

Ditylenchus destructor<br />

Hirschrnaniella spinicaudata<br />

Meloidogyne sp.<br />

Meloidogyne arenaria<br />

Meloidogyne grarninicola<br />

Meloidogyne incognita<br />

Meloidogyne javanica<br />

Pratylenchus pratensis<br />

Pratylenchus zeae<br />

Rotylenchulus reniformis<br />

4.8 Eleusine indica 91<br />

Country Comments References<br />

South Africa<br />

Cuba<br />

China<br />

Cuba,<br />

Philippines,<br />

USA<br />

India<br />

Cuba, USA<br />

Brazil<br />

Hawaii<br />

S. Africa,<br />

Cuba<br />

Hawaii<br />

groundnut, several weeds<br />

has other weed hosts<br />

including Cyperus iria<br />

rice root knot nematode<br />

(damage up to 50%); also<br />

attacks wheat, and<br />

Echinochloa colona<br />

Echinochloa crus-galli,<br />

Portulaca oleracea,<br />

tobacco<br />

wheat, Panicum spp, tomato,<br />

capsicum, etc<br />

Ageratum conyzoides, Croton<br />

lobatus, Cynodon dactylon,<br />

tobacco<br />

attacks tomato and weeds<br />

including Bidens pilosa,<br />

Euphorbia heterophylla,<br />

Galinsoga parviflora<br />

also attacks Cynodon dactylon<br />

E. indica is a moderately good<br />

host of the maize nematode;<br />

has other weed hosts, including<br />

Cyperus iria<br />

Table 4.8.3 Natural enemies of Eleusine indica: fungi and bacteria.<br />

De Waele et al. 1990<br />

Femandez and Ortega<br />

1982<br />

Guo et al. 1984, Holm<br />

et al. 1977<br />

Tedford and Fortnum<br />

1988, Valdez 1968<br />

Rao et al. 1970<br />

Acosta et al. 1986<br />

Lordello et al. 1988<br />

Holm et al. 1977<br />

Femandez and Ortega<br />

1982, Jordaan et al.<br />

1988<br />

Linford and Yap 1940<br />

Species Country Comments References<br />

FUNGI<br />

Bipolaris setariae<br />

(as Drechslera setariae)<br />

Corticium sasakii<br />

Drechslera gigantea<br />

Helminthosporium sp.<br />

Helminthosporium holrnii<br />

Helrninthosporiurn maydis<br />

e<br />

USA (not<br />

recorded in<br />

Australia)<br />

India<br />

Brazil<br />

Thailand<br />

India<br />

China<br />

heavy attack on E. indica,<br />

light on maize, sorghum,<br />

none on dicotyledons<br />

rice, many weeds including<br />

Commelina benghalensis,<br />

Cynodon dactylon,<br />

Firnbristylis miliacea<br />

no hosts other than E. indica<br />

mentioned<br />

also on Echinochloa colona,<br />

Chloris gayana<br />

attacks 2 1 other weeds<br />

including Irnperata cylindrica,<br />

Digitaria ciliaris and<br />

Echinochloa crus-galli<br />

Figliola et al. 1988<br />

Hiremath and<br />

Sulladmath 1985<br />

Roy 1973<br />

Muchovej 1987<br />

Chandrasrikul 1962<br />

Singh and Misra 1978<br />

Wu and Liang 1984<br />

(continued on next page)


92 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.8.3 (continued)<br />

Species Country Comments References<br />

Helminthosporium nodulosum<br />

(as Bipolaris nodulosa or<br />

Cochliobolus nodulosus)<br />

Magnaporthe (= Pyricularia)<br />

grisea<br />

Pellicularia rolfsii<br />

Phyllachora eleusines<br />

Pyricularia oryzae<br />

Sclerophthora macrospora<br />

Sclerotiurn rolfsii<br />

Ustilago sp.<br />

Ustilago eleusinis (as<br />

Melanopsichiurn eleusinis)<br />

BACTERIA<br />

Pseudornonas glumae<br />

Pseudornonas plantarii<br />

Africa,<br />

Australia,<br />

India, Japan,<br />

Philippines,<br />

USA<br />

Africa,<br />

Australia,<br />

India, USA,<br />

Georgia<br />

Australia,<br />

India<br />

Africa,<br />

Australia<br />

Brazil, China<br />

India<br />

Australia,<br />

India<br />

China<br />

Africa, Asia<br />

Japan<br />

Japan<br />

also infests maize, Eleusine<br />

coracana, wheat, barley, oats<br />

and weeds including<br />

Dactyloctenium aegyptium;<br />

causes seedling blight leaf<br />

stripe and sooty heads in<br />

E. indica<br />

heavy attack on E. coracana,<br />

Rottboellia cochinchinensis,<br />

light attack on maize<br />

causes wilt disease of E.<br />

coracana and infests many<br />

grasses and dicotyledonous<br />

plants<br />

only recorded on Eleusine and<br />

Eragrostis in Africa; in<br />

Australia only on Eragrostis<br />

attacks rice<br />

attacks maize, wheat, oats,<br />

rice: attacks E. coracana and<br />

many grasses, but not E. indica<br />

in Australia; there may be host<br />

specific strains<br />

attacks many dicotyledonous<br />

crop plants and a wide range<br />

of grasses<br />

smut fungus of Eleusine and<br />

Dactyloctenium, but only on<br />

D. radulans in Australia<br />

an important rice pathogen:<br />

attacks a wide range of weeds<br />

attacks rice, wheat, sorghum,<br />

maize and many weeds<br />

Rachie and Peters<br />

1977, Wapshere<br />

1990b<br />

Chauhan & Verma<br />

198 1, Figliola et al.<br />

1988, Heath et al.<br />

1990, 1992, Shetty et<br />

al. 1985, Valent et al.<br />

1986, Vodianaia et al.<br />

1986, Wapshere<br />

1990b,c<br />

Wapshere 1990b<br />

Parbery 1967,<br />

Ramakrishran 1963<br />

Prabhu et al. 1992,<br />

Teng 1932, Valent et<br />

al. 1986<br />

Rachie and Peters<br />

1977, Ullstrup 1955,<br />

Wapshere 1990b<br />

Reddy 1983, Safeeulla<br />

1976<br />

Mundkur 1939<br />

Simmonds 1966,<br />

Zundel 1953<br />

Miyagawa et al. 1988<br />

Miyagawa et al. 1988


Table 4.8.4 Natural enemies of Ebusine indica: viruses.<br />

Virus Country Other hosts<br />

cereal chlorotic mottle<br />

corn leaf gall<br />

corn stunt<br />

Eleusine mosaic<br />

groundnut rosette<br />

maize dwarf mosaic<br />

maize streak<br />

rice leaf gall<br />

rice orange leaf<br />

rice ragged stunt<br />

rice tungro bacilliform<br />

rice tungro spherical<br />

rice yellow mottle<br />

sugarcane mosaic<br />

sugarcane streak<br />

tungro<br />

wheat rosette<br />

Australia<br />

Philippines<br />

USA<br />

India<br />

Malawi<br />

USA<br />

Nigeria<br />

Philippines<br />

Philippines<br />

China<br />

Philippines<br />

Philippines<br />

Philippines<br />

Kenya<br />

India<br />

Hawaii<br />

Philippines<br />

China<br />

oats, barley, wheat, maize,<br />

E. coracana, Digitaria ciliaris,<br />

Echinochloa colona;<br />

transmitted by Nesoclutha<br />

pallida<br />

maize<br />

several other weeds<br />

maize, sorghum, E. coracana<br />

and many other hosts<br />

groundnut<br />

maize<br />

maize, but not all cultivars<br />

Cicadulina triangula is<br />

the vector<br />

rice<br />

rice<br />

rice, E. indica and 4 other<br />

weeds<br />

rice, Echinochloa<br />

glabrescens, Monochoria<br />

vaginalis, Paspalum distichum<br />

rice, many weeds<br />

rice, many weeds<br />

rice, two grasses<br />

sugarcane<br />

sugarcane<br />

rice<br />

oats, barley, sorghum,<br />

wheat etc. Laodelphax<br />

striatellus is the vector<br />

4.8 Eleusine indica 93<br />

References<br />

Greber 1979<br />

Agati and Calica 1950<br />

Pitre and Boyd 1970<br />

Rao et al. 1965<br />

Adams 1967<br />

Lee 1964<br />

Ekukole et al. 1989,<br />

Rossel et al. 1984<br />

Agati and Calica 1950<br />

Watanakul 1964<br />

Xie et al. 1984<br />

Salamat et al. 1987<br />

Khan et al. 1991<br />

Khan et al. 1991<br />

Okioma et al. 1983<br />

Chona and Rafay 1950<br />

Holm et al. 1977<br />

Watanakul 1964<br />

Zhang et al. 1981<br />

Table 4.8.5 Natural enemies of Eleusine coracana which may prove to have<br />

a limited host range.<br />

Species Country Portion Comments References<br />

attacked<br />

INSECTS<br />

Diptera<br />

CEClDOMYllDAE<br />

Contarinia sp. Uganda inflores- not the same as the<br />

cence sorghum midge Barnes 1946, 1954a,b,<br />

Contarinia sorghicola: 1956, Geering 1953,<br />

the same or a similar Rachie & Peters 1977<br />

species attacks the<br />

common fallow weed<br />

Sorghum verticilliflorum<br />

(continued on next page)


94 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.8.5 (continued)<br />

Species Country Portion Comments References<br />

attacked<br />

Hemiptera<br />

APHlDlDAE<br />

Sitobion<br />

(= Macrosiphum)<br />

leelarnaniae<br />

NEMATODES<br />

Heterodera delvii<br />

FUNGI<br />

Melanopsichium<br />

eleusinis(= Ustilago<br />

eleusinis)<br />

India attacks several millets Raychaudhuri 1983<br />

(not in in India including pearl<br />

Australia) millet Pennisetum<br />

glaucum (=P. typhoideum),<br />

also Andropogon vulgare<br />

India root no other hosts Jairajpuri et al. 1979<br />

cysts mentioned<br />

Asia, Africa a smut fungus: only Simmonds, 1966,<br />

from Eleusine and Wapshere 1990c,<br />

Dactylocteniurn: Zundel 1953<br />

tentatively identified<br />

from D. radulans in<br />

Queensland, but not<br />

from E. indica


4.8 Eleusine indica<br />

Map 4.8.2 Distribution of Eleusine indica in Africa (after Phillips 1972)


96 Biological Control of Weeds: Southeast Asian Prospects<br />

Euphorbia heterophylla<br />

(after Barnes and Chan, 1990)


Map 4.9 Euphorbia heterophylla<br />

4.9 Euphorbia heterophylla 97<br />

Euphorbia heterophylla<br />

There are very few records of natural enemies other than fungi attacking Euphorbia<br />

heterophylla and no study has been made in tropical America where it evolved. However,<br />

from the sparse records of insects attacking species of Euphorbia in Brazil it is likely that<br />

adequately host specific insects do occur. Nevertheless E. heterophylla is regarded as an<br />

important weed in southern Brazil.


98 Biological Control of Weeds: Southeast Asian Prospects<br />

4.9 E uphorbia heterophylla L.<br />

(= E. geniculata = E. prunifolia)<br />

Euphorbiaceae<br />

painted spurge, Mexican fire plant; yaa yaang (Thailand)<br />

Rating<br />

+++ Thai<br />

10 ++ Msia<br />

+ Myan, Laos, Camb, Viet, Phil<br />

Indo<br />

Origin<br />

Tropical and sub-tropical America.<br />

Distribution<br />

Widespread as a weed in the tropical and subtropical regions of the world, notably in<br />

Southeast Asia, but apparently not in Kalimantan or Sulawesi (Indonesia) (Soerjani et al.<br />

1986).<br />

Characteristics<br />

An erect annual, up to about 1 m tall; stem cylindrical, hairy; lower leaves alternate;<br />

stems and leaves with milky latex. The simple or lobed leaves are crowded towards the<br />

top of the stem, with a flat, dichotomously-branched, terminal inflorescence of small yel-<br />

low flowers and large leafy bracts, often with a bright red or cream patch at the base. The<br />

inflorescence consists of many small, short-stalked flowers lacking petals but with con-<br />

spicuous glands (Wilson 1981). Reproduction is by seeds which are shed with an explo-<br />

sive mechanism.<br />

Importance<br />

A weed of increasing importance in upland fields of rice and many other crops; also in<br />

wastelands, roadsides, boundaries of coffee plantations; very abundant locally. Seeds per-<br />

sist in the soil until favourable conditions allow germination and rapid growth, giving<br />

rise to large populations of the weed. It is an important weed in 23 tropical countries and<br />

present in at least 37 others. Its rapid growth enables it to compete successfully with<br />

crops, quickly forming a dense canopy over young crop plants. Dense populations of the<br />

weed, with its white sticky latex, may make it impossible to harvest the crop.<br />

The young leaves are sometimes used as a vegetable, but are laxative if too much is<br />

eaten. The plant is said to have caused poisoning in livestock (Wilson 1981).<br />

Natural enemies<br />

Except possibly for Alternaria sp. and Helminthosporium sp. which have not been shown<br />

to be pathogenic to crop plants (Yorinori 1985), there are no records of apparently host


4.9 Euphorbia heterophylla 99<br />

specific organisms attacking Euphorbia heterophylla (Table 4.9.1). However, it is known<br />

that a number of insects do attack it in Brazil, but this observation was incidental to a<br />

study of fungi and none of the insects were identified (E.G. Fontes, pers. comm. 1992).<br />

Although periodic collections were made in Trinidad in the early 1970's, no promising<br />

insects were encountered (Yaseen 1972).<br />

There are few records (19 only) of insects attacking members of the genus<br />

Euphorbia in Brazil (Table 4.9.2) (d'Araujo e Silva et al. 1968a,b), indicating that little<br />

attention has so far been paid to Euphorbia spp. in this region. Six of the insects are<br />

polyphagous and too little is known about the others to arrive at a conclusion. Even if<br />

some are restricted to the Euphorbiaceae, it remains to be determined whether any will<br />

attack either Euphorbia heterophylla or E. hirta.<br />

E. heterophylla is resistant to most herbicides and, in recent years, has become pro-<br />

gressively more important in Brazil, particularly in the southern, soybean-producing<br />

states (Yorinori 1985), which suggests that its insect enemies, if any, may be heavily par-<br />

asitised.<br />

A biological control program has been in progress in Canada since the late 1960's<br />

against Euphorbia cyparissias and E. pseudovirgata, involving the introduction of some<br />

twenty species of insects from Europe. Several species have become established, with<br />

rather localised effects (Julien 1992). It is said that insects are generally unable to attack<br />

Euphorbia species because of the latex that flows freely from any wound and clogs the<br />

mouthparts (Best et al. 1980), but clearly some insects are adapted to deal with this prob-<br />

lem.<br />

The best known economic plant in the Euphorbiaceae is cassava, Manihot esculenta<br />

of South American origin. The insects attacking it there are comparatively well known, a<br />

factor that will aid the evaluation of the specificity of insects attacking Euphorbia spp.<br />

Another species of horticultural importance is poinsettia, Euphorbia pulcherrima.<br />

Table 4.9.1 Natural enemies of Euphorbia heterophylla.<br />

Species Location Other hosts References<br />

INSECTS<br />

Orthoptera<br />

ACRlDlDAE<br />

Poekilocerus<br />

hieroglyphicus<br />

Hemiptera<br />

ALEYRODIDAE<br />

Bemisia tabaci<br />

ALYDIDAE<br />

Leptocorisa acuta<br />

Leptocorisa oratorius<br />

Leptocorisa<br />

solomonensis<br />

Sudan beans, melons Ba-Angood 1977,<br />

Ba-Angood &<br />

Khidir 1975<br />

Thailand, cotton, polyphagous Debrot & Centeno 1985,<br />

Venezuela Nachapong & Mabbett 1979<br />

PNG<br />

PNG<br />

PNG<br />

F. Dori pers. comm. 1993<br />

F. Dori pers. comm. 1993<br />

F. Dori pers. comm. 1993<br />

(continued on next page)


100 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.9.1 (continued)<br />

MITES<br />

FUNGI<br />

Species Location Other hosts References<br />

TETRANYCHIDAE<br />

Tetranychus urticae Cuba polyphagous Perez et al. 1987<br />

Alternaria sp.<br />

Amphobotrys ricini<br />

Elsinoe sp.<br />

Helminthosporium sp.<br />

Macrophornina<br />

phaseolinu<br />

Phytophthora<br />

palmivora<br />

Puccinia sp.<br />

Rhizoctonia solani<br />

Sclerotinia<br />

sclerotiorum<br />

Sphaceloma sp.<br />

Uromyces euphorbiae<br />

NEMATODES<br />

Meloidogyne exigua<br />

Meloidogyne javanica<br />

Rotylenchulus<br />

reniformis<br />

Brazil<br />

USA<br />

Burundi<br />

Brazil<br />

India<br />

cassava<br />

Sarawak black pepper Anon 1979<br />

Brazil<br />

Brazil<br />

Brazil<br />

Brazil,<br />

Burundi<br />

Brazil<br />

Brazil<br />

Brazil<br />

Florida<br />

VIRUSES<br />

Euphorbia mosaic Brazil, USA,<br />

Venezuela<br />

cassava<br />

Yorinori 1985<br />

Holcomb et al. 1989<br />

Zeigler & Lozano 1983<br />

Fontes et al. 1992,<br />

Gazziero et al. 1988,<br />

Yorinori 1985<br />

Saxena et al. 198 1<br />

Fontes et al. 1992<br />

Yorinori 1985<br />

Yorinori 1985<br />

Yorinori 1985,<br />

Zeigler & Lozano 1983<br />

Yorinori 1985<br />

coffee, many weeds Luc et al. 1990<br />

Lordello et al. 1988<br />

Inserra et al. 1989,<br />

MacGowan 1989<br />

Debrot & Centeno 1985,<br />

Kim & Flores 1979,<br />

Kim & Fulton 1984,<br />

Yorinori 1985<br />

Table 4.9.2 Insects attacking species of Euphorbia in Brazil (d'Araujo e Silva et al.<br />

1968a,b).<br />

Insect Hosts Feeding habit<br />

Hemiptera<br />

ALEYRODIDAE<br />

Bemisia tabaci<br />

(= B. costa-limai) Euphorbia hirtella, polyphagous<br />

tomato, Mentha arvensis<br />

COCCIDAE<br />

Coccus spp. Euphorbiaceae, Acalypha sp., polyphagous<br />

Aspidosperma ramiflorum,<br />

Cassia sp., Citrus spp.<br />

(continued on next page)


4.9 Euphorbia heterophylla 101<br />

Insect Hosts Feeding habit<br />

Eucalymnatus spp.<br />

Platinglisia noacki<br />

COREIDAE<br />

Chariesterus armatus<br />

TlNGlDAE<br />

Corythuca pellucida<br />

Corythuca socia<br />

Thysanoptera<br />

PHLAEOTHRIPIDAE<br />

Haplothrips gowdeyi<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Caryedes (= Gibbobruchus)<br />

pickeli<br />

Disonycha argentiniensis<br />

Gibbobruchus polycoccus<br />

CURCULIONIDAE<br />

Sternocoelus sp.<br />

Sternocoelus notaticeps<br />

Lepidoptera<br />

LYMANTRIIDAE<br />

Thagona tibialis<br />

NOCTUIDAE<br />

Spodoptera eridania<br />

NYMPHALIDAE<br />

Didonis biblis<br />

Dynamine artemisia<br />

Episcada pascua<br />

SPHlNGlDAE<br />

Erinnyis oenotrus<br />

Euphorbia capansa, Nerium sp., polyphagous<br />

Caryota sp., Phoenix sp.<br />

Euphorbiaceae, Begonia sp., polyphagous<br />

Eugenia sp., Grevillea robusta,<br />

Ilex sp., kurus sp., Magnolia<br />

pumila, etc.<br />

Euphorbia braziliensis<br />

Euphorbiaceae<br />

Euphorbiaceae<br />

Euphorbia sp., coffee, rice,<br />

Crotolaria sp., PassiJlora sp.,<br />

Buddleia variabilis<br />

Euphorbiaceae<br />

Euphorbia pulcherrima<br />

Euphorbiaceae<br />

Euphorbiaceae<br />

Euphorbiaceae<br />

E. cespitosa, E. ovalifolia,<br />

E. pulcherrima<br />

Euphorbiaceae, many crops<br />

Euphorbiaceae, Tragia volubilis<br />

Euphorbiaceae<br />

Euphorbiaceae<br />

E. ovalifolia<br />

possibly restricted<br />

possibly restricted<br />

possibly restricted<br />

polyphagous<br />

possibly restricted<br />

possibly restricted<br />

possibly restricted<br />

?restricted to Euphorbiaceae<br />

?restricted to Euphorbiaceae<br />

?restricted to Euphorbiaceae<br />

polyphagous<br />

possibly restricted<br />

?restricted to Euphorbiaceae<br />

?restricted to Euphorbiaceae<br />

possibly restricted


102 Biological Control of Weeds: Southeast Asian Prospects<br />

Euphorbia hirta<br />

(after Holm st a/. 1977)


Map 4.10 Euphorbia hirta<br />

4.10 Euphorbia hirta<br />

Euphorbia hirta<br />

There is only one record of a natural enemy attacking Euphorbia hirta in tropical<br />

America where it evolved and only a few of polyphagous species attacking it elsewhere.<br />

A survey in Central America would be necessary to determine what species attack it<br />

there that might be potential biological control agents.


104<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

4.10 Euphorbia hirta L.<br />

(= E. pilulifera)<br />

Euphorbiaceae<br />

garden spurge, asthma plant; mayo (Myanmar), nam nom raatchasee (Thailand)<br />

tuk das khla thom (Cambodia), co sua 16ng (Vietnam), ara tanah, hairy spurge<br />

(Malaysia) gelang susu, gendong ancok (Indonesia), gatas gatas (Philippines)<br />

Rating<br />

++ Thai, Sing, Phil<br />

10 + Laos, Camb, Viet, Msia<br />

w Myan, Indo<br />

Origin<br />

Tropical America.<br />

Distribution<br />

E. hirta is a weed of the tropics and subtropics.<br />

Characteristics<br />

A small, prostrate, hairy annual, 0.15 to 0.3 m tall, with a tap root; stems much branched<br />

from the base, often reddish, bearing brownish stiff hairs and having milky sap; leaves,<br />

hairy, opposite, sometimes purple-blotched and with toothed margins; flowers unisexual;<br />

reproduction by seeds 0.5 to 1 mm long.<br />

Importance<br />

E. hirta grows well in sunny to lightly shaded cultivated lands, gardens, lawns, waste<br />

areas and run down grasslands. It is an early coloniser of bare ground especially under<br />

damp or irrigated conditions. It flowers all year round in Southeast Asia producing up to<br />

3000 seeds per plant. When the seed pods mature they explode to disperse the seeds. Its<br />

prostrate habit enables it to tolerate mowing and it can be important in lawns. It has been<br />

reported from 47 countries as a weed in many crops, including citrus, cotton, groundnuts,<br />

maize, pineapples, rice, sorghum, sugarcane, tea and vegetables. Moody (1 989) records it<br />

as being more widespread in rice than Euphorbia heterophylla.<br />

E. hirta is sometimes used in medicines in Fiji, Malaysia, Indonesia, the Philippines<br />

and Brazil-the leaves and latex against intestinal diseases, ulcers and bronchitis, and the<br />

latex for conjunctivitis. It may have slightly poisonous properties and is useless as fodder<br />

for livestock.<br />

Natural enemies<br />

In view of its common occurrence in the tropical and subtropical belt of the world, it is<br />

surprising that there are so few records of natural enemies attacking it, and those that do<br />

are highly polyphagous (Table 4.10.1). A survey in Central America would be necessary<br />

to learn more about its natural enemies that might have potential for biological control.


Table 4.10.1 Natural enemies of Euphorbia hirta.<br />

4.10 Euphorbia hirta 105<br />

Species Location Other hosts References<br />

INSECTS<br />

Orthoptera<br />

ACRlDlDAE<br />

Chrotogonus<br />

trachypterus<br />

Hemiptera<br />

APHlDlDAE<br />

Aphis craccivora<br />

Aphis gossypii<br />

ALEYRODIDAE<br />

Bemisia tabaci<br />

DELPHACIDAE<br />

Tarophagus proserpina<br />

LYGAEIDAE<br />

Nysius inconspicuus<br />

PSEUDOCOCCIDAE<br />

Ferrisia virgata<br />

Thysanoptera<br />

THRlPlDAE<br />

Haplothrips euphorbiae<br />

Diptera<br />

AGROMYZIDAE<br />

Liriomyza bryoniae<br />

Liriomyza strigata<br />

Lepidoptera<br />

NOCTUI DAE<br />

Achaea janata<br />

FUNGI<br />

Aecidium tithymali<br />

Amphobotrys ricini<br />

Cylindrocladium<br />

quinqueseptatum<br />

Phytophthora palmivora<br />

PROTOZOA<br />

Phytomonas sp.<br />

NEMATODES<br />

Meloidogyne incognita<br />

India<br />

Nigeria,<br />

Uganda<br />

India<br />

India<br />

Philippines<br />

India<br />

India<br />

India<br />

Europe<br />

W. Europe,<br />

USSR<br />

Indonesia<br />

Thailand<br />

USA<br />

India<br />

Sarawak<br />

Venezuela<br />

Hawaii<br />

polyphagous Chandra et al. 1983<br />

poly phagous, Booker 1964, Davies 1972,<br />

a virus transmitter Ofuya 1988<br />

polyphagous Jeritta & David 1986<br />

polyphagous, Jeyarajan et al. 1988<br />

a virus transmitter<br />

polyphagous Duatin & Pedro 1986<br />

polyphagous Thangavelu 1978<br />

poly phagous Jeritta & David 1986<br />

possibly host restricted Jeritta & David 1986<br />

highly polyphagous Spencer 1973, 1990<br />

highly polyphagous Spencer 1973, 1990<br />

polyphagous Kalshoven 198 1<br />

Puckdeedindan 1966<br />

Holcomb et al. 1989<br />

Sulochana et al. 1982<br />

black pepper Anon 1979<br />

Barreto 1982<br />

Valdez 1968<br />

(continued on next page)


106 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.10.1 (continued)<br />

Species Location Other hosts References<br />

Meloidogyne javanica India Dahiya et al. 1988<br />

Radopholus sirnilis Zimbabwe polyphagous Martin et al. 1969<br />

Rotylenchulus reniforrnis Hawaii, USA Linford & Yap 1940,<br />

Inserra et al. 1989<br />

VIRUSES<br />

groundnut rosette Hawaii, Nigeria, Adams 1967,<br />

Uganda Booker 1964,<br />

Davies 1972<br />

hibiscus yellow India Jeyarajan et al. 1988<br />

vein mosaic<br />

tapioca mosaic India Jeyarajan et al. 1988<br />

tobacco leaf curl Hawaii Holm et al. 1977<br />

tomato leaf curl India Jeyarajan et al. 1988<br />

urd bean yellow mosaic India Jeyaragan et al. 1988


108 Biological Control of Weeds: Southeast Asian Prospects<br />

Fimbristylis miliacea<br />

(after Holm et a/. 1977)


Map 4.11 Fimbristylis miliacea<br />

4.1 1 Fimbristylis miliacea 109<br />

Fimbristylis miliacea<br />

Very few natural enemies of Fimbristylis miliacea are known and it would be necessary<br />

to carry out a survey in tropical America before it would be possible to evaluate the<br />

prospects for its biological control.


110 Biological Control of Weeds: Southeast Asian Prospects<br />

4.11 Fimbristylis miliacea (L.) Vahl<br />

(= l? littoralis)<br />

Cyperaceae<br />

lesser fimbristylis, grass-like fimbristylis; m6nhnyin (Myanmar), kak phrek kdam,<br />

smao (Cambodia), rumput bukit, rumput tahi berbau (Malaysia), agor (Thailand),<br />

ba bawagan (Indonesia)<br />

Rating<br />

+++ Myan, Camb, Msia, Brun, Indo<br />

23 ++ Viet, Sing, Phil<br />

. Thai, Laos<br />

Origin<br />

Tropical America.<br />

Distribution<br />

Central America, West Africa, Asia and Southeast Asia to northern Australia.<br />

Characteristics<br />

An erect annual or perennial sedge, growing up to 0.9 m; flower stems 4 or 5 angled,<br />

leaves two-ranked, threadlike, stiff and half as long as flower stems; inflorescence a dif-<br />

fuse compound umbel.<br />

Importance<br />

F. miliacea thrives in damp, open waste places, competing actively with other vegetation<br />

following germination during dry periods or shallow water conditions. A layer of water<br />

15 cm deep suppresses germination. Seedlings emerge during the entire growing period<br />

of rice with which it competes actively. It is a troublesome weed in 21 countries. In<br />

Malaysia it is the first sedge to emerge after rice has been transplanted and the first to<br />

recover after ploughing. In the Philippines it flowers all year, plants each producing up to<br />

10000 seeds. In many places there is no seed dormancy.<br />

F. miliacea is one of the most serious and widespread weeds of rice and is also<br />

reported from taro (Hawaii), bananas (Taiwan), abaca (Philippines), maize, sugarcane<br />

(Indonesia, Taiwan) and sorghum (Malaysia).<br />

F. miliacea is eaten by cattle, but the seeds are mostly undigested and germinate<br />

near the dung.<br />

~atu'ral enemies<br />

So little is known about its natural enemies (Table 4.1 1.1) that it is not possible to evalu-<br />

ate the prospects for biological control. A survey is necessary in tropical America.


Table 4.11.1 Natural enemies of Fimbrisstylis miliacea.<br />

4.1 1 Fimbristylis miliacea 111<br />

Species Location Other hosts References<br />

INSECTS<br />

Hemiptera<br />

PENTATOMIDAE<br />

Scotinophara Philippines rice, Cornrnelina Barrion & Litsinger 1987<br />

latiuscula benghalensis,<br />

Echinochloa crus-galli<br />

Lepidoptera<br />

Creatonoros gangis Philippines rice, many weeds Catindig et al. 1993<br />

(= Amsacra)<br />

FUNGI<br />

Corticum sasakii India Commelina Roy 1973<br />

benghalensis,<br />

Cynodon dactylon,<br />

Eleusine indica and<br />

other grasses<br />

NEMATODES<br />

Criconemella onoensis rice, many weeds Luc et al. 1990<br />

Hirschmaniella spp. rice, maize, sugarcane, Luc et al. 1990<br />

many weeds<br />

Meloidogyne India rice, many weeds Luc et al. 1990,<br />

graminicola Rao et al. 1970<br />

Meloidogyne oryzae Surinam rice, plantain, wheat, Maas et al. 1978<br />

potato, tomato<br />

Rotylenchulus Trinidad very polyphagous Singh 1974<br />

reniformis


112 Biological Control of Weeds: Southeast Asian Prospects<br />

Marsilea minu fa<br />

(after Soerjani el a/. 1987)


Map 4.12 Marsilea minuta<br />

4.1 2 Marsilea minuta 113<br />

Marsilea minuta<br />

Marsilea minuta, water clover, is thought to be of tropical African origin, but no account<br />

of its natural enemies there is available. A survey would thus be required to evaluate the<br />

prospects for its biological control.


114 Biological Control of Weeds: Southeast Asian Prospects<br />

4.12 Marsilea minuta L.<br />

(=M. crenata)<br />

Marsileaceae<br />

water clover, clover fern, pepperwort; pak vaen (Laos), chuntul phnom<br />

(Cambodia), semanggi (Indonesia), phak waen (Thailand), tapah itik (Malaysia)<br />

paang itik (Philippines).<br />

Rating<br />

+++ Msia<br />

12 ++ Indo, Phil<br />

+ Myan, Thai, Laos, Camb, Viet<br />

Origin<br />

Africa or possibly tropical Asia (Jacobsen 1983). It consists of a complex of strains<br />

including a diploid (n = 20) and a sterile triploid (2n = 60) (Tryon and Tryon 1982).<br />

Distribution<br />

Marsilea minuta is widespread over most of the African continent and it is pantropical in<br />

Asia. The Marsileaceae contains about 65 species, of which 16 occur in Africa and, of<br />

these, M. minuta is amongst the most widespread (Jacobsen 1983).<br />

Characteristics<br />

A very variable, perennial water fern of aquatic or marshy sites. Its stems are creeping<br />

rhizomes rooted in the mud. Leaves are clover-like, with four leaflets borne on a petiole 2<br />

to 30 cm long. Leaflets have fan-shaped, repeatedly bifurcating veins and normally float<br />

on the water surface. Sporocarps occur near the base of the petioles and usually occur<br />

under the mud or water surface. Reproduction is by spores or rhizomes.<br />

Importance<br />

Although M. minuta has a rating of 12 and is widely reported as a weed in Southeast<br />

Asia, there are surprisingly few references to it as a weed in the literature except for<br />

those dealing with chemical control. In Thailand it is common in rice fields and along<br />

canals and other waterways. It is one of the seven most important weeds in the Muda<br />

area of Malaysia (Itoh 1991a). It is one of the more important emergent weeds in shallow<br />

water rice fields in the central lowlands in Vietnam (Nguyen Van Vuong 1973) and in the<br />

lowland area of Vientiane in Laos (Sisounthone and Sisombat 1973). In Indonesia its<br />

vegetative growth and reproduction is very rapid. It can grow under water and, after<br />

weeding, rapidly re-establishes itself unless well buried in the soil. It is an effective com-<br />

petitor for nutrients, particularly in the early part of the growth period after transplanta-<br />

tion of rice seedlings when M. minuta rapidly covers the ground surface. In the<br />

Philippines it caused 19% crop loss when sown together with rice (Suriapermana 1977).<br />

The young leaves of water clover are sometimes eaten as a vegetable in Indonesia.


Natural enemies<br />

4.1 2 Marsilea minuta 115<br />

Very little information concerning natural enemies emerged from computer-aided search-<br />

es of the literature on Marsilea minuta, which also included searches of its synonyms:<br />

M. crenata and M. erosus in Asia and M. difisa, M. perrieriana and M. senegalensis in<br />

Africa (Table 4.12.1). In Africa Marsilea minuta appears to be regarded, at most, as a<br />

minor weed. This is possibly due to the fact that rice is far less important there than in<br />

Asia, or it may be due to the presence of effective natural enemies in Africa, although<br />

these have not yet been reported.<br />

In the Philippines, larvae of the ephydrid flies Notiphila Eatigenis and N. similis are<br />

common on emergent M. minuta and damage its stems. Their eggs are usually laid on the<br />

stems and serve as alternative hosts of Trichogramma wasps attacking rice stem borers<br />

(Barrion and Litsinger 1986). The contents of upwards of 90% of the sporocarps from<br />

M. minuta growing under terrestrial conditions in northwestern India were destroyed by<br />

larvae of the weevil Echinocnemus. The larval and pupal stages are completed in 40 to 45<br />

days (Loyal and Kumar 1977). In Indonesia the case-forming larvae of the widely distrib-<br />

uted pyralid moth Elophila (= Nymphula) responsalis attacked M. minuta and several<br />

other aquatic plants including Salvinia spp., Lemna purpusilla, L. polyrhiza, Monochoria<br />

vaginalis, Azolla pinnata and Pistia stratiotes. However, tests have shown that it will not<br />

feed on rice. The development period of Elophila responsalis ranged from 42 to 56 days.<br />

It was attacked by a pupal parasitoid (Tetrastichus sp.) and a larval coleopteran predator<br />

(Handayani and Syed 1976, Sankaran and Rao 1972, Subagyo 1975). Elophila respon-<br />

salis occurs also in India, Sri Lanka, Myanmar, Japan and Australia.<br />

Comment<br />

A survey for natural enemies attacking M. minuta in Africa is required before the<br />

prospects for its biological control in Southeast Asia can be evaluated.<br />

Table 4.12.1 Natural enemies of Marsilea minuta.<br />

Species Location References<br />

INSECTS<br />

Coleoptera<br />

CURCULIONIDAE<br />

Echinochnemus sp.<br />

Diptera<br />

EPHYDRIDAE<br />

Notiphila latigenis<br />

Notiphila similis<br />

India Loyal & Kumar 1977<br />

Philippines Barrion & Litsinger 1986<br />

Philippines Barrion & Litsinger 1986<br />

(continued on next page)


116 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.12.1 (continued)<br />

Species Location References<br />

Lepidoptera<br />

PY RALl DAE<br />

Elophila (= Nymphula)<br />

responsalis<br />

FUNGI<br />

VIRUS<br />

Alternaria sp.<br />

Cercospora rnarsileae<br />

Phaeotrichoconis crotalariae<br />

Pistia virus<br />

India, Indonesia<br />

India<br />

India<br />

India<br />

India<br />

Handayani & Syed 1976,<br />

Sankaran & Rao 1972,<br />

Subagyo 1975<br />

Menon & Ponnappa 1964<br />

Patil 1975<br />

Menon & Ponnappa 1964<br />

Menon & Ponnappa 1964


118 Biological Control of Weeds: Southeast Asian Prospects<br />

Melastoma malabathricum<br />

(after Soerjani et a/. 1987)


Map 4.13 Melastoma malabathricum<br />

4.1 3 Melastoma malabathricum 119<br />

Melastoma malabathricum<br />

M. rnalabathricum is a perennial shrub which probably originated in Southeast Asia or<br />

neighbouring areas, including Irian Jaya, Papua New Guinea and northern Australia, a<br />

region where it is regarded as being of little importance. A survey in this region would<br />

reveal whether there are promising natural enemies for biological control.


120 Biological Control of Weeds: Southeast Asian Prospects<br />

4.13 Melastoma malabathricum L.<br />

(= Melastoma affine)<br />

Melastomataceae<br />

melastoma, Indian rhododendron, Straits rhododendron; senduduk (Malaysia)<br />

Rating<br />

+++ Msia, Brun<br />

13 ++ Sing<br />

+ Thai, Laos, Viet, Indo, Phil<br />

Camb<br />

Origin<br />

Asia, Papua New Guinea, Australia.<br />

Characteristics<br />

M. malabathricum is a perennial shrub growing to 2 m high; its stems are reddish with<br />

rough upwardly pointing scales, the leaves are tapered to both ends, are rough to touch<br />

and have three distinct ribs. The flowers, which are clustered at the ends of twigs, are<br />

pinkish to light violet. The fruit is a berry-like capsule covered with scales.<br />

Importance<br />

Melastoma is common in abandoned clearings, on waste ground and in cultivated lands.<br />

In addition to its importance in Southeast Asia, it is a principal weed of rubber in West<br />

Africa. It is said to make good firewood. The sweetish black seeds are eaten and chewed<br />

leaves are used for burns and against amoebic dysentery. The fruits host a fruit fly<br />

species in the Bactrocera dorsalis complex which does not attack commercially impor-<br />

tant fruits (R.A.I. Drew, pers. comm.).<br />

Natural enemies<br />

Krauss (1 965) surveyed the natural enemies of species of Melastoma, including M. mala-<br />

bathricum, in various countries of Southeast Asia and islands of the western Pacific.<br />

Twenty six insect species were found on M. malabathricum (Table 4.13.1) and a further<br />

34 species on other melastomas. It is very likely that some of the 34 species will also<br />

attack M. malabathricum and, indeed, the leaf rolling pyralid moth Ategumia fatualis<br />

does so. After specificity tests Ategumia fatualis was liberated in Hawaii and Kauai in<br />

1958 and became established, although it did not become sufficiently abundant to pro-<br />

vide effective control (Table 4.13.2) (Krauss 1965).<br />

Another leaf-rolling pyralid Ategumia adipalis was liberated in 1965, and was<br />

reported to have become established (Davis and Chong 1969), but at low population lev-<br />

els. Next a noctuid moth Selca brunella was introduced to Kauai and Hawaii from<br />

Malaysia and Singapore in 1964 and was recovered the next year. The larvae feed avidly


4.13 Melastoma malabathricum 121<br />

in flower buds, bore into terminal stems and eat leaves. In heavily infested localities con-<br />

siderable dieback has resulted, at places flowering was prevented and in others up to 50%<br />

of fruits were destroyed by larvae. Larvae have been found recently on Tiboochina urvil-<br />

leana and Heterocentron subtriplinenium (both Melastomataceae) in Hawaii (C.J. Davis<br />

pers. comm. 1993). A braconid wasp Meteorus sp. attacks S. brunella larvae (Davis<br />

1970, Davis and Chong 1969).<br />

An unidentified grasshopper and an unidentified lepidopterous larva attack M. mal-<br />

abathricum in Thailand but not the chrysomelid beetle Altica cyanea which is present<br />

there and attacks it in Indonesia and Malaysia (Napompeth 1982).<br />

Comment<br />

Although a number of insects are known to attack M. malabathricum in Southeast Asia<br />

(and especially in Malaysia), they clearly do not reduce its status to the level required and<br />

thus are of limited value for classical biological control in that region. However, if as<br />

postulated, the area of origin includes Papua New Guinea, (Irian Jaya) and Australia it is<br />

possible that there may be useful natural enemies in the region that do not occur in coun-<br />

tries to the north and west. Certainly, Melastoma is not listed as an important weed in<br />

Papua New Guinea.<br />

Table 4.13.1 Natural enemies of Melastoma malabathricum.<br />

Species Country Food References<br />

INSECTS<br />

Hemiptera<br />

APHlDlDAE<br />

Aphis sp.<br />

CICADELLIDAE<br />

Tettigella<br />

(= Tettigoniella) sp.<br />

COCCI DAE<br />

Rastrococcus sp.<br />

MEMBRACIDAE<br />

Gargara sp.<br />

kptocentrus taurus<br />

Nilaurama minutispina<br />

Sipylus dilatatum<br />

Sipylus sp.<br />

Tricentrus sp.<br />

MlRlDAE<br />

Helopeltis antonii<br />

Hyalopeplus vitripennis<br />

RlCANllDAE<br />

- Pochazia antica<br />

Singapore leaf<br />

Malaysia leaf<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Singapore<br />

Indonesia<br />

Malaysia<br />

Malaysia<br />

leaf<br />

branch; also on<br />

Melastoma<br />

polyanthum<br />

branch<br />

branch<br />

branch<br />

leaf<br />

leaf<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Soerjani et al. 1987<br />

Krauss 1965<br />

Krauss 1965<br />

(continued on next page)


122 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.13.1 (continued)<br />

Species Country Food References<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Altica cyanea Indonesia,<br />

CURCULIONIDAE<br />

Alcidodes sp.<br />

Ceutorhynchus sp.<br />

Cryptorhynchus sp.<br />

Imerodes (?) sp.<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Singapore<br />

Diptera<br />

TEPHRITIDAE<br />

Bactrocera dorsalis<br />

(= B. pedestris) Malaysia,<br />

Singapore,<br />

Sri Lanka<br />

Lepidoptera<br />

ARCTllDAE<br />

Species of Lithosiinae<br />

GELECHllDAE<br />

Idiophantis sp.<br />

HYPONOMEUTIDAE<br />

Argyresthia leuculias<br />

LYMANTRIIDAE<br />

?Species<br />

NOCTUIDAE<br />

Autoba (= Eublemma)<br />

versicolor<br />

Selca brunella<br />

PY RALl DAE<br />

Agrotera basinotata<br />

Ategumia adipalis<br />

Ategumia fatualis<br />

TORTRICIDAE<br />

Archips rnicaceana<br />

shoot<br />

flowers<br />

flowers<br />

flowers<br />

Malaysia fruit<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Malaysia,<br />

Singapore<br />

Malaysia<br />

Malaysia,<br />

Singapore<br />

Philippines<br />

Kamarudin & Shah<br />

1978, Napompeth 1982<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

fruit Krauss 1965<br />

fruit<br />

fruit<br />

flower<br />

leaf<br />

leaf, twig, fruit<br />

leaf<br />

leaf<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Julien 1992, Krauss 1965<br />

Krauss 1965<br />

Julien 1992, Krauss 1965<br />

leaf Krauss 1965<br />

Malaysia leaf Krauss 1965<br />

FUNGI<br />

Phytophthora palmivora Sarawak black pepper Anon 1979


4.13 Melastoma malabathricum 123<br />

Table 4.13.2 Introductions to Hawaii for the biological control of Melastoma<br />

malabathricum.<br />

Species Source Liberated Established References<br />

INSECT<br />

Lepidoptera<br />

NOLIDAE<br />

Selca brunella<br />

PYRALl DAE<br />

Ategumia adipalis<br />

Ategumia fatualis<br />

Malaysia, 1965 +<br />

Singapore<br />

Malaysia, 1965 +<br />

Singapore<br />

Philippines 1958 +<br />

Davis 1960, Davis &<br />

Chong 1968, Davis &<br />

Krauss 1962, 1966,<br />

1967, Julien 1992,<br />

Krauss 1965<br />

Davis & Chong 1969,<br />

Julien 1992<br />

Davis & Krauss 1966,<br />

Julien 1992


124 Biological Control of Weeds: Southeast Asian Prospects<br />

Mikania micrantha<br />

(after Holm et a/. 1977)


Map 4.14 Mikania micrantha<br />

4.1 4 Mikania micrantha 125<br />

Mikania micrantha<br />

Mikania micrantha is a perennial vine, native to Central and South America.<br />

A number of very promising, and probably specific, natural enemies are known in<br />

Central and South America where M. micrantha is not regarded as a weed. One of these,<br />

a thrips Liothrips mikaniae has been released in Malaysia and the Solomon Is, but<br />

extremely high predation is believed to have prevented its establishment. A bug<br />

Teleonemia sp., several chrysomelid beetles and an eriophyid mite Acalitus sp. warrant<br />

serious consideration. A number of other natural enemies, whose specificity has not yet<br />

been adequately investigated, also attack M. micrantha.<br />

In spite of the lack of success with the thrips, M. micrantha appears to be a prime<br />

target for the introduction of one or more of the other organisms that attack it in its area<br />

of origin.


126 Biological Control of Weeds: Southeast Asian Prospects<br />

4.14 Mikania micrantha Kunth<br />

Asteraceae<br />

mile-a-minute weed; cheroma, ulam tikus (Malaysia), sembung rambat<br />

(Indonesia).<br />

This chapter updates that in Waterhouse and Norris (1987), with special reference to<br />

Southeast Asia.<br />

Rating<br />

+++ Msia, Sing<br />

11 ++ Brun, Indo<br />

+ Phil<br />

Thai<br />

Origin<br />

The weedy species in Southeast Asia and the Pacific is M. micrantha from Central and<br />

South America and not the North American M. scandens or the Old World M. cordata<br />

(Parker 1 972).<br />

Distribution<br />

M. micrantha belongs to a genus containing about 250 species of mostly Central and<br />

South American origin. In addition to its native distribution in tropical America, it has<br />

spread to Mauritius, India, Sri Lanka, Bangladesh and Southeast Asia (as above). It<br />

occurs widely as a weed in the Pacific, including Papua New Guinea (Waterhouse and<br />

Norris 1987), but is not yet present in Australia. It was introduced from Paraguay to<br />

Bogor Botanic Gardens (Indonesia) in 1949 and, in 1956, was used as a soil cover in rub-<br />

ber: it has since spread throughout Indonesia (Soerjani et al. 1987).<br />

Characteristics<br />

Mikania micrantha is an extremely fast growing, sprawling, perennial vine, with oppo-<br />

site, heart-shaped leaves, longitudinally ribbed, branched and hairless stems and numer-<br />

ous small heads of densely clustered white flowers. It creeps and twines, roots readily at<br />

the nodes and produces abundant small (2 mm long) black seeds bearing a terminal tuft<br />

of white bristles that aid wind dispersal.<br />

In its natural habitat in tropical America, M. micrantha is usually found in disturbed<br />

situations. It seldom occurs on poor soils and is most commonly found in damp or<br />

swampy places. Typical sites in South America are roadsides in wet forest and the edges<br />

of freshwater swamps. Flowering occurs mainly in the dry season and only in sunny situ-<br />

ations (Cock 1982a).<br />

Importance<br />

With its rapid growth, ready rooting at nodes, smothering habit and prolific seed produc-<br />

tion, M. micrantha rapidly colonises disturbed habitats, retarding, by competition and


4.14 Mikania micrantha 127<br />

through plant inhibitors that it elaborates (Wong 1964), the growth of crops or natural<br />

vegetation. In comparison with a nitrogen-fixing legume, it is of restricted value in the<br />

role of a cover crop. For example, in Malaysia the girth of rubber trees was 27% less<br />

with a cover of M. micrantha than of a legume and the yield over the first 32 months of<br />

production was 27 to 29% less (Teoh et al. 1985). In many parts of Southeast Asia it is a<br />

serious pest of plantation crops (oil palm, coconut, cocoa, tea, rubber, teak). Its climbing<br />

habit enables it to reach and then dominate the crowns of bushes or trees up to 10m high,<br />

where it is difficult to attack either mechanically or chemically without risk of damaging<br />

the crop (Parker 1972). It recovers rapidly from slashing. It is eaten by cattle, but is less<br />

valuable as fodder than many of the pasture plants it is able to smother. Nevertheless, it is<br />

viewed by some as being useful to control soil erosion, to serve as a mulch when cut, and<br />

as being preferable to many alternative plants that might occupy the space vacated by its<br />

control. In its native habitat it is seldom a weed.<br />

Natural enemies<br />

MAJOR SPECIES<br />

TROPICAL AND SOUTH AMERICA<br />

Valuable information is available on 9 major and 22 minor natural enemies of M. micran-<br />

tha in its native region as a result of studies by Cock (1982a,b) and Freitas (1991).<br />

Several of the major natural enemies are reported to be promising biological control<br />

agents (Table 4.14.1) and all these, and probably some of those less extensively studied<br />

(Table 4.14.2), are worthy of serious consideration. Details of their biology and possible<br />

relevance for biological control are summarised below.<br />

Table 4.14.1 Major natural enemies of Mikania micrantha in its native range in<br />

Central and South America (after Cock 1982a).<br />

INSECTS<br />

Thysanoptera<br />

PHLAEOTHRIPIDAE<br />

Liothrips rnikaniae<br />

Hemiptera<br />

TlNGlDAE<br />

Teleonernia sp. or spp. nr prolixa<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Desmogramma conjuncta<br />

Echorna rnarginata<br />

Echorna quadristillata<br />

Physimerus pygrnaeus<br />

APlONlDAE<br />

Apion luteirostre<br />

CURCULIONIDAE<br />

' Pseudoderelomus baridiiformis<br />

MITE<br />

ERlOPHYlDAE<br />

Acalitus sp.


128 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.14.2 Additional natural enemies of Mikania micrantha, not known to be<br />

polyphagous, from Central and South America (Cock 1982a, Freitas 199 1 ).<br />

Species Distribution Feeding location Host range<br />

INSECTS<br />

Hemiptera<br />

LYGAEIDAE<br />

Xyonysius basalis<br />

(= X. inaequalis<br />

= X. sp. nr ementitus)<br />

MEMBRACIDAE<br />

Entylia sinuata<br />

Entylia sp.<br />

Trinidad, inflorescence<br />

Venezuela<br />

Colombia, stems and leaves<br />

Costa Rica<br />

Trinidad, Peru, stems and leaves<br />

Venezuela<br />

Ecuador<br />

Trinidad, stems and young<br />

Probably other Mikania<br />

spp.or other Asteraceae<br />

M. cordifolia<br />

M. cordifolia<br />

Micrutalis binaria M. vitifolia and<br />

Colombia leaves<br />

M. trinitaria<br />

MlRlDAE<br />

Pycnoderes incurvus<br />

TlNGlDAE<br />

Colombia,<br />

Ecuador,<br />

Costa Rica<br />

leaves<br />

probably specific<br />

Leptocysta sexnebulosa Venezuela<br />

Colombia. Peru<br />

mature leaves M. cordifolia<br />

Coleoptera<br />

CHLAMlSlDAE<br />

Exema complicata Trinidad, Peru, leaves<br />

Costa Rica,<br />

Colombia<br />

CHRYSOMELIDAE<br />

Longitarsus sp.<br />

nr amazonus<br />

Sceloenopla sp.<br />

Colombia, Peru leaves<br />

Trinidad leaves<br />

Diptera<br />

AGROMYZIDAE<br />

Calycomyza mikaniae Trinidad, leaf miner<br />

Colombia,<br />

CEClDOMYllDAE<br />

Neolasioptera sp.<br />

TEPHRlTlDAE<br />

Xanthaciura insecta<br />

Costa Rica<br />

Mikania spp., Chromolaena<br />

odorata and possibly<br />

other Asteraceae<br />

probably specific<br />

M. trinitaria<br />

Mikania spp. and possibly<br />

related Asteraceae<br />

Trinidad, Colombia flowers M. cordifolia<br />

Trinidad flower head<br />

Lepidoptera<br />

GELECHllDAE<br />

Onebala tegulella Trinidad,<br />

Costa Rica<br />

leaf roller<br />

Recurvaria sp. Trinidad flowers<br />

various Asteraceae<br />

M. vitifolia<br />

various Asteraceae<br />

(continued on next page)


4.14 Mikania micrantha 129<br />

Species Distribution Feeding location Host range<br />

GEOMETRIDAE<br />

Chloropteryx sp.<br />

Eupithecia sp.<br />

LYCAENIDAE<br />

Thereus<br />

(= Thecla) palegon<br />

NYMPHALIDAE<br />

Tegosa claudina<br />

(= Tegosa similis)<br />

PTEROPHORIDAE<br />

Adaina bipuncta<br />

PY RALl DAE<br />

Lamprosema distincta<br />

TORTRICIDAE<br />

Lobesia (= Polychrosis)<br />

?carduana<br />

Phalonidia<br />

multistrigata<br />

Trinidad<br />

Trinidad<br />

Trinidad<br />

Brazil, Trinidad,<br />

Colombia<br />

Trinidad<br />

Trinidad, Panama,<br />

Costa Rica<br />

Trinidad<br />

Trinidad<br />

flowers<br />

flowers<br />

flowers<br />

leaves<br />

flowers<br />

leaf roller<br />

flowers<br />

flowers<br />

various Asteraceae<br />

various Asteraceae<br />

various Asteraceae<br />

possibly specific<br />

various Asteraceae<br />

possibly specific<br />

various Asteraceae<br />

various Asteraceae<br />

Acalitus sp. Acarina: Eriophyidae<br />

Feeding on the leaves by this eriophyid mite causes the formation of raised patches<br />

(erinea) in which the mites and their immature stages congregate. In Venezuela the patches<br />

mostly protrude on the undersurface of the leaf, whereas elsewhere they are mostly on<br />

the uppersurface, which may indicate taxonomic differences. At low mite densities the<br />

small number of erineum patches appear to have little effect on the growth and vigour of<br />

the plant. However, in dense infestations, erineum patches cover all the young leaves and<br />

spread into the flower heads, resulting in shortened internodes and reduced flowering.<br />

Plant vigour is significantly reduced.<br />

Eriophyid mites are usually restricted to a single plant species. Although erineum<br />

patches occur widely on M. micrantha, they were not seen on any other species of<br />

Mikania encountered in Cock's (1 982a) studies, suggesting a high degree of specificity.<br />

Predatory or scavenger mites occur quite commonly in and around the erineum patches.<br />

If field specificity trials with potted plants of closely related Asteraceae placed among<br />

heavily infested M. micrantha prove negative, this mite would be a promising biological<br />

control agent. Similar mites on Lantana in South America appear to discourage insect<br />

attack (K.L.S. Harley pers. comm.).<br />

Apion luteirostre Coleoptera: Apionidae<br />

Eggs of this weevil are laid in unopened host flower heads. Larvae feed initially on the<br />

petals, stigma and stamens and, later, destroy the developing seeds. They pupate in the<br />

flower head. The adults make small holes in young leaves.<br />

rn extensive field studies A. luteirostre larvae were not recorded from Chromolaena<br />

odorata, although they were found on M. micrantha and M. vitifolia, but not on M. cordifolia.<br />

Starvation tests using adults resulted in their feeding on five species of Mikania and<br />

on Bidens pilosa, but not on Chromolaena odorata.


130 Biological Control of Weeds: Southeast Asian Prospects<br />

Larvae of Apion luteirostre are attacked by the non-specific eulophid parasitoid<br />

Horismenus? aeneicollis and the pteromalid Zatropis sp. A number of Apion species have<br />

been used successfully in biological control of weeds programs (e.g. Emex australis and<br />

E. spinosa). Further host specificity trials are needed to evaluate the potential value of<br />

A. luteirostre.<br />

Desmogramma conjuncta Coleoptera: Chrysomelidae<br />

This chrysomelid beetle occurs widely, but at low density, on M. micrantha in Central<br />

and South America and a related species D. bigaria occurs on M. micrantha in<br />

Venezuela.<br />

Eggs are laid on the host leaves on which the larvae feed. Pupation occurs in the<br />

soil. No field records are available of feeding on plants other than M. micrantha and, in<br />

limited multiple choice tests, adults offered Bidens pilosa (cobbler's pegs), Chromolaena<br />

odorata and M. micrantha (all Asteraceae) attacked only the latter. No natural enemies<br />

have been recorded.<br />

The chrysomelid subfamily Chrysomelinae to which this species belongs includes<br />

several successful biological control agents such as the Chrysolina species on St John's<br />

Wort, Hypericum perforaturn angustifolium. If species of Desmogramma are specific to<br />

M. micrantha they may prove to have potential as biological control agents.<br />

Echoma (= Omoplata) marginata and E. quadristillata Coleoptera: Chrysomelidae<br />

Adults and larvae of these chrysomelid beetles feed openly on M. micrantha and<br />

M. cordifolia leaves and cause general defoliation. E. marginata is uncommon, but<br />

E. quadristillata is quite common around Turrialba (Costa Rica). They appear to have a<br />

low reproductive potential (Cock 1982a). In limited-choice tests, E. quadristillata fed on<br />

M. micrantha and M. cordifolia, but not on Bidens pilosa or Sonchus sp. (Asteraceae). In<br />

another experiment, no preference was shown between its two host species, but it would<br />

not feed on another species of Mikania, which was probably M. vitifolia.<br />

A tachinid pupal parasitoid Hyalomyodes triangulifer is known from E. marginata<br />

and a chalcidid pupal parasitoid Brachymeria russelli from E. quadristillata.<br />

Liothrips mikaniae Thysanoptera: Phlaeothripidae<br />

This thrips occurs in Colombia, Costa Rica, Peru, Surinam, Trinidad and Venezuela. The<br />

eggs are mainly laid on the undersurface of the host plant leaves or at the base of leaf<br />

stalks and the larvae feed there in groups. The prepupae and pupae are found among leaf<br />

litter beneath the plant and the adults return to the youngest leaves to feed, mate and<br />

oviposit. L. mikaniae has been found only on M. micrantha growing in full sunshine and<br />

it never occurs on plants in shady situations. This limits its potential effectiveness to sun-<br />

lit stands of the weed. The life cycle (egg to egg-laying adult) takes about 35 days, males<br />

living about 28 days, females about 35 days and laying between 21 and 11 1 eggs (Ooi et<br />

al. 1993). The feeding by larvae and adults on the young leaves produces small to moder-<br />

ate-sized lesions on the undersurface, which dry to form brown scars and these cause<br />

extensive distortion of the leaves as they grow.<br />

Laboratory studies in Trinidad (Cock 1982b) and field observations (Cock 198 1,<br />

1982a,b) show that L. mikaniae is restricted to the genus Mikania and most probably to


4.1 4 Mikania micrantha 131<br />

M. micrantha, although M. cordifolia and M. vitifolia may be fed on to a limited extent in<br />

the laboratory. Additional studies carried out in England by CIBC confirmed its host<br />

specificity before permission was obtained to introduce L. mikaniae to Malaysia. Rearing<br />

methods are described by Cock (1982b) and Ooi et al. (1993).<br />

Physimerus pygmaeus Coleoptera: Chrysomelidae<br />

This halticine chrysomelid is one of a group of five Physimerus species occurring on<br />

M. micrantha in South America.<br />

The larval feeding habits are unknown, but they may attack roots. The adults feed<br />

on young leaves and petioles, causing the dieback of growing tips, and they may be<br />

destructive when in high densities. This species is uncommon in Trinidad, where it is<br />

restricted to shady conditions, whereas in Colombia it also occurs in the open.<br />

Adults of I? pygmaeus have been found feeding on both M. vitifolia and M. hookeri-<br />

ana, in addition to M. micrantha. Field-collected adults fed on Bidens pilosa, but not on<br />

Chromolaena odorata. No natural enemies have been recorded. Further specificity tests<br />

with larvae and adults would be necessary before the potential of this species could be<br />

evaluated. Various halticine beetles, Longitarsus spp., show great promise for the biolog-<br />

ical control of ragwort Senecio jacobaea, Paterson's curse Echium plantagineum and<br />

common heliotrope Heliotropium europaeum.<br />

Pseudoderelomus baridiifomis Coleoptera: Curculionidae<br />

Larvae of this weevil are not known and may be root or stem gall feeders. The adult bur-<br />

rows into the flowers, damaging the petals, stamens and stigma and prevents seed pro-<br />

duction from the flowering head it occupies. When common, levels of 25% damage have<br />

been recorded.<br />

Adults of P. baridiiformis occur mainly in the flowers of M. micrantha, but have<br />

also been recorded from M. trinitaria and M. vitifolia. They occur rarely in the flowers of<br />

Chromolaena odorata and have been recorded once from Neurolaena lobata. No natural<br />

enemies are known.<br />

Although the level of damage caused may be considerable, further studies of life<br />

history and host specificity are required.<br />

Teleonemia sp. or spp. nr prolixa Hemiptera: Tingidae<br />

A taxonomic study of the bug genus Teleonemia (which contains more than 80 species) is<br />

required to enable the determination of correct identity of the one or more species of<br />

brown tingid bugs feeding on Mikania flowering heads. The species is not i? prolixa,<br />

which is highly specific to Lantana camara (Harley and Kassulke 19,759.<br />

The eggs are laid into the flower bracts and the nymphs and adults feed on the<br />

flower heads, but do not appear to cause much damage at low densities. Faeces deposited<br />

on the opening flowers may be sufficient to prevent seed production, particularly when<br />

these serve as a substrate for fungal growth. i? harleyi in Trinidad has a similar life cycle<br />

and feeding habits in Lantana camara flowers (Harley and Kassulke 1975).<br />

Adults and nymphs of Teleonemia were found by Cock (1982a) on a number of<br />

Mikania species (micrantha, vitifolia, trinitaria, hookeriana). Although T. prolixa has<br />

been recorded from Cinchona sp. (Drake and Poor 1938), Lantana camara (Monte 1939)


132 Biological Control of Weeds: Southeast Asian Prospects<br />

and Acacia riparia (Drake and Ruhoff 1965), the records for Cinchona and Acacia<br />

appear to be in error (Harley and Kassulke 1975). A parasite attacks the eggs of<br />

Teleonemia and the lygaeid Xyonysius sp. in M. micrantha flowers. Teleonemia scrupu-<br />

losa has been used in a number of countries to considerable effect to help in the control<br />

of Lantana camara. If the flower-feeding Teleonemia that attack Mikania cause similar<br />

effects through injection of saliva, they may cause more damage than is apparent at first<br />

sight.<br />

MINOR SPECIES<br />

Cock (1982a) and Freitas (1991) list a further 22 species of insects attacking M. micran-<br />

tha in Central and South America (Table 4.14.2). There are 7 species of Hemiptera, 3<br />

Coleoptera, 10 Lepidoptera and 3 Diptera. Five of these are considered at this stage of<br />

knowledge to be promising.<br />

Exema complicata Coleoptera: Chlamisidae<br />

Adults and larvae of this beetle are leaf feeders on Mikania spp., Chromolaena odorata<br />

and perhaps other Asteraceae.<br />

Longitarsus nr amazonus Coleoptera: Chrysomelidae<br />

Adults of this halticine beetle feed on leaves of M. micrantha and larvae probably on<br />

roots. Longitarsus species generally have a very restricted host range.<br />

Neolasioptera sp. Diptera: Cecidomyiidae<br />

The larvae of this fly feed within the flower head and scar the seed shell, but the effect of<br />

this damage on seed viability is unknown. This species is parasitised by a eulophid<br />

Tetrastichus sp.<br />

Sceloenopla sp. Coleoptera: Chrysomelidae<br />

Adults of this hispine beetle feed on leaves and larvae are leafminers on M. micrantha<br />

and M. trinitaria. Horismenus? aeneicollis is recorded as a larval parasitoid. Hispine bee-<br />

tles have proved to be very effective against Lantana camara.<br />

Tegosa claudina Lepidoptera: Nymphalidae<br />

Earlier referred to as Tegosa similis, the larvae of this butterfly are leaf feeders on both<br />

Mikania micrantha and M. cordifolia. Eggs are laid in clusters and larvae are gregarious,<br />

passing through six instars (Freitas 1991).<br />

Attempts at biological control<br />

MALAYSIA<br />

An extensive evaluation of natural enemies attacking M. micrantha was made in<br />

peninsular Malaysia prior to a decision to embark upon a biological control project (Teoh<br />

et al. 1985). Of the insects collected from or reared on the host plant, 2506 were classi-<br />

fied arid separated into commonly found and minor natural enemies (Table 4.14.3).<br />

Although numerous insects were found to attack M. micrantha, not only was the<br />

extent, of damage insignificant, but most of the abundant species were known pests of<br />

economic crops. For example, Halticus minutus and Lamprosema diemenalis are major


4.14 Mikania micrantha 133<br />

pests of leguminous cover crops, Homoeocerus serrifer attacks rice and Helopeltis spp.<br />

are serious pests of cocoa. None of the natural enemies recorded in Tropical and South<br />

America were found in the survey. A number of fungi were also found, of which<br />

Colletotrichium gloeosporioides was the most important, comprising 84% of the sam-<br />

ples. Other fungi included Colletotrichium spp., a non-sporulating brown fungus,<br />

Rhizoctonia spp., Curvularia spp. and Pestalotia spp. It was concluded that a strong case<br />

existed for the introduction of effective natural enemies.<br />

Table 4.14.3 Insects attacking Mikania micrantha in peninsular Malaysia (Teoh et al.<br />

1985).<br />

Species Effects<br />

MAJOR SPECIES<br />

Orthoptera<br />

ACRlDlDAE<br />

Acrida turrita<br />

Hemiptera<br />

APHlDlDAE<br />

Aphis spiraecola<br />

CERCOPIDAE<br />

Clovia conifer<br />

CICADELLIDAE<br />

Bothrogonia ferrugenea<br />

COREIDAE<br />

Homoeocerus serrifer<br />

Riptortus linearis<br />

MEMBRACIDAE<br />

Centrotypus flexuosus<br />

MlRlDAE<br />

Halticus minutus<br />

Helopeltis spp.<br />

Lepidoptera<br />

PY RALl DAE<br />

MINOR SPECIES<br />

Orthoptera<br />

ACRlDlDAE<br />

Catantops humilis<br />

Hemiptera<br />

APHlDlDAE<br />

Aphis gossypii<br />

CICADELLIDAE<br />

Nephotettix spp.<br />

Thysanoptera<br />

THRlPlDAE<br />

Isothrips spp.<br />

Microcephalothrips spp.<br />

holes in leaves<br />

wrinkled leaves<br />

yellow spots on leaves and stems<br />

brown spots on stems<br />

brown spots on leaves<br />

brown spots on leaves<br />

necrosis on stems<br />

necrotic lesions on leaves<br />

necrotic lesions on leaves<br />

(continued on next page)


134 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.14.3 (continued)<br />

Species Effects<br />

Parthenothrips spp.<br />

Thrips hawaiiensis<br />

Thrips tabaci<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Dactylispa bipartista<br />

COCCINELLIDAE<br />

Coelophora bissellata<br />

Epilachnu indica<br />

Diptera<br />

TEPHRlTlDAE<br />

Sphaeniscus atilus<br />

Lepidoptera<br />

AMATIDAE<br />

Amata huebneri<br />

PYRALIDAE<br />

Hellula undalis<br />

Liothrips mikaniae was introduced to Malaysia from Trinidad via England in 1989<br />

for additional host specificity trials. Difficulties were experienced initially in mass rearing,<br />

due to unsuitable environmental conditions (lighting, temperature, aeration) low<br />

plant nutritional quality and predators (spiders, ants, and particularly a predatory thrips,<br />

Xyloplothrips sp. which destroyed 90% of the culture). Also, there were differences in<br />

the M. micrantha plants used. Some were hairless and others hairy. Larvae hatching from<br />

eggs along stems of the latter found difficulty in moving among the trichomes and many<br />

failed to reach the nearest leaf. Nevertheless, in Trinidad, L. mikaniae was found breeding<br />

on both plant types. After passing tests with 18 Malaysian crop species, 13 161 adult<br />

thrips were released in 25 batches of 99 to 1400 at 5 different sites from April 1990 to<br />

June 1991, but no establishment resulted (Table 4.14.4). Further thrips were imported in<br />

January 1992 to extend the genetic base of the rearing colony. Two releases were made<br />

into a fenced site, 18 000 adults, together with their rearing plants in pots, in May 1992<br />

and 1500 adults about a month later. The pots were watered daily for two months.<br />

However, L. mikaniae gradually disappeared and, after eight months, none could be<br />

found. An ant that made its nest amongst Mikania leaves was observed to feed voraciously<br />

on adult, larval and pupal stages of L. mikaniae, but showed little interest in eggs,<br />

whereas a predatory Haplothrips sp. preferred eggs. About 20 other potential predators<br />

were evaluated, but were not implicated (Liau et al. 1991, 1993, Norman et al. 1992,<br />

Teoh et al. 1985, Ooi 1993, Ooi et al. 1993).<br />

SOLOMON ISLANDS<br />

A consignment of L. mikaniae was sent from Malaysia to the Solomon Is and released in<br />

the field in 1988, but the site was flooded shortly afterwards. Further releases were made,<br />

but no establishment has occurred (M. Vagalo pers. comm.). It was suggested that there


4.14 Mikania micrantha 135<br />

may be differences in hospitability to L. mikaniae of the host plant between the<br />

Caribbean and Solomon Is.<br />

PAPUA NEW GUINEA<br />

Part of a consignment of L. mikaniae sent to the Solomon Is in 1989 was taken to Papua<br />

New Guinea, but there is no information on its fate (Williams et al. 1990), although it is<br />

believed to have died in quarantine (F. Dori pers. comm. 1993).<br />

SRI LANKA AND ASSAM<br />

In Sri Lanka and Assam it has been found that the plant parasite Cuscuta chinensis will<br />

suppress Mikania and prevent it spreading into tea plantations, although C. chinensis is<br />

not sufficiently selective to be used in the plantations themselves (Parker 1972). On<br />

Espiritu Santo (Vanuatu) a related species Cuscuta campestris is reported to suppress M.<br />

micrantha (M.J.W. Cock pers. comm.).<br />

Table 4.14.4 Liberations for the biological control of Mikania micrantha.<br />

Species Where From When Result References<br />

Thysanoptera<br />

PHLAEOTHRIPIDAE<br />

Lioihrips mikaniae Malaysia Trinidad via UK 1991 - Liau et al. 1991,<br />

1993, Norman et<br />

al. 1992<br />

Solomon Is Trinidad via UK 1988 - M. Vagalo pers.<br />

comm., Williams et<br />

al. 1990<br />

Comment<br />

Mikania micrantha is an introduced weed of widespread importance in plantation crops<br />

throughout Southeast Asia. It is not a significant weed in its native range in tropical<br />

Central and South America, where it is attacked by a wide range of arthropod natural<br />

enemies. Several appear to be not only damaging to the weed, but also highly specific. It<br />

must be concluded that M. micrantha is a highly appropriate target for an attempt at bio-<br />

logical control.<br />

The failure of Liothrips mikaniae to become established in Malaysia is disappoint-<br />

ing. The most probable explanation, partly supported by observations, is that heavy pre-<br />

dation was the cause. Although the same guild of predators may be widespread on conti-<br />

nental Southeast Asia, the same may not apply to island nations, particularly those in the<br />

southern Pacific, which have a far less diverse fauna and releases there might lead to suc-<br />

cessful establishment.


136 Biological Control of Weeds: Southeast Asian Prospects<br />

Mimosa in visa<br />

(after Holm eta/. 1977)


Map 4.15 Mimosa invisa<br />

4.15 Mimosa invisa<br />

Mimosa in visa<br />

Creeping sensitive plant, Mimosa invisa, is native to Tropical America, where it is not<br />

regarded as a weed.<br />

At least 70 species of insects attack it in Brazil and additional species elsewhere.<br />

Detailed studies have been made on two Hemiptera (Heteropsylla spinulosa and<br />

Scamurius sp.) and a moth (Psigida walkeri). H. spinulosa has caused extensive damage<br />

to M. invisa following its establishment in Australia and promising early results in Fiji,<br />

Papua New Guinea and Pohnpei, but disappointing results in Western Samoa. Scamurius<br />

sp. has failed to become established and P. walkeri is still under investigation.<br />

The prospects for biological control of M. invisa appear to be good, although<br />

additional natural enemies may have to be considered.


138 Biological Control of Weeds: Southeast Asian Prospects<br />

4.15 Mimosa invisa Martius ex Colla<br />

Mi mosaceae<br />

creeping sensitive plant; banla saet (Cambodia), borang, pis koetjing, rembete<br />

(Indonesia), duri semalu (Malaysia), makahiyang lalaki (Philippines), maiyaraap<br />

thao (Thailand), co trinh nu moc (Vietnam)<br />

Rating<br />

+++ Phil<br />

18 ++ Myan, Thai, Laos, Viet, Msia, Sing, Indo<br />

+ Camb<br />

Origin<br />

Tropical America. In Brazil southwards from Bahia to Paranh and westwards to Paraguay<br />

and tropical northeast Argentina; also lowlands of Central America from Veracruz<br />

(Mexico) southeastwards to Panama and adjacent Colombia.<br />

Distribution<br />

In addition to the above there are, in the Americas, scattered records from Brazilian<br />

Amazonia, the Guianas, Jamaica, Hispaniola and Cuba. M. invisa is widely distributed in<br />

Southeast Asia and the Pacific, also in Queensland, India, Sri Lanka, Taiwan and Nigeria.<br />

It was first recorded in Java in 1900 (Soerjani et al. 1987).<br />

Characteristics<br />

Mimosa invisa is a fast growing, abundantly thorny, biennial or perennial shrub with<br />

angular branching stems that become woody with age. The leaves are alternate, bipinnate<br />

and compound. The pink to purple globular flowers are borne on a short prickly stalk<br />

arising from a leaf axil. The seed pods are covered with stiff bristles and separate at<br />

transverse grooves into two to four, single-seeded segments.<br />

The genus Mimosa does not occur naturally in Southeast Asia or Australia. M.<br />

invisa is one of three weedy species of Mimosa in this region, all of which are treated in<br />

this volume. They may be distinguished (i) by the number of pinnae in the leaves: M.<br />

invisa 4 to 9 pairs; M. pigra 6 to 16 pairs; and M. pudica 1 to 2 pairs and (ii) the size of<br />

the pods: M. invisa 4 seeds per pod, M. pigra 12 to 24 seeds. In addition, M. invisa stems<br />

have a dense covering of small prickles, whereas M. pigra stems have a sparse covering<br />

of large prickles (Lonsdale 1992).<br />

M. invisa folds its pinnate leaves when touched, but is not as sensitive as some other<br />

species, such as M. pudica. The leaves fold at nightfall.<br />

unlike the situation in the more tropical regions, such as the Philippines where<br />

M. invisa flowers all year round, in central and southern Brazil it only flowers from the<br />

end of January to mid April. Seeds mature from February to the end of May and plants<br />

then senesce, losing most of their leaves, although a few green leaves remain at the stem


4.15 Mimosa invisa 139<br />

base. For two to five months green plants are difficult to find. Senescence is not due to<br />

water shortage as well-watered plants in the laboratory also senesce. However, germina-<br />

tion occurs when moisture is available, so young plants may appear after showers of rain<br />

(Garcia 1982b).<br />

Importance<br />

M. invisa scrambles vigorously over other plants, forming dense tangled thickets up to 2<br />

m high. It is a nitrogen-fixer and its extremely rapid growth smothers useful plants and<br />

other weeds. Its sharp, recurved thorns make stock reluctant to graze on it and difficult<br />

for them to penetrate the stands. Crops infested with M. invisa are difficult to harvest<br />

because the thorns puncture and lacerate the hands of the workers. It is common along<br />

roadsides and in moist waste places. It causes major problems in coconut, tea and rubber<br />

plantations, sugarcane and pineapple fields, crop lands and pastures. It is not a problem<br />

in the Americas, western Asia, East Africa or Europe, but is a serious weed in Southeast<br />

Asia and the Pacific. A spineless variety, M. invisa inermis, has been suggested as a trop-<br />

ical pasture legume, but its tendency to revert to the thorny type and its potential toxicity<br />

has discouraged its use (Waterhouse and Norris 1987).<br />

In the Americas, M. invisa is most common in the Paranh basin in the State of San<br />

Paulo (Brazil), but even there pure stands are not common and it does not appear to<br />

invade nearby crops. In forest regions it occurs as thickets among grasses along roads,<br />

river banks and in waste places; it occurs more commonly on the fringe of cities (Garcia<br />

1982b).<br />

Natural enemies<br />

Information up to 1986 was summarised by Waterhouse and Norris (1 987).<br />

M. invisa is seldom troublesome in Brazil or Argentina and some 70 species of<br />

insects and two fungi are known to attack it in Brazil (Table 4.15.1). Additional insects are<br />

known in the Americas, but they have not yet been studied. A pathogenic fungus<br />

Corynespora cassiicola kills M. invisa in Australia (Haseler 1984), heavy infestations of<br />

scale insects attack it in Fiji (Mune and Parham 1967), a non-specific lymantriid larva<br />

feeds on young leaves and flowers in Thailand (Napompeth 1982) and a pierid butterfly<br />

Eurema sp. breeds on it in Papua New Guinea and New Britain (T.L. Fenner pers. comm.).<br />

More than half of the insects attacking M. invisa in Brazil have not yet been identi-<br />

fied. Indeed it is probable that most of these are undescribed species and, if so, it follows<br />

that there is no published information about them. Where possible, identification, even to<br />

a genus, may be valuable. For example, species of the genus Heteropsylla are restricted<br />

to legumes, with known hosts only in the Mimosaceae or Caesalpiniaceae. Of the 35<br />

described species with recorded hosts, 31 are specific to a single host (Hodkinson and<br />

White 1981, Muddiman et al. 1992).<br />

Only a few of the 70 insect species attacking M. invisa are known as agricultural<br />

pests (Table 4.15.1). From the remainder, preliminary observations on a subgroup of<br />

about 10 species led to detailed studies on three, Heteropsylla spinulosa, Scamurius sp.<br />

and Psigida (= Psylopigida) walkeri.


140 Biological Control of Weeds: Southeast Asian Prospects<br />

Attempts at biological control<br />

AUSTRALIA<br />

Large numbers of Heteropsylla spinulosa were released in coastal Queensland, com-<br />

mencing in 1988 (Table 4.15.2). This involved 33 field sites, averaging thousands of<br />

insects per release (M. Ablin pers. comm. 1990). Within two years, the psyllid had dis-<br />

persed widely into all infestations of M. invisa in pastures. Dense clumps of the weed<br />

were reduced to small masses of bare stems with stunted growing tips, leading to other<br />

vegetation reestablishing itself. Seed production from severely affected plants was<br />

reduced by 85 to 100% (Ablin 1992, Anon 1988). It did not attack M. pudica plants near-<br />

by. A more recent assessment, using insecticide-produced exclusion, found that H. spinu-<br />

losa reduced seed production on average by SO%, growing tip elongation by 77% and the<br />

growth rate of tips by 50% (Ablin 1993a). Although M. invisa may still produce clusters<br />

of seed pods when damage is high, the pods contain very few viable seeds. Mature plants<br />

support low populations of H. spinulosa during the dry season from July to November.<br />

Thereafter, psyllid abundance increases with the onset of summer rains, with peak num-<br />

bers in April or May (M. Ablin pers. comm. 1993).<br />

Scamurius sp. was liberated in Queensland from 1987 to 1990 and proceeded to kill<br />

the tips of many shoots (Anon 1988). However it did not become established. It was also<br />

released against Mimosa pigra in the Northern Territory where it survived for several<br />

months, but fecundity was very low and the colony died out (M. Ablin pers. comm.<br />

1993).<br />

FIJI<br />

H. spinulosa was brought in from both Western Samoa and Australia in 1993 and, after a<br />

generation in quarantine, was liberated in Nadi in June. Six weeks later all stages were<br />

seen in the field. A mealy bug and Tetranychus sp. mites are occasionally found on<br />

M. invisa in the field (S.N. La1 pers. comm. 1993).<br />

PAPUA NEW GUINEA<br />

Heteropsylla spinulosa from Australia was reared through one generation in quarantine<br />

in Port Moresby and released early in 1993 in the Ramu Valley near Lae. Within a few<br />

months it had severely damaged M. invisa and killed many plants (F. Dori pers. comm.<br />

1993).<br />

POHNPEI<br />

Ten months after release at Palikir, Pohnpei H. spinulosa became abundant on M. invisa<br />

and subsequently killed many plants. Many psyllids were transferred to M. invisa in other<br />

areas (N.M. Esguena pers. comm. 1993).<br />

WESTERN SAMOA<br />

A total of 47000 nymphs and adults of Heteropsylla spinulosa from Australia were liber-<br />

ated in Western Samoa in 1988 and 1989 and, a year later, the psyllid was reported at<br />

some sampling sites to have reduced seed production, although not the area infested<br />

(Willson and Ablin 1991).<br />

Scamurius sp. was also liberated in Western Samoa in 1989 and was seen in the<br />

field after more than one generation, but not in more recent times. There have been no


4.15 Mimosa invisa 141<br />

reports of its effects. M. invisa continues to be a serious weed, with more than 85% of<br />

villages on the main island of Upolu being infested (Willson and Garcia 1992).<br />

Important Natural Enemies<br />

INSECTS<br />

Heteropsylla spinulosa Hemiptera: Psyllidae<br />

The average development period of this small (2.5 mm long) pale green, Brazilian psyllid<br />

is about 28 days. High populations cause severe stunting and distortion of the leaves and<br />

growing tips; flowering is reduced or even prevented. A sticky honeydew is produced<br />

which encourages a dense growth of sooty moulds. Females attach eggs by means of a<br />

pedicel inserted into the plant tissue between overlapping leaflets. Young nymphs live<br />

hidden between the leaflets, whereas adults feed on leaflets and shoots.<br />

In Brazil reduviid bugs pierce nymphs with their proboscis and withdraw them from<br />

their shelters, whereas larvae and adults of the predatory coccinellid Eriopis connexa are<br />

only able to capture exposed nymphs. Nymphs are also attacked by an encyrtid wasp<br />

Psyllaephagus yaseeni (Willson and Garcia 1992). The predatory vespid wasp<br />

Protonectarina sylveiriae attacks nymphs and an unidentified wasp causes up to 13%<br />

parasitisation (Garcia 1985).<br />

In extensive host specificity tests H. spinulosa adults and nymphs were unable to<br />

live on any plant other than M. invisa and its spineless variety M. invisa inermis. In the<br />

field it did not attack M. pudica, even when large infestations of M. invisa were<br />

destroyed and M. pudica was common nearby (M. Ablin pers. comm. 1993). Eggs were<br />

laid on 18 other plant species, but only under glasshouse conditions (Garcia 1985, Wild<br />

1987, Willson 1987, Willson and Garcia 1992) and Heteropsylla spinulosa was judged<br />

safe to liberate in Australia and four other countries (Table 4.15.2)<br />

Psygida walkeri Lepidoptera: Cercophanidae<br />

This moth is widespread in Brazil and Colombia. Females have a wing span of up to 5<br />

cm. When fully grown its greenish, spiny larvae may reach a length of 5 cm. They feed<br />

voraciously on leaves, flower buds, tender seed pods and on the top 30 cm of tender<br />

stems and branches, preventing both flowering and seed production. The life cycle takes<br />

about 2 months and there are 3 generations a year. There is a pupal diapause of up to 4<br />

months in Brazil<br />

Larvae of P. walkeri have been found in the field on M. invisa, M. rixosa, M. vel-<br />

loziana and once on M. somnians. They have not been found in the field in Brazil on<br />

other leguminous plants near M. invisa plants bearing larvae, nor on any plants of eco-<br />

nomic importance (Garcia 1983). However, under artificial conditions larvae can be<br />

reared on black wattle Acacia mearnsii and may also feed on Mimosa pudica and<br />

Leucaena leucocephala. Although adults will oviposit on A. mearnsii, no attack has been<br />

observed in the field (Haseler 1984). Further host specificity testing is in progress in<br />

Australia.


142 Biological Control of Weeds: Southeast Asian Prospects<br />

Scamurius sp. Hemiptera: Coreidae<br />

Both nymphs and adults of this large (up to 2.2 cm) coreid bug feed on the shoots, caus-<br />

ing them to collapse, thereby inhibiting vegetative growth and flowering. First instar<br />

nymphs moult whether fed or not and, after five instars, mature in about seven weeks.<br />

There are about four generations a year, from early summer to autumn, and adults may<br />

live for six months or more.<br />

Adults were found to probe many species of plants, but to feed only on species of<br />

Mimosa. Nymphs were able to develop on M. invisa and on two other weedy species,<br />

M. pigra and M. pudica, but not on other plants (Garcia 1984, Wild 1986, 1987). This<br />

species was approved for release in Australia and Western Samoa (Table 4.15.2).<br />

FUNGUS<br />

Corynespora cassiicola<br />

This stem spot fungus is very common in hot humid weather in north Queensland, Papua<br />

New Guinea (Keravat, Rabaul) and Western Samoa. It can be very damaging to M. invisa<br />

if environmental conditions are suitable (Willson and Ablin 1991). The strain involved<br />

appears to be specific to M. invisa, although fungi with the same specific name are<br />

reported from cowpea, papaya and tomato. If suitable environmental conditions persist in<br />

the field M. invisa plants shed their leaflets and stems die back as lesions cover the plant<br />

(M. Ablin pers. comm. 1993).<br />

Comments<br />

The use, in the future, of H. spinulosa from Brazil against M. invisa is complicated by<br />

several introductions of natural enemies that have already been made by Southeast Asian<br />

countries (eg. Thailand, Philippines). These introductions were of two parasitic wasps<br />

(Tamarixia leucaenae and Psyllaephagus yaseeni) native to the Caribbean and Central<br />

America (Noyes 1990) and one or more predatory coccinellids against a pest psyllid<br />

Heteropsylla cubana which appeared from the Americas in the 1980s. This pest can<br />

cause severe damage to Leucaena leucocephala which is widely planted for firewood and<br />

as fodder. Tests showed that these natural enemies of H. cubana would also attack<br />

H. spinulosa (Baker 1990). As a result, several countries where M. invisa is a serious pest<br />

(Australia and most Pacific islands, but not New Caledonia) have deferred introducing<br />

natural enemies of H. cubana.<br />

Several interesting points, relevant to any investigation for natural enemies in<br />

South America, emerge from the M. invisa project there:<br />

Before the studies of C.A. Garcia in the early 1980s almost nothing was known about<br />

the insects attacking it, yet within a year 57 insects were listed from Brazil (Garcia<br />

1982a,b) and within two years a further 10. No records are available from elsewhere<br />

in the Americas, except of a Heteropsylla sp. from Colombia (Garcia 1983).<br />

It has not been possible for taxonomists to assign a specific name (and sometimes not<br />

even a generic name) to the majority of insects collected. Some were not previously<br />

represented in any museum collections and many are almost certainly undescribed<br />

species.


4.1 5 Mimosa invisa 143<br />

Only one (Scamurius sp.) of the three insects eventually selected for detailed study<br />

was recognised in the first survey which yielded 57 species. It is clear that follow up<br />

surveys are essential.<br />

No study has yet been made of the insects attacking M. invisa over a very large area<br />

of its presumed native range. From brief observations in Colombia Garcia (1 983)<br />

commented that larvae of Lepidoptera were 'quite similar to those collected off M.<br />

invisa in Brazil. Coleoptera in general look different'.<br />

Should existing biological control be considered inadequate, further detailed studies<br />

covering the entire native range of M. invisa might well reveal additional, adequately<br />

specific insects attacking it.<br />

Examination of the host specificity of more of the insects recorded from Brazil (Table<br />

4.15.1) might also reveal further adequately specific insects.<br />

H. spinulosa does not thrive under either very wet or very dry conditions. Its popula-<br />

tions depend upon the availability of green foliage and, in the dry season, are found<br />

on pockets of green foliage. A flush of growth after rain leads to a build up in popula-<br />

tions to a level that severe damage may be caused, sufficient to kill many M. invisa<br />

plants.<br />

Table 4.15.1 Natural enemies of Mimosa invisa in Brazil (from Garcia 1982a,b, 1983<br />

and his unpublished monthly reports).<br />

Species Comment<br />

INSECTS<br />

Orthoptera<br />

TETTlGONl IDAE<br />

sp. 1<br />

sp. 2<br />

attacks flowers<br />

attacks leaves<br />

Hemiptera<br />

CERCOPIDAE<br />

Tomaspis (= Zulia) enteriana<br />

SP . belongs to Gyopinae<br />

CICADELLIDAE<br />

sp. I common on Mimosa invisa and M. pigra and<br />

colonises Acacia mearnsii and M. scabrella during<br />

the dry season<br />

sp. 2<br />

COREIDAE<br />

Scamurius sp. 1 see text<br />

Scamurius sp. 2<br />

MlRlDAE<br />

Horciacinus signoreti (= H. argentinus)<br />

Taylorilygus pallidulus<br />

MEMBRACIDAE<br />

Ceresa ustulata<br />

an agricultural pest<br />

Enchenopa gracilis<br />

Micrutalis sp.<br />

(continued on next page)


144 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.15.1 (continued)<br />

Species Comment<br />

PENTATOMI DAE<br />

Acrosternum herbidum<br />

Dichelops furcatus an agricultural pest<br />

Edessa meditabunda an agricultural pest<br />

Euschistus tristigmus cribarius<br />

Euschistus luridus<br />

Piezodorus guildinii an agricultural pest<br />

PSYLLIDAE<br />

Heteropsylla spinulosa see text<br />

Heteropsylla sp. from Colombia<br />

THYREOCORIDAE<br />

Gyrocnemis sp.<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Colaspis sp.<br />

Cryptocephalus viridiaeneus<br />

?Hilax sp.<br />

Lactica sp.<br />

Lexiphanes ?semicyaneus<br />

Lexiphanes sp.<br />

Metaxyonycha pallidula<br />

Nodonota sp.<br />

Pachybrachys sp.<br />

System s-liftera<br />

Temmodachrys sp. nr aphodoides<br />

CURCULIONIDAE<br />

Asynonychus godmani<br />

(= Pantomorus cervinus)<br />

Chalcodermus sp.<br />

Chalcodermus sp. nr segnis<br />

Hypanthus sp.<br />

Promecops sp. 1<br />

Promecops sp. 2<br />

Sibinia aspersa<br />

Sibinia ?subulirostris<br />

Sibinia sp.<br />

Lepidoptera<br />

AMATIDAE<br />

SP.<br />

CERCOPHANIDAE<br />

Psigida walkeri<br />

GEOMETRIDAE<br />

sp. 1<br />

sp. 2<br />

most Chrysomelidae were present ib low numbers.<br />

adults eat M. invisa leaves<br />

excellent defoliator; also attacks M. pigra<br />

adults eat leaves and show strong preference for<br />

M. invisa, but will also attack M. pudica, Calliandra<br />

selloi and Acacia mearnsii<br />

larvae bore stems, brown adults eat leaves<br />

black adults bore green seeds, but did not attack pods<br />

of 7 other legumes<br />

adults eat ovaries, larvae the seeds; recorded from<br />

Mimosa albida and M. quadrivalis, but would not<br />

attack six other legumes including Leucaena<br />

leucocephala<br />

seminicola group, larvae eat seeds, adults the leaves<br />

and ovaries and are also found in Mimosa rixosa<br />

red hairy larva<br />

see text<br />

debris-covered larva<br />

twisted larva<br />

(continued on next page)


FUNGI<br />

Species Comment<br />

sp. 3<br />

sp. 4<br />

sp. 5<br />

HESPERIIDAE<br />

Cogia (= Caicella) calchas<br />

LYCAENIDAE<br />

Hemiargus hanno<br />

Tmolus (= Thecla) azia<br />

NOCTUIDAE<br />

sp. 1<br />

sp. 2<br />

sp. 3<br />

sp. 4<br />

PlERlDAE<br />

Eurema tenella<br />

TORTRICIDAE<br />

sp. 1<br />

sp. 2<br />

sp. 3<br />

sp. 4<br />

FAMILY UNKNOWN<br />

Cercospora canescens<br />

Fusarium sp.<br />

Uredo mimosae-invisae<br />

reddish green larva<br />

common slim larva<br />

thick twig larva<br />

Table 4.15.2 Liberations for biological control of M. invisa.<br />

4.1 5 Mimosa invisa 145<br />

occurs in Mexico and Argentina; eggs laid also on<br />

M. pudica, M. scabrella, Indigofera anil, Skranquia<br />

sp., larvae are heavily parasitised<br />

larvae eat leaves, flowers and seed pods; also<br />

M. pudica flowers<br />

larvae eat leaves and flowers; also M. pudica and<br />

groundnut flowers<br />

velvet black larva; also on M. pudica, M. scabrella,<br />

Acacia mearnsii, Calliandra selloi, Leucaena<br />

leucocephala<br />

reddish larva<br />

green larva<br />

small green larva<br />

occurs in Brazil, Argentina, Paraguay, Bolivia; larvae<br />

defoliate M. invisa; also eat M. pudica, M. scabrella,<br />

Acacia mearnsii and (reluctantly) Leucaena<br />

leucocephala<br />

flowerltwig roller<br />

pod eater<br />

larvae eat leaves<br />

larvae roll flowers<br />

4 species, two bore in the stem tips, 1 eats pods<br />

and I the flowers<br />

from Venezuela (H.C. Evans pers. comm. 1992)<br />

Species From Liberated When Result References<br />

Heteropsylla spinulosa Brazil Queensland 1988 + Ablin 1992, Anon 1988<br />

Fiji 1993 ? S.N. Lal pers. comm. 1993<br />

Papua New Guinea 1993 + Ablin 1993b,<br />

F. Dori pers. comm. 1993<br />

Pohnpei 1992 + N.M. Esguerra pers. comm.<br />

1993<br />

Western Samoa 1988 + Willson & Garcia 1992<br />

Scamurius sp. Brazil Queensland 1987 - Anon 1988<br />

Western Samoa 1988 ?


146 Biological Control of Weeds: Southeast Asian Prospects<br />

Mimosa pigra<br />

(after CSIRO. 1992)


Map 4.16 Mimosa pigra<br />

4.16 Mimosa pigra<br />

Mimosa pigra originated in the area extending from Mexico to Amazonia and<br />

Venezuela. Four beetles and two moths have been established on M. pigra in Australia<br />

in the past 10 years. Two stem-boring moths Neurostrota gunniella and Carmenta<br />

mimosa are having a significant effect on the vigour of the weed. N. gunniella has<br />

spread widely, infests most stems and is reducing seed production. All except N. gun-<br />

niella have been liberated in Thailand. N. gunniella was not liberated because it can<br />

attack the aquatic vegetable Neptunia oleracea. However the two seed-feeding bruchids<br />

are destroying up to 20% of the seed in Thailand<br />

A specific, highly pathogenic fungus, Phloeospora mimosae-pigrae, has been<br />

approved for release in Australia and six insects and a rust fungus are under study.<br />

There are grounds for confidence that a group of natural enemies will become avail-<br />

able that, acting together, will cause significant damage to M. pigra.


148 Biological Control of Weeds: Southeast Asian Prospects<br />

4.16 Mimosa pigra L.<br />

Mimosaceae<br />

giant sensitive plant; mai yah raap yak, maiyarap ton, chi yop luang (Thailand);<br />

kembang gajah, semalu gajah (Malaysia); trinh nu nhon (Vietnam); putri malu<br />

(Indonesia)<br />

Rating<br />

+++ Thai<br />

15 ++ Myan, Laos, Msia, Sing, Indo<br />

+ Camb, Viet<br />

Origin<br />

Mexico, southern Venezuela, or central Amazon basin.<br />

Distribution<br />

Throughout the tropics and still spreading. It was an early invader of tropical Africa and<br />

is spreading aggressively in northern Australia and Southeast Asia. It is not present in the<br />

Philippines or the oceanic Pacific. Details of its distribution and time of recognition in<br />

various countries are given in Lonsdale (1992).<br />

Characteristics<br />

M. pigra is a perennial leguminous shrub, growing up to 6 m high on a wide range of<br />

soils, and found in moist open sites with a rainfall between 750 and 2250 mm in the trop-<br />

ics. Its leaves are bipinnate and sensitive to the touch, through movements of the petiole<br />

and pinnules. Petioles bear a slender prickle at the junction of each of the 6 to 16 pairs of<br />

pinnae and sometimes have stouter prickles between each pair. The stems bear<br />

broad-based, sharp thorns up to 7 mm long. Mature plants have many branches growing<br />

from the base, with a skirt of adventitious roots forming in seasonally inundated sites.<br />

They have a large central taproot which penetrates 1 to 2 m deep and a lateral root system<br />

that extends up to 3.5 m from the stem at a depth of about 5 cm. The flowers are mauve<br />

to pink, massed in globular heads lcm in diameter, with each head containing about 100<br />

flowers. Seed pods are produced in clusters of about 7, are densely bristly, 3 to 8 cm long<br />

and break transversely into segments each containing a seed. The bristles facilitate float-<br />

ing and thus rapid spread of the weed along river systems. In regions with pronounced<br />

wet and dry seasons, the former is the main period of growth, with flowering mainly<br />

from mid to late wet season. Development from flower bud to ripe seed takes about 5<br />

weeks (Lonsdale 1992). Average seed production is about 9000 seeds per plant, but up to<br />

220000 has been recorded. Although most seeds that lodge on or near the soil surface<br />

probably germinate within two years many seeds deeper in the soil lie dormant for long<br />

periods (at least 23 years).<br />

Previously, two varieties were recognised var. pigra and var. berlandieri, of which<br />

only pigra has spread around the world. Variety berlandieri has recently been renamed<br />

Mimosa asperata (Barneby 1989, Lonsdale 1992).


Importance<br />

4.16 Mimosa pigra 149<br />

In tropical America M. pigra usually occurs as small clumps of multi-stemmed plants<br />

growing in seasonally flooded habitats. However, in many countries to which it has been<br />

introduced, M. pigra is a serious weed of wetlands. Dense, prickly thickets compete with<br />

pastures, prevent access to water and hinder mustering. The thickets exclude native vege-<br />

tation and so alter the environment that many native plants and animals are eliminated or<br />

seriously affected (Lonsdale 1992). The weed leads to sediment accumulation in irriga-<br />

tion systems and reservoirs and, as the seed segments float, many end up in fallow rice<br />

paddies where they germinate rapidly. River sand containing seeds helps to establish new<br />

infestations when transported to building sites, road constructions etc.<br />

Cattle and horses occasionally browse on young plants and some wild animals find<br />

it acceptable, particularly as a dry-season browse but, in general, it seems to be of low<br />

palatability. The leaves contain low levels of the toxic amino acid mimosine. M. pigra<br />

was introduced to Thailand in 1945 as a green mulch crop and for erosion control in rice<br />

paddy irrigation channels, but it was soon found that the problems associated with it far<br />

outweighed any advantages (Wara-Aswapati 1983). However it is used still as a source of<br />

firewood and bean poles, although it is now regarded as a very serious weed.<br />

Natural enemies<br />

Surveys for natural enemies have been made in Brazil, Mexico, Venezuela (Harley et al.<br />

1983), Honduras (Habeck and Passoa 1982), Costa Rica (Forno 1992) and most recently<br />

in Belize and Cuba (I.W. Forno pers. comm.). In Honduras more than 60 species were<br />

listed (2 Orthoptera, 27 Hemiptera, 1 Diptera, 15 Coleoptera and 15 Lepidoptera).<br />

Although a full list of insects attacking M. pigra in its native range has yet to be pub-<br />

lished, a diverse group of over 200 is known to occur (Forno et al. 1991b). Only 12<br />

species are considered to be pests of agriculture and at least 45 have habits that are likely<br />

to lead to restricted host specificity, such as gall forming, leaf mining or stem boring. It is<br />

suggested that some 10% may be adequately host specific. These are likely to attack dif-<br />

ferent parts of the plant causing complementary damage, so that the prospects for biolog-<br />

ical control appear good (Forno et al. 1989b, Wilson et al. 1990).<br />

Six of the tropical American species of insects have been liberated (Table 4.16.1)<br />

five more were eventually not released after tests showed (or suggested) that they are<br />

insufficiently host specific (Table 4.16.2) and a further six are currently being examined<br />

in Australia or Mexico for host specificity (Table 4.16.3). However, the list of potential<br />

insects for consideration is far from exhausted. Host testing of agents for M. pigra is dis-<br />

cussed by Forno and Harley (1 992).<br />

Two fungal pathogens of M. pigra (Diabole cubensis and Phloeospora mimosae-<br />

pigrae) cause considerable damage in Mexico in spite of being extensively attacked by<br />

hypeiparasitic fungi. Without these, the pathogens should prove even more damaging.<br />

Other, less damaging fungi include Colletotrichium gloeosporioides, Pestalopsis sp.,<br />

Phomopsis sp. and Oidium sp. (Evans 1988, 1990, Evans and Seier 1991, Evans et al.<br />

1993).


150 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.16.1 Releases for the biological control of Mimosapigra.<br />

Species Part attacked Liberated Result References<br />

Coleoptera<br />

APlONlDAE<br />

Coelocephalapion<br />

aculeatum<br />

BRUCHIDAE<br />

Acanthoscelides<br />

puniceus<br />

Acanthoscelides<br />

quadridentatus<br />

CHRYSOMELIDAE<br />

Chlamisus<br />

mimosae*<br />

Lepidoptera<br />

GRAClLLARllDAE<br />

Neurostrota<br />

gunniella<br />

flower buds<br />

seeds<br />

seeds<br />

pinnae &<br />

stems<br />

pinnules &<br />

stems<br />

Australia 1992<br />

Thailand 1991<br />

Australia 1983<br />

Thailand 1984<br />

Vietnam 1987<br />

Australia 1983<br />

Thailand 1984<br />

Vietnam 1987<br />

Australia 1985<br />

Thailand 1986<br />

Vietnam 1990<br />

SESllDAE<br />

Carmenta mimosa stem<br />

Australia 1989<br />

Thailand 199 1<br />

* Introduced from Brazil, the remaining 5 insects from Mexico.<br />

Fomo et al. 1994,<br />

Wilson et al. 1992<br />

Wilson et al. 1992<br />

Kassulke et al.<br />

1990, Wilson &<br />

Flanagan 199 1,<br />

Harley et al. 1985<br />

Julien 1992<br />

Fomo et al. 199 1 b,<br />

Harley et al. 1985,<br />

Kassulke et al. 1990,<br />

Wilson & Flanagan<br />

1991<br />

Fomo et al. 1991b,<br />

Harley et al. 1985<br />

Julien 1992<br />

Julien 1992<br />

Julien 1992<br />

Julien 1992<br />

Australia 1989 Davis et al. 1991,<br />

Wilson & Flanagan<br />

1990<br />

Fomo et al. 1991a,<br />

Julien 1992<br />

Host specificity tests indicate that Phloeospora mimosae-pigrae is specific to M.<br />

pigra and Australian authorities have granted permission to liberate this pathogen.<br />

Testing of Diabole cubensis is still in progress.<br />

Attempts at biological control<br />

AUSTRALIA<br />

M. pigra was probably introduced to Australia at Darwin sometime during the 20 years<br />

before 1891 (Miller and Lonsdale 1987, Lonsdale et al. 1989) and, after a slow start, under-<br />

went a population explosion in the late 1970s and, by 1992, had already covered some 800<br />

km2 of wetlands (Lonsdale 1992). In its century of occupation, at least 114 species of<br />

phytophagous insects have come to attack it (5 Orthoptera, 3 Isoptera, 49 Hemiptera, 21


4.1 6 Mimosa pigra 151<br />

Table 4.16.2 Insects tested against Mimosa pigra, but not released (after Forno 1992).<br />

Species Portion attacked<br />

INSECTS<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Cryptocephalus (= Diplacaspis) nr<br />

miserabilis leaves<br />

Diplacaspis nr prosternalis stems and leaves<br />

Lexiphanes guerini<br />

young leaves<br />

Syphrea bibiana<br />

seedlings and roots<br />

Lepidoptera<br />

GELECHllDAE<br />

nr Aroga leaves and stems<br />

Table 4.16.3 Natural enemies of Mimosa pigra under investigation (I.W. Forno pers.<br />

comm. 1993).<br />

Species Portion attacked Status<br />

INSECTS<br />

Coleoptera<br />

APlONlDAE<br />

Coelocephalapion pigrae flower buds and leaves<br />

CURCULIONIDAE<br />

Chalcodermus serripes flower buds and immature seeds<br />

FUNGI<br />

Sibinia fastigiata immature seeds<br />

Sibinia ochreosa flower buds<br />

Sibinia peruana flower buds<br />

Sibinia seminicola immature seeds<br />

Diabole cubensis leaves<br />

Phloeospora mimosae-pigra stems, leaves, seed pods<br />

awaiting approval for release<br />

in quarantine in Australia<br />

in quarantine in Australia<br />

under study in Mexico<br />

in quarantine in Australia<br />

in quarantine in Australia<br />

under host testing<br />

approved for release<br />

Coleoptera and 36 Lepidoptera). Of the 11 4,47 species are seldom encountered, 39 are<br />

occasionally found and 28 are common. Thirty of the species are known pests of cultivat-<br />

ed plants and all except two are thought to be polyphagous. These two (a psyllid and a<br />

gelechiid moth) probably feed only on a restricted number of leguminous plants. In this<br />

survey no plant pathogens were recorded (Flanagan et al. 1990, Wilson et al. 1990).<br />

In spite of this diverse insect attack there is still an enormous difference, two orders of<br />

magnitude, between the bank of M. pigra seeds in the soil in Mexico (a mean of 117.5lm2)<br />

and Australia (a mean of 12380lm2). This is believed to reflect the differential occur-<br />

rence of effective natural enemies in each region (Lonsdale and Segura 1987).<br />

The first insects to be liberated-in 1983-for biological control of M. pigra were


152 Biological Control of Weeds: Southeast Asian Prospects<br />

two seed feeding bruchid beetles, Acanthoscelides quadridentatus and A. puniceus, both<br />

of which established readily (Table 4.16.1). They had previously been shown to be ade-<br />

quately host specific (Kassulke et al. 1990). Although these species have become wide-<br />

spread, on average they destroy only 0.8% of mature seed, so are not having much<br />

impact. Of the beetles sampled, 97.8% proved to be A. puniceus (Forno et al. 1991b,<br />

Wilson and Flanagan 1991, Wilson et al. 1992). A parasitoid, Dinarmus sp.<br />

(Pteromalidae), was reared from field-collected bruchids, but did not appear to be having<br />

much influence on beetle populations (C. Wilson pers. comm.).<br />

Next, in 1985, the stem feeding beetle Chlamisus mimosae was released and readily<br />

became established (Forno et al. 1991b) and in 1992193 large populations have been<br />

found at the Finniss R., Northern Territory and are severely damaging M. pigra stems<br />

(I.W. Forno pers. comm. 1 993).<br />

During 1989, two stem boring moths Neurostrota gunniella and Carmenta mimosa<br />

were released. N. gunniella established rapidly and, within a few months, was not only<br />

widespread near the release site but damaging a large number of stems (Forno et al.<br />

1991b, Wilson and Flanagan 1990). By 1993, it had spread to all M. pigra infestations<br />

and is associated with a naturally-occurring, exotic, die-back pathogen (Wilson 1992).<br />

There is a strong negative correlation between seed production and moth populations,<br />

suggesting that N. gunniela can reduce seed numbers by up to 60% (Anon 1992).<br />

Carmenta mimosa is very damaging to young plants and is spreading rapidly in the<br />

Finniss R. region where it is severely damaging stems (I.W. Forno pers. comm. 1993,<br />

Wilson 1992).<br />

The flower bud weevil Coelocephalapion aculeatum was liberated in 1992 and has<br />

become established, but its effects remain to be assessed (Forno et al. 1994, Wilson et al.<br />

1992).<br />

THAILAND<br />

M. pigra was introduced from Indonesia to the Chiang Mai province between 1947 and<br />

the early 1960s as a cover and green manure crop. When found useless for the purpose, it<br />

was employed for the control of irrigation ditchbank erosion, but has now become one of<br />

the worst and most aggressive weeds in the country.<br />

Napompeth (1981) reported 5 insect species attacking M. pigra but, of these, only<br />

the boring beetle Sagra femorata caused much damage. A further study (Napompeth<br />

1983) increased the number to 19 insects, but without adding any promising species.<br />

Both Acanthoscelides puniceus and A. quadridentatus were liberated in 1984 (Table<br />

4.16.1) and are now destroying between 1% and 20% of mature M. pigra seeds, which is<br />

significantly higher than that recorded for Australia (Forno 1992). The reasons for this<br />

different level of effect are not known. Chlamisus mimosae was liberated in 1986 and<br />

became established, but is not causing significant damage. The moth Neurostrota gun-<br />

niella, which is producing such spectacular damage in Australia, has not been liberated in<br />

Thaildnd because it has been shown to be capable of developing in the aquatic Neptunia<br />

oleracea, which is used as a vegetable. Two other species, the weevil Coelocephalapion<br />

aculeatum and the moth Carmenta mimosa were liberated in 1991 (Wilson et al. 1992),<br />

but there is no information on their establishment or impact.


4.1 6 Mimosa pigra 153<br />

MALAYSIA<br />

Acanthoscelides quadridentatus and A puniceus have become established at Kota Bharu<br />

in northern Malaysia adjacent to the region where they are established in Thailand (B.<br />

Napompeth pers. comm. 1993).<br />

MYANMAR<br />

Acanthoscelides quadridentatus and A puniceus have also become established in<br />

Myanmar along the border with Thailand (B. Napompeth pers. comm. 1993).<br />

INDONESIA<br />

M. pigra has been established in Indonesia at least since 1844 but is regarded as a less<br />

serious weed than in Thailand (Napompeth 1982, 1983). At least 10 insects were record-<br />

ed on it and, at times, causing considerable damage in the Bogor area (1 Orthoptera, 3<br />

Hemiptera, 1 Diptera, 2 Coleoptera and 3 Lepidoptera). Only one of these, a cerambycid<br />

borer Milothris irrorata was regarded as having any potential to cause important damage<br />

(Napompeth 1982). As there were doubts about its host specificity (Kalshoven 1981), it<br />

was introduced to Thailand for further study but did not survive in culture (Napompeth<br />

1982, 1992b). Acanthoscelides spp. have been found in M. pigra seed pods collected in<br />

Bogor in 1992, although there are no records of releases having been made (B.<br />

Napompeth pers. comm. 1993).<br />

VIETNAM<br />

Acanthoscelides puniceus and A. quadridentatus from Thailand were liberated in 1987<br />

and Chlamisus mimosae in 1990, but there is no information on their establishment<br />

(Julien 1992).<br />

Important natural enemies<br />

Acanthoscelides quadridentatus Coleoptera: Chrysomelidae<br />

A. puniceus<br />

These two species occur widely in Mexico and A. quadridentatus is also recorded from<br />

Texas, Nicaragua and Honduras. There are also two additional species, A. pigricola and<br />

A. zebratus, that are apparently specific to M. pigra seeds (Habeck and Passoa 1982).<br />

Eggs are laid during the day in or near crevices between pod segments. At 25°C each<br />

larva hatches after 10 days and tunnels through the pod into a single seed in which it<br />

completes its development. Pupation occurs in a cell and adults emerge by chewing a<br />

hole through the seed coat. On average A. quadridentatus females live 93 days and lay 65<br />

eggs, whereas A. puniceus females live 130 days and lay 178 eggs (Kassulke et al. 1990).<br />

Carmenta mimosa Lepidoptera: Sesiidae<br />

This species is native to Mexico and Cuba. In Mexico the larvae tunnel in the stems of<br />

M. pigra, thereby weakening the plant. The upper two-thirds of the stems frequently snap<br />

off, resulting in spectacular damage. Females lay 1 to 5 eggs at a time (up to a total of<br />

about 260) in the axils of the topmost, fully expanded leaves on a stem. At 25°C larvae<br />

hatch after 11 days and tunnel into the stem at a node or the swelling at the base of a leaf<br />

petiole. They feed on the outer layers of the plant, sometimes ringbarking it, or tunnel


154<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

through the pith; they are cannibalistic if they meet another larva. They eject frass onto<br />

the surface of the stem. Occasionally larvae leave the stem and re-enter below the soil<br />

surface, grazing on and in the root, causing damage which sometimes kills the plant.<br />

Depending upon plant quality, there are 8 or 9 larval instars in 40 to 99 days before lar-<br />

vae spin a silken cocoon in which they pupate. The duration of the pupal period is 18 to<br />

21 days, giving an average life cycle of 98 days. Larvae can be reared on an artificial<br />

diet. In host specificity tests, C. mimosa was found to complete its development only on<br />

M. pigra (Forno et al. 1991 a, 1994, Smith and Wilson 1992, Wilson et al. 1992).<br />

Chalcodermus serripes Coleoptera: Curculionidae<br />

This weevil is native to Mexico. Adults feed on young leaves, flower buds and seeds.<br />

Eggs are inserted into the ventral side of pods so that they are at the embryo end of a<br />

developing seed. They hatch in 6 days and larvae feed on the soft developing seed,<br />

destroying the embryo (I.W. Forno, pers. comm.).<br />

Chlamisus mimosae Coleoptera: Chrysomelidae<br />

This species is native to Brazil. Females mate 2 weeks after emergence and then begin to<br />

lay eggs. Each egg is enveloped in faecal material and attached to the underside of a leaf<br />

by a fine stalk. At 25°C larvae hatch after 3 weeks and construct a conical case which is<br />

added to as the larva grows. Larval development time is 83 days and the pupal stage lasts<br />

25 days. Adults live up to 95 days. Adults and larvae graze on the epidermis of the grow-<br />

ing tips, on green stems and on leaves. In Darwin (Northern Territory) cultures of C.<br />

mimosae were attacked by a pupal parasitoid and predatory mites (Wilson et al. 1992).<br />

Coelocephalapion aculeatum Coleoptera: Apionidae<br />

This species is native to Mexico. It lays one egg at a time into a separate flower bud (of<br />

which an inflorescence contains up to 100). Larvae hatch after 2 days and feed on the<br />

developing flower buds, destroying the reproductive parts and sometimes the pedicel.<br />

Larval development takes about 7 days and pupal development 3 days. Preoviposition is<br />

about 7 days, adults live at least 3 months and may lay up to 5 eggs per day. Adults chew<br />

into the unopened flower buds and feed on the anthers and the pistil (Heard 1992, Wilson<br />

et al. 1992). This species could develop satisfactorily only on M, pigra (Forno et al.<br />

1 994).<br />

Coelocephalapion spretissimum and C. pigrae Coleoptera: Apionidae<br />

The life cycle of these species is similar to that of C. aculeatum. Adults feed on young<br />

leaves as well as on flower buds. The host testing of C. pigrae has been completed.<br />

Neurostrota gunnielh Lepidoptera: Gracillariidae<br />

This species is widespread in tropical or subtropical, moderately wet to semi-arid habitats<br />

wherever M. pigra occurs from southern Texas to Costa Rica and Cuba. It has been<br />

established in Australia.<br />

Eggs are laid singly on the ventral side of the first or second leaf from the branch tip<br />

and hatch about 4 days later. The first and second instar larvae are adapted for mining by<br />

being flattened dorso-ventrally, having large blade-like mandibles and no thoracic legs.


4.16 Mimosa pigra 155<br />

Each mines up to 5 leaf pinnules. Third instar larvae are cylindrical, enter the leaf rachis<br />

and tunnel to the stem tip. Later instars usually tunnel down the stem. They sometimes<br />

leave the stem and re-enter it at a node or near a prickle. Frass is usually visible when a<br />

larva is inside a stem. Pupation occurs in a cocoon spun between pinnules or inside the<br />

stem. The outside of the cocoon is ornamented with small, pearly-white, frothy balls dis-<br />

charged from the anus.<br />

At 25°C the time from egg to adult is about 30 days and equal numbers of males<br />

and females are produced. Females mate on the night of emergence and lay an average of<br />

86 eggs, most on the second night. N. gunniella caused very severe damage to M. pigra<br />

in quarantine trials which demonstrated that, except for attack on Neptunia species, it<br />

was specific to M. pigra. The aquatic Neptunia oleracea, which is an important vegetable<br />

in Thailand was attacked, so it has not been released there. In Mexico N. gunniella larvae<br />

are heavily attacked by parasitoids (Davis et al. 1991, Forno et al. 1989a, 199 1 b).<br />

Sibinia spp. Coleoptera: Curculionidae<br />

S. fastigiata occurs from Mexico to Brazil and Peru, whereas S. seminicola occurs from<br />

Texas and Mexico to southeastern Brazil and northeastern Argentina. These two Sibinia<br />

species are larger than the two that follow. Larvae of both species develop in the pods of<br />

M. pigra and feed on the seeds. Larvae of S. seminicola feed on green, immature seeds<br />

and pupation occurs within the pods while they are still attached to the plants (Clark<br />

1984).<br />

Sibinia ochreosa occurs in Texas, Mexico, Honduras, Nicaragua, Brazil, Argentina<br />

and S. peruana occurs in Mexico, Guatemala, Honduras, Costa Rica, Panama, Brazil,<br />

Peru, Bolivia and Argentina. Larvae of these two species develop in the flower buds of<br />

M. pigra and, at least the former species, pupates in the flower head (Clark 1984).<br />

FUNGI<br />

Diabole cubensis Fungi: Uredinales<br />

This rust attacks the leaves of M. pigra in Mexico and Cuba. It is particularly common<br />

and damaging during the dry season when there are high day temperatures and a signifi-<br />

cant drop at night leading to dew formation. Five hyperparasitic fungi are consistently<br />

encountered, often completely overgrowing the rust (Evans 1988, 1990).<br />

Phloeospora mimosae-pigrae Fungi: Coelomycetes<br />

This fungus causes extensive defoliation during the wet season, particularly in the Gulf<br />

coast of Mexico, but also occurs in Trinidad, Venezuela, Colombia and Brazil. It attacks<br />

stems, leaves and seed pods. It is host specific to M. pigra (Evans 1988, 1990, Seier and<br />

Evans 1993).<br />

Comment<br />

The majority of natural enemies of M. pigra so far studied are flower or seed attacking<br />

insects and there are indications already that cbnsiderable amounts of seed are being<br />

destroyed-up to 60% from Neurostrota alone in Australia and up to 20% by bruchids in


156<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Thailand. However, starting from a seed bank of 9000 per m2, this degree of reduction is<br />

nowhere like limiting.<br />

The inhibition to tip growth produced in Australia by Neurostrota gunniella is likely<br />

to be far more significant and will become even more so if the borer, Carmenta mimosa,<br />

becomes abundant enough to weaken a considerable proportion of larger stems.<br />

If (when) the two apparently specific fungi are approved for release, it is confidently<br />

expected that they will make a major contribution, Phloeospora mimosa-pigrae in the<br />

wet season and the rust Diabole cubensis in the dry.<br />

It is highly probable that a complex of natural enemies will be required to bring<br />

about an adequate reduction in competitiveness of M. pigra. It is still unclear whether<br />

those available or under investigation will be adequate but, if required, there are addition-<br />

al species that could be examined and future priority might well be given to leaf, stem or<br />

root feeding species.


158<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Mimosa pudica<br />

(after Holm et a/. 1977)


Map 4.17 Mimosa pudica<br />

4.17 Mimosa pudica<br />

Mimosa pudica<br />

Very little is known about the natural enemies of Mimosa pudica in its centre of origin in<br />

Central America. Most of the species recorded from there or elsewhere are widely<br />

polyphagous and few show promise as biological control agents. Since at least three<br />

forms of the weed are known it would be desirable to establish which forms are weedy in<br />

Southeast Asia so as to enable any searches in Central America to concentrate on that<br />

form. On general grounds, it is probable that useful species do exist.


160 Biological Control of Weeds: Southeast Asian Prospects<br />

4.17 Mimosa pudica L.<br />

Mimosaceae<br />

common sensitive plant; paklab, sampeas (Cambodia), daoen kaget kaget<br />

(Indonesia) mala malu (Malaysia), makahiya (Philippines), mai yarap (Thailand)<br />

mac co (Vietnam)<br />

Rating<br />

+++ Myan, Sing, Indo<br />

17 ++ Msia, Brun, Phil<br />

+ Thai, Viet<br />

. Laos, Camb<br />

Origin<br />

Tropical America.<br />

Distribution<br />

M. pudica is widespread in tropical, subtropical and temperate areas of the world. Its dis-<br />

tribution and other relevant aspects were summarised by Waterhouse and Norris (1987).<br />

There are at least three distinct varieties (Brenan 1959). M. pudica hispida is uncommon<br />

in the Americas, but is established in the Philippines (Bameby 1989), the Caroline and<br />

Mariana Is, Queensland, India and in African savanna country. M. pudica unijuga occurs<br />

in Hawaii and probably in other Pacific countries where it is a major weed.<br />

Characteristics<br />

M. pudica is low, much branched, generally perennial, slightly woody at the base, from<br />

15 to 100 cm high and has either an upright or a low trailing habit. Its stiff reddish-brown<br />

or purple stems bear scattered thorns. The hairy leaves are alternate, bipinnate and com-<br />

pound. They are sensitive to the touch, the petiole dropping and the leaflets being rapidly<br />

drawn back and folded. The pink flowers form small globular heads, each borne on a<br />

short hairy stalk arising from a leaf axil. Seeds are produced in pods which split into sin-<br />

gle-seeded segments bearing bristles, which aid dispersal by animals. In tropical coun-<br />

tries the weed flowers all year and each plant may produce up to 700 seeds.<br />

Importance<br />

M. pudica is a weed in 22 crops in 38 countries (Holm et al. 1977). It is common in waste<br />

land and is also a weed of lawns, crops, pastures and roadsides. In Southeast Asia and the<br />

Pacific it is a serious weed in maize, sorghum, sugarcane, tea, soybeans, upland rice,<br />

pinea~jples and cotton. Because of its tolerance to shading it is an important weed in plantation<br />

crops, such as rubber, coconuts, bananas, papaya, coffee, oil palm and citrus. In<br />

tropical pastures its dense growth and thorns often deter animals from feeding on suitable<br />

forage mingled with it (Holm et al. 1977). The thorns deter hand weeding and, as it sur-


4.1 7 Mimosa pudica 161<br />

vives mowing, it is a very unwelcome component of lawns. Attempts to select thornless<br />

types as pasture plants have not been successful.<br />

Natural enemies<br />

Some information is summarised by Waterhouse and Norris (1987). It is interesting that<br />

Holm et al. (1977) report M. pudica to be a widespread weed in the Caribbean, but far<br />

less important to the north and south of this region. This suggests that it evolved else-<br />

where in the Americas and has not been accompanied into the Caribbean by its full suite<br />

of natural enemies. Nevertheless a preliminary survey in Trinidad (Table 4.17.1) revealed<br />

14 insects attacking it, but they are probably polyphagous, with the possible exception of<br />

the arctiid caterpillar Lophocampa catenulata and the beetle, Chlarnisus sp. (Yaseen<br />

197 1, 1972). Perez et al. (1 988) found that the race Jilenus of Hemiargus hanno in Cuba<br />

appears not to attack plants other than M. pudica, although partially grown larvae of the<br />

Trinidad race were able to complete their development on Aeschynomene sensitiva and<br />

Cajanus cajan (Yaseen 1972). H. hanno Jilenus feeds readily on M. pudica seeds and is<br />

particularly active in spring when the weed is producing most seed (Perez et al. 1988).<br />

Four additional insects are known from Brazil (Garcia 1982a,b, 1983) but, so far, no<br />

species of Heteropsylla, although a special search for one might be rewarding. Although<br />

M. pudica was often encountered in surveys carried out in Mexico and Venezuela for nat-<br />

ural enemies of M. pigra, casual observation did not suggest that it was heavily attacked,<br />

less so indeed than M. invisa (I.W. Forno pers. comm. 1993).<br />

It is not known whether there is any differential attack by natural enemies on any of<br />

the three or more varieties of M. pudica, which have been established on morphological<br />

differences alone.<br />

Table 4.17.1 Natural enemies of Mimosa pudica.<br />

Species Country Portion of plant attacked References<br />

INSECTS<br />

Hemiptera<br />

COCCIDAE<br />

Coccus longulus Fiji<br />

CYDNIDAE<br />

Microporus<br />

(= Microcompsus) sp. Trinidad<br />

DlASPlDlDAE<br />

Hemiberlesia lataniae Fiji<br />

Pinnaspis strachani Fiji<br />

MARGARODIDAE<br />

Icerya seychellarurn Fiji<br />

SCUTELLERIDAE<br />

2 species Trinidad<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Chlarnisus sp. Trinidad<br />

stems Hinckley 1963<br />

stems<br />

stems<br />

stems<br />

flowers<br />

Yaseen 1972<br />

Hinckley 1963<br />

Hinckley 1963<br />

Hinckley 1963<br />

Yaseen 197 1<br />

flower buds Yaseen 197 1, 1972<br />

(continued on next page)


162 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.17.1 (continued)<br />

Species<br />

CURCULIONIDAE<br />

Chalcodermus sp.<br />

Promecops<br />

?campanulicollis<br />

Country Portion of plant attacked References<br />

Brazil<br />

Brazil<br />

seed pods<br />

leaves; mainly on<br />

M. invisa, see table<br />

4.15.1<br />

C.A. Garcia pers. comm.<br />

Garcia 1982a,b, 1983<br />

An unidentified sp. Trinidad Yaseen 197 1<br />

Lepidoptera<br />

ARCTllDAE<br />

Lophocampa catenulala<br />

GEOMETRIDAE<br />

Ptychamalia perlata<br />

GRACllARllDAE<br />

Neurostrota gunniella<br />

HESPERIIDAE<br />

Cogia (= Caicella)<br />

calchas (= ?<br />

Nisoniades bessus)<br />

?Slaphylus mazans<br />

LYCAENIDAE<br />

Calephelis sp.<br />

Hemiargus hanno<br />

Trinidad leaves Yaseen 1971<br />

Trinidad leaves<br />

Mexico leaves, stems<br />

Trinidad leaves, flowers<br />

Yaseen 1972<br />

Davis et al. 1991<br />

Cock 1985, Yaseen 1972<br />

Trinidad leaves, flowers Yaseen 1972<br />

Trinidad<br />

Cuba,<br />

Trinidad<br />

leaves<br />

leaves, flowers, pods<br />

also on flowers of<br />

Aeschynomene<br />

semitiva and Cajanus<br />

cajan (= C. indicus)<br />

Tmolus azia Trinidad leaves, flowers Yaseen 1972<br />

NOCTUI DAE<br />

Spodoptera litura Fiji<br />

Sp. 1 (velvet black larva) Brazil<br />

PlERlDAE<br />

Eurema lisa Cuba<br />

Eurema tenella Brazil<br />

also on Mimosa pudica<br />

and groundnut flowers<br />

leaves<br />

leaves; also on<br />

M. invisa<br />

leaves: mainly on<br />

M. invisa, see table<br />

4.15.1<br />

Yaseen 1971<br />

Dethier 1940, Perez et al.<br />

1988, Yaseen 1972<br />

Hinckley 1963<br />

Garcia 1982a,b, 1983<br />

Dethier 1940<br />

Garcia 1982a,b, 1983<br />

TORTRICIDAE<br />

Platynota rostrana Trinidad leaves Yaseen 1972<br />

NEMATODE<br />

Meloidogyne sp. Cuba Holm et al. 1977,<br />

Izquierdo et al. 1987<br />

FUNGI<br />

VIRUS<br />

Oidium sp. Mexico<br />

?Puccinia sp. Mexico<br />

mildew on leaves<br />

rust on leaves<br />

Evans 1987<br />

Evans 1987<br />

unspecified Germany Umrath et al. 1979


164 Biological Control of Weeds: Southeast Asian Prospects<br />

Monochoria vaginalis<br />

(after Holm et a/. 1977)


Map 4.18 Monochoria vaginalis<br />

4.1 8 Monochoria vaginalis 165<br />

Monochoria vaginalis<br />

Monochoria vaginalis appears to be a major weed only in Southeast Asia and then only<br />

in rice. Almost nothing is known of its natural enemies in India and Africa where it<br />

occurs, but is not regarded as important. This suggests that a survey in these regions<br />

might reveal promising biological control agents.


166 Biological Control of Weeds: Southeast Asian Prospects<br />

4.18 Monochoria vaginalis (Burm. f.) Presl<br />

Pontederiaceae<br />

monochoria; ka kiad chrach (Cambodia), phak kbiat (Thailand), rau mac la thon<br />

(Vietnam), etjeng padi (Indonesia), biga bigaan (Philippines), kelayar, echeng<br />

padi (Malaysia)<br />

Rating<br />

+++ Laos, Camb, Msia, Brun, Indo, Phil<br />

26 ++ Myan, Thai, Viet, Sing<br />

Origin<br />

Tropical Asia and Africa (Holm et al. 1977), but not a pest in Africa or Asia (Soerjani et<br />

al. 1987), although it is clearly very important in Southeast Asia.<br />

Distribution<br />

Africa, India, China, Korea, Japan, Southeast Asia to northern Australia, Fiji and Hawaii.<br />

Characteristics<br />

A smooth, fleshy, semi-aquatic annual or perennial, 0.1 to 0.5 m tall; the plant roots in<br />

mud and its upper portions grow above water; stemless, base of leaves heartshaped or<br />

rounded, shiny deep green; petioles soft, hollow; inflorescence with a large bract and<br />

arising about two thirds of the way up the petiole from the base and opposite the leaf; 3<br />

to 25 violet or lilac flowers producing numerous, small seeds throughout most of the<br />

year. Seed germination and seedling growth not reduced by submergence. Old plants<br />

often form large clumps.<br />

Importance<br />

M. vaginalis occurs in marshy places, freshwater pools, mudflats, ditches, along canal<br />

banks and in rice fields. It is a very serious weed of rice in eastern and southern Asia. It<br />

is predominantly an annual in flooded ricefields, dying when the fields dry out, but<br />

developing again later from seed.<br />

In Taiwan, M. vaginalis produced more fresh tissue weight than any other weed in<br />

rice, twice that of second ranking Echinochloa crus-galli (Lin 1968). However in the<br />

Philippines it was outcompeted in rice by E. crus-galli (Lubigan and Vega 1971). Only in<br />

rice is it reported as a very widespread and important weed, except for its occurrence in<br />

taro in Hawaii.<br />

Its leaves are eaten as a pot herb in India and several parts of it are used as herbal<br />

medicine, the juice being prescribed for various conditions and the roots for stomach and<br />

liver ailments and toothache (Burkill 1935, Soerjani et al. 1987).


Natural enemies<br />

4.1 8 Monochoria vaginalis 167<br />

So little is recorded about the natural enemies of M. vaginalis (Table 4.18.1) that it is not<br />

possible to assess the prospects for biological control. However, the fact that it is appar-<br />

ently not a weed in Africa or western Asia suggests that it would be well worthwhile<br />

investigating these regions for suitable agents.<br />

Table 4.18.1 Natural enemies of Monochoria vaginalis.<br />

Species Location Other hosts References<br />

INSECTS<br />

Orthoptera<br />

ACRlDlDAE<br />

Gesonula punctifrons India<br />

Hemiptera<br />

CICADELLIDAE<br />

Macrosteles fasciffons USA rice<br />

DELPHACIDAE<br />

Tarophagus proserpina Philippines taro, cassava, sweet potato<br />

Lepidoptera<br />

NOCTUIDAE<br />

Spodoptera litura India widely polyphagous<br />

PYRALIDAE<br />

Elophila responsalis Indonesia Marsilea minuta, Pistia<br />

stratiotes, Salvinia molesta,<br />

S. cucullata<br />

Nymphulafregonalis India probably polyphagous<br />

SPHlNGlDAE<br />

Hippotion echeclus India polyphagous<br />

NEMATODES<br />

Hirschmaniella spp. rice, sugarcane,<br />

many weeds<br />

Meloidogyne graminicola rice, many weeds<br />

VIRUSES<br />

rice ragged stunt Thailand, rice<br />

Philippines<br />

Pistia virus India<br />

FUNGI<br />

Cercospora sp. India<br />

Doassansia sp. India<br />

Rhizoctonia solani India rice, potato<br />

Thanatephorus cucumeris Philippines rice<br />

a leaf blight Philippines Sphenoclea zeylanica<br />

CRUSTACEA<br />

Triops cancriformis Japan Veronica peregrina and<br />

some other weeds<br />

Sankaran & Rao 1972<br />

Way et al. 1983<br />

Duatin & Pedro 1986<br />

Sankaran & Rao 1972<br />

Handayani & Syed 1976,<br />

Mangodihardjo 1975<br />

Sankaran & Rao 1972<br />

Sankaran & Rao 1972<br />

Luc et al. 1990<br />

Luc et al. 1990<br />

Parejarearn et al. 1988,<br />

Salamat et al. 1987<br />

Menon & Ponnappa 1964<br />

Menon & Ponnappa 1964<br />

Menon & Ponnappa 1964<br />

Gokulapalan & Nair 1983<br />

Moody et al. 1987,<br />

Mew et al. 1980<br />

Bayot et a]. 1992<br />

Igarashi 1985


168 Biological Control of Weeds: Southeast Asian Prospects<br />

Nep hrolepis biserra ta<br />

(after Barnes and Chan, 1990)


Map 4.19 Nephrolepis biserrata<br />

4.19 Nephrolepis biserrata 169<br />

Nephrolepis biserrata<br />

N. biserrata is a widespread fern that probably originated in Tropical Africa. Almost<br />

nothing was learnt concerning natural enemies from a literature search. A survey in its<br />

area of origin would be required to evaluate whether there were any natural enemies that<br />

might be of value for biological control.


170 Biological Control of Weeds: Southeast Asian Prospects<br />

4.19 Nephrolepis biserrata (Sw.) Schott<br />

Nephrolepidaceae (formerly in the Davalliaceae)<br />

broad sword fern; paku larat (Malaysia)<br />

Rating<br />

+++ Sing, Brun<br />

10 ++ Msia, Phil<br />

Thailand<br />

Origin<br />

Probably Tropical Africa.<br />

Distribution<br />

Pantropical. N. biserrata occurs throughout tropical Africa, ranging in the west from<br />

Guinea to Angola and in the east from Sudan to Durban (South Africa). It is mainly<br />

coastal, but infrequent in the interior. It is most abundant up to 350 m (Jacobsen 1983). In<br />

addition to Southeast Asia, it is also known from India, Australia, Japan, the Pacific,<br />

USA and Mexico.<br />

Characteristics<br />

N. biserrata is a perennial, terrestrial or epiphytic fern. The rhizome bears abundant<br />

scales and produces many long stolons. The fronds are tufted, suberect to arching and<br />

green when young, turning brown when old. The pinnae are commonly 15 to 20 cm<br />

wide, exceptionally more than 30 cm. Fertile pinnae are narrower than the sterile pinnae<br />

and bear sori well clear of the edge. The veins are indistinct and fork once or twice.<br />

When rooted in the soil, the fern commonly reaches a height of 2m and, exceptionally in<br />

South Africa, up to 4 m.<br />

Importance<br />

N. biserrata is very common in shaded places in the lowlands wherever the conditions<br />

are not too dry. It can form dense masses in rubber and oil palm plantations and in<br />

orchards and often occurs as an epiphyte on palms. Where pineapples had been grown<br />

for up to 10 years in Malaysia, 90% of the viable seeds and spores in the top 15 cm of<br />

soil were spores of N. biserrata (in particular) and 8 other ferns (Wee 1974), enabling its<br />

rapid reappearance after cultivation.<br />

Natural enemies<br />

The only records of natural enemies encountered were those of an eriophyid mite on<br />

N. biserrata in Fiji (Mani and Jayaraman (1987) and of the nematode Aphelenchoides<br />

fragariae in Hawaii, but there is no evidence that a careful search has ever been made.


Attempts at biological control<br />

There have been none.<br />

Comment<br />

4.19 Nephrolepis biserrata 171<br />

The genus Nephrolepis contains about 20 species (Tryon and Tryon 1982), or 35 species<br />

(Jacobsen 1983). It is primitive among the group of oleandroid, davallioid and nephrole-<br />

poid ferns to which it belongs and N. biserrata and its close allies represents the more<br />

primitive element in the genus Nephrolepis (Nayar and Bajpai 1976). A survey for natur-<br />

al enemies, particularly in the areas in Africa where it occurs, would reveal whether there<br />

are any that might be of value in biological control.


172 Biological Control of Weeds: Southeast Asian Prospects<br />

Panicum repens<br />

(after Holm et a/. 1977)


Map 4.20 Panicum repens<br />

4.20 Panicum repens<br />

Panicum repens<br />

P. repens is a major grassy weed in Southeast Asia. It is probably of tropical<br />

AfricanJMediterranean origin, a region where it is not reported to be a problem. Very few<br />

natural enemies have been recorded and, without a preliminary survey in its area of ori-<br />

gin, it would not be possible to evaluate the prospects for its biological control.


174 Biological Control of Weeds: Southeast Asian Prospects<br />

4.20 Panicum repens L.<br />

Poaceae<br />

torpedo grass, creeping panic grass; myet kha (Myanmar) yah chan ah kat, yah<br />

chanagard (Thailand), chhlong (Cambodia), co 6ng (Vietnam), keruong padi,<br />

rumput jae jae (Malaysia and Indonesia), luya luyahan (Philippines)<br />

Rating<br />

+++ Viet, Indo<br />

16 ++ Thai, Msia, Sing, Phil<br />

+ Myan, Brun<br />

Laos. Camb<br />

Origin<br />

Tropical and North Africa, Mediterranean (sometimes said to be native to Asia).<br />

Distribution<br />

Panicum repens is widely distributed in the tropics and subtropics. It was introduced to<br />

Java about 1850, but is said not to occur in the Moluccas. No seeds are produced in<br />

Indonesia (Soerjani et al. 1987).<br />

Description<br />

Panicum repens is an erect, wiry, creeping, perennial grass, rooting at hairless nodes and<br />

bearing flowering stalks 30 to 90 cm tall. It spreads widely (up to 7 m), but does not form<br />

dense clumps. Its smooth, sharp-pointed, branched rhizomes are often swollen or knotty<br />

and have brownish or whitish scales. Its leaves are alternate. The inflorescence is an open<br />

terminal panicle, 6 to 20 cm long, with many tender branches pointing obliquely<br />

upwards. The spikelets are pale green or pale yellow and often tinged with purple.<br />

Importance<br />

Panicum repens is one of the most serious grass weeds because of its rapid rate of spread<br />

and the persistence and hardiness of its coarse, enlarged rhizomes. It suppresses other<br />

plants by its allelopathic (inhibiting) products (Perera et al. 1989). It is primarily a weed<br />

of moist, coastal, sandy soils, although it also grows in heavy upland soils (to 2000 m in<br />

Indonesia). It thrives in open sunny situations, but can stand partial shade and its rhi-<br />

zomes survive even prolonged dry periods. It tolerates temporary flooding, sometimes<br />

forms floating mats, and encroaches upon ditches, drains and watercourses. It is common<br />

in cultivated lands, grasslands, roadsides and gardens and is frequently reported as a weed<br />

in lawns. In Malaysia it is a serious weed of cocoa, coconuts and rubber, in Indonesia of<br />

rainfed and upland rice, cocoa, coconut, maize, rubber, sugarcane and tea and in Thailand<br />

of rice and orchard crops. In improved pastures it chokes out more nutritionally valuable


4.20 Panicum repens 175<br />

grasses. Deep ploughing favours its spread by breaking up and dispersing its rhizomes.<br />

P. repens is quite palatable to stock when young and has the advantage of being able<br />

to stand heavy grazing and trampling. However, it contains only 3.3% crude protein and<br />

up to 39% crude fibre, so there are other far more nutritious grasses suitable for the same<br />

environment (Holm et al. 1977).<br />

Natural enemies<br />

As can be seen in table 4.20.1, very few natural enemies were revealed by an extensive<br />

literature search. The only species not known to be both polyphagous and a pest is the<br />

mite Parasteneotarsonemus panici, recorded so far only from Tamil Nadu, India,<br />

where it was found causing rusting symptoms beneath the leaf sheath of P. repens<br />

(Mohanasundaram 1984).<br />

Absence of attack almost certainly does not represent the true situation, but rather<br />

that no relevant surveys have been carried out. For example, there has been little advance<br />

in knowledge of cecidomyiid gall flies attacking Panicum spp. since the summary by<br />

Barnes (1954b) in which were listed at least 13 species (Table 4.20.2). Two of these (the<br />

widespread rice stem gall midge Orseolia (= Pachydiplosis) oryzae and Contarinia<br />

(= Stenodiplosis) panici are known to be pests (Hegdekatti 1927). The scarcity of infor-<br />

mation from Africa points to an important gap in our knowledge and the absence of<br />

records from the Mediterranean, where most plants have been studied in some detail for<br />

native-insects, suggests that P. repens is not native to that region.<br />

Comment<br />

Clearly insufficient information is known about the natural enemies of P. repens<br />

(although it doubtless must have many) to provide any meaningful assessment of the<br />

prospects for its biological control. However, the genus Panicum contains a number of<br />

good to very good fodder species (e.g. P. antidotale (blue panic), P. bulbosum (bulbous<br />

panic), P. capillare (witchgrass), P. maximum (guinea grass), P. paludosum (swamp<br />

panic)) as well as several that are weedy and may cause photosensitivity or poisoning<br />

(e.g. P. coloratum (coolah grass), P. luzonense, P. miliaceum (millet panic, or proso), P.<br />

novemnerve). There are thus likely to be considerable problems in discovering organisms<br />

of adequate specificity. Nevertheless, P. repens is not reported as a weed of crops in trop-<br />

ical Africa or the Mediterranean (Holm et al. 1977) and a preliminary survey there might<br />

well reveal promising natural enemies.


176 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.20.1 Natural enemies of Panicum repens.<br />

Natural enemies Recorded from References<br />

INSECTS<br />

Hemiptera<br />

CICADELLIDAE<br />

Thaia oryzivora Thailand<br />

DELPHACIDAE<br />

Delphacodes idonea USA<br />

Sogatella kolophon Australia, Pacific Is, SE Asia,<br />

USA, Central & S. America,<br />

W. Africa<br />

Lepidoptera<br />

EUPTEROTIDAE<br />

Nisaga simplex India<br />

NOCTUl DAE<br />

Sesamia cretica Egypt<br />

PYRALI DAE<br />

Cnaphalocrocis medinalis Philippines<br />

Cnaphalocrocis (= Marasmia) Philippines<br />

patnalis<br />

Parapoynx stagnalis<br />

(= Nymphula depunctalis) India<br />

MITES<br />

TARSONEMIDAE<br />

Parasteneotarsonemus panici India<br />

FUNGI<br />

Claviceps sp.<br />

Pyricularia sp.<br />

Pyricularia oryzae<br />

Sporisorium overeemi<br />

NEMATODE<br />

Meloidogyne graminicola<br />

India<br />

India<br />

Leeuwangh & Leuamsang 1967<br />

Ballou et al. 1987<br />

Ballou et al. 1987<br />

Patnaik et al. 1987<br />

Ahmed 1980<br />

Abenes & Khan 1990<br />

Abenes & Khan 1990<br />

Pillai & Nair 1979<br />

Mohanasundaram 1984<br />

Janardhanan et al. 1982<br />

Hilda & Suranarayanan 1976,<br />

Holm et al. 1977<br />

Paje et al. 1964<br />

Rifai 1980<br />

Luc et al. 1990


4.20 Panicum repens 177<br />

Table 4.20.2 Gall flies (Cecidomyiidae) reported attacking Panicum spp. (after<br />

Barnes 1954b).<br />

Species Recorded from Location<br />

Contarinia (= Srenodiplosis) panici<br />

Lasioptera (= Dyodiplosis)fluitans<br />

Lasioptera inustorum<br />

Lasioptera kanni<br />

Lasioptera panici<br />

Lasioptera paniculi<br />

Orseolia cynodontis<br />

Orseolia (= Courteia) graminis<br />

Orseolia (= Dyodiplosis) andropoginis<br />

Orseolia (= Dyodiplosis) fluvialis<br />

Orseolia (= Pachydiplosis) oryzae<br />

Parallelodiplosis javanica<br />

Parallelodiplosis spp.<br />

Yugoslavia, USSR<br />

Panicum fluitans S. India<br />

USA<br />

S. India<br />

USA<br />

Philippines<br />

France, Italy, Algeria, Eritrea,<br />

Senegal<br />

Java, Sri Lanka, S. India<br />

Panicum jluitans S. India<br />

S and SE Asia, W. Africa<br />

Panicum indicum Sri Lanka<br />

Middle East, Java, Peru


178 Biological Control of Weeds: Southeast Asian Prospects<br />

Paspalurn conjuga turn<br />

(after Holm et a/. 1977)


Map 4.21 Paspalurn conjugaturn<br />

4.2 1 Paspalurn conjugaturn 179<br />

Paspalurn conjugaturn<br />

P. conjugaturn is of Tropical American origin, but it is recorded as an important weed in a<br />

number of situations in the Caribbean area. Very few natural enemies have been reported.<br />

A preliminary survey would be required in its centre of origin before the prospects for its<br />

biological control could be evaluated.


180 Biological Control of Weeds: Southeast Asian Prospects<br />

4.21 Paspalurn conjugaturn Bergius<br />

Poaceae<br />

sourgrass; paitan, rumput canggah, rumput pait (Indonesian), rumput kerbau,<br />

jampang canggah, buffalo grass (Malaysia), hulape (Philippines), ya hep<br />

(Thailand)<br />

Rating<br />

+++ Viet, Msia, Indo<br />

15 ++ Sing, Brunei, Phil<br />

Myan, Thai, Laos, Camb<br />

Origin<br />

Tropical America.<br />

Distribution<br />

Paspalurn conjugaturn occurs as a troublesome weed in Central America, West Africa<br />

and the islands and peninsulas of Southeast Asia and the Pacific. These are, for the most<br />

part, the humid tropics (Holm et al. 1977).<br />

Characteristics<br />

P. conjugaturn is a creeping, stoloniferous, perennial grass. The stolons are up to 2 m in<br />

length, often reddish purple in colour and bear roots and a tuft of green to purple leaves<br />

at each node.<br />

The flower stalks are erect, range up to 60 cm, and have smooth nodes. At the apex<br />

of each stalk there are two racemes (flower spikes) 4 to 15 cm long. The stigmas are<br />

white and the anthers bright yellow. The weed can be recognised when in flower by the<br />

typical T-shaped inflorescence.<br />

Importance<br />

P. conjugaturn is mainly a weed of the warm, wet lowlands, although in Hawaii and Sri<br />

Lanka it grows up to 1875 m. It is found in waste areas and along paths and streams, its<br />

inflorescences trailing in the water. It is common in cultivated fields and in natural and<br />

poorly managed pastures and particularly in perennial or plantation crops where the soil<br />

is not ploughed frequently. It spreads rapidly by its stolons, forming dense masses which<br />

can suppress or eliminate tree seedlings and other small plants. It tolerates some shade<br />

and can grow on poor and acid soils.<br />

In the Philippines it flowers all year round and one plant can produce 1500 seeds. It<br />

is also dispersed by broken pieces of stolons rooting after being spread by machines used<br />

for cultivation. In the Philippines it is particularly important in bananas, coffee, papaya,<br />

rice and pineapple; in Cambodia in rice; in Malaysia in citrus, coconuts, oil palm, rice


4.21 Paspalurn conjugaturn 181<br />

and rubber; in Indonesia in tea, oil palm and rubber; and elsewhere in cassava, cocoa,<br />

lawns, maize, pastures, sugarcane and vegetables.<br />

P. conjugaturn is suitable for grazing only when young and the seeds of older plants<br />

have been reported to choke animals by sticking in their throats (Holm et al. 1977).<br />

Natural enemies<br />

The natural enemies of P. conjugatum that have been recorded in the literature (Table<br />

4.21.1) are almost all polyphagous and many of them are of economic importance. One<br />

possible exception is the bagworm moth Brachycyttarus griseus, which was originally<br />

described from Vietnam and is also recorded from Malaysia and the Philippines, as well<br />

as from Guam and Hawaii to which it has spread. It feeds on P. conjugaturn in Hawaii<br />

and on the grass Zoysia pungens in Guam: it probably also feeds on other grasses. In<br />

Guam it is parasitised by the tachinid fly, Stornatomyia sp. (Davis 1990). However, it<br />

does little to control P. conjugaturn in the countries where it already occurs, so it does not<br />

appear to be a promising species to introduce elsewhere.<br />

Perhaps more valuable is the cecidomyiid fly Cleitodiplosis grarninis, a gall forming<br />

fly described from Brazil. The gall consists of the terminal leaves becoming clustered<br />

into an ovoid 30 x 20mm mass as a result of the upper internodes being greatly reduced.<br />

Thirty to forty sulphur-coloured larvae may be found in a single gall, in which they<br />

pupate. They appear in August and September (Barnes 1956). Barnes (1954b) comment-<br />

ed that no gall midge had, at that time, been recorded from the inflorescence of<br />

Paspalurn, although Parallelodiplosis paspali (from Java and India) and Lasioptera sp.<br />

had been recorded from the stems.<br />

The chrysomelid beetle Colaspis (= Maecolaspis) aerea also damages cocoa in<br />

Brazil (Fenonatto 1986) and hence would not be acceptable for introduction elsewhere.<br />

The seeds of P. conjugaturn are harvested by ants in some areas, but the impact of<br />

this on weed density in the field has not been established. Under experimental field con-<br />

ditions in Mexico, the pestiferous fire ant, Solenopsis gerninata, reduced P. conjugaturn<br />

seed densities by 97% or more but had no effect on the seed densities of Bidens pilosa<br />

(Carroll and Risch 1984).<br />

Comment<br />

As with Panicurn repens, so little is known about the natural enemies of Paspalurn conju-<br />

gatum that it is not possible to evaluate the prospects for its biological control. Again,<br />

there is the limitation that some closely related species in the genus Paspalum are of eco-<br />

nomic value for fodder (e.g. P. dilataturn (paspalum), P. distichurn (saltwater couch), P.<br />

plicatulum, P. scrobiculaturn (scrobic), P. vaginaturn (saltwater couch)). However, a fun-<br />

gus attacks the seeds of the first two species, producing the toxin, ergot, and most of the<br />

species are considered weedy in at least some situations, so there may be occasions<br />

where a conflict of interests would have to be resolved, should effective agents be dis-<br />

covered. The prospects for finding these are not perhaps very promising, since Holm et<br />

al. (1977) record P. conjugaturn as a weed in a number of countries in and around the<br />

Caribbean.


182 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.21.1 Natural enemies of Paspalum conjugatum.<br />

Species Country References<br />

INSECTS<br />

Thysanoptera<br />

Haplothrips gowdeyi Hawaii Sakimura 1937<br />

Haplothrips paumalui Hawaii Sakimura 1937<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Colaspis (= Maecolaspis) aerea Brazil<br />

Diptera<br />

CEClDOMYllDAE<br />

Cleitodiplosis graminis Brazil<br />

Lepidoptera<br />

ARCTllDAE<br />

Creatonotos (= Amsacta) gangis<br />

HESPERllDAE<br />

Taractrocera ina<br />

PSYCHIDAE<br />

Brachycyttarus griseus<br />

FUNGI<br />

PYRALIDAE<br />

Cnaphalocrocis medinalis<br />

Cnaphalocrocis (= Marasmia)<br />

patnalis<br />

Parapoynx stagnalis<br />

(= Nymphula depunctalis)<br />

Exserohilum paspali<br />

Leptosphaeria proteispora<br />

Myriogenospora atramentosa<br />

Physarum cinereum<br />

Sorosporium paspali<br />

BACTERIA<br />

Xanthomonas albilineans<br />

Ferronatto 1986<br />

Barnes 1956<br />

Philippines Catindig et al. 1993<br />

Australia Common & Waterhouse 198 1<br />

Guam, Hawaii, Malaysia, Davis 1990<br />

Vietnam, Philippines<br />

Philippines Abenes & Khan 1990<br />

Philippines Abenes & Khan 1990<br />

Philippines Bandong & Litsinger 1984<br />

Brazil Muchovej & Nesio 1987<br />

Hawaii Stevens 1925<br />

Brazil, USA, Venezuela Hanlin & Tortolero 1990<br />

Brazil Muchovej & Muchovej 1987<br />

Hawaii Stevens 1925<br />

Australia Persley 1973<br />

NEMATODES<br />

Rotylenchulus reniformis Trinidad Singh 1974<br />

VIRUSES<br />

sugarcane mosaic Hawaii, Japan, Taiwan Chen et al. 1989b,<br />

Holm et al. 1937,<br />

Ohtsu & Gomi 1985


184 Biological Control of Weeds: Southeast Asian Prospects<br />

Passiflora foetida<br />

(after Soe jani et a/. 1987)


Map 4.22 Passiflora foetida<br />

4.22 Passiflora foetida<br />

Passiflora foetida<br />

No searches have been made for natural enemies of P. foetida in its area of origin in<br />

South America, where it is not a weed. It is known to be attacked there by the larvae of<br />

some nymphalid (heliconiine) butterflies.<br />

However studies of the related P. tripartita, a serious forest weed in Hawaii,<br />

recorded upwards of 200 species of insects. It may thus be inferred that a similar study<br />

would reveal many insects attacking P. foetida. However, until a relevant study is carried<br />

out, it is not possible to evaluate the prospects for its successful biological control.<br />

I


186 Biological Control of Weeds: Southeast Asian Prospects<br />

4.22 PassifZora foetida L.<br />

Passifloraceae<br />

stinking passionflower, wild passionfruit; love-in-a-mist; ka thok rok (Thailand),<br />

timun padang (Malaysia), buah tikus (Indonesia)<br />

Rating<br />

+++ Msia<br />

11 ++ Brun<br />

+ Myan, Thai, Laos, Viet, Sing, Phil<br />

Indo<br />

Origin<br />

South America. Natural populations have been observed in the coastal mountain ranges<br />

in the State of Parana, Brazil (G.P. Markin pers. comm. 1993).<br />

Distribution<br />

Widespread throughout the tropics and serious in Southeast Asia; also a weed in the<br />

Pacific Region, West Africa and Central America. Introduced to Java a long time ago.<br />

Characteristics<br />

A foetid, woody, annual or perennial vine, 1.5 to 6 m long; stem, cylindrical, densely<br />

hairy; tendrils arise next to leaves on the shaded side of the stem; leaves heart-shaped to<br />

three lobed, alternate, arranged helically, with long-stalked glands and long fine hairs on<br />

margins, producing a disagreeable smell when crushed; flowers white to lilac, bisexual. It<br />

flowers all year round, opening in the morning and closing before noon. The green to<br />

orange or red fruits are enclosed in lacy bracts. A large number of varieties occur<br />

(Wagner et al. 1990).<br />

Importance<br />

I! foetida is a weed of upland rice and other field crops. It occurs in wet areas or those<br />

where there is a pronounced wet season. It is common in plantations, rough pastures,<br />

roadsides and wasteland.<br />

In the Philippines it is sometimes used as a soil cover in coconut plantations to con-<br />

trol Imperata cylindrica grass or erosion. In Papua New Guinea it is planted between<br />

sweet potatoes to suppress Imperata. Young leaves are used in Surinam and Java as a<br />

vegetable. Seeds are flat, black, woody and enclosed in a sweet aromatic pulp (Swarbrick<br />

1981). Young fruit are cyanogenic. Stems and leaves are suspected of poisoning live-<br />

stock.<br />

P. foetida contains alkaloids and at least 10 flavonoids. One of the latter, ermanin, is<br />

a feeding deterrent to larvae of the nymphalid butterfly Dione juno which, in Colombia,<br />

do not attack P. foetida leaves, but eat large amounts of other PassiJlora species.


4.22 Passifora foetida 187<br />

The Passifloraceae contain about 12 genera and 600 species, most of which are ten-<br />

dril climbing vines native to warm regions of the world. The genus PassiJlora contains<br />

some 500 tropical and subtropical species, mostly from Central and South America.<br />

Several have edible fruits and attractive flowers, about 40 species have been cultivated,<br />

but fewer than 6 are fruit crops in the neotropics and only one, P. edulis (and its varieties,<br />

such as the yellow favicarpa), is economically important (Waage et al. 1981). P. ligu-<br />

laris is also cultivated in Malaysia (Ong and Ting 1973). A few species, such as P. foeti-<br />

da and P. lonchocarpa, are extremely foul smelling (Benson et al. 1976). Eleven species,<br />

including P. foetida and P. tripartita (= P. mollissima) (in Hawaii) are recorded as weeds<br />

in different parts of the world (Swarbrick 1981). Both P. foetida and P. tripartita are<br />

closely related taxonomically, whereas, P. edulis belongs to a different subgenus (Waage<br />

et al. 1981) and is the only economic crop at risk from oligophagous insects attacking<br />

P. foetida.<br />

Natural enemies<br />

Upwards of 200 insects are recorded attacking Passifloraceae in Central and South<br />

America. The most notable are heliconiine butterflies of the family Nymphalidae. Their<br />

larvae develop only on plants of the family Passifloraceae, with the single exception of<br />

Eueides procula, which will develop on the Turneraceae (Pemberton 1983, Waage et al.<br />

1981). only 5 of the 65 or so species of heliconiines are recorded as pests of Passiflora<br />

edulis, namely Agraulis vanillae, Dione juno, Dryas julia, Eueides aliphera and E.<br />

isabella, although larvae of a few other species are occasionally found on it (Waage et al.<br />

1981). It is apparent that heliconiine butterflies are well worth investigating for species of<br />

adequate host specificity to P. foetida.<br />

Little is known about the natural enemies of P. foetida (Table 4.22.1) and no<br />

attempts have been made at biological control. The passion vine butterfly Agraulis vanil-<br />

lae, an accidental introduction to Hawaii before 1977, is now widespread there. In addi-<br />

tion to attacking Passifora edulis, its larvae feed on the leaves of P. foetida, P. manicata<br />

and P. suberosa, but they seldom attack banana poka, P. tripartita, which is a serious for-<br />

est weed in Hawaii. P. foetida is widely distributed on Hawaii from sea level up to about<br />

500 m and a rainfall from 750 to 3000 mm. It occurs generally in highly disturbed areas,<br />

where it is a very minor component among other introduced species. On the west side,<br />

the taxon has red fruit and, on the east, green. It has very few natural enemies, with the<br />

exception of Agraulis vanillae. A. vanillae larvae are common but usually in small num-<br />

bers, although occasionally there are outbreaks that completely defoliate the plants (G.P.<br />

Markin pers. comm. 1993). A. vanillae is native to the Americas and ranges from<br />

Argentina up through Mexico to Florida, the Gulf States and California (Beardsley 1980,<br />

Bianchi 1982, 1983, Klots (1951)). In Hawaii it is attacked by a nuclear polyhedral virus<br />

which limits its numbers (G.P. Markin pers. comm. 1993), in California by Phorocera<br />

claripennis (Tachinidae) and in eastern USA by Brachymeria ovata (Nakahara 1977).<br />

The other species of heliconiine recorded as attacking P. foetida is Heliconius hecale,<br />

which is widespread in Central and South America and attacks a large number of


188 Biological Control of Weeds: Southeast Asian Prospects<br />

Passifloraceae (Benson et al. 1976, Waage et al. 1981). On the other hand, larvae of<br />

H. charithonia, H. cydno and H. erato did not develop on R foetida (Waage et al. 1981).<br />

In the Ivory Coast larvae of the pterophorid moth Sphenarches anisodactylus eat the<br />

leaves of R foetida, Lagenaria siceraria and Brillantaisia lamium. Although the moth<br />

also occurs in India and Japan it is not known from P. foetida there, but attacks two eco-<br />

nomic plants, the legumes lablab bean, Lablab purpureus and pigeon pea, Cajanus cajan<br />

(Bigot and Vuattoux 1979). Thus there is some uncertainty whether the host specificity of<br />

the African taxon is the same as that in Asia.<br />

The National Parks and Forest Service authorities in Hawaii have been carrying out<br />

searches for some years in South America for natural enemies of banana poka, R triparti-<br />

ta. Two insects from Colombia have been introduced to Hawaii (Gardner et al. 1992).<br />

One of these was the moth Cyanotricha necyria (Dioptidae), which was released in 1988,<br />

but did not become established (Casaiias-Arango et al. 1990, Julien 1992, Markin and<br />

Nagata 1989, Markin et al. 1989). In host specificity tests C. necyria did not oviposit on<br />

f? foetida, but the larvae could develop on its foliage (Markin and Nagata 1989). The<br />

fungus Colletotrichium gloeosporioides f. sp. clidemiae has been mass produced for lib-<br />

eration (E.E. Trujillo memorandum 1989).<br />

In Hawaii the fungus Fusarium oxysporum f. sp. passiflorue attacks P. foetida,<br />

P. tripartita and P. ligularis, but not R suberosa or the cultivated P. edulis f. jlavicarpa<br />

(Gardner 1 989).<br />

Table 4.22.1 Natural enemies of Passiflora foetida.<br />

Species Location Other hosts References<br />

INSECTS<br />

Hemiptera<br />

APHlDlDAE<br />

Aphis fabae Kenya polyphagous Bakker 1974<br />

Aphis gossypii Ivory Coast polyphagous De Wijs 1974<br />

Aphis spiraecola Ivory Coast De Wijs 1974<br />

Myzus persicae Japan polyphagous Yonaha et al. 1979<br />

Uroleucon compositae Kenya Bakker 1974<br />

Diptera<br />

AGROMYZIDAE<br />

Melanagromyza<br />

PO~YP~Y~~<br />

Tropicomyia theae<br />

Lepidoptera<br />

NOCTUIDAE<br />

Helicoverpa zea<br />

(= H. obsoleta)<br />

. Heliothis virescens<br />

NYMPHALIDAE<br />

Agraulis vanillae<br />

f<br />

Australia polyphagous, including Kleinschmidt 1960, 1970<br />

Passijlora spp.<br />

Papua New polyphagous Spencer I990<br />

Guinea<br />

Sumatra polyphagous Den Doop 19 18<br />

Venezuela polyphagous Venturi 1960<br />

Central restricted to some Anon 1977, Beardsley 1980,<br />

America, Passijlora spp. Bianchi 1982, 1983,<br />

Hawaii Waage et al. 198 1<br />

(continued on next page)


FUNGI<br />

4.22 Passifloi-a foetida 189<br />

Species Location Other hosts References<br />

Heliconius hecale<br />

PTEROPHORIDAE<br />

Sphenarches<br />

anisodactylus<br />

Alternaria passiflorae<br />

Alternaria tenuis<br />

Colletotrichium<br />

gloeosporioides<br />

Fusarium oxysporum<br />

f.sp. passiflorae<br />

Haplosporella<br />

pass$oridia<br />

Hemphyllium sp.<br />

NEMATODE<br />

Meloidogyne incognita<br />

VIRUS<br />

cucumber mosaic<br />

passionfruit chlorotic<br />

spot<br />

passionfruit moiaic<br />

passionfruit ringspot<br />

potyvirus<br />

passionfruit woodiness<br />

potyvirus<br />

widespread in restricted to some<br />

Central & South Pass$ora spp.<br />

America<br />

Ivory Coast see discussion<br />

Hawaii<br />

Hawaii<br />

India<br />

Hawaii<br />

India<br />

Hawaii<br />

Australia<br />

Japan<br />

Papua New<br />

Guinea<br />

Hawaii,<br />

Malaysia<br />

Ivory Coast<br />

Australia,<br />

Kenya<br />

Waage et al. 198 1<br />

Bigot & Vuattoux 1979<br />

Raabe 1965<br />

Raabe 1965<br />

Mallikarjunaiah & Rao 1972<br />

Gardner 1989<br />

Pande 1980<br />

Raabe 1965<br />

Sauer & Alexander 1979<br />

Yonaha et al. 1979<br />

Van Velsen 196 1<br />

Ong & Ting 1973,<br />

Raabe 1965<br />

Brunt et al. 1990,<br />

De Wijs 1974<br />

Anon 1976, Bakker 1974,<br />

Brunt et al. 1990,<br />

Leggat & Teakle 1975


190 Biological Control of Weeds: Southeast Asian Prospects<br />

Pennisetum polystachion<br />

(after Holm et a/. 1977)


Map 4.23 Pennisetum polystachion<br />

4.23 Pennisetum polystachion 191<br />

Pennisetum polystachion<br />

This erect, tufted, non-stoloniferous grass, originated in Tropical Africa from where it<br />

has spread throughout Asia and Southeast Asia to the Pacific.<br />

Almost nothing is known of the natural enemies of P. polystachion or closely<br />

related species. It is not possible to evaluate the prospects for its biological control with-<br />

out a search for natural enemies in its region of origin.


192 Biological Control of Weeds: Southeast Asian Prospects<br />

4.23 Pennisetum polystachion (L.) Schultes<br />

(= Pennisetum setosum)<br />

Poaceae<br />

mission grass; feather Pennisetum; yaa khaehyon chop (Thailand), rumput<br />

gajah, rumput berus, rumput kuning, ekor kucing (Malaysia) rumput jurig<br />

(Indonesia)<br />

There are differences in opinion over the spelling of the specific name, polystachion or<br />

polystachyon, with the former being used here. In Africa, there are three subspecies<br />

P. polystachion polystachion, P. p. setosum (sometimes regarded as a true species) and<br />

P. p. atrichum. There is some evidence of crossing between the varieties of P. polysta-<br />

chion and the related Pennisetum hordeoides and the production of populations with dif-<br />

ferent chromosome numbers (Brunken 1979).<br />

Rating<br />

+++ Msia<br />

11 ++ Indo, Phil<br />

+ Thai, Laos, Camb, Viet<br />

Origin<br />

Tropical Africa.<br />

Distribution<br />

P. polystachion is widespread in the tropics of Africa and Asia, but also occurs in north-<br />

ern Australia and the Pacific. It rarely extends beyond 23"N or 23"s. In Africa it occurs<br />

mainly in the savanna and open areas in the forest zone of West Africa from Senegal to<br />

Cameroun and then south and east to Mozambique and Kenya (Brunken 1979, Kativu<br />

and Mithen 1988).<br />

Characteristics<br />

P. polystachion is an erect, tufted annual or perennial grass, with fibrous roots, but no<br />

stolons. Its leaves are narrow and 5 to 45 cm long. Its flowering stems are sometimes<br />

branched, 50 to 300 cm tall, ending in a cylindrical yellow-brown flowering spike, 5 to<br />

25 cm long, bearing densely hairy, unequal bristles of two lengths, the longer 2 to 5 cm<br />

and the shorter lcm.<br />

Importance<br />

P. polystachion grows on dry lateritic soils and is often present along roadsides, in waste-<br />

lands and in upland crops. Propagation is by seeds, but regrowth can occur from dormant<br />

buds located at the base of the stems and from aerial nodes.<br />

It becomes dominant in upland tropical hillsides and croplands after forests have


4.23 Pennisetum polystachion 193<br />

been cleared, or when shifting cultivation or subsistence agriculture have been practised<br />

(Holm et al. 1977). Because of the rapid germination of its wind-dispersed seeds and its<br />

aggressive and highly competitive growth, it rapidly takes over wastelands. Since a sin-<br />

gle cultivation rarely kills enough of the weed to provide control, it often impedes further<br />

use of areas for crops.<br />

In Indonesia it was first observed in 1972 (Titrosoedirdjo 1990). It is now an impor-<br />

tant weed of rubber and occasionally a problem in upland rice.<br />

P. polystachion is thought to have reached Malaysia via Thailand as recently as the<br />

early 1980s, infesting at least 10 km2 of roadsides and is now widely distributed, occur-<br />

ring up to an altitude of 900 m (Baki et al. 1990). It is now a major weed in rubber, oil<br />

palm, sugarcane, orchards, vegetables and upland rice (Titrosoedirdjo 1990).<br />

In the Philippines P. polystachion is able to compete effectively even with blady<br />

grass Imperata cylindrica in grassy fields in Central Luzon and in rubber plantations in<br />

west Java (Titrosoedirdjo 1990).<br />

P. polystachion is a good fodder grass when young and makes excellent hay.<br />

Natural enemies<br />

Very few natural enemies of P. polystachion appear to have been recorded in the litera-<br />

ture (Table 4.23.1). The only species of possible relevance are several gall midges from<br />

Africa, but very little is recorded of their biology. Three species of gall midge have been<br />

reared from P. polystachion in the Gold Coast. One is similar to the pestiferous sorghum<br />

midge Contarinia sorghicola (but may be different), the second belongs to the Trifila<br />

group and the third belongs to the Lasiopterariae (Barnes 1954a,b, Geering 1953). Three<br />

species of gall midge have been described from ears of Pennisetum in southern India,<br />

Cecidomyia penniseti (from P. glaucum = P. typhoideum), Geromyia (= Itonida) penniseti<br />

(from P. cenchroides) and Geromyia (= Itonida) seminis and an unidentified species from<br />

the stems. Of these, G. penniseti may be predaceous (Barnes 1954b, Felt 1920, 1921).<br />

In Madagascar there is a gall midge (?Cecidomyia sp.) whose larvae live in the<br />

inflorescence of Pennisetum (no species given) and in Sudan a gall midge, possibly<br />

Geromyia seminis, has been reared from the ears of Pennisetum (no species given)<br />

(Barnes 1954b).<br />

The larvae of the Brazilian satyrid butterfly Eryphanis polyxena were bred in the<br />

laboratory on P. polystachion (= P. setosum) (Dias 1979), but damage is not reported<br />

from the field.<br />

Comment<br />

There is little doubt that a range of natural enemies attacking f? polystachion would be<br />

found if a search were made in Tropical Africa.<br />

Several other weedy species of Pennisetum also originated in Africa, in addition to<br />

three or more species that have at least some desirable attributes. Perhaps the best known is<br />

kikuyu grass, P. clandestinum, which is a valuable fodder during the warmer months,<br />

although it is a weed in some situations and its nitrate levels can be toxic to grazing animals.<br />

?? glaucum (= P. americanum), pearl millet, is used as food in some areas. ?? purpureum,


194<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

elephant or napier grass, can grow to 3 m, is valuable for fodder when young and can be<br />

used as fuel when old. However, it can also be a weed, as in rubber in Malaysia. Little<br />

has been recorded of the natural enemies attacking these species of Pennisetum. The<br />

most interesting are three cecidomyiid gall midges in India, Geromyia penniseti, G. sem-<br />

inis and Mycodiplosis indica from Pennisetum glaucum (= P. typhoideum) and Geromyia<br />

seminis from Pennisetum cenchroides (Barnes 193 1, Felt 1920).<br />

Table 4.23.1 Natural enemies of Pennisetum polystachion.<br />

Species<br />

INSECTS<br />

Diptera<br />

CEClDOMYllDAE<br />

Cecidomyia penniseti<br />

Contarinia ?sorghicola<br />

Contarinia sp. 1<br />

Contarinia sp. 2<br />

Contarinia sp. 3<br />

Contarinia sp. 4<br />

Geromyia (= Itonida) penniseti<br />

Geromyia (= Itonida) seminis<br />

Lepidoptera<br />

HESPERllDAE<br />

Parnara bada bada<br />

NYMPHALIDAE<br />

Eryphanis polyxena<br />

PYRALlDAE<br />

Cnaphalocrosis medinalis<br />

FUNGI<br />

Bipolaris papendor-i<br />

Gloeocercospora sp.<br />

Helminthosporiurn rostratum<br />

Phakospora apoda<br />

Puccinia chaetochloae<br />

Puccinia substrata<br />

Pyricularia oryule<br />

Spacelotheca penniseti<br />

Country<br />

India<br />

Gold Coast<br />

Gold Coast<br />

Gold Coast<br />

Madagascar<br />

India<br />

India<br />

India. Sudan<br />

Malaysia<br />

Brazil<br />

Malaysia<br />

Brazil<br />

References<br />

Barnes 1954b<br />

Barnes 1954b<br />

Bames 1954b<br />

Barnes 1954b<br />

Barnes 1954b<br />

Bames 1954b<br />

Barnes 1954b<br />

Barnes 1954b<br />

C.L. Tan pers. comm. 1993<br />

Dias 1979<br />

C.L. Tan pers. comm. 1993<br />

H.C. Evans pers. comm. I992<br />

H.C. Evans pers. comm. 1992<br />

Thite & Chavan 1977<br />

H.C. Evans pers. comm. 1992<br />

H.C. Evans pers. comm. 1992<br />

H.C. Evans pers. comm. 1992<br />

Prabhu et al. 1992<br />

H.C. Evans pers. comm. I992


196 Biological Control of Weeds: Southeast Asian Prospects<br />

Pistia stratiotes<br />

(after Holm et a/. 1977)


Map 4.24 Pistia stratiotes<br />

4.24 Pistia stratiotes<br />

Pista stratiotes<br />

Water lettuce is a widespread, floating water weed, which probably originated in South<br />

America.<br />

The host specific South American weevil, Neohydronomus aflnis, has been<br />

established readily in six countries and, in all, has produced substantial to excellent con-<br />

trol. The moth, Samea multiplicalis, which attacks P. stratiotes and Salvinia spp., has<br />

been established in Australia but its impact has not been evaluated.<br />

In Thailand, classical biological control has not been attempted, but mass rearing<br />

and release of the native noctuid moth Spodoptera pectinicornis has replaced the use of<br />

herbicides.<br />

The prospects are excellent for classical biological control of P. stratiotes in<br />

countries where it is still regarded as an important weed.


198 Biological Control of Weeds: Southeast Asian Prospects<br />

4.24 Pistia stratiotes L.<br />

Araceae<br />

water lettuce; chak thom (Cambodia), apoe apoe, apon apon (Indonesia),<br />

kiambang besar (Malaysia), chok, jawg (Thailand), beo cai (Vietnam)<br />

Rating<br />

++ Thai, Laos, Camb, Viet, Phil<br />

14 + Myan, Msia, Brun, Indo<br />

Sing<br />

Origin<br />

The origin of Pistia stratiotes is unknown, although the number of host specific insects<br />

present there (Table 4.24.1) suggests South America. However, there is also a host spe-<br />

cific noctuid moth that ranges from India to Papua New Guinea. Dray and Center (1992)<br />

examine the various theories concerning the area of origin of water lettuce.<br />

Distribution<br />

Water lettuce occurs very widely as a troublesome water weed between the tropics of<br />

Capricorn and Cancer, particularly in Africa, Asia, Southeast Asia and the Caribbean.<br />

Pliny refers to its use in Egypt in AD77 (DeLoach et al. 1979, Holm et al. 1977). It is<br />

absent from a number of Pacific countries although recorded as a weed in Papua New<br />

Guinea, Solomon Is, Guam, New Caledonia and Hawaii.<br />

Characteristics<br />

Pistia stratiotes is a free-floating, perennial monocotyledon, with a tuft of fibrous feath-<br />

ery roots up to 1 m long. Numerous secondary roots may be up to 4 cm in length. Stolons<br />

up to 60 cm are produced from the base of the plant and develop into new plants. Leaves<br />

are pale green, upright, 2.5 to 15 cm long, broad at the top and tapered at the base. They<br />

are prominently veined beneath and form a rosette. They are spongy in texture and bear<br />

numerous fine, water-repelling hairs on both sides. The flowers are bisexual, inconspicu-<br />

ous, green, surrounded by tubular bracts and arise from the centre of the rosette. It is said<br />

that water lettuce does not flower in Thailand but a small number of flowers have been<br />

observed (B. Napompeth pers. comm. 1993). It flowers in the Philippines, Australia,<br />

Africa and USA. The fruit is berry-like and green and contains 4 to 12 small brown seeds<br />

which can float on the water for up to 2 days. There are as many as 9 varieties of water<br />

lettuce (Neal 1965).<br />

Importance<br />

The free-floating plants are found in reservoirs, ponds, in marshes along the edges of<br />

large tropical lakes and in slow-moving or stagnant waters. They multiply rapidly and


4.24 Pistia stratiotes 199<br />

can block streams, interfere with fisheries and hydroelectric generating plant and bank up<br />

at dams, bridges and culverts, leading to increased flooding problems. Despite earlier<br />

claims (Holm et al. 1977), unlike water hyacinth, water lettuce does not increase water<br />

loss through evapotranspiration (Lallana et al. 1987). Together with water hyacinth it is a<br />

common and important component of the dense aggregations of free-floating vegetation,<br />

known as sudds. It grows best at pH 4, whereas water hyacinth produces greatest dry<br />

weight at pH 7 (Holm et al. 1977).<br />

Water lettuce plants act as a substrate for sandfly larvae (Ceratopogonidae) and lar-<br />

vae and pupae of the disease-transmitting mosquito genus Mansonia obtain their oxygen<br />

by attaching to Pistia roots. P. stratiotes is an important weed of irrigated rice, floating<br />

into paddy crops, taking root in the soil and competing much like other weeds.<br />

On the other hand, it has been used as human food in India during famines and is<br />

still fed to pigs and ducks. It is said to have some medicinal value as a cure for skin dis-<br />

eases and dysentery, as a laxative, to treat asthma and, its ash rubbed into the scalp, as a<br />

treatment for ringworm.<br />

Natural enemies<br />

AUSTRALIA<br />

Although water lettuce was first recorded in the Northern Territory only in 1946 it was<br />

already an important weed in some locations in Queensland before the introduction of<br />

Neohydronomus afJinis, although plants in the Northern Territory were rarely thrifty.<br />

Heavy damage was observed there by larvae of the moth Parapoynx (= Nymphula) tene-<br />

bralis, which lays it eggs on the leaves. Newly emerged larvae excise a portion of leaf to<br />

make a protective case in which they shelter while feeding and moving around the plant.<br />

These larvae also attack Salvinia molesta, as do larvae of the related Parapoynx<br />

(= Nymphula) turbata (Gillett et al. 1988). In Thailand this species attacks water lettuce<br />

(Napompeth 1982), so it presumably has the same habit in the Northern Territory. A bug,<br />

Nisia nervosa (= N. atrovenosa) feeds on water lettuce as it does in India (Gillett et al.<br />

1988, Joy 1978).<br />

CENTRAL AND SOUTH AMERICA<br />

Bennett (1975) listed 12 species of phytophagous insects that had been reared from Pistia<br />

stratiotes and Cordo et al. (1981) added one more. Particularly notable (Table 4.24.1) is<br />

the group of South American weevils which are generally confined to water lettuce,<br />

although adults of several may produce minor attack on some of the nearby aquatic<br />

plants whose stems and leaves nevertheless would be too small to support larval develop-<br />

ment. Preliminary host range studies suggest that several may be specific enough to be<br />

employed for biological control, although adequate information is available only for<br />

Neohydronomus afinis. This has been successfully established in several countries (see<br />

later). Larvae of the small pyralid moth Samea multiplicalis, which occurs from<br />

Argentina to the southeastern United States, feed on the growing buds of water lettuce<br />

and sporadically cause very heavy damage and dieback of the plants (Cordo et al. 1978,<br />

1981, DeLoach et al. 1976, 1979).


200 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.24.1 Natural enemies of Pistia stratiotes.<br />

Species Location References<br />

INSECTS<br />

Hemiptera<br />

APHlDlDAE<br />

unnamed<br />

Rhopalosiphum nymphaeae<br />

COCCIDAE<br />

Planococcus citri<br />

LYGAEIDAE<br />

Valtissius sp.<br />

MEENOPLllDAE<br />

Nisia nervosa<br />

(= N. atrovenosa)<br />

Orthoptera<br />

ACRlDlDAE<br />

Paulinia acuminata<br />

TETRlGlDAE<br />

Criotettrix sp.<br />

Coleoptera<br />

CURCULIONIDAE<br />

Argentinorhynchus bennetti<br />

Argentinorhynchus breyeri<br />

Argentinorhynchus bruchi<br />

Argentinorhynchus minimus<br />

Argentinorhynchus squamosus<br />

Neohydronomus aflnis<br />

Neohydronomus elegans<br />

Neohydronomus pulchellus<br />

Ochetinu bruchi<br />

Pistiacola cretatus<br />

Pistiacola fasciatus<br />

Pistiacola sp. nr nigrirostris<br />

Lepidoptera<br />

ARCTllDAE<br />

Spilosoma virginica<br />

NOCTUIDAE<br />

Erastroides curvifascia<br />

Proxenus hennia<br />

,Spodoptera pectinicornis<br />

Thailand<br />

Florida<br />

Nigeria, Trinidad<br />

Argentina<br />

Australia. India<br />

South America<br />

Thailand<br />

Mexico, Venezuela<br />

Argentina, Paraguay<br />

Argentina, Paraguay<br />

Venezuela<br />

Argentina, Paraguay<br />

South America<br />

Honduras, Cuba<br />

Trinidad to Argentina, Cuba<br />

Argentina<br />

Argentina, Brazil<br />

Central and South America<br />

Argentina<br />

Florida<br />

India<br />

Indonesia<br />

India, Bangladesh, Thailand<br />

Napompeth 1990a<br />

Ballou et al. 1986, Bennett<br />

1975, Joy 1978<br />

Bennett 1975<br />

Bennett 1975<br />

Gillett et al. 1988, Joy 1978<br />

Bennett 1966, 1975<br />

Napompeth 1990a<br />

O'Brien & Wibmer 1989a,b<br />

O'Brien & Wibmer 1989a,b<br />

Cordo et al. 1978<br />

O'Brien & Wibmer 1989a,b<br />

Cordo et al. 1978<br />

DeLoach et al. 1976<br />

O'Brien & Wibmer 1989c<br />

Bennett et al. 1975,<br />

O'Brien & Wibmer 1989c<br />

Cordo et al. 198 1<br />

Cordo et al. 198 1<br />

Wibmer & O'Brien 1989<br />

Cordo et al. 198 1<br />

Thompson and Habeck 1988<br />

Chaudhuri & Janaki Ram<br />

1975<br />

Mangoendihardjo & Nasroh<br />

1976<br />

Alam et al. 1980, George<br />

1963, Napompeth 1990a,<br />

Sankaran 1974, Sankaran &<br />

Rao 1972, Sankaran et al.<br />

1964<br />

(continued on next page)


MITES<br />

FUNGI<br />

4.24 Pistia stratiotes 201<br />

Species Location References<br />

PYRALlDAE<br />

Argyractis subornata<br />

Elophila responsalis<br />

Parapoynx (= Nymphula)<br />

diminutalis<br />

Parapoynx (= Nymphula)<br />

tenebralis<br />

Parapoynx (= Nymphula)<br />

turbata<br />

Petrophila drumalis<br />

Samea multiplicalis<br />

Synclita obliteralis<br />

Hydrozetes subornata<br />

Cercospora canescens<br />

Cercospora sp.<br />

Phyllosticta stratiotes<br />

Sclerotium rolfsii<br />

Brazil<br />

India, Indonesia<br />

Thailand<br />

Australia<br />

Australia, Thailand<br />

Florida<br />

southern USA, Trinidad,<br />

northern South America<br />

Florida<br />

Australia<br />

Australia<br />

India<br />

India<br />

India<br />

Fomo 1983<br />

Handayani & Syed 1976,<br />

Mangoendihardjo et al. 1977,<br />

Sankaran & Rao 1972,<br />

Subagyo1975<br />

Napompeth 1990a,<br />

Suasa-Ard 1976<br />

Gillett et al. 1988<br />

Gillett et al. 1988,<br />

Napompeth 1990a,<br />

Suasa-Ard 1976<br />

Dray et al. 1988<br />

Bennett 1966, 1975,<br />

Bennett et al. 1975,<br />

Dray et al. 1988<br />

Dray et al. 1988<br />

Gillett et al. 1988<br />

Gillett et al. 1988<br />

Bennett 1975,<br />

Nag Raj and Ponappa 1966<br />

Bennett 1975<br />

Bennett 1975<br />

UNITED STATES<br />

Dray et al. (1988) recorded larvae of three species of moth, a mealy bug, a leafhopper<br />

and an aphid on water lettuce which has been present in Florida for at least 200 years<br />

(Thompson and Habeck 1988). Only one of these insects, a root feeding moth, was con-<br />

sidered to be possibly host specific. This was later identified as the pyralid moth<br />

Petrophila drumalis: the two other moths were Samea multiplicalis and Synclita obliter-<br />

alis (Dray et al. 1989). The aphid was probably Rhopalosiphum nymphaeae, a well<br />

known transmitter of a number of economically important viruses. It has been recorded<br />

to cause dieback of water lettuce in Nigeria (Pettett and Pettett 1970). This aphid was<br />

reported to be widespread on water lettuce in Florida (Ballou et al. 1986). An aphid, pos-<br />

sibly the same species, transmitted a virus that caused widespread dieback of Z? stratiotes<br />

on Lake Volta in Ghana (Okali and Hall 1974), although serious dieback has not been<br />

reported in Florida. The non-specific larvae of the arctiid moth Spilosoma virginica was<br />

also common on water lettuce in Florida (Thompson and Habeck 1988).


202 Biological Control of Weeds: Southeast Asian Prospects<br />

INDIA<br />

Larvae of the moth Spodoptera pectinicornis cause extensive damage to Pistia. On aver-<br />

age, a single larva can consume the leaves of two Pistia plants during its developmental<br />

period of 15 to 20 days. Some 100 larvae developing from an average egg mass destroy<br />

all Pistia leaves within an area of 1 m2 and, during peak abundance in the field, the num-<br />

ber of larvae per m2 of Pistia surface was always higher than this (George 1963,<br />

Sankaran and Ramaseshiah 1974). The bug Nisia nervosa successfully completes its life<br />

cycle on Pistia, but is reported as a minor pest of rice (Joy 1978).<br />

INDONESIA<br />

In Java and Sulawesi, water lettuce is attacked by larvae of the noctuid moth Proxenus<br />

hennia which appears to be specific (Mangoendihardjo and Nasroh 1976). Other species<br />

found attacking it were Elophila (= Nymphula) responsalis, Spodoptera mauritia, an<br />

aphid and a cicadellid (Zygina sp.) (Mangoendihardjo and Syed 1974, Mangoendihardjo<br />

et al. 1976, 1977, Syed et al. 1977).<br />

THAILAND<br />

Water lettuce is attacked by several insects (Table 4.24.1), of which only the pygmy<br />

grasshopper Criotettrix sp. and the native water lettuce moth Spodoptera pectinicornis<br />

are capable of inflicting serious damage. In certain areas where the density of Criotettrix<br />

was as high as 100 per m2 considerable suppression of the weed occurred. Both adults<br />

and nymphs were able to walk on the surface of the water and were observed to attack<br />

also the water fern, Salvinia cucullata (Napompeth 1982). The extensive damage that can<br />

be caused by Spodoptera pectinicornis is discussed later.<br />

Attempts at biological control<br />

AUSTRALIA<br />

The first attempt to bring about classical biological control of Pistia stratiotes was the lib-<br />

eration of adults and larvae of Neohydronomus afinis in 1982 near Brisbane. Within two<br />

months of release, plants were rotting and sinking and, by eight months, about one third<br />

of the plants in a dam were chlorotic and some had been destroyed. Severely damaged<br />

plants produced short stolons terminating in small plantlets before sinking and dying, but<br />

these plantlets failed to grow to the size of their parents before, in turn, becoming severe-<br />

ly damaged, producing plantlets and then sinking. Continued weevil attack led initially to<br />

an increase in the number of plants, but a decrease in their size and dry weight. Before<br />

long, few water lettuce plants remained (Harley et al. 1984). The moth Samea multipli-<br />

calis was liberated in Australia in 1981, primarily against Salvinia molesta, on which it<br />

became established. However, within four years, its effectiveness was restricted by proto-<br />

zoan disease and three hymenopterous parasitoids (Thomas and Room 1986). It presum-<br />

ably attacks Pistia stratiotes also, although there seems to be only one observation of it<br />

doing so. This was at Townsville (D.P.A. Sands pers. comm. 1993).<br />

PAPUA NEW GUINEA<br />

The moth Spodoptera pectinicornis attacks water lettuce, but is unable to prevent its<br />

increase when the plant is freed from competition by the biological control of Salvinia or


Table 4.24.2 Liberations for the biological control of Pistia stratiotes.<br />

4.24 Pistia stratiotes 203<br />

Species Where From When Result References<br />

Coleoptera<br />

CURCULIONIDAE<br />

Neohydronornus a#nis Australia Brazil 1982 + Harley et al. 1984, 1990<br />

Botswana Brazil via 1988 + Chikwenhere & Forno 1991<br />

Australia LW. Fomo pers. comm. 1993<br />

Papua New Brazil via 1985 + Chikwenhere & Forno 199 1,<br />

Guinea Australia Harley et al. 1990,<br />

Laup 1987b<br />

South Africa Brazil via 1985 + Cilliers 1987, 1989b<br />

Australia<br />

United States Brazil via 1987 + Center et al. 1989,<br />

of America Australia Thompson & Habeck 1988,<br />

Dray et al. 1990<br />

Zambia Zimbabwe about + P. Room pers. comm. 1993<br />

1990<br />

Zimbabwe Brazil via 1988 + Chikwenhere & Fomo 1991<br />

Australia<br />

Lepidoptera<br />

NOCTUIDAE<br />

Spodoptera pectinicornis Florida Thailand 1990 ? Center et al. 1989,<br />

Julien 1992<br />

Napompeth 1990a<br />

PYRALl DAE<br />

Sarnea rnultiplicalis Australia Brazil 198 1 + Forno 1987, Room et al. 1984<br />

Eichhornia. Neohydronomus afinis was successfully established in the Sepik River sys-<br />

tem in 1985, but its impact is yet to be recorded (Laup 1987b).<br />

THAILAND<br />

Although no introductions of biological control agents for Pistia stratiotes have been<br />

made in Thailand, the mass rearing and release of the native noctuid moth Spodoptera<br />

pectinicornis has replaced the use of herbicides for this weed. Under laboratory condi-<br />

tions mixed instar larvae at the rate of 300 or more per m2 gave as fast and effective con-<br />

trol as any herbicide. In the field a substantial initial release of larvae, followed by one or<br />

two additional releases at two-week intervals has led to complete control within 6 to 10<br />

weeks. Thus, a 4.5 km2 infestation of water lettuce was controlled in 6 weeks at Sri<br />

Nakarint Dam in 1978 and a 10 km2 infestation in 1982 (Napompeth 1982). S. pectini-<br />

cornis occurred throughout the year and in all infestations of Pistia (Suasa-Ard and<br />

Napompeth 1982).<br />

UNITED STATES<br />

Neohydronomus afinis was released in Florida in 1987, became established readily, mul-<br />

tiplied rapidly and soon spread from the release sites to cause considerable damage to<br />

water lettuce (Dray et al. 1990). In one release site the Pistia population was reduced<br />

from 50 to less than 5 acres in 2 years and, in another, a 10 acre site was virtually cleared


204 Biological Control of Weeds: Southeast Asian Prospects<br />

in 3 years. However, in a third site, little effect was noted. It was postulated that this<br />

might be due to the presence of a different genetic strain of P. stratiotes, which had a far<br />

greater seed production than that at the other two sites (Dray and Center 1992).<br />

Spodoptera pectinicornis has also been established in Florida (Center et al. 1989;<br />

Napompeth 1 990a).<br />

BOTSWANA<br />

N. afinis was released on the Linyanti R at the Selinda spillway in 1988. Excellent con-<br />

trol was achieved within 12 months (I.W. Forno pers. comm. 1993).<br />

SOUTH AFRICA<br />

Neohydronomus afinis was released in Kruger National Park and a water lettuce infesta-<br />

tion in a motionless water body was completely controlled within 10 months (Cilliers<br />

1987, 1989a,b). The weevil has been less successful on fast-flowing rivers where plants<br />

infested with weevil larvae are continually washed down stream and replaced by unin-<br />

fested plants from higher up. However, even under these circumstances, up to 90% of<br />

plants showed signs of feeding damage (Cilliers 1991 b).<br />

ZAMBIA<br />

N. afinis was already established by natural spread at Kafubu Lake when N. afinis from<br />

Zimbabwe was liberated about 1990 and by 1992 there were only scattered plants of<br />

Pistia but no mats (P.M. Room pers. comm. 1993).<br />

ZIMBABWE<br />

Neohydronomus afinis was released in 1988, was well established in 4 months and, with-<br />

in a year, water lettuce was no longer a problem in the Manyame River (Chikwenhere<br />

and Forno 1991).<br />

Major natural enemies<br />

Argentinorhynchus bmchi Coleoptera: Curculionidae<br />

This yellow spotted weevil (4.7 mm long) is known from Argentina, Bolivia, Paraguay<br />

and Uruguay (O'Brien and Wibmer 1989a,b). Although it is rare, it has the potential to<br />

cause heavy damage to water lettuce. Under laboratory conditions adults ate 1 cm2 of<br />

leaf surface per day, producing some 10 oval holes all the way through the leaf. Adults<br />

feed mostly by night and generally on medium-aged leaves. Field collected females laid<br />

on average 1575 eggs among the dense hairs on the leaf surface. Eggs hatch in 7.6 days.<br />

First instar larvae enter the leaf and feed on the spongy leaf tissue and second and third<br />

instars in the crown. Fourth instar larvae could not be reared: in the laboratory they left<br />

the plant and drowned. Adults fed and oviposited only on water lettuce and, except for<br />

slight feeding on Spirodela, of the 26 plant species tested, larvae only developed on water<br />

lettuce. In the laboratory 6 larvae per plant killed water lettuce within a month. It was<br />

suggested that egg predation may account for the rarity of A. bruchi; also that the diffi-<br />

culty experienced in rearing the fourth instar larvae may indicate that special conditions<br />

are required, lack of which may reduce survival (Cordo et al. 1978).


4.24 Pistia stratiotes 205<br />

Neohydronomus aflnis Coleoptera: Curculionidae<br />

This mottled, brown-grey weevil was earlier confused in the literature with the closely<br />

related N. pulchellus. It occurs naturally in Argentina, Brazil, Colombia, Paraguay, Peru,<br />

Uruguay and Venezuela (O'Brien and Wibmer 1989~). Adults (males 1.8 mm, females<br />

2.1 mm long) feed on the leaves of Pistia stratiotes and mine the tissues: they do not<br />

appear to attack the crown or roots. Females lay about 1 egg per day beneath the leaf epi-<br />

dermis, usually on the upper surface near the margin. Eggs hatch after 3 to 4 days and<br />

larvae tunnel through the leaf tissues to complete development in 1 1 to 14 days. Pupation<br />

occurs in small pockets in the leaf tissues and adults emerge after about 4 days. The peri-<br />

od from egg to adult varies from 4 to 6 weeks, but there are only 3 generations a year in<br />

Argentina (December, February to March and June). Overwintering probably occurs in<br />

the adult stage (DeLoach et al. 1976).<br />

N. afJinis is very destructive under laboratory conditions. Maximum damage<br />

occurred in midsummer in Argentina, when peak populations of 200 to 600 per m2 pro-<br />

duced 1.6 feeding spots per cm2 of leaf surface. Adult N. afinis are occasionally para-<br />

sitised by nematodes in Argentina (DeLoach et al. 1976).<br />

N. affinis is highly specific to water lettuce, as shown by tests in Zimbabwe<br />

(Chikwenhere and Forno 1991), South Africa (Cilliers 1989b), Florida (DeLoach et al.<br />

1976, Dray et al. 1990, Thompson and Habeck 1988, 1989) and Australia (Harley et al.<br />

1990); and also by absence of reported damage to economic plants in any of the countries<br />

to which it has been introduced.<br />

Pistiacola cretatus Coleoptera: Curculionidae<br />

This brown 2.3mm long weevil, earlier known as Onychylis cretatus, occurs in Argentina<br />

and Brazil (Wibmer and O'Brien 1989). Adults feed mainly on the upper surface of the<br />

leaves of P. stratiotes and oviposit into the leaf tissue. The slender larvae tunnel into the<br />

denser tissues of the basal third of the leaf and also into the crown. Pupation occurs with-<br />

in the spongy part of the leaf. In the field, adult P. cretatus were found only on water let-<br />

tuce (Cordo et al. 1981).<br />

Samea multiplicalis Lepidoptera: Pyralidae<br />

This brown moth with dark markings and a wingspan of about 17 mm occurs from<br />

Florida to Argentina.<br />

Up to 290 eggs are laid per female, mainly on the upper surface of the leaves. These<br />

hatch after 4 days and the larvae construct a silken canopy under which they feed, or they<br />

may tunnel into the leaves to feed on the spongy tissues: they also eat the buds. After 5 or<br />

6 instars in the course of 16 days, they pupate in silken cocoons, to emerge as adults 5<br />

days later. Adults live up to 7 days (DeLoach et al. 1979, Knopf and Habeck 1976, Sands<br />

and Kassulke 1984). S. multiplicalis has three main hosts in Florida, Pistia stratiotes,<br />

Azolla caroliniana and Salvinia rotundifolia and it may occasionally attack Eichhornia<br />

crassipes. Oviposition is highest on P. stratiotes. Although medium to large larvae fed on<br />

a number of plants under laboratory conditions, S. multiplicalis has never been reported


06 Biological Control of Weeds: Southeast Asian Prospects<br />

as a pest of cultivated plants in Argentina or Brazil (DeLoach et al. 1979). It passed strict<br />

host specificity tests in Australia, larvae completing development on l? stratiotes, Azolla<br />

pinnata and Salvinia molesta. Larvae that had fed first on S. molesta were unable to com-<br />

plete their development on water lettuce, although they produced minor leaf scars. S.<br />

multiplicalis was released in Australia, but primarily against Salvinia molesta (Sands and<br />

Kassulke 1984).<br />

Samea multiplicalis has 3 generations a year in the field in Argentina, with popula-<br />

tion peaks in December, February and May, when populations reach a maximum of 5 lar-<br />

vae per plant. In laboratory tests females laid 99.3% of their eggs on P. stratiotes. Larvae<br />

caused heavy, but sporadic, damage to water lettuce in the field. However, in most years,<br />

populations were held at low levels, apparently by parasitoids (Apanteles sp. and<br />

Podogaster sp.) (DeLoach et al. 1979). In Florida 52% parasitisation was recorded,<br />

42.7% by three species of Hymenoptera (Agathis sp., Apsilops sp. and Temelucha ferrug-<br />

inae) and 9.3% by a tachinid fly (Lixophaga sp.) (Knopf and Habeck 1976). Nosema sp.<br />

was detected in Australia in some larvae from Brazil and the culture was freed of these<br />

before release (Sands and Kassulke 1984).<br />

Spodoptera pectinicornis Lepidoptera: Noctuidae<br />

This moth ranges over an extensive area from India through Sri Lanka, Thailand and<br />

Indonesia to Papua New Guinea. Eggs are laid in masses of 70 to 120 on the undersur-<br />

face of the Pistia leaf near its edge. They hatch in 40 to 60 hours to produce pale green<br />

larvae that burrow in the leaf parallel to the longitudinal veins. After some 20 days the<br />

1.5 to 2 cm long larvae pupate, to emerge two to three days later as small silvery brown<br />

moths about lcm long (George 1963). In Thailand the period from egg to adult averaged<br />

30 days and females laid an average of 666 eggs. Host specificity tests showed that it<br />

would develop only on Pistia stratiotes (Suasa-Ard 1976). Napompeth (1990a) reports<br />

that it is relatively simple to mass rear in the laboratory and to distribute in the field.<br />

Details are available of its rearing and ecology in Thailand (Suasa-Ard 1976, Suasa-Ard<br />

and Napompeth 1978). It was mass reared and released in Florida after tests showed that<br />

it was sufficiently host specific (Center et al. 1989, Napompeth 1990a).<br />

Comment<br />

Pistia stratiotes is seldom more than a minor component of the floating weed mass when<br />

either Eichhornia crassipes or Salvinia molesta or both are present. However, when it<br />

occurs alone or when the strong competition from these two weeds is greatly reduced by<br />

their effective biological control, water lettuce can increase rapidly to occupy the vacated<br />

water surface. Since damaging biological control agents are available for all three weeds,<br />

it is sensible to embark on a biological control program for them all, either at the same<br />

time or in sequence.<br />

Adequate biological control of water lettuce has been achieved by the introduction<br />

of the weevil Neohydronomus alone. However, if an even greater degree of control is<br />

desired, there are, in South America, additional species of weevil and also several moths


4.24 Pistia stratiotes 207<br />

that appear to be well worthwhile investigating further. This is particularly so, as some<br />

are known to be heavily attacked by natural enemies and, if introduced without these,<br />

would be expected to be even more effective.<br />

It can be concluded with some confidence that water lettuce is a promising candi-<br />

date for biological control.


208 Biological Control of Weeds: Southeast Asian Prospects<br />

Portulaca oleracea<br />

(after Holm et a/. 1977)


Map 4.25 Portulaca oleracea<br />

4.25 Portulaca oleracea 209<br />

Portulaca oleracea is a serious weed throughout tropical, subtropical and temperate<br />

areas, attaining high overall pest status more because of its very widespread importance<br />

than by being amongst the top few weeds in any one country.<br />

About 14 of the 140 or so species of insects that are known to attack it appear to<br />

be restricted to the genus Portulaca and probably several to P. oleracea or its very close<br />

relatives. In their native ranges 4 leaf-mining or gall-forming flies, 1 leaf-mining moth, 1<br />

leaf-mining sawfly and 2 weevils all cause considerable damage and show high specifici-<br />

ty to P. oleracea.<br />

If this group of phytophagous insects is not already present, the establishment of<br />

several without their own natural enemies should lead to a significant lowering in the<br />

weed status of I? oleracea.<br />

Portulaca oleracea is an attractive target for an attempt at biological control.


210 Biological Control of Weeds: Southeast Asian Prospects<br />

4.25 Portulaca oleracea L.<br />

Portulacaceae<br />

pigweed, purslane; gelang, krokot (Indonesia); gelang pasir, segan (Malaysia);<br />

phak bia yai (Thailand), mya byit, mye byet (Myanmar); kbet choun (Cambodia);<br />

golasiman, ulasiman (Philippines), rau Sam (Vietnam)<br />

Rating<br />

+++ Phil<br />

10 ++ Thai<br />

+ Myan, Viet, Msia, Sing, Indo<br />

Much of the material in this dossier is summarised from the account in Waterhouse<br />

(1993b).<br />

Origin<br />

Uncertain; possibly Central America, but see comment.<br />

Distribution<br />

Very widespread in tropical, subtropical and temperate regions of the world, including<br />

Southeast Asia, Australia and the Pacific.<br />

Characteristics<br />

Pigweed is a fleshy annual herb, reproducing by seed, or by stem-fragments rooting<br />

when lying on moist soil. The stems are succulent, often reddish and 0.2 to 0.5 m in<br />

length. The stems and leaves are smooth and fleshy and form mats. In sunlight the plants<br />

are prostrate, but in partly shaded situations they may attain a height of 0.5 m. The leaves<br />

are alternate, flowers are yellow, sessile, self-pollinated and either occur singly, or sever-<br />

al may occur together, in the leaf clusters at the ends of branches. They open on sunny<br />

mornings and later produce numerous tiny (0.5 mm diameter) black seeds.<br />

Importance<br />

P. oleracea was ranked 9th of the world's worst weeds, being recorded in 45 crops in 81<br />

countries (Holm et al. 1977). With a rating of 10 in Southeast Asia, it ranked equal 32nd<br />

in the region; also 6th in the Pacific and 49th in Australia (Waterhouse 1993a,b). In<br />

Southeast Asia, it is particularly important in many upland crops, including vegetables,<br />

rice, maize, sorghum, groundnuts and sugarcane. It is drought hardy, colonising waste<br />

places and bare areas but thrives in moist fertile soils. There are many ecological types,<br />

some of which are occasionally used as a vegetable. In the Philippines up to 10000 and<br />

in Norih America up to 243 000 seeds are produced per plant. The tiny seeds are spread<br />

by wind, water, as a contaminant of the seeds of crops and by birds, surviving passage<br />

through the digestive tract. They also survive burial for long periods and germinate best<br />

above 30°C, but poorly below 24°C.


4.25 Portulaca oleracea 211<br />

Pigweed does not compete well with other weeds. It is successful because it estab-<br />

lishes rapidly after soil disturbance and may flower and seed before being outcompeted<br />

by taller plants. The succulent leaves and stems are rich in oxalates and nitrates and have<br />

been implicated in livestock deaths. The succulent leaves of some strains have been used<br />

as human food (Miyanishi and Cavers 1980).<br />

Natural enemies<br />

The 138 insect species that have been recorded attacking P. oleracea were listed by<br />

Waterhouse (1993b), most of them from Central and South America (Bennett and<br />

Cruttwell 1972) and USA (Romm 1937). A few additional records are now listed in table<br />

4.25.1. Most of these species are known to be (or suspected of being) polyphagous and<br />

many are pests. Nevertheless, table 4.25.2 lists 14 insects that, so far as known, are<br />

restricted to P. oleracea, or at least to the genus Portulaca. Eight of these appear to have<br />

originated in the Americas, 2 each in Africa and India, and 1 each in France and<br />

Southeast Asia. With the exception of the weevil Ceutorhynchus portulacae, described<br />

from P. oleracea in Java, there do not appear to be any reports of native insects which<br />

might possibly be restricted to pigweed in Southeast Asia, the Pacific or Australia.<br />

Table 4.25.1 Natural enemies of Portrclaca oleracea: additional insect records to those<br />

of Waterhouse (1 993b).<br />

Species Country Other hosts References<br />

Hemiptera<br />

APHlDlDAE<br />

Myzus persicae<br />

ClCADELLlDAE<br />

Circulifer haematoceps<br />

Orosius orientalis<br />

(= 0. albicinctus)<br />

LYGAEIDAE<br />

Nysius cymoides<br />

Nysius vinitor<br />

Coleoptera<br />

CURCULIONIDAE<br />

Hypurus bertrandi<br />

Diptera<br />

AGROMYZIDAE<br />

Liriomyza caulophaga<br />

Liriomyza trifolii<br />

1<br />

Australia polyphagous author's record<br />

Israel polyphagous Klein & Raccah 1991<br />

India polyphagous Kooner & Deol 1982<br />

Italy jojoba Parenzan 1985<br />

Australia polyphagous Elshafie 1976, Ramesh &<br />

Laughlin 1984<br />

Australia, India, specific R.E. McFadyen pers. comm.<br />

Guam, Northern 1993,Zaka-ur-rab 199 1,<br />

Marianas Zimmerman 1957<br />

Australia Beta vulgaris R.E. McFadyen pers. comm.<br />

var. cicla 1993<br />

USA polyphagous Chandler & Chandler 1988<br />

(continued on next page)


212 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.25.1 (continued)<br />

Species Country Other hosts References<br />

Lepidoptera<br />

NOCTU IDAE<br />

Agrotis ipsilon India polyphagous Das & Ram 1988<br />

Neogalea (= Spodoptera)<br />

sunia Nicaragua polyphagous Savoie 1988<br />

Spodoprera eridania Nicaragua polyphagous Savoie 1988<br />

Spodoptera exigua Nicaragua polyphagous Savoie 1988<br />

PY RALl DAE<br />

Loxostege bijdalis N. America cotton Allyson 1976<br />

The host specificity has been investigated of 5 of the 6 species of Diptera,<br />

Lepidoptera and Hymenoptera listed in table 4.25.2, but, except for Baris arctithorax and<br />

Hypurus bertrandi, both of which appear to be adequately specific (see later), little is<br />

known about that of the 8 weevils.<br />

Several of the fungi listed in table 4.25.3 are reported to damage P. oleracea, some-<br />

times severely (Waterhouse 1993b), but too little is known about host specificity or host<br />

specific strains to evaluate their possible role as classical biological control agents.<br />

Nevertheless their specificity certainly merits investigation should the need arise.<br />

Attempts at biological control<br />

There have been no attempts to establish natural enemies as biological control agents for<br />

P. oleracea. However three insect species have appeared in countries well out of their<br />

native range, in particular the European weevil Hypurus bertrandi, but also the American<br />

sawfly Schizocerella pilicornis and the American leaf-mining fly Haplopeodes palliatus.<br />

These successful, unassisted establishments suggest that there should be little difficulty<br />

in securing assisted establishments elsewhere. Unfortunately there is no information<br />

available on what effects, if any, these three insects have had on P. oleracea in their new<br />

countries, but it is suspected that a group of species may be required to secure substantial<br />

effects in Australia.<br />

The sawfly Schizocerella pilicornis appeared in eastern Australia (Queensland and<br />

New South Wales) in the early 1960s; (Benson 1962, Krombein and Burks 1967) but<br />

there are no records of it building up in sufficient numbers to cause serious damage. In<br />

1993 Hypurus bertrandi and Liriomyza caulophaga were bred from P. oleracea leaves in<br />

Brisbane (R.E. McFadyen pers. comm.), but numbers were too low to cause serious dam-<br />

age. It is not known whether these species have only become established recently.<br />

L. caulophaga was previously known only from Beta vulgaris var. cicla (silverbeet) in<br />

Australia. Larvae tunnel in the soft white spongy tissue between the vascular strands in<br />

the leaf petioles and midribs and pupate there (Kleinschmidt 1960, 1970, Spencer 1990).<br />

EGYPT<br />

Tawfik et al. (1976) recorded Hypurus bertrandi attacking P. oleracea.<br />

GUAM AND THE NORTHERN MARIANA IS.<br />

Zimmerman (1957) records Hypurus bertrandi from Guam, Tinian, Saipan and Agrihan,<br />

some of the specimens from Saipan being taken from the crops of swifts.


4.25 Portulaca oleracea 213<br />

Table 4.25.2 Insects restricted to R oleracea or at least to the genus Portulaca (after<br />

Waterhouse 1993b).<br />

Species Distribution References<br />

Coleoptera<br />

CURCULlONlDAE<br />

Apion sp.<br />

Baris arctithorax<br />

Baris lorata<br />

Baris portulacae<br />

Ceutorhynchus oleracae<br />

Ceutorhynchus portulacae<br />

Hypurus bertrandi<br />

Linogeraeus (= Centrinaspis)<br />

perscitus<br />

Diptera<br />

AGROMYZIDAE<br />

Haplopeodes palliatus<br />

ANTHOMYIIDAE<br />

Pegornya dolosa<br />

CEClDOMYllDAE<br />

Asphondylia portulacae<br />

Lasioptera portulacae<br />

Neolasioptera portulacae<br />

Lepidoptera<br />

HELlODlNlDAE<br />

Heliodines quinqueguttata<br />

Hymenoptera<br />

TENTHREDINIDAE<br />

Schizocerella pilicornis<br />

Brazil<br />

Egypt<br />

Sudan<br />

India<br />

Java<br />

India<br />

Puerto Rico,<br />

France,<br />

Egypt,<br />

USA, Hawaii, Marianas,<br />

Australia<br />

Colombia, Trinidad, USA<br />

Australia, USA<br />

Trinidad<br />

El Salvador, Argentina,<br />

Colombia, Bolivia,<br />

Leeward Is, St Kitts<br />

Nevis, Montserrat, Jamaica<br />

USA<br />

Cuba, Florida, St Vincent<br />

Trinidad, St Kitts Nevis,<br />

Trinidad,Montserrat<br />

Puerto Rico<br />

California, Mexico<br />

USA, Australia<br />

Argentina to USA<br />

d'Araujo e Silva et al. 1968a,b<br />

Tawfik et al. 1976<br />

Marshall 19 1 1<br />

Marshall 19 16<br />

Marshall 1935<br />

Marshall 1916<br />

Wolcott 1948<br />

Tempsre 1943<br />

Tawfik et al. 1976<br />

Clement and Norris 1982<br />

RE McFadyen pers. comm. 1993,<br />

Zimmeman 1957<br />

Bennett and Cruttwell 1972,<br />

Romm 1937<br />

R.E. McFadyen pers. comm.<br />

1993, Romm 1937<br />

Bennett and Cruttwell 1972<br />

Cruttwell and Bennett 1972a<br />

Gagnt 1968,<br />

Bennett and Cruttwell 1972<br />

Felt 191 1<br />

GagnC 1968<br />

Bennett and Cruttwell 1972<br />

Bennett and Cruttwell 1972,<br />

Cruttwell and Bennett 1972b<br />

Wolcott 1948<br />

Bennett and Cruttwell 1972<br />

Krombein and Burks 1967<br />

Muesebeck et al. 195 1


214 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.25.3 Natural enemies of Portulaca oleracea: fungi, viruses and nematodes.<br />

Species Country Other hosts References<br />

FUNGI<br />

AIbugo portulacae<br />

AIbugo portulacearum<br />

Ascochyta portulacae<br />

Bipolaris (= Drechslera)<br />

indica<br />

Cercospora portulacae<br />

Cercosporella dominicana<br />

Dendrographium<br />

lucknowense<br />

Dichotomophthora indica<br />

(= D. lutea)<br />

Dichotomophthora<br />

portulacae<br />

Helminthosporium<br />

(Bipolaris) portulacae<br />

Phoma sp.<br />

Phytophthora palmivora<br />

Polymyxa betae f. sp.<br />

portulacae<br />

VIRUSES<br />

anemone brown ring<br />

aster yellows<br />

beet curly top<br />

chili vein banding<br />

clover big vein<br />

cucumber mosaic<br />

groundnut rosette<br />

tobacco broad ring spot<br />

tobacco etch<br />

tobacco mosaic<br />

tobacco streak<br />

NEMATODES<br />

Criconemella xenoplax<br />

Ditylenchus dipsaci<br />

Helicotylenchus indicus<br />

Helicotylenchus<br />

multicinctus<br />

Heterodera glycines<br />

Europe, Africa,<br />

Asia, Americas<br />

Poland<br />

USSR<br />

USA<br />

India<br />

Dominica<br />

India<br />

IMI 1992, Miyanishi &<br />

Cavers 1980<br />

IMI 1992<br />

IMI 1992<br />

many, including Evans 1987,<br />

Amaranthus spinosus Kenfield et al. 1989<br />

IMI 1992<br />

IMI 1992<br />

IMI 1992<br />

USA, West Indies, Helianthus,<br />

Europe, India Pennisetum<br />

Europe, Sudan, tarragon, cactus,<br />

Hawaii, capsicum,<br />

California, Glycine max<br />

Jamaica<br />

Venezuela<br />

USA Portulaca grandifora<br />

France tarragon<br />

Sarawak pepper and several<br />

weeds<br />

Bulgaria, Japan sugar beet, wheat,<br />

many weeds<br />

Hawaii<br />

Hawaii<br />

Hawaii<br />

Hawaii<br />

Hawaii<br />

Bulgaria<br />

Hungary<br />

USA<br />

Malawi<br />

Hawaii<br />

Hawaii<br />

Philippines<br />

Hawaii<br />

anemone<br />

aster<br />

sugar beet<br />

chili<br />

clover<br />

many economic<br />

plants<br />

cucumber, tobacco<br />

groundnut<br />

tobacco<br />

tobacco<br />

many<br />

tobacco<br />

Baudoin 1986, IMI 1992,<br />

Rao 1966<br />

Vegh & Le Berre 1984<br />

Klisiewicz 1985,<br />

Klisiewicz et al. 1983,<br />

Mehrlich & Fitzpatrick 1935<br />

Mitchell 1986<br />

IMI 1992, Rader 1948,<br />

Strider & Chi 1984<br />

Vegh & Le Berre 1984<br />

Anon 1979<br />

Abe & Ui 1986,<br />

Vrbanov & Krumov 1989<br />

Holm et al. 1977<br />

Holm et al. 1977<br />

Holm et al. 1977<br />

Holm et al. 1977<br />

Holm et al. 1977<br />

Dikova 1989,<br />

Nasser & Basky 1988,<br />

Dodds & Taylor 1980<br />

Adams 1967<br />

Holm et al. 1977<br />

Holm et al. 1977<br />

Eugenio & del Rosario 1962<br />

Holm et al. 1977<br />

USA many legumes and Zehr et al. 1990<br />

other plants<br />

USSR polyphagous Kholod 1983<br />

India polyphagous Rahman & Khan 1986<br />

Brazil, Ivory banana Luc et al. 1990,<br />

Coast Zem & Lordello 1983<br />

Colombia soybean Quintero et al. 1988<br />

I (continued on next page)


4.25 Portulaca oleracea 215<br />

Species Country Other hosts References<br />

Heterodera rnarioni<br />

Hoplolairnus indicus<br />

Meloidogyne sp.<br />

Meloidogyne arenaria<br />

Meloidogyne hapla<br />

Meloidogyne incognita<br />

Meloidogyne javanica<br />

Pratylenchus rninutus<br />

Pratylenchus sp.<br />

Radopholus sirnilis<br />

Rotylenchulus reniforrnis<br />

Tylenchorhynchus<br />

brassicae<br />

Hawaii<br />

USA<br />

Cuba<br />

USA<br />

Hungary<br />

India, USA,<br />

Philippines<br />

India<br />

Hawaii<br />

Ivory Coast<br />

Ivory Coast<br />

India, USA,<br />

Hawaii<br />

India<br />

eggplant, tomato<br />

coffee<br />

tobacco<br />

several weeds<br />

polyphagous<br />

polyphagous<br />

Musa sp.,<br />

several weeds<br />

ornamentals and<br />

many weeds<br />

polyphagous<br />

Linford & Yap 1940<br />

Rahman & Khan 1986<br />

Izquierdo et al. 1987<br />

Tedford & Fortnum 1988<br />

Dabaj & Jenser 1990<br />

Maqbool et al. 1986,<br />

Tedford & Fortnum 1988,<br />

Valdez 1968<br />

Maqbool et al. 1986<br />

Linford et al. 1949<br />

Luc et al. 1990<br />

Luc et al. 1990<br />

Heald et al. 1974,<br />

Inserra et al. 1989<br />

Khan & Khan 1985<br />

Linford & Yap 1940<br />

Rahman & Khan 1986<br />

HAWAII<br />

Pigweed was established in Hawaii prior to 187 1 (Hillebrand 1888). Hypurus bertrandi,<br />

originally misidentified as Ceutorhynchus sp., was reported in 1950 to be numerous<br />

enough in many cases to defoliate P. oleracea and to cause it to collapse as if sprayed<br />

with a herbicide (Bianchi 1955). Nevertheless, in 1992, Hawaiian weed scientists considered<br />

it as one of their worst weeds (W.C. Mitchell pers. comm. 1992), so the control<br />

exerted by H. bertrandi and v'arious non-specific insects is clearly insufficient.<br />

Zimmerman (1957) postulates that H. bertrandi was introduced from the Marianas to<br />

Hawaii, possibly with war material being returned from the battlefields. However it is<br />

more likely to have moved in the reverse direction.<br />

INDIA<br />

Zaka-ur-rab (1991) records Hypurus bertrandi as one of the leaf-mining weevils of the<br />

Indian subcontinent.<br />

PUERTO RlCO<br />

Wolcott (1948) recorded H. bertrandi from Puerto Rico, but no other information is<br />

available.<br />

Major Natural Enemies<br />

Summarised below is what is known of the biology of nine of the natural enemies listed<br />

in table 4.25.2.<br />

Apion sp. Coleoptera: Curculionidae<br />

Apion sp. produces galls in the flower buds of P. oleracea in Brazil (d'Araujo e Silva et<br />

al. 1968a,b) and Apion larvae also cause significant damage by gall formation in flowers<br />

in northern Argentina (Bennett and Cruttwell 1972, Bennett pers. comm. 1992).


216 Biological Control of Weeds: Southeast Asian Prospects<br />

Asphondylia portulacae Diptera: Cecidomyiidae<br />

Oviposition by this flower gall midge into the very small pigweed buds causes them to<br />

develop abnormally. Usually only one larva develops per bud and occupies a chamber in<br />

the swollen receptacle. Galled flowers do not produce seed. A. portulacae is heavily<br />

attacked by parasitoids (Bennett and Cruttwell 1972) and might be an important natural<br />

enemy if freed from them. The genus Asphondylia is considered to be highly host specif-<br />

ic and 52 of its 54 species are known from only a single host. Each of the two exceptions<br />

only attacks two plants of the same genus and Bennett and Cruttwell (1972) suggested,<br />

on the basis of this information, that host specificity testing was unnecessary.<br />

Baris arctithorax Coleoptera: Curculionidae<br />

In Egypt this weevil forms stem galls on pigweed, but is not known from any economic<br />

plant. Eggs are laid singly in cavities gnawed in the stem by the female, leading to the<br />

production of single closed galls in which the larvae feed. Pupation occurs in the soil.<br />

Young infested plants produce weak vegetative growth, few seeds and may even be<br />

killed. Adult weevils feed on the surface of leaves causing white blotches or holes. At<br />

temperatures from 25 to 30°C the development time from egg to adult is about 40 days.<br />

Infestations of up to 74% of plants are recorded in summer and a peak of 95% in autumn<br />

(Awadallah et al. 1976, Tawfik et al. 1976).<br />

Haplopeodes palliatus Diptera: Agromyzidae<br />

The genus Haplopeodes contains 13 species, all from the Americas and known on only<br />

four plant families-Portulacaceae (1 species) Amaranthaceae (3 species),<br />

Chenopodiaceae (2 species) and Solanaceae (8 species) (Spencer 1990). Each appears to<br />

be specific to a single genus and H. palliatus is known only from l? oleracea. It is a typi-<br />

cal leaf miner.<br />

Heliodines quinqueguttata Lepidoptera: Heliodinidae<br />

Eggs, which are laid singly or in groups of up to 6, hatch in 5 to 6 days and larvae wan-<br />

der some distance over the plant before mining into a leaf, stem or seed capsule. After 7<br />

to 8 days the fifth instar larva leaves the mine and pupates within a flimsy silk cocoon<br />

attached to the stems or leaves of the plant. Larvae are attacked by a braconid endopara-<br />

sitoid, Pholetesor (= Apanteles) sp. (circumscriptus group).<br />

Host specificity tests were carried out on a wide variety of economic and non-<br />

economic plants, but development was completed only on Portulaca oleracea, P. pilosa<br />

(also weedy) and the ornamental P. grandiflora. However, in the field in Trinidad, neither<br />

P. pilosa nor P. quadriJida (also weedy) were attacked and l? grandiflora was not grown.<br />

There appear to be no records of Heliodines species attacking crops and each species<br />

appears to be restricted to a single plant family. Cruttwell and Bennett (1972b) suggested,<br />

therefore, that it should be considered as a biological control agent.<br />

Hypurus bertrandi Coleoptera: Curculionidae<br />

This tiny (2mm long) weevil has spread unaided from its native France to Egypt (prior to<br />

1926) (Hoffman and Tempbre 1944, Tawfik et al. 1976), Puerto Rico (Wolcott 1948),<br />

Hawaii (1950) (Davis 1955, Maehler 1954), Guam and the Northern Marianas


4.25 Portulaca oleracea 217<br />

(Zimmerman 1957), California (1980) and Queensland (1993) (R.E. McFadyen pers.<br />

comm.).<br />

Eggs are deposited singly and larvae mine the leaves. Infested leaves wilt and fall;<br />

and the larvae then migrate to fresh leaves, each destroying four or five in its lifetime. If<br />

no undamaged leaves are available the outer tissues of stems are attacked. Pupation<br />

occurs in a cell formed by soil particles cemented by fecal secretion and, in France,<br />

adults overwinter under the bark of trees. Adults feed on leaf margins, stems and devel-<br />

oping seed capsules. Development is rapid, from egg to adult in 10 days at 32.2OC and<br />

under 16 hours light. Z? oleracea is its only reported host plant. In France it is parasitised<br />

by a number of wasps (Tawfik et al. 1976, Clement and Norris 1982, Hoffmann and<br />

Tempbre 1944, Norris 1 985, Tempbre 1943, 1 944, 1950).<br />

Neolasioptera portulacae Diptera: Cecidomyiidae<br />

Oviposition in the stem by this midge leads to globular galls up to 1.5 cm in diameter,<br />

each containing up to 10 larvae. Galls retard or prevent growth and also flower and seed<br />

production. In open, infertile sites every pigweed stem may be infested but, in vigorous<br />

growth or in shaded sites, the level of attack is usually very low. The larvae are heavily<br />

attacked by parasitoids.<br />

All except one of the 51 species of Neolasioptera are restricted to one plant genus<br />

and the remaining species only attacks two plant genera. This was taken by Bennett and<br />

Cruttwell (1972) to indicate that N. portulacae is sufficiently host specific to be<br />

employed for biological control.<br />

Pegomya dolosa Diptera: Anthomyiidae<br />

Eggs are laid singly on the underside of the pigweed leaf and hatch after about 3 days.<br />

The larvae are leaf miners, devouring the contents of the leaf and then leaving to enter<br />

another. Two or more leaves are commonly destroyed by each larva. After feeding for<br />

about 7 days larvae leave to pupate in the soil, later emerging as 3 to 4 mm long adults.<br />

Eggs are parasitised and larvae are attacked by a pteromalid wasp.<br />

Schizocerella pilicornis Hymenoptera: Tenthredinidae<br />

This leaf-mining sawfly occurs naturally over a very wide range from Argentina and<br />

Brazil to USA (Muesebeck et al. 195 1). It appeared unaided in eastern Australia (Benson<br />

1962, Krombein and Burks 1967). There are two biotypes. The larvae of one which is<br />

widespread in USA mines the leaves, whereas those of the other (from Mississippi north-<br />

wards) feeds externally on the leaves.<br />

Females mate soon after emergence and lay up to 40 eggs singly in the edges of the<br />

leaves. The larvae mine the leaves, damaging each to the point of collapse before moving<br />

to another. At least two leaves are destroyed by each larva. The mature larvae enter the<br />

soil and spin cocoons. The life cycle can be completed in 13 days and there are a number<br />

of generations each year (Clement and Norris 1982, Gorske et al. 1976). In California<br />

prepupae in diapause overwinter in the soil. Adults live for a day and do not feed. In<br />

California up to 84% of Z? oleracea leaves were severely damaged, leading to defoliation<br />

and sometimes death of the plant. When Z? oleracea was protected by insecticide from<br />

both S. pilicornis and Hypurus bertrandi it produced about four times as much seed as


218<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

unprotected plants, although the latter still produced enough (4000 to 5000/m2/day) to<br />

maintain a high seed bank in the soil (Force 1965, Garlick 1922, Gomes de Lima 1968,<br />

Gorske et al. 1977, Norris 1985, Webster and Mally 1900).<br />

S. pilicornis has not been recorded from any economic plant and, in starvation tests,<br />

was only able to feed on P. oleracea and the related Montia perfoliata (Gorske et al.<br />

1976). A microsporidan, Nosema pilicornis causes high mortality in infected S. pilicornis<br />

larvae in USA and should be eliminated during any transfer of the sawfly to new areas<br />

(Gorske and Maddox 1978).<br />

Comment<br />

It is generally believed that, through coevolution, there are likely to be a number of spe-<br />

cific (or nearly specific) natural enemies of an organism in its area of origin.<br />

Furthermore, that not all such organisms will have accompanied their host when it has<br />

moved outside its area of origin. If this generalisation is applied to P. oleracea it can be<br />

seen that 8 of its 14 specific (or nearly specific) natural enemies are of American origin<br />

but no more than 2 from any other region of the world (Table 4.25.2). The inference from<br />

this is that P. oleracea is probably of American origin, an inference supported by the<br />

finding of seeds in Louisiana, Illinois and Kentucky dating between lOOOBC and 750AD<br />

and pollen and seeds in Ontario sediments dating back to 1350AD (Miyanishi and Cavers<br />

1980). This suggests that, if it is desired to evaluate insects additional to those listed in<br />

table 4.25.2, they should first be sought from the Americas and possibly from amongst<br />

those listed by Waterhouse (1993b).<br />

The family Portulacaceae is relatively small with 20 genera and about 250 species<br />

worldwide, of which the genus Portulaca contains about half (West 1990). Very few<br />

Portulacaceae are cultivated: Portulaca grandiflora as a brightly flowering garden plant,<br />

Talinum paniculatum and T. triangulare as pot herbs (but they are sometimes regarded as<br />

weeds), Montia fontana for salads, Lewisia spp. as rockery plants and Anacampseros as a<br />

succulent; but these are not considered to be of great economic importance (Cruttwell<br />

and Bennett 1972a).<br />

From what is known about the biology of the insects in table 4.25.2 it appears that,<br />

if a group of them is established in a new country without their own natural enemies,<br />

they should cause serious damage to l? oleracea and significantly reduce its competitive-<br />

ness and seed production.


220 Biological Control of Weeds: Southeast Asian Prospects<br />

Rottboellia cochinchinensis<br />

(after Holm eta/. 1977)


Map 4.26 Rottboellia cochinchinensis<br />

4.26 Rottboellia cochinchinensis 221<br />

Rottboellia cochinchinensis<br />

Rottboellia cochinchinensis is probably of Southeast Asian or Indian origin, although one<br />

biotype may have evolved in East Africa. Very little is known of its insect enemies in<br />

these regions and they certainly merit investigation. Current research on fungal<br />

pathogens indicates that Sporisorium ophiuri is a potential agent for the Americas and<br />

other regions where it does not yet occur.<br />

If preliminary surveys for specific insect enemies in Asia and Africa support a<br />

Southeast Asian origin it is unlikely to be an attractive early target for classical biological<br />

control in this region.


222 Biological Control of Weeds: Southeast Asian Prospects<br />

4.26 Rottboellia cochinchinensis (Lour.) W.D. Clayton<br />

(= Rottboellia exaltata)<br />

Poaceae<br />

itch grass; myet ya, myet ya nge (Myanmar), branjangan (Indonesia), aguitigay<br />

(Philippines), yaa prong khaai (Thailand)<br />

Rating<br />

+++ Indo, Phil<br />

12 ++ Thai<br />

+ Myan, Laos, Viet, Msia<br />

Origin<br />

Uncertain but probably India to Southeast Asia; one biotype in East Africa.<br />

Distribution<br />

Worldwide, and weedy between 23' north and south latitudes (Holm et al. 1977).<br />

Formerly known as Rottboellia exaltata. Two biotypes have been recognised in USA and<br />

at least five in the Philippines (Fisher et al. 1987). The origin of R. cochinchinensis has<br />

not been completely resolved. It is said to be native to India (Holm et al. 1977), but in his<br />

survey of fungal pathogens and their specificity (or lack of it) Evans (pers. comm. 1992)<br />

was led to the conclusion that it may be Southeast Asia; and furthermore, that there is a<br />

distinct East African biotype, with possibly specific natural enemies of its own. It is<br />

interesting that, of the 14 Kenyan tribes visited by Ellison and Evans (1990), 13 had a<br />

separate and specific vernacular name for itch grass. Although it was a common weed<br />

and dense stands occurred at the edge of fields and along roadsides, control was achieved<br />

by early season hoeing and none of the farmers suggested it was a major problem. This<br />

evidence was taken as reinforcing the theory that East Africa is the centre of origin at<br />

least of the local biotype of the weed.<br />

Characteristics<br />

R. cochinchinensis is a tall, erect, strongly tufted, annual grass growing to 3 m. It has stilt<br />

roots. Its leaves and stems have long, sharp, fragile, siliceous, irritating hairs that break<br />

off in the flesh on contact. The inflorescence is a single cylindrical spike.<br />

Importance<br />

It is an aggressive C4, annual grass of 18 tropical and subtropical crops in 28 countries,<br />

including maize, rice, sorghum, soybeans and sugarcane. The heaviest infestations occur<br />

in the Caribbean, Central America, and parts of South America, to which it is a relatively<br />

recent introduction; also a widespread weed in southern Africa. It is an important weed in<br />

sugarcane, maize and upland rice in the Philippines. It is often a primary coloniser of dis-<br />

turbed land. It flowers all year round. Reproduction is by seed and up to 8000 may be


4.26 Rottboellia cochinchinensis 223<br />

produced per plant. The seed is about the size of a rice grain and is not easily separated<br />

from intermingled rice grains. Some seeds germinate immediately, whereas others lie<br />

dormant for varying periods, sometimes years. Buried seeds may germinate and emer-<br />

gence take place from a depth of 15 cm. It is common in open, well-drained places, but<br />

also grows in wet places and even in shallow water. It commonly occurs on contour<br />

banks and roadsides. It prefers sunny or no more than moderately shaded situations, but<br />

can grow in deep shade. Its many needle-like hairs deter hand removal of older plants,<br />

since the hairs penetrate hands and clothing and result in painful infections.<br />

R. cochinchinensis is sometimes grazed and used for green fodder, although avoided<br />

at times by some animals because of its sharp hairs.<br />

Natural enemies<br />

Fungi are the only natural enemies (Tables 4.26.1 to 4.26.3) for which there is any rea-<br />

sonably comprehensive information. Fungi have been surveyed and their specificity is<br />

being examined in a joint International Institute of Biological Control and Long Ashton<br />

Research Station project covering East Africa, South America, India, Nepal, Sri Lanka<br />

and Thailand (Ellison 1992, Ellison and Evans 1990, 1993, Evans 1991, Natural<br />

Resources Institute 1992).<br />

As indicated earlier, R. cochinchinensis shows high biotype variation between coun-<br />

tries and this is correlated with varying levels of susceptibility to different fungal isolates.<br />

Also, a clear positive correlation was found between high pathogen virulence and inade-<br />

quate specificity to itch grass (Ellison 1992). Maize (Zea mays) proved to be the crop<br />

species most at risk from itch grass pathogens, which is not surprising in view of the<br />

close evolutionary relationship of the two genera involved. This suggests that the use of<br />

fungi for classical biological control of itch grass may not show great promise, but that<br />

their use as mycoherbicides might prove effective. All except one of the fungi from tropi-<br />

cal America that have been tested are non-specific to itch grass and most are local<br />

pathogens that have transferred from local grasses (Evans 1987). In Kenya, in addition to<br />

at least 10 non-specific fungi attacking itch grass, a head smut, Sporisorium<br />

(= Sphacelotheca) ophiuri was found, which appears to be restricted to Rottboellia and<br />

the closely related genus Chasmopodium (Ellison and Evans 1990, Zundel 1953).<br />

S. ophiuri is recorded as occurring in East Africa, Sri Lanka, Philippines and<br />

Thailand, but apparently not in the Americas. It is often locally damaging, significantly<br />

reducing vigour and virtually eliminating seeding. Its host specificity is under detailed<br />

investigation (Ellison and Evans 1993, Evans 1991) as a potential candidate for classical<br />

biological control for areas where it does not already occur. In an annual weed where<br />

seeds are the only means of propagation, a destructive seed head disease, such as S. ophi-<br />

uri, is a highly promising biological control agent (Evans 1991).<br />

A Curvularia isolate from Trinidad proved highly damaging to itch grass, while not<br />

damaging rice, maize, sugarcane or pearl millet (Evans 1991). A Curvularia from<br />

Somalia was able to kill R. cochinchinensis in a few days, but was also able to infest<br />

maize. However the crop readily recovered (Ellison 1992). If further tests confirm its<br />

specificity, it may be a potential biological control agent. The same applies to Puccinia


224 Biological Control of Weeds: Southeast Asian Prospects<br />

rottboelliae about which less is recorded (Evans 1987). Special attention is now being<br />

paid to the possibility of developing preparations of one or more of these fungi as a<br />

mycoherbicide. An isolate from Thailand of Colletotrichium sp. which appears to be spe-<br />

cific to itch grass has been selected from 900 fungal samples and field trials have already<br />

demonstrated that an appropriate formulation has potential against this weed, particularly<br />

when combined with low doses of herbicide (Ellison 1992, Ellison and Evans 1993,<br />

Natural Resources Institute 1992).<br />

Surprisingly few insects (Table 4.26.1) have been recorded attacking itch grass and<br />

only one unidentified gall midge recorded in India from Rottboellia compressa (Barnes<br />

1946) might, if it attacks R. cochinchinensis also, be specific enough to be a candidate<br />

agent. It is regrettable that parallel observations were not made on insects during the<br />

extensive fungal surveys. In East Africa a stem borer, a lepidopteran leaf feeder and a fly<br />

larva all proved to be non-specific graminaceous feeders (H.C. Evans pers. comm. 1992,<br />

1993).<br />

R. cochinchinensis is an alternative host for a number of viruses, almost all of them<br />

serious diseases of maize (Table 4.26.3). It is surprising that the only record encountered<br />

dealing with nematodes related to a study of 16 plant parasitic species attacking sugar-<br />

cane in the Philippines. This found that itch grass was not infected by Meloidogyne sp.<br />

(Reyes and Beguico 1978).<br />

Comment<br />

Rottboellia belongs to the same grass tribe (Andropogoneae), but not to the same sub-<br />

tribes, as Saccharum, Sorghum and Zea (Table 4.26.4). This suggests that candidates for<br />

classical biological control of this weed will have to pass extensive host specificity test-<br />

ing against all of the crop and pasture grasses belonging to these and related genera<br />

before being considered for release.<br />

Table 4.26.1 Natural enemies of Rottboelliu cochinchinensis: insects.<br />

Species Location Other hosts References<br />

Orthoptera<br />

GRYLLIDAE<br />

Euscyrtus concinnus Philippines Eleusine indica, Barrion & Litsinger 1980<br />

Dactylocteniurn<br />

aegyptiurn, Cyperus<br />

rotundus, Digitaria<br />

sanguinalis<br />

Pteronernobius sp. Sierra Leone Alghali & Domingo 1982<br />

Hemiptera<br />

APHlDlDAE<br />

Myzus persicae Peru a very wide range Ortiz 198 1<br />

Uroleucon (= Dactynotus)<br />

. ambrosiae USA sorghum, maize Koike 1977<br />

I<br />

(continued on next page)


4.26 Rottboellia cochinchinensis 225<br />

Species Location Other hosts References<br />

CICADELLIDAE<br />

Nephotettix nigrornaculatus Sierra Leone<br />

DELPHACIDAE<br />

Peregrinus rnaidis Venezuela<br />

Coleoptera<br />

COCCINELLIDAE<br />

Chnootriba (= Epilachna)<br />

similis Sierra Leone<br />

Diptera<br />

AGROMYZIDAE<br />

Pseudonapornyza<br />

philippinensis Philippines<br />

CEClDOMYllDAE<br />

a gall midge India<br />

MUSCIDAE<br />

Atherigona soccata Kenya<br />

Lepidoptera<br />

LYMANTRIIDAE<br />

Psalis pennatula Kenya<br />

NOCTUIDAE<br />

Sesarnia sp. Ghana<br />

Spodoptera frugiperda USA<br />

PYRALIDAE<br />

Chilo sp.<br />

sp.?<br />

Ghana<br />

Kenya<br />

rice, Ischaernurn Alghali & Domingo 1982<br />

rugosurn, Paspalurn<br />

vaginaturn<br />

a virus transmitter Ferreira et al. 1989, Migliori<br />

on many hosts & Lastra 1980, 198 1,<br />

Trujillo et al. 1974<br />

Alghali & Domingo 1982<br />

known only from Spencer 1961<br />

R. cochinchinensis<br />

recorded only from Barnes 1946<br />

Rottboellia cornpressa<br />

rice Ogwaro 1978<br />

generalist Poaceae H.C. Evans pers. comm. 1993<br />

leaf eater<br />

Sampson & Kumar 1986<br />

many graminaceous Rajapakse et al. 1988<br />

crops<br />

Sampson & Kumar 1986<br />

generalist Poaceae H.C. Evans pers. comm. 1993<br />

leaf eater<br />

Table 4.26.2 Natural enemies of Rottboellia cochinchinensis: fungi.<br />

Fungi Location Other hosts References<br />

Ascochyta sp.<br />

Bipolai-is perotidis<br />

Cercospora spp.<br />

Kenya no tests on other Ellison & Evans 1990, 1993<br />

plants<br />

Australia many other grasses QDPI, unpublished<br />

Kenya, Ethiopia, maize mildly Ellison & Evans 1990, 1993<br />

Zanzibar,<br />

Madagascar,<br />

Americas, SE Asia<br />

(continued on next page)


226 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.26.2 (continued)<br />

Fungi<br />

Cercospora fusimaculans<br />

Cercospora rottboelliae<br />

Cochliobolus<br />

(Helminthosporiurn) bicolor<br />

Cochliobolus (Curvularia)<br />

cymbopogonis<br />

Cochliobolus heterostrophus<br />

(Drechslera maydis)<br />

Colletotrichium sp.<br />

Coniothyrium sp.<br />

Curvularia spp. (many)<br />

Diaporthe (Phomopsis) sp.<br />

Diplodia sp.<br />

Fusarium moniliforme<br />

(Gibberella fujikuroi)<br />

Glornerella (Colletotrichium)<br />

grarninicola<br />

Leptosphaeria sp.<br />

Magnaporthe (Pyricularia)<br />

grisea<br />

Phaeoseptoria sp.<br />

Phyllachora sacchari<br />

Puccinia rottboelliae<br />

Location Other hosts References<br />

Sudan, Zambia, many grasses<br />

Ghana, Guinea,<br />

Togo,.Uganda,<br />

Jamaica<br />

Guinea<br />

Zimbabwe, sugarcane, maize,<br />

Somalia pearl millet<br />

Bolivia, Kenya, sugarcane, maize,<br />

Trinidad, pearl millet,<br />

Zanzibar, USA, sorghum<br />

SE Asia<br />

Kenya, Papua sugarcane, maize<br />

New Guinea,<br />

SE Asia<br />

Thailand (this species is close<br />

to C. graminicola)<br />

Africa, SE Asia<br />

Trinidad, Papua most (not all) attack<br />

New Guinea, economic crops<br />

Madagascar,<br />

Somalia, Zanzibar<br />

Kenya, SE Asia maize mildly<br />

Kenya no tests on other<br />

plants<br />

Guatemala the particular strain<br />

tested had limited<br />

host range with no<br />

symptoms in maize,<br />

sorghum or sugar<br />

Jimenez et al. 1990<br />

cane, but other strains<br />

attack these and rice<br />

India, Nepal, No Colletotrichiurn Evans 1987, 1991<br />

Sri Lanka, infection observed<br />

Thailand in East Africa<br />

Kenya, SE Asia no tests on other<br />

plants<br />

Ellison & Evans 1990, 1993<br />

Kenya, maize mildly, also<br />

Zimbabwe Eleusine spp.<br />

Kenya, SE Asia no tests on other<br />

plants<br />

Asia, Nigeria,<br />

Sicily, Argentina<br />

Kenya, Mada- limited host range<br />

gascar, Ghana,<br />

Uganda, Zambia,<br />

Ethiopia, Guinea,<br />

Nigeria, Sierra<br />

Leone, Sudan,<br />

Zimbabwe, India<br />

Evans 1987<br />

Evans 1987<br />

Ellison & Evans 1990. 1993<br />

Ellison & Evans 1990, 1993,<br />

Evans 1987, Walker &<br />

White 1979<br />

Ellison & Evans 1990, 1993,<br />

Evans 1987<br />

Ellison 1992, Ellison & Evans<br />

1993<br />

Ellison & Evans 1993<br />

Ellison 1992, Evans 1991<br />

Ellison & Evans 1990, 1993<br />

Ellison & Evans 1990. 1993<br />

Ellison & Evans 1990, 1993,<br />

Evans 1987<br />

Ellison & Evans 1990, 1993<br />

Anahosur and Sivanesan 1978<br />

Ellison & Evans 1990, 1993,<br />

Evans 1987<br />

(continued on next page)


4.26 Rottboellia cochinchinensis 227<br />

Fungi Location Other hosts References<br />

Pyrenochaeta sp. SE Asia<br />

Sphacelotheca rottboelliae Malawi, India<br />

Sporisorium (= Sphacelotheca) Kenya, Somalia,<br />

ophiuri Sudan, Uganda,<br />

Zimbabwe,<br />

Sierra Leone,<br />

Sri Lanka,<br />

Philippines<br />

Ustilago scitaminea Philippines<br />

Ellison & Evans 1993<br />

also on Saccharum Evans 1987<br />

spontaneum<br />

limited host range, Ellison & Evans 1990, 1993,<br />

and not present Evans 1987, 1991<br />

in the Americas<br />

Latiza 1980<br />

Table 4.26.3 Natural enemies of Rottboellia cochinchinensis: viruses.<br />

Virus Location Other hosts References<br />

corn leaf gall virus Philippines Agati & Calica 1950<br />

maize stripe tenuivirus USA sorghum Bradfute & Tsai 1990<br />

maize stripe virus USA sorghum Gingery et al. 1981<br />

maize hoja blanca Venezuela sorghum Ferreira et al. 1989<br />

maize white leaf Venezuela Trujillo et al. 1974<br />

maize rayado fine Texas several grasses Nault et al. 1980<br />

maize mosaic Guadeloupe,<br />

French Guinea sorghum Migliori & Lastra 198 1<br />

maize dwarf mosaic USA sorghum, sugarcane Gillespie & Koike I973<br />

maize yellow mottle Nigeria Thottapilly et al. 1992<br />

virus like disease of maize Guadaloupe sorghum Migliori & Lastra 1980<br />

rice leaf gall Philippines Agati & Calica 1950<br />

Table 4.26.4 Taxonomic position of the major exotic grass weeds (bold text) in rela-<br />

tion to the major genera of crops in the family Poaceae (= Gramineae).<br />

Subfamily Tribe Sub-tribe Genera<br />

Bambusoideae Bambuseae<br />

Oryzeae<br />

Pooideae Triticeae<br />

Aveneae<br />

Chloridoideae Eragrostideae<br />

Cynodonteae<br />

Panicoideae Paniceae<br />

Andropogoneae<br />

Maydeae<br />

Bambusa<br />

Oryza<br />

Hordeum, Secale,<br />

Triticum<br />

Avena<br />

Eleusine, Eragrostis<br />

Cynodon<br />

Setariinae Echinochloa, Panicum,<br />

Paspalum, Setaria<br />

Digitariinae Digitaria<br />

Cenchrinae Pennisetum<br />

Saccharinae Saccharum<br />

Sorghinae Sorghum<br />

Rottboelliinae Rottboellia<br />

Tripsacinae Zea


228 Biological Control of Weeds: Southeast Asian Prospects<br />

Sphenoclea zeylanica<br />

(after Holm et a/. 1977)


Map 4.27 Sphenoclea zeylanica<br />

4.27 Sphenoclea zeylanica 229<br />

Sphenoclea zeylanica<br />

Goose weed, Sphenoclea zeyhnica, is native to Tropical Africa where it is not regarded<br />

as a weed, although there are no natural enemies recorded from it there. In Southeast<br />

Asia, where it is an important weed of rice, and in India, it is sometimes severely affected<br />

by a fungus which may have some promise as a bioherbicide.<br />

A survey for natural enemies in its area of origin would be required to evaluate<br />

the prospects for its biological control.


230 Biological Control of Weeds: Southeast Asian Prospects<br />

4.27 Sphenoclea zeylanica Gaertn.<br />

Sphenocleaceae<br />

gooseweed; goenda (Indonesia), silisilihan (Philippines), pakpawd, phak pot<br />

(Thailand) xa b6ng (Vietnam)<br />

Rating<br />

+++ Msia<br />

14 ++ Thai, Camb, Phil<br />

+ Myan, Laos, Viet, Brun, Indo<br />

Origin<br />

Tropical Africa<br />

Distribution<br />

In tropical and subtropical regions across the world. From Iran extending eastwards to<br />

Indonesia and the Philippines, also China, Japan, USA, the ~aribbean, Guyana, Surinam<br />

and Madagascar. Not reported from Papua New Guinea, Australia or the oceanic Pacific.<br />

Characteristics<br />

S. zeylanica is an erect, fleshy, herbaceous annual, often with much branched, hollow<br />

stems, growing to 1.5 m; leaves alternate, oblong to lanceolate, tapering to both ends;<br />

flowers sessile in dense spikes, terminal, whitish; seed yellowish brown, 0.5 mm long;<br />

roots cord-like.<br />

Importance<br />

S. zeylanica is unusual in that it is not reported as a weed in any crop except rice (Holm<br />

et al. 1977). It thrives in damp ground at altitudes up to 350 m. In Africa it grows in the<br />

mud of tidal creeks, but does not have this habit in Malaysia. It occurs on the sides of<br />

ponds and along ditches and rivers, on dry river beds and in seasonal swamps. It prefers<br />

stagnant water sites. It reproduces continuously by seed in the Philippines. In spite of its<br />

competition with the rice plant, S. zeylanica can give valuable practical control (up to<br />

99%) of populations of rice nematodes (Hirschmaniella spp.), with the additional benefit<br />

of increased soil nitrogen. It acts through the production of toxic plant exudates<br />

(Mohandes et al. 1981).<br />

In Java, young plants and tips of older plants are steamed and eaten with rice.<br />

Natural enemies<br />

The only natural enemy encountered in the literature search is a fungus (Table 4.27.1).<br />

This was a severe infestation of the fungus Cercosporidiurn helleri on the lower surface<br />

of S. zeylanica leaves in India (Ponnappa 1967). The affected leaves became deformed<br />

and fell off. Similar fungi capable of causing death of the weed were observed at Los


4.27 Sphenoclea zeylanica 231<br />

Banos, Philippines and at Prey Phadu, Cambodia (Moody et al. 1987). If this fungus<br />

proves to be adequately specific it may have some value as a bioherbicide.<br />

Table 4.27.1 Natural enemies of Sphenoclea zeylanica<br />

Species Location References<br />

NEMATODE<br />

Meloidogyne graminicola Luc et al. 1990<br />

FUNGUS<br />

Cercosporidium helleri Cambodia, India, Moody et al. 1987,<br />

Philippines Ponnappa 1967


5 References<br />

Abe, H. and Ui, T. 1986. Host range of<br />

Polymyxa betae Keskin strains in rhizoma-<br />

nia-infested soils of sugar beet fields in<br />

Japan. Annals of the Phytopathological<br />

Society of Japan 52: 394-403. (Weed<br />

Abstracts 36: 2228, 1987).<br />

Abenes, M.L.P. and Khan, Z.R. 1990. Feeding<br />

and food assimilation by two species of<br />

rice leaffolders on selected weed plants.<br />

International Rice Research Newsletter<br />

15(3): 3 1-32.<br />

Ablin, M.P. 1992. Heteropsylla sp. (Psyllidae)<br />

successfully controls pasture infestations<br />

of Mimosa invisa within three years of re-<br />

lease in Australia. p. 54, Abstracts, VIII<br />

International Symposium on Biological<br />

Control of Weeds, Lincoln University,<br />

Canterbury, New Zealand, 2-7 February<br />

1992.<br />

Ablin, M.P. 1993a. Insecticide exclusion with<br />

carbofuran demonstrates the effectiveness<br />

of Heteropsylla spinulosa as a biological<br />

control agent for Mimosa invisa in North<br />

Queensland. Abstract, 14 Asian Pacific<br />

Weed Science Society and 10th Australian<br />

Weed Society Conference, September<br />

1993, Brisbane.<br />

Ablin, M. 1993b. Successful establishment of<br />

Heteropsylla spinulosa on Mimosa invisa<br />

in Papua New Guinea. Queensland<br />

Department of Lands, Memorandum, lp.<br />

Acosta, O., Veitia, A. and Wade, J. 1986.<br />

Malezas hospedantes de Meloidogyne spp.<br />

en areas tabacaleras de la Preoincia de<br />

Sancti Spiritus. Ciencia y Tecnica en la<br />

Agricultura, Proteccion de Plantas 9(4)<br />

3 1-40. (Helminthological Abstracts,<br />

Series B, 58: 1410,1989).<br />

Adams, A. 1967. The vectors and alternate<br />

hosts of groundnut rosette virus in Central<br />

Province, Malawi. Rhodesian, Zambian,<br />

Malawian Journal of Agricultural<br />

Research 5: 145-1 5 1. (Holm et al. 1977).<br />

Agarwal, B.D. 1985. Biology of Hypolixus<br />

truncatulus Fabr. (Coleoptera:<br />

Curculionidae) forming galls on the stem<br />

of Amaranthus spinosus Linn. in India.<br />

Cecidologia Internationale 6(


234 Biological Control of Weeds: Southeast Asian Prospects<br />

Almeida, A.M.R. 1979. Experimental trans-<br />

mission of soybean mosaic virus by an<br />

aphid Dactynotus sp. occuring on Bidens<br />

pilosa, Paranh State, Brazil (Portuguese).<br />

Fitopathologia Brasiliera 4: 509-5 10.<br />

Ambika, S.R. and Jayachandra 1990. The<br />

problem of Chromolaena weed.<br />

Chromolaena odorata Newsletter 3: 1-6.<br />

Anahosur, K.H. and Sivanesan, A. 1978.<br />

Phyllachora sacchari causes tar spot or<br />

black spot on leaves of Polytoca macro-<br />

phylla, Rottboellia exaltata, Saccharum,<br />

Sorghum. Descriptions of Pathological<br />

Fungi and Bacteria, Commonwealth<br />

Mycological Institute, Kew, UK. 59(588)<br />

~PP.<br />

Ananthakrishnan, T.N. and Thangavelu, K.<br />

1976. The cereal thrips (Haplothrips gan-<br />

glbaueri Schmutz) with special reference<br />

to the trends of infestation on Oryza sativa<br />

and the weed Echinochloa crus-galli.<br />

Proceedings of the Indian Academy of<br />

Science B 83: 196-201.<br />

Ang, O.C., Poh, T.W. and Chuan, L.Y. 1977.<br />

A whitefly-borne virus disease of<br />

Ageratum conyzoides (Linn.) in Malaysia.<br />

MARDI Research Bulletin 5: 148-152.<br />

Anon 1960. Index of plant diseases in the<br />

United States. Handbook 165. United<br />

States Department of Agriculture,<br />

Washington, D.C. 53 lpp.<br />

Anon 1973. Some Prospects for Aquatic<br />

Weed Management in Guyana. Workshop<br />

in Aquatic Weed Management and<br />

Utilization. National Science Research<br />

Council, Guyana, and National Academy<br />

of Science, USA. 1973. Georgetown,<br />

Guyana.<br />

Anon 1976. Annual Report, 1975-76. 91pp.<br />

Queensland Department of Primary<br />

Industries, Brisbane, Australia.<br />

Anon 1988. Tully insect release aimed at GSP<br />

control. Bulletin, Bureau of Sugar<br />

Experiment Stations 24: 8-9.<br />

Anon 1992. Stem-borer with promise. Ecos<br />

74: 3.<br />

Ashton, H.I. 1973. Aquatic Plants of<br />

Australia. Melbourne University Press.<br />

Melbourne, Australia. 368pp.<br />

Aterrado, E.D. 1986a. Pareuchaetes<br />

pseudoinsulata caterpillar on<br />

Chromolaena odorata: a new Philippines<br />

record. Philippines Journal of Coconut<br />

Science 1 l(2): 59-60.<br />

Aterrado, E.D. 1986b. Notes on the presence<br />

of Pareuchaetes pseudoinsulata Rego<br />

Barros (Lepidoptera: Arctiidae) a potential<br />

biotic agent for the control of<br />

Chromolaena odorata (L.) King and<br />

Robinson, in Palawan: a new Philippine<br />

record. 17th Annual Conference of the<br />

Pest Control Council of the Philippines,<br />

Iloilo City, 8-10 May 1986, 7pp typescript.<br />

Aterrado, E.D. and Talatala-Sanico, R.L.<br />

1988. Status of Chromolaena odorata research<br />

in the Philippines. pp. 53-55 in<br />

Proceedings of the First International<br />

Workshop on Biological Control of<br />

Chromolaena odorata. Agricultural<br />

Experiment Station, Mangilao, Guam.<br />

Awadallah, K.T., Tawfik, M.F.S. and<br />

Shalaby, F.F. 1976. Notes on the life history<br />

of Baris arctithorax Pic on the weed<br />

Portulaca oleracea L. (Coleoptera:<br />

Curculionidae). Bulletin of the Entomological<br />

Society of Egypt 60: 35-43.<br />

Ba-Angood, S.A.S. 1977. Observations on<br />

food preference and feeding habits of three<br />

important species of Acrididae in the<br />

Sudan. Zeitschrift fiir Angewandte<br />

Entomologie 83: 344-350.<br />

Anon 1977. Hawaii pest report. Detection.<br />

Ba-Angood, S.A.S. and Khidir, E.E. 1975.<br />

Cooperative Plant Pest Reporter 2(>) : 1 1. Comparative acceptability of different<br />

Anon 1979. Annual Report of the Research food plants by some species of Acrididae.<br />

ranch, Department of Agriculture, Zeitschrift fiir Angewandte Entomologie<br />

Sarawak, for the year 1977. Kuching, 78: 291-293.<br />

Sarawak 257pp. (Review of Plant<br />

Pathology).<br />

-


Baer, R.G. and Quimby, P.C. 1981.<br />

Laboratory rearing and life history of<br />

Arzama densa, potential native biological<br />

control agent against water hyacinth.<br />

Journal of Aquatic Plant Management<br />

19: 22-26.<br />

Baker, G.E., Sutton, D.L. and Blackburn, R.D.<br />

1974. Feeding habits of the white amur on<br />

water hyacinth. Hyacinth Control Journal<br />

12: 58-62.<br />

Baker, P.S. 1990. Parasitism of the mimosa<br />

psyllid (Heteropsylla sp.) by two para-<br />

sitoids of the leucaena psyllid<br />

(Heteropsylla cubana Crawford). A report<br />

for ACIAR. International Institute of<br />

Biological Control, Trinidad. 8pp.<br />

Baki, B.B., Latief, A. and Puat, N.A. 1990.<br />

The genus Pennisetum in Peninsular<br />

Malaysia with particular reference to P.<br />

setosum, a new record for the weed flora.<br />

Proceedings, Symposium on Weed<br />

Management. BIOTROP Special<br />

Publication 38: 71-79.<br />

Bakker, W. 1974. Notes on East African plant<br />

virus diseases. VI. Virus diseases of<br />

Passiflora in Kenya. East African<br />

Agricultural and Forestry Journal<br />

40(1): 11-23. (Review of Plant Pathology<br />

54: 5499,1975).<br />

Ballou, J.K., Tsai, J.H. and Center, T.D. 1986.<br />

Effect of temperature on the development,<br />

natality and longevity of Rhopalosiphum<br />

nymphaeae (L.) (Homoptera: Aphididae).<br />

Environmental Entomology 15:<br />

1096-1 099.<br />

Ballou, J.K., Tsai, J.H. and Wilson, S.W.<br />

1987. Delphacid planthoppers Sogatella<br />

kolophon and Delphacodes idonea<br />

(Homoptera: Delphacidae): descriptions of<br />

immature stages and notes on biology.<br />

Annals of the Entomological Society of<br />

America 80: 3 12-3 19.<br />

Baloch, G.M., Khan, A.G. and Zafar, T. 1977.<br />

Natural enemies of Abutilon, Amaranthus,<br />

Rumex and Sorghum. Commonwealth<br />

Institute of Biological Control. Report of<br />

work carried out during 1976. pp. 61-62.<br />

5 References 235<br />

Baloch, G.M., Zafar, T. and Khan, A.G. 1976.<br />

Natural enemies of Abutilon, Amaranthus,<br />

Rumex and Sorghum in Pakistan.<br />

Commonwealth Institute of Biological<br />

Control. Report of work carried out during<br />

1975. pp. 69-70.<br />

Bandong, J.P. and Litsinger, J.A. 1984. Plant<br />

hosts of the rice caseworm. International<br />

Rice Research Newsletter 9(2): 20-21.<br />

Bardner, R. and Mathenge, W.M. 1974. First<br />

record of Phytometra orichalcea (F.)<br />

(Lepidoptera: Noctuidae) feeding on coffee<br />

foliage. East African Agricultural and<br />

Forestry Journal 40: 214. (Review of<br />

Applied Entomology, Series A 64: 3021,<br />

1976).<br />

Barneby, R.C. 1989. Reflections on typification<br />

and application of the names Mimosa<br />

pigra L. and M. asperata L.<br />

(Mimosaceae). pp. 37-142 in The Davies<br />

and Hedge Festschrift (ed. Kit Tan).<br />

Edinburgh University Press.<br />

Barnes, D.E. and Chan, L.G. 1990. Common<br />

Weeds of Malaysia and their Control.<br />

Ancom Berhad, Persiaran Selangor,<br />

Malaysia. 349pp.<br />

Barnes, H.F. 1931. Gall midges<br />

(Cecidomyidae) whose larvae prevent seed<br />

production in grasses (Gramineae).<br />

Bulletin of Entomological Research 22:<br />

199-203.<br />

Barnes, H.F. 1946. Gall Midges of Economic<br />

Importance. Vol I1 Gall Midges of Fodder<br />

Crops. 160pp. Crosby Lockwood and Son,<br />

London.<br />

Barnes, H.F. 1954a. The sorghum midge<br />

problem. pp. 101-104 in Report of the<br />

Sixth Commonwealth Entomological<br />

Conference 7-16 July 1954.<br />

Commonwealth Institute of Entomology,<br />

London.<br />

Barnes, H.F. 1954b. Memorandum on the gall<br />

midges living on the sorghums, the<br />

Panicum millets and rice. pp. 155-160 in<br />

Report of the Sixth Commonwealth<br />

Entomological Conference 7-16 July<br />

1954. Commonwealth Institute of<br />

Entomology, London.


236 Biological Control of Weeds: Southeast Asian Prospects<br />

Barnes, H.F. 1956. Gall Midges of Economic<br />

Importance. Volume VII. Gall Midges of<br />

Cereal Crops. Crosby Lockwood and Son<br />

Ltd, London. 26 1 pp.<br />

Barreto, J.M. 1982. Disease of coconut associ-<br />

ated with flagellate protozoa (Phytomonas<br />

sp.) in the Paria peninsula, State of Sucre.<br />

(Spanish). Agronomia Tropical<br />

32: 291-302 (Protozoological Abstracts<br />

11: 2864, 1987).<br />

Barrett, S.C.H. and Forno, I.W. 1982. Style<br />

morph distribution in New World popula-<br />

tions of Eichhornia crassipes (Mart.)<br />

Solms-Laubach (Water Hyacinth). Aquatic<br />

Botany 13: 299-306.<br />

Barrion, A.T. and Litsinger, J.A. 1980.<br />

Euscyrtus concinnus (Orthoptera:<br />

Gryl1idae)-a new rice pest in the<br />

Philippines. International Rice Research<br />

Newsletter 5(5): 19.<br />

Barrion, A.T. and Litsinger, J.A. 1986.<br />

Ephydrid flies (Diptera: Ephydridae) of<br />

rice in the Philippines. International Rice<br />

Research Newsletter 1 l(4): 29-30.<br />

Barrion, A.T. and Litsinger, J.A. 1987. The<br />

bionomics, karyology and chemical con-<br />

trol of the node-feeding black bug,<br />

Scotinophara latiuscula Breddin<br />

(Hemiptera: Pentatomidae) in the<br />

Philippines. Journal of Plant Protection in<br />

the Tropics 4: 37-54.<br />

Baudoin, A.B.A.M. 1986. First report of<br />

Dichotomophthora indica on common<br />

purslane in Virginia. Plant Disease<br />

70: 352.<br />

Bayot, R.G., Watson, A.K. and Moody, K.<br />

1992. Control of paddy weeds by plant<br />

pathogens in the Philippines. Proceedings<br />

of International Symposium on Biological<br />

Control and Integrated Management of<br />

Paddy and Aquatic Weeds in Asia.<br />

National Agricultural Research Center,<br />

Tsukuba, Japan, pp. 273-283.<br />

Beardsley , J. W. 1962. Hysteroneura setariae<br />

(Thomas). Proceedings of the Hawaiian<br />

Entomological Society 18: 21.<br />

Beardsley, J.W. 1980. Notes and exhibitions.<br />

Agraulis vanillae (L.). Proceedings of the<br />

Hawaiian Entomological Society<br />

23: 155-157.<br />

Bennett, F.D. 1955. A record of an external<br />

egg parasite from Trinidad BWI. Canadian<br />

Entomologist 87: 406.<br />

Bennett, F.D. 1965. Proposals for a programme<br />

leading to the biological control<br />

of water hyacinth Eichhornia crassipes.<br />

12pp. Commonwealth Institute of<br />

Biological Control, Commonwealth<br />

Agricultural Bureaux.<br />

Bennett, F.D. 1966. Investigations on the insects<br />

attacking the aquatic ferns, Salvinia<br />

spp. in Trinidad and Northern South<br />

America. Proceedings Southern Weed<br />

Conference 19: 497-504.<br />

Bennett, F.D. 1967. Notes on the possibility<br />

of biological control of the water hyacinth<br />

Eichhornia crassipes. Pesticides Abstracts<br />

& News Summary, C, 13: 304-309.<br />

Bennett, F.D. 1968. Insects and mites as potential<br />

controlling agents of water hyacinth<br />

(Eichhornia crassipes (Mart.) Solms.). pp.<br />

832-835 in Proceedings of the Ninth<br />

British Weed Control Conference.<br />

Bennett, F.D. 1970. Insects attacking water<br />

hyacinth in the West Indies, British<br />

Honduras and the USA. Hyacinth Control<br />

Journal 5: 10-13.<br />

Bennett, F.D. 1972. Survey and assessment of<br />

the natural enemies of the water hyacinth,<br />

Eichhornia crassipes. Pesticides Abstracts<br />

&News Summary, C, 18: 310-311.<br />

Bennett, F.D. 1974. Biological control of<br />

aquatic weeds. Proceedings of the Summer<br />

Institute of Biological Control, University<br />

of Mississippi, pp. 224-237.<br />

Bennett, F.D. 1975. Insects and plant<br />

pathogens for the control of Salvinia and<br />

Pistia. Proceedings of the Symposium on<br />

Water Quality Management through<br />

Biological Control. Gainsville, Florida,<br />

January 29-3 1,1975, pp 28-35.


Bennett, F.D. 1979. List of natural enemies of<br />

water hyacinth Eichhornia crassipes and<br />

of Tribulus cystoides in Mexico. VII<br />

Reunion Nacional de Control Biologico.<br />

Veracruz, Mexico: 137-1 41.<br />

Bennett, F.D. 1982a. Exploration and screening<br />

of natural enemies of water hyacinth.<br />

Workshop on Biological Control of Water<br />

Hyacinth. Commonwealth Science<br />

Council, London, UK. 3-5 May 1982.<br />

Bangalore, India, pp. 27-30.<br />

Bennett, F.D. 1982b. Conflict of interests: Are<br />

biological control and utilization of water<br />

hyacinth compatible? Workshop on<br />

Biological Control of Water Hyacinth.<br />

Commonwealth Science Council, London.<br />

3-5 May 1982. Bangalore, India,<br />

pp. 65-67.<br />

Bennett, F.D. 1984. Biological control of<br />

aquatic weeds. Proceedings of the<br />

International Conference on Water<br />

Hyacinth, Hyderabad, pp. 14-40.<br />

Bennett, F.D. and Cruttwell, R.E. 1972.<br />

Investigations on the insects attacking<br />

Portulaca oleracea L. in the Neotropics. 1.<br />

Insects recorded from P. oleracea and<br />

species encountered in preliminary surveys.<br />

CIBC unpublished report, 12pp.<br />

Bennett, F.D. and Cruttwell, R.E. 1973.<br />

Insects attacking Eupatorium odoratum in<br />

the Neotropics 1. Ammalo insulata (Walk.)<br />

(Lep.: Arctiidae), a potential biotic agent<br />

for the control of Eupatorium oabratum L.<br />

(Compositae). Commonwealth Institute of<br />

Biological Control. Technical Bulletin<br />

16: 105-115.<br />

,Bennett, F.D. and Rao, V.P. 1968.<br />

Distribution of an introduced weed<br />

Eupatorium odoratum Linn. (Compositae)<br />

in Asia and Africa and possibilities of its<br />

biological control. Pesticides Abstracts<br />

and News Summary, C, 14: 277-28 1.<br />

Bennett, F.D. and Yaseen, M. 1975. Control<br />

of Siam weed, Eupatorium odoratum.<br />

Commonwealth Institute of Biological<br />

Control. Report of work carried out during<br />

1974, pp. 79-80.<br />

5 References 237<br />

Bennett, F.D., Yaseen, M. and Beg, M.N.<br />

1975. Report of work carried out during<br />

1974. Aquatic Weeds. Commonwealth<br />

Institute of Biological Control, pp. 78-79.<br />

Bennett, F.D. and Zwolfer, H. 1968.<br />

Exploration for natural enemies of the<br />

water hyacinth in northern South America<br />

and Trinidad. Hyacinth Control Journal<br />

7: 44-52.<br />

Bennett, F.D. and Zwolfer, H. 1969.<br />

Commonwealth Institute of Biological<br />

Control. Work carried out during 1968.<br />

Investigations on the natural enemies of<br />

Eichhornia crassipes. p 80.<br />

Benson, R.B. 1962. The affinities of the<br />

Australian Argidae (Hymenoptera).<br />

Annals and Magazine of Natural History,<br />

Series 13 (5): 63 1-635.<br />

Benson, E.W., Brown, K.S. and Gilbert, L.E.<br />

1976. Coevolution of plants and herbivores:<br />

passion flower butterflies.<br />

Evolution 29: 659-680.<br />

Beshir, M.O. 1983. Water hyacinth in<br />

Sudan-early results. Biocontrol News<br />

and Information 4: 1.<br />

Beshir, M.O. 1984. The establishment and<br />

distribution of natural enemies of water<br />

hyacinth released in Sudan. Tropical Pest<br />

Management 30: 320-323.<br />

Beshir, M.O. and Bennett, F.D. 1985.<br />

Biological control of water hyacinth on the<br />

White Nile, Sudan. Proceedings of the 6th<br />

International Symposium on Biological<br />

Control of Weeds, pp. 491-496.<br />

Best, K.F., Bowes, G.G., Thomas, A.G. and<br />

Maw, M.G. 1980. The biology of<br />

Canadian weeds. 39. Euphorbia esula L.<br />

Canadian Journal of Plant Science<br />

60: 65 1-663.<br />

Bianchi, F.A. 1955. Ceutorhynchus sp.<br />

Proceedings of the Hawaiian<br />

Entomological Society 15: 379-380.<br />

Bianchi, F. 1982. Notes and exhibitions.<br />

Agraulis vanillae (L.). Proceedings of the<br />

Hawaiian Entomological Society<br />

24: 15-16.


238 Biological Control of Weeds: Southeast Asian Prospects<br />

Bianchi, F. 1983. Notes and exhibitions.<br />

Meteorus laphygmae Viereck. Proceedings<br />

of the Hawaiian Entomological Society<br />

24: 169.<br />

Bigot, L. and Vuattoux, R. 1979. Quelques<br />

domkes biologiques et kcologiques sur les<br />

lepidopt2res Pterophoridae de la region de<br />

Lamto (CBte d'Ivoire). Bulletin de<br />

1'Institut Fondamental d'Afrique Noire 41:<br />

837-843. (Review of Applied<br />

Entomology, Series A, 69: 4303, 1981).<br />

Bill, S.M. 1969. The water weed problems in<br />

Australia. Hyacinth Control Journal<br />

8: 1-6.<br />

Booker, R.A. 1964. The effect of sowing date<br />

and spacing on rosette disease of groundnut<br />

in northern Nigeria, with observations<br />

on the vector, Aphis craccivora. Samaru<br />

Research Bulletin 1964 (30) 7pp.<br />

(Agricola).<br />

Bopprk, M. 1991. A non-nutritional relationship<br />

of Zonocerus (Orthoptera) to<br />

Chromolaena (Asteraceae) and general<br />

implications for weed management.<br />

Ecology and ' Management of<br />

Chromolaena odorata. Biotrop Special<br />

Publication 44: 153-1 61.<br />

Borror, D.J., Delong, D.M. and Triplehorn,<br />

C.A. 1981. An Introduction to the Study of<br />

Insects. Saunders College Publishers,<br />

Toronto, Ontario. (Maun and Barrett<br />

1986).<br />

Bradfute, O.E. and Tsai, J.H. 1990. Rapid<br />

identification of maize stripe virus.<br />

Phytopathology 80: 71 5-719.<br />

Brenan, J.P.M. 1959. Mimosa. Flora of<br />

Tropical East Africa. Leguminosae,<br />

Subfamily. Mimosoideae pp. 42-47.<br />

Brues, C.T. 1946. Insect Dietary. Harvard<br />

University Press, Cambridge, USA,<br />

466~~-<br />

Brunken, J.N. 1979. Cytotaxonomy and evaluation<br />

in Pennisetum section Brevivalvula<br />

(Gramineae) in tropical Africa. Botanical<br />

Journal of the Linnean Society 79: 37-49.<br />

Brunt, A., Crabtree, K. and Gibbs, A. 1990.<br />

Viruses of Tropical Plants. CAB<br />

International and ACIAR. 707pp.<br />

Burikam, I. and Napompeth, B. 1980.<br />

Gesonula punctifrons (StAl) (Orthoptera:<br />

Acrididae) as a natural enemy of water<br />

hyacinth (Eichhornia crassipes). National<br />

Biological Control Research Center,<br />

Kasetsart University. Bangkok, Thailand.<br />

Technical Bulletin 8: 1-12.<br />

Burkill, I.H. 1935. A Dictionary of the<br />

Economic Products of the Malay<br />

Peninsula, London. Two volumes.<br />

Carroll, C.R. and Risch, S.J. 1984. The dynamics<br />

of seed harvesting in early successional<br />

communities by a tropical ant<br />

Solenopsis geminata. Oecologia<br />

61: 388-392.<br />

Casafias-Arango, A., Trujillo, E.E., de<br />

Hernandez A.M. and Taniguchi, G. 1990.<br />

Field biology of Cyanotricha necyria<br />

Felder (Lep., Dioptidae) a pest of<br />

Passiflora spp. in southern Columbia's<br />

and Ecuador's Andean region. Journal of<br />

Applied Entomology 109: 93-97.<br />

Catindig, J.L.A., Barrion, A.T. and Litsinger,<br />

J.A. 1993. Developmental biology and<br />

host plant range of rice-feeding tiger moth<br />

Creatonotus gangis (L.). International<br />

Rice Research Notes 18(3): 34-35.<br />

Center, T.D. and Balciunas, J.K. 1982. The biological<br />

control of water hyacinth in the<br />

United States. Workshop on Biological<br />

Control of Water Hyacinth.<br />

Commonwealth Science Council, London.<br />

3-5 May 1982. Bangalore, India, pp.<br />

57-62.<br />

Center, T.D., Balciunas, J.K. and Habeck,<br />

D.H. 1982. Descriptions of Sameodes albiguttalis<br />

(Lepidoptera: Pyralidae) life<br />

stages with key to Lepidoptera larvae on<br />

water hyacinths. Annals of the<br />

Entomological Society of America 75:<br />

47 1-479.


Center, T.D., Cofrancesco, A.F. and<br />

Balciunas, J.K. 1989. Biological control of<br />

wetland and aquatic weeds in the south-<br />

eastern United States. Proceedings 7th<br />

International Symposium on Biological<br />

Control of Weeds 6-1 1 March 1988,<br />

Rome, Italy, pp. 239-262.<br />

Center, T.D. and Dray, F.A. 1992.<br />

Associations between water hyacinth wee-<br />

vils (Neochetina eichhorniae and N.<br />

bruchi) and phenological stages of<br />

Eichhornia crassipes in southern Florida.<br />

Florida Entomologist 75: 196-21 1.<br />

Center, T.D. and Durden, W.C. 1981. Release<br />

and establishment of Sameodes albiguttalis<br />

for the biological control of water hyacinth.<br />

Environmental Entomology<br />

10: 75-80.<br />

Center, T.D. and Durden, W.C. 1986.<br />

Variation in water hyacinthlweevil interactions<br />

resulting from temporal differences<br />

in weed control efforts. Journal of Aquatic<br />

Plant Management 24: 28-38.<br />

Center, T.D., Cofrancesco, A.F. and<br />

Balciunas, J.K. 1989. Biological control of<br />

wetland and aquatic weeds in the southeastern<br />

United States. Proceedings 7th<br />

International Symposium on Biological<br />

Control of Weeds, pp. 239-262.<br />

Chacko, M.J. 1988. Prospects for the biological<br />

control of Chromolaena odorata (L.)<br />

R.M. King and H. Robinson. Proceedings<br />

of the First International Workshop on<br />

Biological Control of Chromolaena odorata.<br />

Agricultural Experiment Station,<br />

Mangilao, Guam, pp. 25-33.<br />

Chacko, M.J. and Narasimham, A.U. 1988.<br />

Biocontrol attempts against Chromolaena<br />

odorata in India-a review. Proceedings<br />

of the First International Workshop on<br />

Biological Control of Chromolaena odorata.<br />

Agricultural Experiment Station,<br />

Mangilao, Guam, pp. 65-79.<br />

Chadwick, M.J. and Obeid, M. 1966. A comparative<br />

study of the growth of Eichhornia<br />

crassipes and Pistia stratiotes in water<br />

culture. Journal of Ecology 54: 563-575.<br />

5 References 239<br />

Chandler, L.D. and Chandler, J.M. 1988.<br />

Comparative host suitability of bell pepper<br />

and selected weed species for Liriomyza<br />

trifolii (Burgess). Southwest Entomologist<br />

13(2): 137-1 46 (Agricola).<br />

Chandra, R., Mital, V.P. and Goel, S.C. 1983.<br />

Consumption and utilization of different<br />

food plants by Chrotogonus trachypterus<br />

Blanch. (Orthoptera: Acrididae). Insect<br />

Ecology and Resource Management. ed.<br />

S.C. Goel. Sanatan Dharm College.<br />

Muzaffarnagar, India. pp. 226-23 1.<br />

(Review of Applied Entomology, Series<br />

A, 72: 5169-1984).<br />

Chandrasrikul, A. 1962. A preliminary host<br />

list of plant diseases in Thailand.<br />

Technical Bulletin 6, 23pp. Thailand<br />

Department of Agriculture, Bangkok<br />

(Holm et al. 1977).<br />

Chapola, G.M. 1980. Investigations into alternate<br />

hosts of tobacco bushy-top virus in<br />

Malawi. Journal of Science and<br />

Technology l(2): 1 1-16.<br />

Charudattan, R., Freeman, T.E., Conway,<br />

K.E. and Zettler, F.W. 1974. Studies on<br />

the use of plant pathogens in biological<br />

control of aquatic weeds in Florida.<br />

Proceedings of the Fourth International<br />

Symposium on Aquatic Weeds. 17-20<br />

September 1974. Vienna, Austria, pp.<br />

144-149.<br />

Chaudhuri, H. and Janaki Ram, K. 1975.<br />

Control of aquatic weed by moth larvae.<br />

Nature 253: 40-41.<br />

Chaudhury, J.P. and Kapil, R.P. 1977. Record<br />

of a new host plant of Hymenia recurvalis<br />

(F.) and its parasites. Indian Journal of<br />

Entomology 37: 3 14.<br />

Chauhan, L.S. and Verma, S.C. 1981. Two<br />

new host records for India. Indian Journal<br />

of Mycology and Plant Pathology<br />

1 1: 246-247.<br />

Chen, C.C., Chen, M.J., Chiu, R.J. and Hsu,<br />

H.T. 1989a. Morphological comparisons<br />

of Echinochloa ragged stunt and rice<br />

ragged stunt viruses by electron mcroscopy.<br />

Phytopathology 79: 235-241.


240 Biological Control of Weeds: Southeast Asian Prospects<br />

Chen, C.T., Deng, T.C. and Chang, C.A.<br />

1989b. Sugarcane mosaic in Taiwan.<br />

Serological relationships and coat protein<br />

of SCMV strains. Taiwan Sugar 36: 10-1 3<br />

(Review Plant Pathology 70: 960, 1991).<br />

Cherian, M.C. and Kylasam, M.S. 1937.<br />

Preliminary studies on the 'freckled yellow'<br />

and 'stripe' diseases of cholam.<br />

Proceedings of the Association of<br />

Economic Biologists, Coimbatore, India<br />

1936. (Rachie and Peters 1977).<br />

Chikwenhere, G.P. and Forno, I.W. 1991.<br />

Introduction of Neohydronomus afinis for<br />

biological control of Pistia stratiotes in<br />

Zimbabwe. Journal of Aquatic Plant<br />

Management 29: 53-55.<br />

Chona, B. and Rafay, S. 1950. Studies on the<br />

sugar-cane diseases in India. 1. Sugar-cane<br />

mosaic virus. 2. The phenomenon of natural<br />

transmission and recovery from mosaic<br />

of sugar-cane. Indian Journal of<br />

Agricultural Science 20: 39-78.<br />

(Holm et al. 1977).<br />

Christie, S.R., Christie, R.G. and Edwardson,<br />

J.R. 1974. Transmission of a bacillifonn<br />

virus of sowthistle (Sonchus) and Bidens<br />

pilosa. Phytopathology 64: 840-845.<br />

CIBC 1972. Commonwealth Institute of<br />

Biological Control. Annual Report for<br />

1971.<br />

Cilliers, C.J. 1987. First attempt at and early<br />

results on the biological control of Pistia<br />

stratiotes L. in South Africa. Koedoe 30:<br />

35-40.<br />

Cilliers, C.J. 1989a. Biological control of<br />

aquatic weeds in South Africa-an interim<br />

report. Proceedings 7th International<br />

Symposium on Biological Control of<br />

Weeds. 6-1 1 March 1988, Rome, Italy,<br />

pp. 263-267.<br />

Cilliers, C.J. 1989b. Confirmation of host<br />

specificity of Neohydronomus pulchellus<br />

under simulated natural conditions.<br />

Journal of the Entomological Society of<br />

Southern Africa 52: 180.<br />

Cilliers, C.J. 1991a. Biological control of<br />

water hyacinth, Eichhornia crassipes<br />

(Pontederiaceae), in South Africa.<br />

Agriculture, Ecosystems and Environment<br />

37: 207-217.<br />

Cilliers, C.J. 1991b. Biological control of<br />

water lettuce, Pistia pratiotes in South<br />

Africa. In (ed.) J.R. Hoffmann, Biological<br />

Control of Weeds in South Africa.<br />

Agricultural Ecosystems and the<br />

Environment 37: 225-229.<br />

Clark, W.E. 1984. Species of Sibinia Germar<br />

(Coleoptera.: Curculionidae) associated<br />

with Mimosa pigra L. Proceedings of the<br />

Entomological Society of Washington<br />

86: 358-367.<br />

Clement, S.L. and Norris, R.F. 1982. Two insects<br />

offer potential biological control of<br />

common purslane. California Agriculture<br />

36(fl): 16-1 8.<br />

Cock, M.J.W. 1980. Biological control of<br />

Mikania micrantha. Commonwealth<br />

Institute of Biological Control. Report of<br />

work carried out April 1979-March 1980,<br />

pp 53-54.<br />

Cock, M.J.W. 1981. An assessment of the occurrence<br />

and potential of natural enemies<br />

of Mikania spp. in the Neotropics. 64 pp.<br />

Final report (May 1979-March 198 1).<br />

Commonwealth Institute of Biological<br />

Control, Commonwealth Agricultural<br />

Bureaux.<br />

Cock, M.J.W. 1982a. Potential biological control<br />

agents for Mikania micrantha HBK<br />

from the Neotropical region. Tropical Pest<br />

Management 28: 242-254.<br />

Cock, M.J.W. 1982b. The biology and host<br />

specificity of Liothrips mikaniae<br />

(Priesner) (Thysanoptera,<br />

Phlaeothripidae), a potential biological<br />

control agent of Mikania micrantha<br />

(Compositae). Bulletin of Entomological<br />

Research 72: 523-533.<br />

Cock, M.J.W. 1984a. Possibilities for biological<br />

control of Chromolaena odorata.<br />

Tropical Pest Management 30: 7-13.


Cock, M.J.W. 1984b. Report on a consultancy<br />

to the Republic of Vanuatu to advise on<br />

biological control of weeds and pests, 20<br />

November-4 December 1983.<br />

Unpublished report. 33pp. Commonwealth<br />

Institute of Biological Control,<br />

Commonwealth Agricultural Bureaux.<br />

Cock, M.J.W. 1985. A Review of Biological<br />

Control of Pests in the Commonwealth<br />

Caribbean and Bermuda up to 1982.<br />

Commonwealth Institute of Biological<br />

Control. Technical Communication 9,<br />

21 8pp.<br />

Cock, M.J.W. and Holloway, J.D. 1982. The<br />

history of, and prospects for, the biological<br />

control of Chromolaena odorata<br />

(Compositae) by Pareuchaetes pseudoin-<br />

sulata Rego Barros and allies<br />

(Lepidoptera: Arctiidae). Bulletin of<br />

Entomological Research 72: 193-205.<br />

Cofrancesco, A.F. 1984. Biological control<br />

activities in Texas and California.<br />

Proceedings 18 Annual Meeting Aquatic<br />

Plant Control Research Program, U.S.<br />

Army Corps of Engineers. Miscellaneous<br />

Paper A-84-4, pp. 57-61.<br />

Cofrancesco, A.F., Stewart, R.M. and<br />

Sanders, D.R. 1985. The impact of<br />

Neochetina eichhorniae (Coleoptera:<br />

Curculionidae) on water hyacinth in<br />

Louisiana. Proceedings of the 6th<br />

International Symposium on Biological<br />

Control of Weeds, pp. 525-535.<br />

Common, I.F.B. and Waterhouse, D.F. 1981.<br />

Butterflies of Australia. Angus and<br />

Robertson Sydney, 682 pp.<br />

Conners, I.L. 1967. An annotated index of<br />

plant diseases in Canada and fungi record-<br />

ed on plants in Alaska, Canada and<br />

Greenland. Canada Department of<br />

Agriculture, Ottawa, Ontario. Publication<br />

1251,381~~.<br />

Conti, M. 1981. Wild plants in the ecology of<br />

planthopper-borne viruses of grasses and<br />

cereals. pp. 109-1 19 in (ed). J.M. Thresh,<br />

Pests, Pathogens and Vegetation. Pitman<br />

Publishing. Inc., Boston, Massachusetts.<br />

(Maun and Barrett 1986).<br />

5 References 241<br />

Conway, K.E. 1976. Evaluation of<br />

Cercospora rodmanii as a biological con-<br />

trol of water hyacinths. Phytopathology<br />

66: 914-917.<br />

Conway, K.E. and Freeman, T.E. 1977. Host<br />

specificity of Cercospora rodmanii, a po-<br />

tential biological control of water hya-<br />

cinth. Plant Disease Reporter 61 : 262-266.<br />

Conway, K.E., Freeman, T.E. and<br />

Charudattan, R. 1974. The fungal flora of<br />

water hyacinth in Florida, Part 1. Water<br />

Resources Research Center, University of<br />

Florida, Gainesville, Florida, USA.<br />

Publication 30, 1 lpp.<br />

Conway, K.E., Freeman, T.E. and<br />

Charudattan, R. 1978. Development of<br />

Cercospora rodmanii as a biological control<br />

for Eichhornia crassipes. Proceedings<br />

of the Fifth International Symposium on<br />

Aquatic Weeds, 1978. Amsterdam,<br />

Netherlands, pp. 225-230.<br />

Cordo, H.A. and DeLoach, C.J. 1975.<br />

Ovipositional specificity and feeding<br />

habits of the water hyacinth mite,<br />

Orthogalurnna terebrantis, in Argentina.<br />

Environmental Entomology 4: 561-565.<br />

Cordo, H.A. and DeLoach, C.J. 1976. Biology<br />

of the water hyacinth mite in Argentina.<br />

Weed Science 24: 245-249.<br />

Cordo, H.A. and DeLoach, C.J. 1978. Host<br />

specificity of Sameodes albiguttalis in<br />

Argentina, a biological control agent for<br />

water hyacinth. Environmental<br />

Entomology 7: 322-328.<br />

Cordo, H.A., DeLoach, C.J. and Ferrer, R.<br />

198 1. Biological studies on two weevils,<br />

Ochetina bruchi and Onychylis crenatus<br />

collected from Pistia and other aquatic<br />

plants in Argentina. Annals of the<br />

Entomological Society of America 74:<br />

363-368.<br />

Cordo, H.A., DeLoach, C.J., Runnacles, J. and<br />

Ferrer, R. 1978. Argentinorhynchus<br />

bruchi, a weevil from Pistia stratiotes in<br />

Argentina: biological studies.<br />

Environmental Entomology 7: 329-333.


.42 Biological Control of Weeds: Southeast Asian Prospects<br />

Cruttwell, R.E. 1971 a. Commonwealth Cruttwell, R.E. 1977b. Insects attacking<br />

Institute of Biological Control. Report of Eupatorium odoratum in the Neotropics.<br />

work carried out during 1970. Biological 6. Two eriophyid mites, Acalitus adoratus<br />

control of weeds. pp. 92-93. Keifer and Phyllocoptes cruttwellae<br />

Cruttwell, R.E. 197 1 b. Commonwealth<br />

Institute of Biological Control. West<br />

Indian Station. Quarterly - report - for<br />

April-June 1971.8~;. - -<br />

Cruttwell, R.E. 1972a. Commonwealth<br />

Institute of Biological Control. Report of<br />

work carried out during 1971. Biological<br />

Keifer. Commonwealth Institute of<br />

Biological Control. Technical Bulletin<br />

18: 59-63.<br />

Cruttwell, R.E. and Bennett, F.D. 1969.<br />

Commonwealth Institute of Biological<br />

Control. Report of work for 1968. Control<br />

of Siam weed. pp. 78-79.<br />

control of weeds. pp. 106107. Cruttwell, R.E. and Bennett, F.D. 1972a.<br />

Cruttwell, R.E. 1972b. Bidens pilosa.<br />

Commonwealth Institute of Biological<br />

Control. West Indian Station. Quarterly report<br />

for October-December 1971.6~~.<br />

Investigations on the insects attacking<br />

Portulaca oleracea in the Neotropics. 2.<br />

Investigations on the biology and hostspecificity<br />

of the leaf miner Pegomya sp.<br />

(Dipt., Anthomyidae). CIBC unpublished<br />

Cruttwell, R.E. 1973a. Insects attacking -<br />

Eupatorium odoratum in the Neotropics.<br />

2. Studies of the seed weevil Apion brunneonigrum<br />

BB and its potential use to control<br />

E. odoratum L, Commonwealth<br />

Institute of Biological Control. Technical<br />

Bulletin 16: 1 17-1 24.<br />

report, 6vp. A<br />

Cruttwell, R.E. and Bennett, F.D. 1972b.<br />

Investigations on the insects attacking<br />

Portulaca oleracea in the Neotropics. 3.<br />

Investigations on the biology and hostspecificity<br />

of the leaf miner Heliodine<br />

quinqueguttata Wals. (Lep., Heliodinidae)<br />

Cruttwell, R.E. 1973b. Insects attacking in ~rinidad. CIBC unp;blished report,<br />

Eupatorium odoratum in the Neotropics<br />

3. Dichomeris sp. nov. (= Trichotaphe sp.<br />

nr eupatoriella) (Lep.: Gelechiidae) a<br />

leaf-roller on Eupatorium odoratum L.<br />

(Compositae). Commonwealth Institute of<br />

Biological Control. Technical Bulletin<br />

16: 125-134.<br />

~PP.<br />

d'Araujo e Silva, A.G., Gonqalves, C.R.,<br />

Galvfio, D.M., Gonqalves, A.J.L.,<br />

Gomes, J., Silva, M.N. and Simoni, L.<br />

1968a. Quarto cathlogo dos insetos que<br />

vivem nas planBs do Brasil, seus parasites<br />

e predatores. Part 11. Tomo 1. Insetos hos-<br />

Cruttwell, R.E. 1974. Insects and mites attack- pedeiros e inimigos naturais. Ministeria da<br />

ing Eupatorium odoratum in the Agricultura. Departmento de Def. e<br />

Neotropics 4. An annotated list of insects Inspeqfio Agropecuhria, Rio de Janeiro.<br />

and mites recorded from Eupatorium 622pp. (Bennett and Cruttwell 1972).<br />

odoratum L., with a key to the types of<br />

damage found in Trinidad.<br />

Commonwealth Institute of Biological<br />

Control. Technical Bulletin 17: 87-1 25.<br />

d'Araujo e Silva, A.G., Gonqalves, C.R.,<br />

Galvfio, D.M., Gonqalves, A.J.L.,<br />

Gomes, J., Silva, M.N. and Simoni, L.<br />

1968b. Quarto cathlogo dos insetos que<br />

Cruttwell, R.E. 1977a. Insects and mites at- vivem nas plantas do Brasil, seus parasites<br />

tacking Eupatorium odoratum L. in the e predatores. Part 11. Tomo 2. Indice de in-<br />

Neotropics 5. Mescinia sp. nr parvula setos e indice de plantas. Ministeria da<br />

(Zeller). Commonwealth Institute of Agricultura. Departmento de Def. e<br />

Biological Control. Technical Bulletin Inspeqfio Agropecuhria, Rio de Janeiro.<br />

18: 49-58.<br />

267pp.


Dabaj, K.H. and Jenser, G. 1990. Some weed<br />

host-plants of the northern root-knot ne-<br />

matode Meloidogyne hapla in Hungary.<br />

Nematologia Mediterranea 18: 139-1 40.<br />

(Weed Abstracts 40: 2868, 199 1).<br />

Dahiya, R.S., Mangat, B.P.S. and Bhatti, D.S.<br />

1988. Some new host records of<br />

Meloidogyne javanica. International<br />

Nematology Network Newsletter 5(3):<br />

32-34.<br />

Das, B.B. and Ram, G. 1988. Incidence, dam-<br />

age and carry-over of cutworm (Agrotis<br />

ypsilon) attacking potato (Solanum tubero-<br />

sum) crop in Bikar. Indian Journal of<br />

Agricultural Sciences 8: 650-65 1.<br />

Davies, J.C. 1972. Studies on the ecology of<br />

Aphis craccivora Koch (Aphididae) the<br />

vector of rosette disease of groundnuts in<br />

Uganda. Bulletin of Entomological<br />

Research 62: 169-1 8 1.<br />

Davis, C.J. 1955. Hypurus bertrandi Perris.<br />

Proceedings of the Hawaiian<br />

Entomological Society 16: 3.<br />

Davis, C.J. 1960. Recent introductions for bi-<br />

ological control in Hawaii, V. Proceedings<br />

of the Hawaiian Entomological Society<br />

17: 244-248.<br />

Davis, C.J. 1970. Recent introductions for bi-<br />

ological control in Hawaii, XV.<br />

Proceedings of the Hawaiian<br />

Entomological Society 20: 521-525.<br />

Davis, C.J. and Chong, M. 1968. Recent intro-<br />

ductions for biological control in Hawaii,<br />

XIII. Proceedings of the Hawaiian<br />

Entomological Society 20: 25-28.<br />

Davis, C.J. and Chong, M. 1969. Recent intro-<br />

ductions for biological control in Hawaii,<br />

XIV. Proceedings of the Hawaiian<br />

Entomological Society 20: 3 17-322.<br />

Davis, C.J. and Krauss, N.L.H. 1962. Recent<br />

developments in the biological control of<br />

weed pests in Hawaii. Proceedings of the<br />

Hawaiian Entomological Society<br />

18: 65-67.<br />

5 References 243<br />

Davis, C.J. and Krauss, N.L.H. 1966. Recent<br />

introductions for biological control in<br />

Hawaii, XI. Proceedings of the Hawaiian<br />

Entomological Society 19: 201-207.<br />

Davis, C.J. and Krauss, N.L.H. 1967. Recent<br />

introductions for biological control in<br />

Hawaii, XII. Proceedings of the Hawaiian<br />

Entomological Society 19: 375-380.<br />

Davis, D.R. 1990. First record of a bagworm<br />

moth from Hawaii (USA): description and<br />

introduction of Brachycyttarus griseus De<br />

Joannis (Lepidoptera: Psychidae).<br />

Proceedings of the Entomological Society<br />

of Washington 92: 259-270.<br />

Davis, D.R., Kassulke, R.C., Harley, K.L.S.<br />

and Gillett, J.D. 1991. Systematics, mor-<br />

phology, biology and host specificity of<br />

Neurostrota gunniella (Busck)<br />

(Lepidoptera : Gracillariidae), an agent for<br />

the biological control of Mimosa pigra L.<br />

Proceedings of the Entomological Society<br />

of Washington 93: 16-44.<br />

Debrot, E. and Centeno, F. 1985. Occurrence<br />

of Euphorbia mosaic virus infecting<br />

Euphorbia heterophylla in Venezuela<br />

(Spanish). Agronomia Tropical 35(4-6):<br />

5-12. (Review of Applied Entomology,<br />

Series A, 77: 3821,1989).<br />

Delfosse, E.S. 1978a. Interaction between the<br />

mottled water hyacinth weevil, Neochetina<br />

eichhorniae Warner, and the water hyacinth<br />

mite, Orthogalumna terebrantis<br />

Wallwork. Proceedings of the Fourth<br />

International Symposium on the<br />

Biological Control of Weeds. 30 August-2<br />

September 1976. Gainesville, Florida,<br />

USA, pp. 93-97.<br />

Delfosse, E.S. 1978b. Effect on water hyacinth<br />

of Neochetina eichhorniae Col.:<br />

Curculionidae, combined with<br />

Orthogalumna terebrantis. Entomophaga<br />

23: 379-387.<br />

Delfosse, E.S. and Perkins, B.D. 1977.<br />

Discovery and bioassay of a kairomone<br />

from water hyacinth, Eichhornia<br />

crassipes. The Florida Entomologist<br />

60: 217-222.


244 Biological Control of Weeds: Southeast Asian Prospects<br />

Delfosse, E.S., Sutton, D.L. and Perkins, B.D.<br />

1976. Combination of the mottled water<br />

hyacinth weevil and the white amur for bi-<br />

ological control of water hyacinth. Journal<br />

of Aquatic Plant Management 14: 64-67.<br />

DeLoach, C.J. 1975. Evaluation of candidate<br />

arthropods for biological control of water<br />

hyacinth: studies in Argentina.<br />

Proceedings of the Symposium on Water<br />

Quality Management through Biological<br />

Control. 23-30 January 1975. Gainesville,<br />

Florida, USA, pp. 44-50.<br />

DeLoach, C.J. 1976. Neochetina bruchi, a bi-<br />

ological control agent of water hyacinth:<br />

host specificity in Argentina. Annals of the<br />

Entomological Society of America<br />

69: 635-642.<br />

DeLoach, C.J. 1977. Identification and bio-<br />

logical notes on the species of Neochetina<br />

that attack Pontederiaceae in Argentina<br />

(Coleoptera: Curculionidae: Bagoini).<br />

Coleopterists' Bulletin 29: 257-263.<br />

DeLoach, C.J. and Cordo, H.A. 1976a.<br />

Ecological studies of Neochetina bruchi<br />

and N. eichhorniae on water hyacinth in<br />

Argentina. Journal of Aquatic Plant<br />

Management 14: 53-59.<br />

DeLoach, C.J. and Cordo, H.A. 1976b. Life<br />

cycle and biology of Neochetina bruchi, a<br />

weevil attacking water hyacinth in<br />

Argentina, with notes on N. eichhorniae.<br />

Annals of the Entomological Society of<br />

America 69: 643-652.<br />

DeLoach, C.J. and Cordo, H.A. 1978. Life<br />

history and ecology of the moth Sameodes<br />

albiguttalis, a candidate for biological<br />

control of water hyacinth. Environmental<br />

Entomology 7: 309-321.<br />

DeLoach, C.J., Cordo, H.A., Ferrer, R.,<br />

Runnacles, J. and DeSantis, L. 1980.<br />

Acigona infusella, a potential biological<br />

control agent for water hyacinth: observa-<br />

tions in Argentina (with descriptions of<br />

two new species of Apanteles by L.<br />

DeSantis). Annals of the Entomological<br />

Society of America 73: 138-1 46.<br />

DeLoach, C.J., DeLoach, A.D. and Cordo,<br />

H.A. 1976. Neohydronomus pulchellus, a<br />

weevil attacking Pistia stratiotes in South<br />

America: biology and host specificity.<br />

Annals of the Entomological Society of<br />

America 69: 830-834.<br />

DeLoach, C.J., DeLoach, D.J. and Cordo,<br />

H.A. 1979. Observations on the biology of<br />

the moth, Samea multiplicalis on water let-<br />

tuce in Argentina. Journal of Aquatic Plant<br />

Management 17: 42-44.<br />

Den Doop, J.E.A. 1918. De Verspreiding van<br />

Trichogramma, den Eiparasiet van<br />

Heliothis obsoleta F., ter Oostkust van<br />

Sumatra. Meded. del Proelstation, Medan<br />

1 O(9): 2 13-220. (Pemberton 1983).<br />

Desai, S.A., Siddaramaiah, A.L. and Hegde,<br />

R.K. 1980. Three additiolial hosts to<br />

Sclerotium rolfsii. Current Research 9(9):<br />

151-152.<br />

Dethier, V.G. 1940. Life histories of Cuban<br />

Lepidoptera. Psyche 47: 14-26.<br />

De Waele, D., Jordaan, E.M. and Basson, S.<br />

1990. Host status of seven weed species<br />

and their effects on Ditylenchus destructor<br />

infestation of peanut. Journal of<br />

Nematology 22: 292-296.<br />

De Wijs, J.J. 1974. A virus causing ringspot<br />

of Passiflora edulis in the Ivory Coast.<br />

Annals of Applied Biology 77: 33-40.<br />

Dhaliwal, G.S. 1979. Some new weed hosts of<br />

the rice hispa recorded in India.<br />

International Rice Research Newsletter<br />

4: 19.<br />

Dharmadhikari, P.R., Perera, P.A.C.R. and<br />

Hassen, T.M.F. 1977. The introduction of<br />

Ammalo insulata for the control of<br />

Eupatorium odoratum in Sri Lanka.<br />

Commonwealth Institute of Biological<br />

Control. Technical Bulletin 18: 129-1 35.<br />

Dhiman, S.C. 1986. New host plants of<br />

Haplothrips longisetosus Ananthakrish-<br />

nan. Entomon 1 1 : 262.


I 5 References 245<br />

Dias, M.M. 1979. Morphology and biology of<br />

Eryphanis polyxena polyxena (Meerburgh<br />

1779, Lepidoptera, Satyridae,<br />

Brassolinae. (Portuguese). Revista<br />

Brasileira de Entomologia 23: 267-274.<br />

Dikova, D. 1989. Wild-growing hosts of the<br />

cucumber mosaic virus. (Bulgarian).<br />

Rasteniev dni Nauki 26(7): 57-64 (Weed<br />

Abstracts 39: 842, 1990).<br />

Divakar, B.J. and Manoharan, V. 1978. A re-<br />

view on water hyacinth, Eichhornia cras-<br />

sipes (Mart.) Solms. and its control by nat-<br />

ural enemies. Plant Protection Gleanings<br />

9: 23pp.<br />

Dodds, J.A. and Taylor, G.S. (1980).<br />

Cucumber mosaic virus infection of tobacco<br />

transplants and purslane (Portulaca oleracea).<br />

Plant Disease 64: 294-296.<br />

Dong, H.F., Guo, Y.J. and Niu, L.P. 1986.<br />

Biological control of the two spotted spider<br />

mite with Phytoseiulus persimilis on<br />

four ornamental plants in greenhouses<br />

(Chinese). Chinese Journal of Biological<br />

Control 2: 59-62.<br />

Drake, C.J. and Poor, M.E. 1938. Los<br />

Tingitidae (Hemiptera) de la coleccion<br />

Carlos Berg. Instituto del Museo de la<br />

Universidad Nacional de la Plata. Notas<br />

del Museo la Plata 2: 103-1 09.<br />

Drake, C.J. and Ruhoff, F.A. 1965. Lacebugs<br />

of the world. A catalog (Hemiptera:<br />

Tingidae). United States National Museum<br />

Bulletin 243.634~~.<br />

Dray, F.A. and Center, T.D. 1992. Biological<br />

control of Pistia stratiotes L. (waterlettuce)<br />

using Neohydronomus affinis<br />

Hustache (Coleoptera: Curculionidae).<br />

U.S. Army Engineer Waterways<br />

Experiment Station, Vicksburg, MS.<br />

Technical Report A-92-1,27 pp.<br />

Dray, F.A., Center, T.D. and Habeck, D.H.<br />

1989. Immature stage of the aquatic moth<br />

Petrophila drumalis (Lepidoptera:<br />

Pyralidae: Nymphulinae) from Pistia stratiotes<br />

(water lettuce). Florida Entomologist<br />

72: 711-714.<br />

Dray, F.A., Center, T.D., Habeck, D.H.,<br />

Thompson, C.R., Cofrancesco, A.F. and<br />

Balciunas, J.K. 1990. Release and establishment<br />

in the southeastern United States<br />

of Neohydronomus affinis (Coleoptera:<br />

Curculionidae), an herbivore of water lettuce.<br />

Environmental Entomology 19:<br />

799-802.<br />

Dray, F.A., Thompson, C.R., Habeck, D.H.,<br />

Balciunas, J.K. and Center, T.D. 1988. A<br />

survey of the fauna associated with Pistia<br />

stratiotes (water lettuce) in Florida. U.S.<br />

Army Engineers, Waterways Experiment<br />

Station, Technical Report A-86-6,32pp.<br />

Duatin, C.J.Y. and Pedro, L.B.de 1986.<br />

Biology and host range of the taro planthopper,<br />

Tarophagus proserpina Kirk.<br />

Annals of Tropical Research 8: 72-80.<br />

Duatin, C.J.Y., Pedro, L.B.de and De Pedro,<br />

L.B. 1986. Biology and host range of the<br />

taro planthopper, Tarophagus proserpina<br />

Kirk. Annals of Tropical Research<br />

8: 72-80. (Review of Applied<br />

Entomology, Series A, 75: 794, 1987).<br />

Ekukole, G., Ansa, O.A., Ajaye, 0. and<br />

Sundaram, N.V. 1989. Some grasses<br />

showing streak virus symptoms in Zaria,<br />

Nigeria. Samaru Journal of Agricultural<br />

Research 6(6): 29-33 (Review of Plant<br />

Pathology 69: 8439, 1990).<br />

El-Banhawy, E.M. 1979. Description of some<br />

unknown phytoseiid mites from Brazil<br />

(Mesostigmata: Phytoseiidae). Acarologia<br />

20: 477-484.<br />

Ellison, C.A. 1992. Mycoherbicidal control of<br />

Rottboellia cochinchinensis: a viable alternative?<br />

Plant Protection Quarterly<br />

7: 163-165.<br />

Ellison, C.A. and Evans, H.C. 1990.<br />

Preliminary assessment of fungal<br />

pathogens as biological control agents for<br />

Rottboellia cochinchinensis (Gramineae).<br />

Proceedings of the VII International<br />

Symposium on Biological Control of<br />

Weeds. 6-1 1 March 1988, Rome, Italy,<br />

pp. 477-482.


246 Biological Control of Weeds: Southeast Asian Prospects<br />

Ellison, C.A. and Evans, H.C. 1993. Present<br />

status of the biological control programme<br />

for the graminaceous weed Rottboellia<br />

cochinchinensis. Proceedings of the VIII<br />

International Symposium on Biological<br />

Control of Weeds, 2-7 February 1992,<br />

Lincoln University, Canterbury, New<br />

Zealand.<br />

Elshafie, M. 1976. Nysius vinitor Berg.<br />

(Hemiptera: Lygaeidae) infesting pigweed,<br />

Portulaca oleracea L. Journal of the<br />

Entomological Society of Australia 9: 54.<br />

Esguerra, N.M., William, W.S. and Smith,<br />

J.R. 1991. Status of biological control of<br />

the Siam weed Chromolaena odorata (L.)<br />

R.M. King and H. Robinson on Pohnpei,<br />

Federated States of Micronesia. Ecology<br />

and Management of Chromolaena<br />

odorata. Biotrop Special Publication 44:<br />

99- 104.<br />

Esguerra, N.M., William, W.S. and Smith,<br />

J.R. 1994. Establishment of Pareuchaetes<br />

pseudoinsulata Rego Barros introduced to<br />

control the Siam weed, Chroniolaena<br />

odorata (L.) R.M. King and H. Robinson<br />

in the Eastern Caroline Islands.<br />

Proceedings 3rd International Workshop<br />

on Biological Control of Chromolaena<br />

odorata. Ivory Coast, November 1993.<br />

Preprint 4pp.<br />

Esposito, M.C., Medeiros, L., Righetti, S.M.<br />

and Garcia, M.A. 1985. Efeito de insetos<br />

fitofagos em populaqoes de Bidens pilosa.<br />

Resumos, XI1 Congresso Brasileiro de<br />

Zoologia 27 de JanCiro a 1 de Fevereiro,<br />

Universidade Estaduae de Campinas,<br />

p. 114.<br />

Eugenio, C. and del Rosario, M. 1962. Host<br />

range of tobacco mosaic virus in the<br />

Philippines. Philippine Agriculturist 46:<br />

175-1 97. (Holm et al. 1977).<br />

Evans, H.C. 1987. Fungal pathogens of some<br />

subtropical and tropical weeds and possi-<br />

bilities for biological control. Biocontrol<br />

News and Information 8: 7-30.<br />

Evans, H.C. 1988. Preliminary survey of fungal<br />

pathogens of Mimosa pigra in Mexico,<br />

21 February-2 March 1988. Project PIG<br />

760.4~~. CIBC, Silwood Park. UK.<br />

Evans, H.C. 1990. The potential of fungal<br />

pathogens as biological control agents of<br />

Mimosa pigra: a preliminary assessment.<br />

Unpublished report, 19pp. CAB<br />

International Institute of Biological<br />

Control.<br />

Evans, H.C. 1991. Biological control of tropi-<br />

cal grassy weeds. pp. 52-72 in Tropical<br />

Grassy Weeds, (eds) F.W.G. Baker and<br />

P.J. Terry.<br />

Evans, H.C., Carrion, G. and Guzman, G.<br />

1993. A new species of Sphaerulina and<br />

its Phloeospora anamorph, with potential<br />

for biological control of Mimosa pigra.<br />

Mycological Research 97: 59-67.<br />

Evans, H.C. and Seier, M.K. 1991. Project<br />

PIG 760 Progress Report, October 1990-<br />

September 1991. CAB International<br />

Institute of Biological Control, Silwood<br />

Park, UK.<br />

Everist, S.L. 1974. Poisonous Plants of<br />

Australia. Angus and Robertson, Sydney.<br />

684pp.<br />

Felt, E.P. 191 1. Hosts and galls of American<br />

gall midges. Journal of Economic<br />

Entomology 4: 45 1-475.<br />

Felt, E.P. 191 6. New western gall midges.<br />

Journal of the New York Entomological<br />

Society 24: 175-196.<br />

Felt, E.P. 1918. Key to American insect galls.<br />

Bulletin of the New York State Museum<br />

200: 5-3 1 0.<br />

Felt, E.P. 1920. New Indian gall midges<br />

(Diptera). Memoirs of the Department of<br />

Agriculture in India, Entomology 7(1-2):<br />

1-11.<br />

Felt, E.P. 1921. New Indian gall midges<br />

(Itonididae). Memoirs of the Department<br />

of Agriculture in India, Entomology 7(4):<br />

23-28.


Fernandez, M. and Ortega, J. 1982. Plantas in-<br />

deseables como hospedantes de nematodos<br />

parasitos del moz (Spanish). Ciencias de<br />

la Agricultura 12: 1 14-1 16.<br />

(Helminthological Abstracts, Series B, 53:<br />

955, 1984).<br />

Ferreira, D.I.C., Garrido, M.J. and Trujillo,<br />

G.E. 1989. Maize hoja blanca virus infect-<br />

ing sorghum (Sorghum bicolor (L.)<br />

Moench) in Maracay, Aragua (Spanish).<br />

Fitopatologia Venezolana 2: 23 (Review<br />

of Agricultural Entomology 79: 4587,<br />

1991).<br />

Ferronatto, E.M.O. 1986. Preliminary obser-<br />

vations on the host plants of the immature<br />

stages of the principal chrysomelids<br />

(Coleoptera: Chrysomelidae) occurring in<br />

cacao plantations. Revista Theobroma 16:<br />

107-1 10. (Portuguese). (Review of<br />

Applied Entomology, Series A, 76: 3499,<br />

1988).<br />

Field, S.P. 1991. Chromolaena odorata:<br />

friend or foe for resource poor farmers.<br />

Chromolaena odorata Newsletter 4: 4-7.<br />

Figliola, S.S., Camper, N.D. and Ridings,<br />

W.H. 1988. Potential biological control<br />

agents for goosegrass (Eleusine indica).<br />

Weed Science 36: 830-835.<br />

Fischer, G.W. 1953. Manual of North<br />

American smut fungi. Ronald Press, New<br />

York. (Maun and Barrett 1986).<br />

Fisher, H.H., Menendez, R.A., Daley, L.S.,<br />

Robb-Spencer, D. and Crabtree, G.D.<br />

1987. Biochemical characterization of itch<br />

grass (Rottboellia exaltata) biotypes.<br />

Weed Science 35: 333-338.<br />

Flanagan, G.J., Wilson, C.G. and Gillett, J.D.<br />

1990. The abundance of native insects on<br />

the introduced weed Mimosa pigra in<br />

Northern Australia. Journal of Tropical<br />

Ecology 6: 2 19-230.<br />

Fontes, E.G., Teixera, C.A.D., Pires, C.S.S.<br />

and Sujii, E.R. 1992. Current status of the<br />

biological control of weeds in Brazil.<br />

Abstracts, VIII International Symposium<br />

on Biological Control of Weeds, Lincoln<br />

University, Canterbury, New Zealand, 2-7<br />

February 1992, p. 84.<br />

5 References 247<br />

Force, D.C. 1965. The purslane sawfly in cen-<br />

tral California. California Department of<br />

Agriculture, Bulletin 54: 157-160.<br />

Forno, I.W. 1981. Effects of Neochetina eich-<br />

horniae on the growth of water hyacinth.<br />

Journal of Aquatic Plant Management 19:<br />

27-3 1.<br />

Forno, I.W. 1983. Life history and biology of<br />

a water hyacinth moth, Argyractis subor-<br />

nata (Lepidoptera: Pyralidae,<br />

Nymphulinae). Annals of the<br />

Entomological Society of America 76:<br />

624-627.<br />

Forno, I.W. 1987. Biological control of the<br />

floating fern Salvinia molesta in northeastern<br />

Australia: plant herbivore interactions.<br />

Bulletin of Entomological Research<br />

77: 9-17.<br />

Forno, I.W. 1992. Biological control of<br />

Mimosa pigra: research undertaken and<br />

prospects for effective control. (ed.)<br />

K.L.S. Harley, A Guide to the<br />

Management of Mimosa pigra, CSIRO,<br />

Canberra, pp. 38-42.<br />

Forno, I.W. and Harley, K.L.S. 1992. Host<br />

testing of biological control agents for<br />

Mimosa pigra. (ed.) K.L.S. Harley, A<br />

Guide to the Management of Mimosa<br />

pigra, CSIRO, Canberra, pp. 43-62.<br />

Forno, W., Heard, T.A. and Day, M.D. 1994.<br />

Host-specificity and aspects of the biology<br />

of Coelocephalapion aculeatum<br />

(Coleoptera: Apionidae), a potential biological<br />

control agent of Mimosa pigra<br />

(Mimosaceae). Environmental<br />

Entomology 24: (in press).<br />

Forno, I.W., Kassulke, R.C. and Day, M.D.<br />

1991a. Life-cycle and host testing proce-<br />

dures for Carmenta mimosa, Eichlin and<br />

Passoa (Lepidoptera: Sesiidae), a biologi-<br />

cal control agent for Mimosa pigra L.<br />

(Mimosaceae) in Australia. Biological<br />

Control 1: 309-3 15.


248 Biological Control of Weeds: Southeast Asian Prospects<br />

Forno, I.W., Kassulke, R.C. and Harley,<br />

K.L.S. 1989a. Neurostrota gunniella<br />

(Busck) (Order Lepidoptera, Family<br />

Gracillariidae), a potential agent for bio-<br />

logical control of the weed, Mimosa pigra<br />

L. (Family Leguminosae) in the Northern<br />

Territory. CSIRO Division of<br />

Entomology, unpublished report, 9pp.<br />

Forno, I.W., Miller, I.L., Napompeth, B. and<br />

Thamasara, S. 199 1b. Management of<br />

Mimosa pigra in Southeast Asia and<br />

Australia. pp. 265-271. Proceedings of the<br />

3rd International Conference on Plant<br />

Protection in the Tropics.<br />

Forno, I.W., Napompeth, B. and<br />

Buranapanichpan, S. 1989b. Is biological<br />

control of Mimosa pigra possible?<br />

Proceedings of The 1 st Asia-Pacific<br />

Conference of Entomology, November<br />

1989. Chiangmai, pp. 785-799.<br />

Forno, I.W. and Wright, A.D. 198 1. The biol-<br />

ogy of Australian weeds. 5. Eichhornia<br />

crassipes (Mart.) Solms. Journal of the<br />

Australian Institute of Agricultural<br />

Science 47: 21-28.<br />

Fortuner, R. 1976. Pratylenchus zeae.<br />

Commonwealth Institute of<br />

Helminthology. Descriptions of Plant-<br />

Parasitic Nematodes, Set 6, No. 77.<br />

Freeman, T.E. 1977. Biological control of<br />

aquatic weeds with plant pathogens.<br />

Aquatic Botany 3: 175-1 84.<br />

Freitas, A.V.L. 1991. Variation, life cycle and<br />

systematics of Tegosa claudina<br />

(Eschscholtz) (Lepidoptera, Nymphalidae,<br />

Melitaeinae) in S2o Paulo State, Brazil.<br />

(Portuguese). Revista Brasileira de<br />

Entomologia 35: 301-306.<br />

Frick, K.E. 1956. Revision of the North<br />

American Calycomyza species north of<br />

Mexico (Phytobia: Agromyzidae,<br />

Diptera). Annals of the Entomological<br />

Society of America 49: 284-300.<br />

Fullerton, R.A. 1977. New plant disease<br />

record in New Zealand: two smuts<br />

(Ustilago tricophora, Tolyposporium bul-<br />

latum) of barnyard grass (Echinochloa<br />

crus-galli). New Zealand Journal of<br />

Agricultural Research 20: 1 13.<br />

GagnC, R.J. 1968. A catalogue of the Diptera<br />

of the Americas south of the United States.<br />

23. Family Cecidomyiidae. 62pp. (Bennett<br />

and Cruttwell 1972).<br />

GagnC, R.J. 1985. A taxonomic revision of the<br />

Asian rice gall midge, Orseolia oryzae<br />

(Wood-Mason), and its relatives (Diptera:<br />

Cecidomyiidae) Entomography 3:<br />

127-162.<br />

Ganga-Vislakshy, P.N. and Jayanth, K.P.<br />

1991. Studies on the life history and devel-<br />

opment of Orthogalumna terebrantis<br />

Wallwork (Acarina: Galumnidae), an exot-<br />

ic oribatid mite of Eichhornia crassipes.<br />

Entomon 16: 53-58.<br />

Garcia, C.A. 1982a. Preliminary report on the<br />

natural enemies and distribution of<br />

Mimosa invisa in Brazil. Queensland<br />

Department of Lands Report. 4pp.<br />

Garcia, C.A. 1982b. A survey of the insects<br />

attacking giant sensitive plant (M. invisa)<br />

in Brazil with notes on its distribution.<br />

Queensland Department of Lands Report.<br />

1 ~PP.<br />

Garcia, C.A. 1983. Preliminary host specifici-<br />

ty testing of Psilopygida walkeri for the<br />

biological control of Mimosa invisa.<br />

Queensland Department of Lands Report.<br />

11~~.<br />

Garcia, C.A. 1984. A preliminary report on<br />

the host specificity of Scamurius sp.<br />

(Hemiptera, Heteroptera: Coreidae) a po-<br />

tential agent for the biological control of<br />

Mimosa invisa (giant sensitive plant in<br />

Queensland Australia). Queensland<br />

Department of Lands Report. 10pp.<br />

Garcia, C.A. 1985. A preliminary report on<br />

the host specificity of Heteropsylla sp.<br />

(Hemiptera, Homoptera: Psyllidae), a po-<br />

tential agent for the biological control of<br />

Mimosa invisa (giant sensitive plant) in<br />

Queensland, Australia. Queensland<br />

Department of Lands Report. 12pp.


Gardner, D.E. 1989. Pathogenicity of<br />

Fusarium oxysporum f.sp. passiflorae to<br />

banana poka and other Passiflora spp. in<br />

Hawaii. Plant Disease 73: 476-478.<br />

Gardner, D.E., Smith, C.W. and Markin, G.P.<br />

1992. Biological control of alien plants in<br />

natural areas of Hawaii. Abstracts, VIII<br />

International Symposium on Biological<br />

Control of Weeds. Lincoln University,<br />

Canterbury, New Zealand, p 1 1.<br />

Garlick, W.G. 1922. Concerning the feeding<br />

habits of the purslane sawfly larva. The<br />

Canadian Entomologist 54: 240.<br />

Gast, R.E., Wilson, R.G. and Kerr, E.D. 1984.<br />

Lesion nematode (Pratylenchus spp.) infection<br />

of weed species and fieldbeans<br />

(Phaseolus vulgaris). Weed Science<br />

32: 6 1 6-620.<br />

Gazziero, D.L.P., Ulbrich, A.V., Yorinori,<br />

J.T. and Voll, E. 1988. Weeds: biological<br />

control (Portuguese). Documentos-Centro<br />

Nacional de Pesquisa de Soja, EMBRAPA<br />

36: 299-303.<br />

Geering, Q.A. 1953. The sorghum midge,<br />

Contarinia sorghicola (Coq.) in East<br />

Africa. Bulletin of Entomological<br />

Research 44: 363-366.<br />

George, M.J. 1963. Studies on infestation of<br />

Pistia stratiotes Linn. by the caterpillar of<br />

Namangana pectinicornis Hemps., a noctuid<br />

moth, and its effects on Mansonioides<br />

breeding. Indian Journal of Malariology<br />

17: 149-155.<br />

Ghani, M.A. 1965. Studies on the insect enemies<br />

of noxious weeds in Pakistan.<br />

Commonwealth Institute of Biological<br />

Control, Rawalpindi, Pakistan. 171pp.<br />

Ghosh, A.K., Basu, R.C. and Raychaudhuri,<br />

D.N. 1971. On collection of aphids<br />

(Homoptera: Aphididae) from Bhutan with<br />

descriptions of two new species.<br />

Konty\O(^,u) 39(2): 120-1 25.<br />

Gillespie, A.G. and Koike, H. 1973.<br />

Sugarcane mosaic virus and maize dwarf<br />

mosaic in mixed infections of sugarcane<br />

and other grasses. Phytopathology 63:<br />

1300-1 307.<br />

5 References 249<br />

Gillett, J.D., Dunlop, C.R. and Miller, I.L.<br />

1988. Occurrence, origin, weed status and<br />

control of water lettuce (Pistia stratiotes)<br />

in the Northern Territory. Plant Protection<br />

Quarterly 3(4): 144-1 48.<br />

Gingery, R.E., Nault, L.R. and Bradfute, O.E.<br />

195 Nosema pilicornis sp. n. of the<br />

purslane sawfly. Schizocerella pilicornis.<br />

Journal of Invertebrate Pathology<br />

32: 235-243.<br />

Goto, M. 1992. The relationship between<br />

Emmalocera sp. and barnyard grass and its<br />

potential as a biological control.<br />

Proceedings of an International<br />

Symposium on Biological Control and<br />

Integrated Management of Paddy and<br />

Aquatic Weeds in Asia. National<br />

Agriculture Research Center, Tsukuba,<br />

Japan, pp. 229-247.<br />

Grazia, J., Vecchio, M.C. del., Hildebrand, R.<br />

and Ramiro, Z.A. 1982. Study of the<br />

nymphs of pentatomids (Heteroptera) that<br />

infest soyabeans (Glycine max (L.)<br />

Merrill) 111. Thyanta perditor (Fabricius<br />

1794). Anais da Sociedade Entomologica<br />

do Brasil 1 1 : 139-1 46. (Portuguese).<br />

(Review of Applied Entomology, Series A<br />

73: 7093,1983).<br />

Greber, R.S. 1979. Cereal chlorotic mottle<br />

virus-a rhabdovirus of Graminiae in<br />

Australia transmitted by Nesoclutha pallida<br />

(Evans). Australian Journal of<br />

Agricultural Research 30: 433-443.<br />

Gruezo, W.S. 1990. The genus Kordyana Rac.<br />

new record (Exobasidiaceae) in the<br />

Philippines. Natural History Bulletin of<br />

the Siam Society 38: 89-92 (Biological<br />

Abstracts, July to December 1991).<br />

Guo, Y.Y., Zhou, N.S., Wu, T.T. and Qiu,<br />

H.L. 1984. An investigation and study on<br />

rice root-knot nematode on Hainan Island<br />

(Chinese). Guangdong Agricultural<br />

Science, Guangdong Nongye Kexue<br />

1984(4) 32-34. (Helminthological<br />

Abstracts Series B, 54: 598, 1985).


250 Biological Control of Weeds: Southeast Asian Prospects<br />

Giirsoy, O.V. 1989. Arthropod and phy-<br />

topathogen natural enemies of several<br />

weeds in Turkey. Proceedings, VII<br />

Symposium on Biological Control of<br />

Weeds, 6-1 1 March 1988, Rome, Italy.<br />

Istituto Sperimentale per la Patologia<br />

Vegetale. Ministero dell Agricoltura e<br />

delle Foreste, Rome, Italy, pp. 609-61 1.<br />

Habeck, D.H. 1974. Arzama densa as a pest of<br />

dasheen. The Florida Entomologist<br />

57: 409-410.<br />

Habeck, D.H. and Passoa, S. 1982. Potential<br />

for biological control of Mimosa pigra.<br />

Proceedings of an International<br />

Symposium on Mimosa pigra<br />

Management, 1982 Chaing Mai, Thailand.<br />

International Plant Protection Center<br />

Document No 48-A-83. Oregon State<br />

University, USA, pp. 1 15-120.<br />

Haller, W.T. and Sutton, D.L. 1973. Effects of<br />

pH and high phosphorus concentrations on<br />

the growth of water hyacinth. Hyacinth<br />

Control Journal 1 1 59-67.<br />

Hamdoun, A.M. and Tigani, K.B.El. 1977.<br />

Weed problems in' the Sudan. Pesticides<br />

Abstracts & News Summary 23: 19&194.<br />

Handayani, T. and Syed, R.A. 1976.<br />

Nymphula responsalis attacking Salvinia<br />

spp. in Indonesia. BIOTROP Newsletter<br />

15: 14.<br />

Hanlin, R.T. and Tortolero, 0. 1990. Icones<br />

Ascomycetum Venezuelae:<br />

Myriogenospora atramentosa. Mycotaxon<br />

39: 237-244.<br />

Harley, K.L.S. 1982. Release and evaluation<br />

of natural enemies of water hyacinth.<br />

Proceedings, Workshop on Biological<br />

Control of Water Hyacinth.<br />

Commonwealth Science Council, London.<br />

3-5 May 1982. Bangalore, India,<br />

pp. 24-30.<br />

Harley, K.L.S. 1984. Implementing a program<br />

for biological control of water hyacinth,<br />

Eichhornia crassipes. Proceedings of the<br />

International Conference on Water<br />

Hyacinth. United Nations Environment<br />

Programme. 7-1 1 February 1983.<br />

Hyderabad, India, pp. 58-69.<br />

Harley, K.L.S. 1989. The management of<br />

water hyacinth with emphasis on biological<br />

control. Commonwealth Science<br />

Council, London, 44pp.<br />

Harley, K.L.S. 1990. The role of biological<br />

control in the management of water hyacinth,<br />

Eichhornia crassipes. Biocontrol<br />

News and Information 1 1: 1 1-22.<br />

Harley, K.L.S., Forno, I.W., Kassulke, R.C.<br />

and Sands, D.P.A. 1984. Biological control<br />

of water lettuce. Journal of Aquatic<br />

Plant Management 22: 101-1 02.<br />

Harley, K.L.S. and Kassulke, R.C. 1975. The<br />

suitability of Teleonemia prolixa (StA1) for<br />

biological control of Lantana camara in<br />

Australia. Journal of the Australian<br />

Entomological Society 14: 225-228.<br />

Harley, K.L.S., Kassulke, R.C., Sands, D.P.A.<br />

and Day, M.D. 1990. Biological control of<br />

water lettuce, Pistia stratiotes (Araceae)<br />

by Neohydronomus affinis (Coleoptera:<br />

Curculionidae). Entomophaga 35:<br />

363-374.<br />

Harley, K.L.S., Winder, J.A., Kassulke, R.C.<br />

and Sands, D.P.A. 1983. Prospects for biological<br />

control of Mimosa pigra L. in<br />

Australia. Proceedings of the International<br />

Symposium on Mimosa pigra management.<br />

Chaing Mai 1982, pp. 1 13-1 14.<br />

Harley, K.L.S., Miller, I.L., Napompeth, B.<br />

and Thamasara, S. 1985. An integrated approach<br />

to the management of Mimosa<br />

pigra L. in Australia and Thailand.<br />

Proceedings of the 10th Asian-Pacific<br />

Weed Society Conference, pp. 209-215.<br />

Harley, K.L.S. and Wright, A.D. 1984.<br />

Implementing a program for biological<br />

control of water hyacinth, Eichhornia<br />

crassipes. Proceedings of the International<br />

Conference on Water Hyacinth,<br />

Hyderabad, India. (ed.) G. Thyagarajan.<br />

7-1 1 February 1983. United Nations<br />

Environment Program Reports and<br />

Proceedings 7: 55-69.<br />

Haseler, W.H. 1984. The Alan Fletcher<br />

Research Station Annual Report<br />

1983-1 984. Queensland Department of<br />

Lands. 15pp.


Hashioka, Y. 1973. Notes on Pyricularia. 11.<br />

Four species and one variety parasitic to<br />

Cyperaceae, Gramineae and<br />

Commelinaceae. Transactions of the<br />

Mycological Society of Japan 14: 256-265<br />

(Review of Plant Pathology 53: 3373,<br />

1974).<br />

Heald, C.M., Menges, R.M. and Wayland,<br />

J.R. 1974. Efficacy of ultra-high frequency<br />

(UHF) electromagnetic energy and soil fumigation<br />

on the control of the reniform nematode<br />

(Rotylenchus reniformis) and common<br />

purslane (Portulaca oleracea) among<br />

southern peas. Plant Disease Reporter<br />

58: 985-987.<br />

Heard, T.A. 1992. Resource use by Apion aculeatum,<br />

a herbivore of inflorescences of<br />

Mimosa pigra. p. 73, Abstracts, VIII<br />

International Symposium on Biological<br />

Control of Weeds, Lincoln University,<br />

Canterbury, New Zealand, 2-7 February<br />

1992.<br />

Heath, M.C., Valent, B., Howard, R.J. and<br />

Chumley, F.G. 1990. Interactions of two<br />

strains of Magnaporthe grisea with rice,<br />

goosegrass and weeping lovegrass.<br />

Canadian Journal of Botany 68:<br />

1627-1 637.<br />

Heath, M.C., Howard, R.J., Valent, B. and<br />

Chumlev. F.G. 1992. Ultrastructural inter-<br />

5 References 251<br />

Hillebrand, W.F. 1888. Flora of the Hawaiian<br />

Islands. Williams and Norgate, London.<br />

673pp.<br />

Hilu, K.W. and Johnson, J.L. 1992.<br />

Ribosomal DNA variation in finger millet<br />

and wild species of Eleusine (Poaceae).<br />

Theoretical and Applied Genetics<br />

83: 895-902.<br />

Hilu, K.W. and de Wet, J.M.J. 1976.<br />

Domestication of Eleusine coracana.<br />

Economic Botany 30: 199-208.<br />

Hilu, K.W., de Wet, J.M.J. and Harlan, J.R.<br />

1979. Archaeobotany and the origin of fin-<br />

ger millet. American Journal of Botany<br />

16: 330-333.<br />

Hinckley, A.D. 1963. Trophic records of some<br />

insects, mites and ticks in Fiji. Fiji<br />

Department of Agriculture Bulletin 45.<br />

1 16pp.<br />

Hiremath, S.C. and Salimath, S.S. 1992. The<br />

'A' genome donor of Eleusine coracana<br />

(L.) Gaertn. (Gramineae). Theoretical and<br />

Applied Genetics 84: 747-754.<br />

Hiremath, P.C. and Sulladmath, V.V. 1985.<br />

Zonate leaf blight-a new disease of finger<br />

millet. Current Science 54: 935.<br />

d ,<br />

actions of one strain of Magnaporthe<br />

Hodkinson, I.D. and White, I.M. '1981. The<br />

neotropical Psylloidea (Homoptera:<br />

grisea with goosegrass and weeping love- Insecta): an annotated check list. Journal<br />

grass. Canadian Journal of Botany of Natural History 15: 491-523.<br />

70: 779-787.<br />

Hegdekatti, R.M. 1927. The rice gall midge in<br />

north Kanara. Agricultural Journal of India<br />

22: 461-463.<br />

Hoffmann, A. and Temp*re, G. 1944. Note<br />

sur Hypurus bertrandi Penis. Bulletin de<br />

la SocietC Entomologique de France<br />

49: 100-104.<br />

Herren-Gemmill, B. 1991. The ecological role<br />

of the exotic asteraceous Chromolaena<br />

odorata in the bush fallow farming system<br />

of West Africa. Ecology and management<br />

of Chromolaena odorata. BIOTROP<br />

Holcomb, G.E., Jones, J.P. and Wells, D.W.<br />

1989. Blight of prostrate spurge and cultivated<br />

poinsettia caused by Amphobotrys<br />

ricini. Plant Disease 73: 74-75.<br />

Special Publication 44: 11-24. Holm, L.G., Plucknett, D.L., Pancho, J.V. and<br />

Hilda, A. and Suranarayanan, S. 1976. Cross- Herberger, J.P. 1977. The World's Worst<br />

protection in the blast disease of Panicum<br />

repens L. Proceedings of the Indian<br />

Weeds. Distribution and Biology.<br />

University Press of Hawaii, Honolulu,<br />

Academy of Science Section B. 84:<br />

21 5-225.<br />

Hawaii. 609pp.


252 Biological Control of Weeds: Southeast Asian Prospects<br />

Huang, C.W., Feng, B.C., Wang, H.D., Yao, Jairajpuri, M.S., Khan, W.U., Setty, K.G.H.<br />

J. and Song, L.J. 1985. The host plants of and Govindu, H.C. 1979. Heterodera<br />

whitebacked planthopper and its tolerance delvii n. sp. (Nematoda: Heteroderidae) a<br />

to starvation (Chinese). Insect Knowledge parasite of ragi (Eleusine coracana) in<br />

(Kunchong Zhishi) 22(5): 193-1 94. Bangalore, India. Revue Nematologie<br />

(Review of Applied Entomology, Series 2: 3-9.<br />

Igarashi, K. 1985. Ecological studies of<br />

Triops cancriformis (Bosc) inhabiting<br />

Shonai district, Japan (Japanese). Journal<br />

of the Yamagata Agriculture and Forestry<br />

Society 42: 35-42. (Review of Applied<br />

Entomology, Series A, 75: 1079, 1987).<br />

IMI 1992. Unpublished report of the<br />

International Mycological Institute, CABI,<br />

UK.<br />

Inserra, R.N., Dunn, R.A., McSorley, R.,<br />

Langdon, K.R. and Richmer, A.Y. 1989.<br />

Weed hosts of Rotylenchus reniformis in<br />

ornamental nurseries in southern Florida.<br />

Nematology Circular, Gainsville, No 171,<br />

4pp. (Nematological Abstracts 59: 1404,<br />

1990).<br />

Irving, N.S. and Beshir, M.O. 1982.<br />

Introduction of some natural enemies of<br />

water hyacinth to the White Nile, Sudan.<br />

Tropical Pest Management 28: 2CL26.<br />

Itoh, K. 1991a. Life Cycles of Rice Field<br />

Weeds and their Management in Malaysia.<br />

Tropical Agriculture Research Center,<br />

Tsukuba, Japan. 89pp.<br />

3h, K. 1991b. Integrated weed management<br />

of direct seeded wet rice fields in<br />

Southeast Asia and Pacific regions, with<br />

special reference to Malaysia. Proceedings<br />

of the 13th Asian Pacific Weed Science<br />

Society Conference, Jakarta, Indonesia,<br />

October 15-1 8. 1991. 1 ~ . DD. .<br />

Izquierdo, J.E., Huepp, G. and Chacon, L.<br />

1987. Detection of nematodes of the genus<br />

Meloidogyne in weeds associated with coffee<br />

plantations (Spanish). Sciencia y<br />

Tecnica en la Agricultura, Cafe y Cacao 9<br />

(1): 47-54. (Weed Abstracts 39: 581,<br />

1 990).<br />

Jacobsen, W.B.C. 1983. Ferns and Fern Allies<br />

of Southern Africa. Durban, Butterworths.<br />

542pp.<br />

Janardhanan, K.K., Singh, H.N. and Husain,<br />

A. 1982. Studies on Claviceps parasitic on<br />

Panicum species in India. Folia<br />

Microbiologica 27: 121-1 25.<br />

Jayanth, K.P. 1987. Biological control of<br />

water hyacinth in India. Indian Institute of<br />

Horticultural Research Technical Bulletin<br />

No. 3,28pp.<br />

Jayanth, K.P. 1988. Biological control of<br />

water hyacinth in India by release of the<br />

exotic weevil Neochetina bruchi. Current<br />

Science 17: 968-970.<br />

Jayanth, K.P. and Visalakshi, P.N.G. 1989.<br />

Establishment of the exotic mite<br />

Orthogalumna terebrantis Wallwork on<br />

water hyacinth in Bangalore, India.<br />

Journal of Biological Control 3: 75-76.<br />

Jeritta, A.L.R. and David, B.V. 1986. Some<br />

insects associated with euphorbiaceous<br />

weeds. Pest management 1: 21-26.<br />

(Review of Applied Entomology, Series<br />

A, 75: 6270. 1987).<br />

Jeyarajan, R., Doraiswarny, S., Sivaprakasam,<br />

K., Venkata-Rao, A. and<br />

Ramakrishnan, L. 1988. Incidence of<br />

whitefly transmitted viruses in Tamil<br />

Nadu. Madras Agricultural Journal<br />

75: 212-213.<br />

Jimenez, J.M., Bustamante, E., Gomez, R. and<br />

Pareja, M. 1990. Spike rot disease of itchgrass,<br />

Rottboellia cochinchinensis, its etiology<br />

and possible use in biological control<br />

(Spanish). Manejo Integrado de Plagas<br />

15: 13-23.<br />

Jordaan, E.M., Waele, D.de. and De Waele,<br />

D. 1988. Host status of five weed species<br />

and their effects on Pratylenchus zeae infestation<br />

of maize. Journal of Nematology<br />

20: 620-624.


Joshi, P.M. 1972. Pseudocephalobus indicus<br />

n.gen, n.sp. (Rhabditida: Cephalobidae)<br />

from Marathwada, India. Marathwada<br />

University Journal of Science Section B<br />

(Biological Science) 11: 155-158.<br />

(Helminthological Abstracts, Series B.<br />

47:1363, 1978).<br />

Joshi, R.D. and Prakash, J. 1977. Ageratum<br />

conyzoides-a weed reservoir of potato<br />

virus Y. Journal of the Indian Potato<br />

Association 4(1): 22 (Agricola).<br />

Joy, P.J. 1978. On the occurrence of Nisia<br />

atrovenosa Lethierry (Homoptera:<br />

Menoplidae) on Pistia stratiotes L. (Farn.<br />

Araceae) in India. Agricultural Research<br />

Journal of Kerala 16: 93-94.<br />

Joy, P.J., Lyla, K.R. and Satheesan, N.V.<br />

1993. Biological control of Chromolaena<br />

odorata in Kerala, India. Chromolaena<br />

odorata Newsletter 7: 1-3.<br />

Julien, M.H. 1992. Biological control of<br />

weeds. A world catalogue of agents and<br />

their target weeds. 3rd edition. 186pp.<br />

CAB International in association with<br />

ACIAR.<br />

Kalshoven, L.G.E. 198 1. The pests of crops in<br />

Indonesia. Revised and translated by P.A.<br />

Van Der Laan and G.H.L. Rothschild. P.T.<br />

Ichtiar Baru-Van Hoeve, Jakarta,<br />

Indonesia. 701 pp.<br />

Kamarudin, K.A. and Shah, A.A. 1978. The<br />

potential of Haltica cyanea Weber (Col.:<br />

Chrysomelidae) as a biological control<br />

agent of Melastoma malabathricum Linn.<br />

MARDI Research Bulletin 6: 15-24.<br />

Kamath, M.K. 1979. A review of biological<br />

control of insect pests and noxious weeds<br />

in Fiji (1969-1978). Fiji Agricultural<br />

Journal 41: 55-72.<br />

Kanagaratnam, P. 1976. Report of the Crop<br />

Protection Division-1975. Ceylon<br />

Coconut Quarterly 27: 36-41.<br />

Kar, A.K. and Ashok-Das 1988. New records<br />

of fungi from India. Indian<br />

Phytopathology 41: 505. (Review of Plant<br />

Pathology 70: 6367, 1991).<br />

5 References 253<br />

Kasno, A.K.A. and Soerjani, M. 1979.<br />

Prospects for biological control of weeds<br />

in Indonesia. Proceedings of the Seventh<br />

Asian-Pacific Weed Science Society<br />

Conference. Australia; Asian-Pacific<br />

Weed Science Societies. 26-30 November<br />

1979. Orange, Australia, Supplement 2:<br />

35-38.<br />

Kassulke, R.C., Harley, K.L.S. and Maynard,<br />

G.V. 1990. Host specificity of<br />

Acanthoscelides quadridentatus and A.<br />

puniceus (Col.: Bruchidae) for biological<br />

control of Mimosa pigra (with preliminary<br />

data on their biology). Entomophaga<br />

35: 85-97.<br />

Kativu, S. and Mithen, R. 1988. Pennisetum<br />

in southern Africa. Plant Genetic<br />

Resources Newsletter 73/74: 1-8.<br />

Keifer, H.H. 1979. Eriophyid studies. C-16,<br />

California Department of Agriculture.<br />

Sacramento, California. USA.<br />

Kenfield, D., Hallock, Y., Clardy, J. and<br />

Strobel, G. 1989. Curvulin and O-ethyl-<br />

curvulinic acid: phytotoxic metabolites of<br />

Drechslera indica which cause necroses<br />

on purslane and spiny amaranth. Plant<br />

Science 60: 123-1 28.<br />

Khan, A.G., Baloch, G.M. and Ghani, M.A.<br />

1978. Natural enemies of Abutilon,<br />

Amaranthus, Rumex and Sorghum.<br />

Commonwealth Institute of Biological<br />

Control. Report of work carried out<br />

January 1977-March 1978. pp. 42-43.<br />

Khan, M.A., Hibino, H., Aguiero, V.M.,<br />

Daquioag, R.D. and Opina, O.S. 1991.<br />

Rice and weed hosts of rice tungro associ-<br />

ated viruses and leafhopper vectors. Plant<br />

Disease 75: 926-930.<br />

Khan, R.M. and Khan, M.W. 1985. Portulaca<br />

oleracea hitherto unrecorded host of<br />

Rotylenchulus reniformis from India. Acta<br />

Botanica Indica 13: 286-295.<br />

Kholod, N.A. 1983. Plant hosts of the straw-<br />

berry stem nematode. (Russian). Materialy<br />

Simpoziuma Voronezh, 27-29 Sentyabrya<br />

1983, 104-1 11 (Helminthological<br />

Abstracts, Series B, 55: 1 10, 1986).


254 Biological Control of Weeds: Southeast Asian Prospects<br />

Kim, K.S. and Flores, E.M. 1979. Nuclear<br />

changes associated with Euphorbia mosaic<br />

virus transmitted by the whitefly.<br />

Phytopathology 69: 980-984.<br />

Kim, K.S. and Fulton, R.W. 1984.<br />

Ultrastructure of Datura stramonium in-<br />

fected with Euphorbia virus suggestive of<br />

a whitefly-transmitted geminivirus.<br />

Phytopathology 74: 236-241.<br />

Klein, M. and Raccah, B. 1991. Separation of<br />

two leafhopper populations of Circulifer<br />

haematoceps complex on different host<br />

plants in Israel. Phytoparasitica 19:<br />

153-1 55. (Review of Agricultural<br />

Entomology 79: 9784, 1991).<br />

Kleinschmidt, R.P. 1960. New species of<br />

Agromyzidae from Queensland.<br />

Queensland Journal of Agricultural<br />

Science 17: 321-337.<br />

Kleinschmidt, R.P. 1970. Studies of some<br />

Agromyzidae in Queensland. Queensland<br />

Journal of Agriculture and Animal Science<br />

27: 341-384.<br />

Klisiewicz, J.M. 1985. Growth and reproduc-<br />

tion of Dichotomophthora portulacae and<br />

its biological activity on purslane. Plant<br />

Disease 69: 76 1-762.<br />

Klisiewicz, J.M., Clement, S.L. and Norris,<br />

R.F. 1983. Black stem: a fungal disease of<br />

common purslane in California. Plant<br />

Disease 64: 1 162.<br />

Klots, A.B. 195 1. A Field Guide to the<br />

Butterflies of North America East of the<br />

Great Plains. Houghton Mifflin, Boston.<br />

349pp.<br />

Kluge, R.L. 1991. Biological control of triffid<br />

weed, Chromolaena odorata (Asteraceae),<br />

in South Africa. Agriculture, Ecosystems<br />

and Environment 37: 193-197.<br />

Kluge, R.L. and Caldwell, P.M. 1991.<br />

Chromolaena odorata in South Africa.<br />

Chromolaena odorata Newsletter 4: 7.<br />

Kluge, R.L. and Caldwell, P.M. 1993. The bi-<br />

ology and host specificity of Pareuchaetes<br />

aurata aurata (Lepidoptera: Arctiidae), a<br />

'new association' biological control agent<br />

for Chromolaena odorata (Compositae).<br />

Bulletin of Entomological Research<br />

83: 87-94.<br />

Kluge, R.L. and Morris, M.J. 1992. The bio-<br />

control of Chromolaena odorata in South<br />

Africa: a progress report. Abstracts of the<br />

IX International Symposium on Biological<br />

Control of Weeds, New Zealand, p. 59.<br />

Knipling, E.B., West, S.H. and Haller, W.T.<br />

1970. Growth characteristics, yield poten-<br />

tial and nutritive content of water hy-<br />

acinths. Proceedings of the Soil Science<br />

Society, Florida 30: 51-63.<br />

Knopf, K.W. and Habeck, D.H. 1976. Life<br />

history and biology of Samea<br />

multiplicalis. Environmental Entomology<br />

5: 539-542.<br />

Koike, H. 1977. Transmission by Dactynotus<br />

ambrosiae from mixed infections with<br />

sugarcane mosaic and maize dwarf mosaic<br />

virus strains. Plant Disease Reporter<br />

61 : 724-727.<br />

Kooner, B.S. and Deol, G.S. 1982.<br />

Comparative rate of development of<br />

Orosius albicinctus Distant (Cicadellidae:<br />

Homoptera) on different host plants.<br />

Journal of Agricultural Science,<br />

Cambridge 98: 61 3-61 4.<br />

Krauss, N.L.H. 1965. Investigations on bio-<br />

logical control of melastoma (Melastoma<br />

malabathricum L.). Proceedings of the<br />

Hawaiian Entomological Society<br />

19: 97-101.<br />

Krombein, K.V. and Burks, B.D. 1967.<br />

Hymenoptera of America north of Mexico.<br />

Synoptic Catalogue, Agriculture<br />

Monograph 2. Second Supplement. 584pp.<br />

USDA, US Government Printing Office,<br />

Washington.<br />

Kuhn, G.B., Lin, M.T. and Kitajima, E.W.<br />

1982. Some properties of bidens mosaic<br />

virus. (Portuguese). Fitopathologia<br />

Brasiliera 7: 185-195.


Kulkarni, S.N. and Sharma, O.P. 1976.<br />

Evaluation of some systemic and non-sys-<br />

temic fungicides against two plant patho-<br />

genic fungi. Pesticides lO(8): 32.<br />

Lal, A., Yadav, B.S. and Nandwana, R.P.<br />

1978. A record of some new and known<br />

weed hosts of Rotylenchulus renijormis<br />

Linford and Oliveira, 1940 from<br />

Rajasthan. Indian Journal of Nematology<br />

6: 94-95 (Helminthological Abstracts, B,<br />

48: 932, 1979).<br />

Lallana, V.H., Sabattini, R.A. and Lallana,<br />

M.C. 1987. Evapotranspiration from<br />

Eichhornia crassipes, Pistia stratiotes,<br />

Salvinia herzogii and Azolla caroliniana<br />

during summer in Argentina. Journal of<br />

Aquatic Plant Management 25: 48-50.<br />

Latiza, A.S. 1980. Host range of Ustilago scit-<br />

aminea Syd. in the Philippines. Sugarcane<br />

Pathologists' Newsletter 24: 1 1-1 3.<br />

Laup, S. 1987a. Biological control of water<br />

hyacinth: early observations. Harvest 12:<br />

35-40.<br />

Laup, S. 1987b. Biological control of water<br />

lettuce: early observations. Harvest<br />

12: 41-43.<br />

Lee, 0. 1964. Weeds may host dwarf mosaic.<br />

Proceedings of the 20th North Central<br />

Weed Control Conference. Purdue<br />

University, Lafayette, pp. 44-47. (Holm et<br />

al. 1977).<br />

Leeuwangh, J. and Leuamsang, P. 1967.<br />

Observations on the ecology of Thaia<br />

oryzivora, a leafhopper found on rice in<br />

Thailand. FA0 Plant Protection Bulletin<br />

15(2): 30-3 1.<br />

Leggat, F.W. and Teakle, D.S. 1975.<br />

PassifZora foetida, a widespread host of<br />

passionfruit woodiness virus in<br />

Queensland. APPS Newsletter 4(3):<br />

22-23.<br />

Lei, H.Z., Liu, G.Q. and Li, W.J. 1983.<br />

Studies of planthopper species and their<br />

population fluctuation on cockspur in rice<br />

fields. Plant Protection 9: 11-12.<br />

5 References 255<br />

Liau, S.S., Ooi, P.A.C. Ismail, M.R., Tay,<br />

B.L., Lee, S.A., Chung, G.F. and Ho, C.T.<br />

1991. Biological control of Mikaniaearly<br />

experiences in Malaysia.<br />

Proceedings, International Conference on<br />

Biological Control in Tropical Agriculture,<br />

27-30 August, 199 1, Malaysia. Preprint<br />

10 PP.<br />

Liau, S.S., Tan, C.L., Chung, G.F., Ooi,<br />

P.A.C., Lee, S.A. and Tay, B.L. 1993.<br />

Field releases of Liothrips mikaniae<br />

(Priesner)-experiences in Malaysia.<br />

Workshop on Biological Control of<br />

Mimosa pigra and Mikania micrantha,<br />

February 2, 1993. ASEAN PLANTI,<br />

Serdang, Malaysia, 1 p. abstract.<br />

Lin 1968. Weeds Found on Cultivated Land in<br />

Taiwan. Volumes 1 and 2. College of<br />

Agriculture, National Taiwan University,<br />

Taipai. 950pp. (Holm et al. 1977).<br />

Linford, M., Oliveira, J. and Ishii, M. 1949.<br />

Paratylenchus minutus n.sp., a nematode<br />

parasitic on roots. Pacific Science<br />

3: 11 1-1 19.<br />

Linford, M. and Yap, F. 1940. Some hosts of<br />

the reniform nematode in Hawaii.<br />

Proceedings of the Helminthological<br />

Society of Washington 7: 42-44. (Holm et<br />

al. 1977).<br />

Little, E.C.S. 1968. The control of water<br />

weeds. Weed Research 8: 79-105.<br />

Logan, A.E. and Zettler, F.W. 1984.<br />

Susceptibility of Rudbeckia, Zinnia,<br />

Ageratum and other bedding plants to<br />

Bidens mottle virus. Plant Disease<br />

68: 260-262.<br />

Lonsdale, W.M. 1992. The biology of Mimosa<br />

pigra. (ed.) K.L.S. Harley, A Guide to the<br />

Management of Mimosa pigra. CSIRO<br />

Canberra, pp. 8-32.<br />

Lonsdale, W.M., Miller, I.L. and Fomo, I.W.<br />

1989. The biology of Australian weeds 20.<br />

Mimosa pigra L. Plant Protection<br />

Quarterly 4: 1 19-1 3 1.


256 Biological Control of Weeds: Southeast Asian Prospects<br />

Lonsdale, W.M. and Segura, R. 1987. A de-<br />

mographic study of native and introduced<br />

populations of Mimosa pigra. (eds) D.<br />

Lemerle and A.R. Leys. Proceedings of<br />

the 8th Australian Weeds Conference,<br />

Sydney. Weed Society of N.S.W., Sydney,<br />

pp. 163-166.<br />

Lordello, R.R.A., Lordello, A.I.L. and Paulo,<br />

E.M. 1988. Multiplicao de Meloidogyne<br />

javanica em plantas daninbas.<br />

Nematologia Brazilieria 12: 84-92 (Weed<br />

Abstracts 38: 2165, 1989).<br />

Lourencao, A.L., Filho, E.B. and Ferraz,<br />

M.C.V.D. 1982. Natural enemies of Mocis<br />

latipes (Guente 1852). (Portuguese).<br />

Bragantia 41: 237-240 (Review of<br />

Applied Entomology, Series A, 71: 7909,<br />

1983).<br />

Loyal, D.S. and Kumar, K. 1977. Utilization<br />

of Marsilea sporocarps as sham seeds by a<br />

weevil. American Fern Journal 67(3): 95.<br />

Lubigan, R. and Vega, M. 1971. The effect of<br />

different densities and durations of compe-<br />

tition of Echinochloa crusgalli (L.) Beauv.<br />

and Monochoria vaginalis (Burm.f.) Presl.<br />

on the yield of lowland rice. Weed Science<br />

Report, 1970-7 1. Department of<br />

Agricultural Botany, University of the<br />

Philippines, College of Agriculture, Los<br />

Bands, pp. 19-23. (Holm et al. 1977).<br />

Luc, M., Sikora, R.A. and Bridge, J. 1990.<br />

Plant Parasitic Nematodes in Subtropical<br />

and Tropical Agriculture. CAB<br />

International Institute of Parasitology,<br />

U.K., 629 pp.<br />

Lyla, K.R. and Joy, P.J. 1992. Biology of<br />

Aphis spiraecola Patch infesting<br />

Chromolaena odorata in Kerala, India.<br />

Chromolaena odorata Newsletter 5: 2-3.<br />

Lyla, K.R., Joy, P.J. and Abraham, C.C. 1987.<br />

Insect pests of Chromolaena odorata<br />

(= Eupatorium odoratum). Agricultural<br />

Research Journal of Kerala 25: 302-304.<br />

Lynch, R.E., Some, S., Dicko, I., Wells, H.D.<br />

and Monson, W.G. 1987. Chinch bug<br />

damage to bermuda grass. Journal of<br />

Entomological Science 22: 153-1 58.<br />

Maas, P.W.T., Sanders, H. and Dede, J. 1978.<br />

Meloidogyne oryzae n.sp. (Nematoda,<br />

Meloidogynidae) infesting imgated rice in<br />

Surinam (South America). Nematologica<br />

24: 305-3 1 1.<br />

Mabberley, D.J. 1987. The Plant Book.<br />

Cambridge University Press, 706pp.<br />

McConnell, J., Marutani, M. and Muniappan,<br />

R. 1992. Insect induced changes in<br />

Chromolaena odorata. Ecology and<br />

Management of Chromolaena odorata.<br />

SEAMEO BIOTROP, Bogor, Indonesia,<br />

BIOTROP Special Publication 44:<br />

159-161.<br />

McFadyen, R.E.C. 1988a. Phytophagous insects<br />

recorded from C. odorata.<br />

Chromolaena odorata Newsletter 2: 5-23.<br />

McFadyen, R.E.C. 1988b. History and distribution<br />

of Chromolaena odorata (L.)<br />

R.M. King and H. Robinson. Proceedings<br />

of the First International Workshop on<br />

Biological Control of Chromolaena odorata.<br />

Agricultural Experiment Station,<br />

Mangilao, Guam, pp. 7-1 2.<br />

McFadyen, R.E.C. 1988c. Ecology of<br />

Chromolaena odorata in the Neotropics.<br />

Proceedings of the First International<br />

Workshop on Biological Control of<br />

Chromolaena odorata. Agricultural<br />

Experiment Station. Mangilao, Guam, pp.<br />

13-20.<br />

McFadyen, R.E.C. 1989. Siam weed: a new<br />

threat to Australia's north. Plant Protection<br />

Quarterly 4: 3-7.<br />

McFadyen, R.E.C. 1991a. The ecology of<br />

Chromolaena odorata in the Neotropics.<br />

Ecology and management of Chromolaena<br />

odorata. BIOTROP Special Publication<br />

44: 1-9.<br />

McFadyen, R. 1991 b. The accidental introduction<br />

of the Chromolaena mite Acalitus<br />

adoratus into Southeast Asia.<br />

Chromolaena odorata Newsletter 4: 8.<br />

McFadyen, R.E.C. 1991c. New approaches to<br />

the biological control of Chromolaena<br />

odorata in Southeast Asia. Ecology and<br />

Management of Chromolaena odorata.<br />

SEAMEO BIOTROP, Bonor, Indonesia,<br />

Biotrop Special ~ublication-44: 135-1 41


McFadyen, R. 1992. A critique of the paper<br />

"Chromolaena odorata: friend or foe for<br />

resources poor farmers" by S.P. Field,<br />

published in the Chromolaena odorata<br />

newsletter 4. Chromolaena odorata<br />

Newsletter 5: 6.<br />

McFadyen, R.E.C. 1993. The accidental intro-<br />

duction of the Chromolaena mite Acalitus<br />

adoratus into Southeast Asia. Proceedings<br />

of the Eighth International Symposium on<br />

Biological Control of Weeds. 2-7<br />

February 1992 Lincoln University,<br />

Canterbury New Zealand, 9pp.<br />

Macfarlane, R. 1984. Report of the entomolo-<br />

gist 1981 and 1982. Solomon Islands,<br />

Ministry of Home Affairs and National<br />

Development. (Review of Applied<br />

Entomology, Series A 72: 8235, 1984).<br />

MacGowan, J.B. 1989. Bureau of<br />

Nematology-nematode detections of spe-<br />

cial interest. Triology Technical Report<br />

28(12): 1-3. (Nematological Abstracts,<br />

Series B. 59: 141 3,1990).<br />

McSorley, R., Parrado, J.L. and Goldweber, S.<br />

198 1. Plant-parasitic nematodes associated<br />

with mango and relationship to tree condi-<br />

tion. Nematropica 1 1 : 1-9.<br />

Maehler, K.L. 1954. Recent beetle captures.<br />

Proceedings of the Hawaiian<br />

Entomological Society 15: 269.<br />

Mahindapala, R., Kirthisinghe, J.K.F. and<br />

Pinto, J.L.J.G. 1980. Some studies on the<br />

biological control of Chromolaena odora-<br />

ta (Eupatorium odoratum). Ceylon<br />

Coconut Quarterly 3 1 : 98-1 04.<br />

Malleswaria-Rao, Y. and Narayana-Rao, A.<br />

198 1. Sporulation of Pyricularia spp.:<br />

stimulation by detached leaves and leaf<br />

extracts of Commelina benghalensis L.<br />

Proceedings of the Indian Academy of<br />

Science. Plant Science 90: 389-393.<br />

Mallikarjunaiah, R.R. and Rao, V.G. 1972. A<br />

new leaf-spot disease of passion flower<br />

from Maharashtra. Current Science<br />

'41: 686.<br />

5 References 257<br />

Mamaril, E.C. and Alberto, R.T. 1989. Root-<br />

knot nematodes infecting some common<br />

weeds in vegetable growing areas in<br />

Sicsican. International Nematology<br />

Network Newsletter 6(3): 37-39.<br />

(Nematological Abstracts 59: 389, 1990).<br />

Mangodihardjo, S. 1975. Prospects of biologi-<br />

cal control of weeds in Indonesia.<br />

Proceedings, 3rd Indonesian Weed<br />

Science Conference, Bandung, Indonesia,<br />

pp 33-41.<br />

Mangoendihardjo, S. and Nasroh, A. 1976.<br />

Proxenus sp. (Lepidoptera: Noctuidae), a<br />

promising natural enemy of water lettuce<br />

(Pistia stratiotes). Proceedings of the Fifth<br />

Asian-Pacific Weed Science Society<br />

Conference October 5-1 1, 1975 Tokyo,<br />

pp. 444-446.<br />

Mangoendihardjo, S., Nasroh, A., Kasno and<br />

Subagyo, T. 1976. Studies of natural ene-<br />

mies associated with important weed<br />

species in Indonesia. BIOTROP Annual<br />

Report, 1975-1976 p. 22.<br />

Mangoendihardjo, S., Setyawati, O., Syed,<br />

R.A. and Sosromarsono, S. (1977). Insects<br />

and fungi associated with some aquatic<br />

weeds in Indonesia. Proceedings, Sixth<br />

Asian Pacific Weed Science Society<br />

Conference July 1 1-17, 1977.2:440-446.<br />

Mangoendihardjo, S. and Syed, R.A. 1974.<br />

Studies of natural enemies of Eichhornia<br />

crassipes and Pistia stratiotes L. Southeast<br />

Asian Workshop on Aquatic Weeds.<br />

Malang. Paper 7b. 3. 19pp.<br />

Mani, M.S. and Jayaraman, P. 1987. On some<br />

plant galls from the Fiji islands.<br />

Proceedings of the Indian Academy of<br />

Science: Animal Science 96: 8 1-1 15.<br />

Maqbool, M.A., Hashmi, S. and Ghaffar, A.<br />

1986. Eleven new hosts of root-knot ne-<br />

matodes and identification of physiologi-<br />

cal races in Pakistan. Pakistan Journal of<br />

Nematology 4: 1 1-1 4.


258 Biological Control of Weeds: Southeast Asian Prospects<br />

Markin, G.P. and Nagata, R.F. 1989. Host<br />

preference and potential climatic range of<br />

Cyanotricha necyria (Lepidoptera:<br />

Dioptidae), a potential biological control<br />

agent of the weed Passijlora mollissima in<br />

Hawaiian forests. Cooperative National<br />

Park Resources Studies Unit. Technical<br />

Report 67.35~~.<br />

Markin, G.P., Nagata, R.F. and Taniquchi, G.<br />

, 1989. Biology and behaviour of the South<br />

American moth, Cyanotricha necyria<br />

(Felder and Rogenhofer) (Lepidoptera:<br />

Notodontidae), a potential biocontrol agent<br />

in Hawaii of the forest weed Passij7ora<br />

mollissima (HBK) Bailey. Proceedings of<br />

the Hawaiian Entomological Society<br />

29: 115-123.<br />

Marshall, G.K. 191 1. On a new species of<br />

Baris from the Sudan. The Entomologists'<br />

Monthly Magazine 22: 207-208.<br />

Marshall, G.K. 1916. Some injurious Indian<br />

weevils (Curculionidae) 2. Bulletin of<br />

Entomological Research 26: 565-569.<br />

Marshall, G.K. 1935. New injurious<br />

Curculionidae (Col.) from Malaya.<br />

Bulletin of Entomological Research<br />

26: 565-569.<br />

Martin, G.C., James, G.L., Bissett, J.L. and<br />

Way, J.I. 1969. New records of infection<br />

by the burrowing nematode. FA0 Plant<br />

Protection Bulletin 17: 1 16.<br />

Marutani, M. and Muniappan, R. 1990. A new<br />

natural enemy of Chromolaena odorata in<br />

Micronesia. Chromolaena odorata<br />

Newsletter 3: 7.<br />

Marutani, M. and Muniappan, R. 1991a. Re-<br />

establishment of Pareuchaetes pseudoin-<br />

sulata in Yap. Chromolaena odorata<br />

Newsletter 4: 3.<br />

Marutani, M. and Muniappan, R. 1991b.<br />

Interactions between Chromolaena odora-<br />

ta (Asteraceae) and Pareuchaetes<br />

pseudoinsulata (Lepidoptera: Arctiidae).<br />

Annals of Applied Biology 119: 227-238.<br />

Mathur, V.K. and Prasad, S.K. 1973. Survival<br />

and host range of the rice root nematode,<br />

Hirschmaniella oryzae. Indian Journal of<br />

Nematology 3: 88-93 (Helminthological<br />

Abstracts B, 44: 1259, 1975).<br />

Maun, M.A. and Barrett, S.C.H. 1986. The bi-<br />

ology of Canadian weeds. 77. Echinochloa<br />

crus-galli (L.) Beauv. Canadian Journal of<br />

Plant Science 66: 739-759.<br />

Mehrlich, F.P. and Fitzpatrick, H.M. 1935.<br />

Dichotomophthora portulacae, a patho-<br />

gene of Portulaca oleracea. Mycologica<br />

27: 543-550.<br />

Menon, R. and Ponnappa, K.M. 1964.<br />

Commonwealth Institute of Biological<br />

Control. Report of work carried out during<br />

1963. Plant Pathogens, pp. 39-40.<br />

Mew, T.W., Fabellar, N.G. and Elazegui, F.A.<br />

1980. Ecology of the rice sheath blight<br />

pathogen: parasitic survival. International<br />

Rice Research Newsletter 5(4): 16.<br />

Migliori, A. and Lastra, R. 1980. Etude d'une<br />

maladie de type viral presente sur mais en<br />

Guadeloupe et transmise par le delphacide<br />

Peregrinus maidis. Annals de<br />

Phytopathologie 12: 277-294.<br />

Migliori, A. and Lastra, R. 1981. Mise en evi-<br />

dence du maize mosaic virus chez le mais<br />

en Guadeloupe et en Guyane. Agronomie<br />

7: 195-198.<br />

Miller, I.L. and Lonsdale, W.M. 1987. Early<br />

records of Mimosa pigra in the Northern<br />

Territory. Plant Protection Quarterly<br />

2: 140-142.<br />

Mintz, A.S. and Weidemann, G.J. 1992.<br />

Evaluation of Aposphaeria amaranthi as a<br />

potential bioherbicide for Amaranthus.<br />

p.68. Abstracts, VIII International<br />

Symposium on Biological Control of<br />

Weeds. Lincoln University, Canterbury,<br />

New Zealand.<br />

Misra, M.P., Pawar, A.D., Samujh, R. and<br />

Srivastava, C.M. 1992. Use of Neochetina<br />

eichhorniae Warner and N. bruchi<br />

Hustache (Coleoptera, Curculionidae) for<br />

the biological control of water hyacinth in<br />

north India. Journal of Advanced Zoology<br />

13: 49-52.


Mitchell, D.S. 1978. Aquatic Weeds in<br />

Australian Inland Waters. Australian<br />

Government Printing Service. Canberra,<br />

Australia. 189pp.<br />

Mitchell, J.K. 1986. Dichotomophthora portulacae<br />

causing black stem rot on common<br />

purslane in Texas. Plant Disease 70: 603.<br />

Miyagawa, H., Ozaki, K. and Kimura, T.<br />

1988. Pathogenicity of Psuedomonas<br />

glumae and P. plantarii to the ears and<br />

leaves of graminaceous plants. Bulletin of<br />

the Chugoku National Agricultural<br />

Experiment Station 3: 3 1-43. (Weed<br />

Abstracts 38: 3926, 1989).<br />

Miyanishi, K. and Cavers, P.B. 1980. The biology<br />

of Canadian weeds. 40. Portulaca<br />

oleracea L. Canadian Journal of Plant<br />

Sciences 60: 953-963.<br />

Moffett, M.L. and McCarthy, G.J.P. 1973.<br />

Xanthomonas translucens on Japanese<br />

millet (Echinochloa crus-galli var. frumentacea).<br />

Australian Journal of<br />

Experimental Agriculture and Animal<br />

Husbandry 13: 452-454.<br />

Mohamed, A.Z., Lee, B.S. and Lum, K.Y.<br />

1992. Developing a biological control<br />

initiative in Malaysia. (eds) P.A.C. Ooi,<br />

G.S. Lim and P.S. Teng. Biological<br />

Control: Issues in the Tropics, pp. 59-62.<br />

Mohanasundaram, M. 1984. Some tarsonemid<br />

mites from Tamilnadu, India (Acari:<br />

Tarsonemidae). Oriental Insects 18:<br />

79-85.<br />

Mohandes, C., Rao, Y.S. and Sahu, S.C. 1981.<br />

Cultural control of rice root nematodes<br />

(Hirschmaniella spp.) with Sphenoclea<br />

zeylanica. Proceedings of the Indian<br />

Academy of Sciences (Animal Sciences)<br />

90:373-376.<br />

Monte, 0. 1939. Lista preliminar do<br />

tingitideos de Minas Gerais. (Portuguese).<br />

Revista Sociedade Brasiliera de<br />

Agronomia 2: 63-87.<br />

Moody, K. 1989. Weeds reported in rice in<br />

South and Southeast Asia. International<br />

Rice Research Institute. Los Banos,<br />

Philippines. 442pp.<br />

5 References 259<br />

Moody, K., Castin, E.M. and Estorninos, L.E.<br />

1987. Natural enemies of some weeds in<br />

the Philippines. Typescript 17pp.<br />

Morrill, W.L., Penelec, L. and Almazon, L.P.<br />

1990. Effects of weeds on fecundity and<br />

survival of Leptocorisa oratorius<br />

(Hemiptera: Alydidae). Environmental<br />

Entomology 19: 1469-1 472.<br />

Muchovej, J.J. 1987. Drechslera gigantea on<br />

Eleusine indica in Brazil. (Portuguese).<br />

Fitopatologia Brasileira 12: 405-406.<br />

(Review of Plant Pathology, 67: 5494,<br />

1988).<br />

Muchovej, J.J. and Muchovej, R.M.C. 1987.<br />

Physarum cinereum on turfgrass in Brazil.<br />

Fitopatologia Brasileira 12: 402-403.<br />

Muchovej, J.J. and Nesio, M.L.R. 1987. A<br />

new Exserohilum from Brazil.<br />

Transactions of the British Mycological<br />

Society 89: 126-1 28.<br />

Muddiman, S.B., Hodkinson, I.D. and Hollis,<br />

D. 1992. Legume-feeding psyllids of the<br />

genus Heteropsylla (Homoptera:<br />

Psylloidea). Bulletin of Entomological<br />

Research 82: 73-1 17.<br />

Muesebeck. C.F.W., Krombein, K.V. and<br />

Townes, H.K. 1951. Hymenoptera of<br />

America north of Mexico. Synoptic<br />

Catalogue, Agriculture Monograph 21.<br />

1420pp. USDA, US Government Printing<br />

Office, Washington.<br />

Mundkur, B.B. 1939. A contribution towards<br />

a knowledge of Indian Ustilaginales.<br />

Transactions of the British Mycological<br />

Society 23: 105 (Rachie and Peters 1977).<br />

Mune, T.L. and Parham, J.W. 1967. The declared<br />

noxious weeds of Fiji and their control.<br />

Fiji Department of Agriculture.<br />

Bulletin 48.74~~.<br />

Muniappan, R. 1988a. Chromolaena odorata<br />

newsletter No 1, 15pp. Agricultural<br />

Experiment Station, University of Guam.<br />

Mangilao, Guam.<br />

Muniappan, R. 1988b. Chromolaena odorata<br />

newsletter No 2, 23pp. Agricultural<br />

Experiment Station, University of Guam,<br />

Mangilao, Guam.


260 Biological Control of Weeds: Southeast Asian Prospects<br />

Muniappan, R. 1988c. Pareuchaetes estab-<br />

lishment. Chromolaena odorata<br />

Newsletter 1: 2.<br />

Muniappan, R., Marutani, M. and Denton,<br />

G.R.W. 1988b. Introduction and establish-<br />

ment of Pareuchaetes pseudoinsulata<br />

Rego Barros (Arctiidae) against<br />

Chromolaena odorata in the Western<br />

Caroline Islands. Journal of Biological<br />

Control 2: 141-1 42.<br />

Muniappan, R. and Marutani, M. 1992.<br />

Coevolution of the Siarn weed and its nat-<br />

ural enemy. p. 74. Abstracts VIII<br />

International Symposium on Biological<br />

Control of Weeds, Lincoln University,<br />

Canterbury, New Zealand, 2-7 February<br />

1992.<br />

Muniappan, R., Marutani, M. and McConnell,<br />

J. 1988a. A bibliography of Chromolaena<br />

odorata. Chromolaena odorata Newsletter<br />

1: 3-15.<br />

Muniappan, R., Sundaramurthy, V.T. and<br />

Viraktamath, C.A. 1989. Distribution of<br />

Chromolaena odorata (Asteraceae) and<br />

bionomics and consumption and utiliza-<br />

tion of food by Pareuchaetes pseudoinsu-<br />

lata (Lepidoptera: Arctiidae) in India.<br />

Proceedings of the VII International<br />

Symposium on Biological Control of<br />

Weeds. Italy, pp. 401-409.<br />

Muniappan, R. and Viraktamath 1986. Insects<br />

and mites associated with Chromolaena<br />

odorata (L.) R.M. King and H. Robinson<br />

(Asteraceae) in Karnataka and Tamil<br />

Nadu. Entomon 1 1 : 285-287.<br />

Nachapong, M. and Mabbett, T. 1979. A sur-<br />

vey of some wild hosts of Bemisia tabaci<br />

Genn. around cotton fields in Thailand.<br />

Thai Journal of Agricultural Science<br />

12: 217-222.<br />

Nafus, D. and Schreiner, I. 1989. Biological<br />

control activities in the Mariana Islands<br />

from 191 1 to 1988. Micronesica<br />

22: 65-1 06.<br />

Nag Raj, T.R. and Ponnappa, K.M. 1966.<br />

Commonwealth Institute of Biological<br />

Control. Report of work carried out during<br />

1965. Plant pathogens. pp. 43-44.<br />

Nagarkatti, S. 1982. Biological control efforts<br />

in India with special reference to water<br />

hyacinth (Eichhornia crassipes).<br />

Workshop on Biological Control of Water<br />

Hyacinth. Commonwealth Science<br />

Council, London. 3-5 May 1982.<br />

Bangalore, India, pp. 43-44.<br />

Nakahara, L.M. 1977. Possible new State<br />

pest, Agraulis (= Dione) vanillae<br />

Linnaeus. Memorandum, Hawaii<br />

Department of Agriculture, January 17.<br />

~PP.<br />

Napompeth, B. 1981. Approaches to the biological<br />

control of Mimosa pigra L. in<br />

Thailand. (Thai). National Biological<br />

Control Research Centre Kasetsart<br />

University, Bangkok, Thailand. Extension<br />

Leaflet 12. 1 1 pp.<br />

Napompeth, B. 1982. Biological control research<br />

and development in Thailand.<br />

Proceedings of the International<br />

Conference on Plant Protection in the<br />

Tropics. 1-4 March 1982. Kuala Lumpur,<br />

Malaysia, pp. 301-323.<br />

Napompeth, B. 1983. Preliminary screening<br />

of insects for biological control of Mimosa<br />

pigra in Thailand. Proceedings of an<br />

International Symposium on Mimosa<br />

pigra Management, 1982, Chiang Mai,<br />

Thailand. International Plant Protection<br />

Center Document No 48-A-83. Oregon<br />

State University, USA, pp. 121-128.<br />

Napompeth, B. 1984. Biological control of<br />

water hyacinth in Thailand. Proceedings,<br />

International Conference on Water<br />

Hyacinth, Hyderabad, India. 7-1 1<br />

February 1983. (ed.) G. Thyagarajan.<br />

United Nations Environment Program<br />

Reports and Proceedings Series 7:<br />

8 1 1-822.<br />

Napompeth, B. 1989. Biological control of insect<br />

pests and weeds in Thailand.<br />

Biological control of pests. BIOTROP<br />

Special Publication 36: 5 1-68.<br />

Napompeth, B. 1990a. Country report:<br />

Thailand. Biological control of weeds in<br />

Thailand. BIOTROP Special Publication<br />

38: 23-36.


Napompeth, B. 1990b. Hypolixus trunculatus<br />

F. found feeding on C. odorata in<br />

Thailand. Chromolaena odorata<br />

Newsletter 3: 6.<br />

Napompeth, B. 1992a. Brief review of biolog-<br />

ical control activities in Thailand.<br />

ed. Y. Hirose, Biological Control in South<br />

and East Asia. Kyushu University Press,<br />

Japan, pp. 5 1-68.<br />

Napompeth, B. 1992b. Biological control of<br />

paddy and aquatic weeds in Thailand.<br />

Biological Control and Integrated<br />

Management of Paddy and Aquatic Weeds<br />

in Asia. National Agriculture Research<br />

Center, Tsukuba, Japan, pp. 249-258.<br />

Napompeth, B., Charernsom, K., Suasa-Ard,<br />

W. and Pongsupradit, D. 1977. Insects of<br />

biological control importance for aquatic<br />

weeds in Thailand. Environment News<br />

5: 47-56.<br />

Napompeth, B. and Hai, T.N. 1988.<br />

Chromolaena odorata in Vietnam.<br />

Proceedings of the First International<br />

Workshop on Biological Control of<br />

Chromolaena odorata. Agricultural<br />

Experiment Station. Mangilao, Guam,<br />

p. 63.<br />

Napompeth, B., Hai, T.N. and Winotai, A.<br />

1988. Attempts on biological control of<br />

Siam weed Chromolaena odorata in<br />

Thailand. Proceedings of the First<br />

International Workshop on Biological<br />

Control of Chromolaena odorata.<br />

Agricultural Experiment Station,<br />

Mangilao, Guam, pp. 57-62.<br />

5 References 261<br />

Nasser, M.A.K. and Basky, Z. 1988. Research<br />

on some weeds as reservoirs of cucumber<br />

mosaic virus. (Hungarian).<br />

Zoldsegtermesztesi Kutato Intezet<br />

Bulletinje 21: 83-88. (Weed Abstracts 39:<br />

3424,1990).<br />

Natural Resources Institute 1992. Control of<br />

Rottboellia cochinchinensis with mycoherbicides.<br />

Natural Resources Institute<br />

Newsletter 5(10): 8-9.<br />

Nault, L.R., Gingery, R.E. and Gordon, D.T.<br />

1980. Leafhopper transmission and host<br />

range of maize rayado fino virus.<br />

Phytopathology 70: 709-71 2.<br />

Nayar, B.K. and Bajpai, N. 1976. Morphology<br />

in relation to phylogeny of the davallioid<br />

oleandroid group of ferns.<br />

Phytomorphology 26: 333-354.<br />

Neal, M.C. 1965. In Gardens of Hawaii. B.P.<br />

Bishop Museum Special Publication 50,<br />

Bishop Museum Press, Honolulu, HI.<br />

Needham, J.G. 1946. An insect community<br />

which lives in flowerheads. National<br />

Geographic 90: 34CL356.<br />

Nguyen Van Vuong, 1973. Weed flora in rice<br />

field in South Vietnam. The Second<br />

Indonesian Weed Science Conference,<br />

Yogyakarta, April 2-5, 1973, pp.<br />

155-161.<br />

Noda, K., Teerawatsakul, M., Prakongvongs,<br />

C. and Chaiwiratnukul, L. 1985. Major<br />

Weeds in Thailand. National Weed<br />

Science Research Institute Project,<br />

Thailand. 142pp.<br />

- -<br />

Napompeth? B. and A' 1991'<br />

Norman, K., Liau, S.S. and Ooi, P.A.C. 1992.<br />

Progress on biological control of Siam<br />

ne introduction of Liothrips mikaniae for<br />

weed, Chromolaena odorata in Thailand.<br />

the biocontrol of Mikania in Malaysia.<br />

and management of Chromolaena<br />

Proceedings of the National IRPA<br />

odorata. BIOTROP Special Publication<br />

(Intensification of Research in Priority<br />

44~91-97.<br />

Areas) Seminar (Agricultural Sector)<br />

Narendra, D.V. and Rao, V.G. 1973. A new Kuala Lumpur, 6-1 1 January 1992. 1 p ableaf-spot<br />

disease of Commelina. Current stract.<br />

Science 42(5): 180.


262 Biological Control of Weeds: Southeast Asian Prospects<br />

Norris, R.F. 1985. Biological weed control<br />

with endemic organisms, with emphasis<br />

on common purslane (Portulaca oler-<br />

acea). Proceedings 37 Annual California<br />

Weed Conference. El Macero, California,<br />

USA, pp. 67-69.<br />

Noyes, J.S. 1990. A new encyrtid<br />

(Hymenoptera) parasitoid of the leucaena<br />

psyllid (Homoptera: Psyllidae) from<br />

Mexico, Central America and the<br />

Caribbean. Bulletin of Entomological<br />

Research 80: 37-41.<br />

O'Brien, C.W. 1976. A taxonomic revision of<br />

the New World subaquatic genus<br />

Neochetina (Coleoptera: Curculionidae:<br />

Bagoini). Annals of the Entomological<br />

Society of America 69: 165-174.<br />

O'Brien, C.W. and Wibmer, G.J. 1989a.<br />

Revision of the neotropical weevil genus<br />

Argentinorhynchus Brethes (Coleoptera:<br />

Curculionidae). Annals of the<br />

Entomological Society of America 82:<br />

267-278.<br />

O'Brien. C.W. and Wibmer, G.J. 1989b. Two<br />

new South American species of the weevil<br />

genus Argentinorhynchus Brethes.<br />

Southwestern Entomologist 14: 21 3-223.<br />

(Review of Agricultural Entomology 78:<br />

7552, 1990).<br />

O'Brien, C.W. and Wibmer, G.J. 1989c.<br />

Revision of the neotropical genus<br />

Neohydronomus Hustache (Coleoptera:<br />

Curculionidae). Coleopterists' Bulletin<br />

43: 291-304.<br />

Ofuya, T.I. 1988. Occurrence, growth and survival<br />

of Aphis craccivora (Homoptera:<br />

Aphididae) on some weeds in a rainforest<br />

area of Nigeria. Annals of Applied<br />

Biology 1 13: 229-233.<br />

Ogwaro, K. 1978. Ovipositional behaviour<br />

and host-plant preference of the sorghum<br />

shoot fly, Atherigona soccata (Diptera:<br />

Anthomyiidae). Entomologia<br />

Experimentalis et Applicata 23: 189-1 99.<br />

Ohtsu, Y. and Gomi, T. 1985. Strain A of sugarcane<br />

mosaic virus isolated from sourgrass<br />

in Ishigaki Island, Okinawa, Japan.<br />

(Japanese). Annals of the<br />

Phytopathological Society of Japan 5 1 :<br />

6 16-622.<br />

Okali, D.U.U. and Hall, J.B. 1974. Die-back<br />

of Pistia stratiotes on Volta Lake, Ghana.<br />

Nature 248: 452-453.<br />

Okioma, S.N.M., Muchoki, R.N. and Gathuru,<br />

E.M. 1983. Alternate hosts of rice yellow<br />

mottle virus in the Lake Victoria basin of<br />

Kenya. Tropical Pest Management<br />

29: 295-296. (Review of Plant Pathology<br />

63: 1258, 1984).<br />

Olaoye, S.O.A. 1974. Studies on the biological<br />

control of Eupatorium odoratum in<br />

Nigeria. Proceedings of the Fourth<br />

Nigerian Weed Science Group Meeting,<br />

pp. 1-8. (Weed Abstracts 25: 836, 1976).<br />

Ong, C.A. and Ting, W.P. 1973. Two virus<br />

diseases of passion fruit (Passiflora edulis<br />

f. flavicarpa). MARDI Research Bulletin<br />

1: 33-50.<br />

Ooi, P.A.C. 1993. Biological control of<br />

Mikania micrantha. International Institute<br />

of Biological Control, Annual Report<br />

1992, p. 48.<br />

Ooi, P.A.C., Holden, A.N.G. and Baker, P.S.<br />

199 1. Arthropods and pathogens for biological<br />

control of Chromolaena odorata.<br />

Ecology and Management of<br />

Chromolaena odorata. BIOTROP Special<br />

Publication 44: 127-1 32.<br />

Ooi, P.A.C., Ravindran, C.P. and Liau, S.S.<br />

1993. Biology and production of Liothrips<br />

mikaniae Priesner. Workshop on<br />

Biological Control of Mimosa pigra and<br />

Mikania micrantha, February 2, 1993.<br />

ASEAN PLANTI, Serdang, Malaysia, 1 p.<br />

abstract.<br />

Ooi, P.A.C., Sim, C.H. and Tay, E.B. 1988a.<br />

Status of the arctiid moth introduced to<br />

control Siam weed in Sabah, Malaysia.<br />

Planter 64: 298-304.


Ooi, P.A.C., Sim, C.H. and Tay, E.B. 1988b.<br />

Irregular recovery of Pareuchaetes<br />

pseudoinsulata in Sabah, Malaysia.<br />

Proceedings of the First International<br />

Workshop on Biological Control of<br />

Chromolaena odorata. Agricultural<br />

Experiment Station. Mangilao, Guam, p.<br />

56.<br />

Oritsejafor, J.J. 1986. Weed hosts of<br />

Fusarium oxysporum f.sp. elaeidis.<br />

Oleagineux 41: 1-7. (Review of Plant<br />

Pathology 65: 3667, 1986).<br />

Ortiz, M.S. 1981. Aphididae from the forest<br />

edge: Tingo Maria (Huanuco-Peru)<br />

(Spanish). Revista Peruana de<br />

Entomologia 23: 1 19-1 20.<br />

Paje, E.P., Exconde, O.R. and Raymundo,<br />

S.A. 1964. Host range of Piricularia<br />

oryzae in the Philippines. Philippine<br />

Agriculturist 48: 35-48.<br />

Pande, A. 1980. Haplosporella passiforidia<br />

n.sp. from Maharashtra. New taxa on<br />

Passiflora foetida. Indian Journal of<br />

Mycology and Plant Pathology 10: 75.<br />

Parbery, D.G. 1967. Studies on grarninicolous<br />

species of Phyllachora Nks. in Fckl. V. A<br />

taxonomic monograph. Australian Journal<br />

of Botany 15: 271-375.<br />

Parejarearn, A., Chettanachit, D., Balaveang,<br />

W. and Disthaporn, S. 1988. Rice ragged<br />

stunt virus (RSV) in aquatic weed<br />

Monochoria vaginalis. International Rice<br />

Research Newsletter 13(2): 22.<br />

Parenzan, P. 1985. Damage to jojoba<br />

(Simmondsia chinensis) by Nysius<br />

(Macroparius) cymoides Spin.<br />

(Rhynchota-Heteroptera-Lygaeidae) in<br />

Apulia. (Italian). Entomologica 20:<br />

99-108. (Review of Applied Entomology<br />

A 76: 1203,1988).<br />

Parker, C. 1972. The Mikania problem.<br />

Pesticides Abstracts & News Summary, A.<br />

18: 312-315.<br />

Parris, S.D. 1980. Aquatic plant control activi-<br />

ty in the Panama Canal zone.<br />

Miscellaneous Paper, United States Army<br />

Waterways Experimental Station A-80-3,<br />

pp. 384-389.<br />

5 References 263<br />

Parsons, W.T. 1963. Water hyacinth, a pest of<br />

world water-ways. Victorian Journal of<br />

Agriculture 61 : 23-27.<br />

Patch, E.M. 1939. Food-plant catalogue of the<br />

aphids of the world. Maine Agricultural<br />

Experiment Station. Bulletin 393: 35-430.<br />

Patil, M.S. 1975. Some Cercospora species<br />

from Kolhapur India Part 2. Botanique<br />

(Nagpur) 6: 2 19-226. (BIOSIS).<br />

Patnaik, N.C., Mohanty, B. and Parida, A.K.<br />

1987. Nisaga simplex caterpillar on rice in<br />

western Orissa. International Rice<br />

Research Newsletter 12: 44.<br />

Pawar, A.D. and Gupta, M. 1984. Importation<br />

of exotic phytophagous insects for the<br />

control of water hyacinth in India: Plant<br />

Protection Bulletin 36: 79-82.<br />

Pemberton, R.W. 1983. Exploration for natur-<br />

al enemies of Passifora mollissima in the<br />

Andes. USDA Biological Control of<br />

Weeds Laboratory Albany, California.<br />

Unpublished report 125pp.<br />

Pencoe, N.L. and Martin, P.B. 1982. Grass<br />

hosts of fall armyworm: larval preference<br />

and methods of determination. Journal of<br />

the Georgia Entomological Society<br />

17: 126-1 32. (Agricola).<br />

Penfound, W.T. and Earle, T.T. 1948. The bi-<br />

ology of the water hyacinth. Ecological<br />

Monographs 1 8: 448-472.<br />

Peregrine, W.T.H. and Ahmad, K. 1982.<br />

Brunei: a first annotated list of plant dis-<br />

eases and associated organisms.<br />

Commonwealth Mycological Institute.<br />

Phytopathological Papers 27: 1-87.<br />

Perera, K.A.D.N., Chandrasena, J.P.N.R. and<br />

Tillekeratne, L.M.V. 1989. Further studies<br />

on allelopathic effects of torpedograss<br />

(Panicum repens L.). Proceedings, 12th<br />

Asian-Pacific Weed Science Society<br />

Conference 2: 433-439 (Weed Abstracts<br />

41: 1652,1992).<br />

Perera, P.A.C.R. 198 1. Predation studies on<br />

Pareuchaetes pseudoinsulata (Lep:<br />

Arctiidae) using 32P labelled immatures.<br />

Ceylon Coconut Quarterly 32: 105-1 10.


264 Biological Control of Weeds: Southeast Asian Prospects<br />

Perez, A.Z. and Lopez, E. 1980. Two new<br />

hosts of Elasmopalpus lignosellus Zeller<br />

in Cuba. Ciencas Agriculturas 6: 106.<br />

(Maun and Barrett 1986).<br />

Perez, E., Orta, R. and Martinez, M.A. 1988.<br />

Influence of Hemiargus hanno filenus<br />

(Poey) on the reproductive potential of<br />

Mimosa pudica L. (Spanish). Revista<br />

Biologia Habana 1 l(2): 65-68.<br />

Perez, M., Palenzuela, I., Ramirez, L.A. and<br />

Jackson, A. 1987. New hosts of<br />

Tetranychus urticae (Acari:<br />

Tetranychidae). (Spanish). Revista de<br />

Proteccion Vegetal 2: 63-65 (Review of<br />

Agricultural Entomology 78: 8426, 1990).<br />

Perju, T. 1989. Biological control of weeds in<br />

Romania. Proceedings of the VII<br />

International Symposium on Biological<br />

Control of Weeds, 6-1 1 March 1988,<br />

Rome, Italy, pp. 659-661.<br />

Perkins, B.D. 1973a. Potential for water hyacinth<br />

management with biological agents.<br />

Proceedings Tall Timbers Conference on<br />

Ecological Animal Control by Habitat<br />

Management 4. 24-25 February 1972.<br />

Tallahassee, Florida, USA, pp. 53-64.<br />

Perkins, B.D. 1973b. Preliminary studies of a<br />

strain of the water hyacinth mite from<br />

Argentina. Proceedings of the Second<br />

International Symposium on Biological<br />

Control of Weeds. October 1971. Rome,<br />

Italy. Miscellaneous Publication 6:<br />

179-1 84. Commonwealth Institute of<br />

Biological Control, Commonwealth<br />

Agricultural Bureaux.<br />

Perkins, B.D. 1974. Arthropods that stress<br />

water hyacinth. Pesticides Abstracts &<br />

News Summary, A, 20: 304-3 14.<br />

Perkins, B.D. 1977a. Enhancement of effect<br />

of Neochetina eichhorniae for biological<br />

control of water hyacinth. Proceedings of<br />

the IV International Symposium on<br />

Biological Control of Weeds. Center for<br />

Environmental Programs. Institute of Food<br />

and Agricultural Sciences, Florida<br />

University 1977. Gainesville, Florida,<br />

USA, pp. 87-92.<br />

Perkins, B.D. 1977b. Preliminary results of integrating<br />

chemical and biological controls<br />

to combat water hyacinth.<br />

Perkins, B.D., Lovarco, M.M. and Durden,<br />

W.C.I. 1976. A technique for collecting<br />

adult Neochetina eichhorniae Warner<br />

(Coleoptera: Curculionidae) for water hyacinth<br />

control. (Note). The Florida<br />

Entomologist 59: 352.<br />

Perkins, B.D. and Maddox, D.H. 1976. Host<br />

specificity of Neochetina bruchi Hustache<br />

(Coleoptera: Curculionidae), a biological<br />

control agent for water hyacinth. Journal<br />

of Aquatic Plant Management 1 4: 59-64.<br />

Persley, G.J. 1973. Naturally occurring alternative<br />

hosts of Xanthomonas albilineans<br />

in Queensland. Plant Disease Reporter 57:<br />

1040-1042.<br />

Pettett, A. and Pettett, S.J. 1970. Biological<br />

control of Pistia stratiotes in Western<br />

State, Nigeria. Nature 226: 282.<br />

Phillips, S.M. 1972. A survey of the genus<br />

Eleusine Gaertn. (Gramineae) in Africa.<br />

Kew Bulletin 27: 251-270.<br />

Pillai, K.S. and Nair, M.R.G.K. 1979. Biology<br />

and habits of the rice case worm<br />

Nymphula depunctalis in Kerala, India.<br />

Entomon 4: 13-1 6.<br />

Pitre, H.N. and Boyd, F.J. 1970. A study of<br />

the role of weeds in corn fields in the epidemiology<br />

of corn stunt disease. Journal of<br />

Economic Entomology 63: 195-197.<br />

Plana, L., Palenzuela, I., Perez, M., Diaz,<br />

L.E., Meza, P. and Gonzalez, J.L. 1986.<br />

Reporte de cuatro malezas hospedantes de<br />

Monecphora bicincta fraterna Uhler<br />

(Homoptera: Cercopidae). Documentos de<br />

Ciencia y Tecnica, Instituto Superior de<br />

Ciencias Agropecuarias de la Habana,<br />

Ciencias Agropecuarias 5: 85-91. (Review<br />

of Applied Entomology, Series A, 76:<br />

4049, 1988).<br />

Ponnappa, K. 1967. Cercosporidium helleri<br />

on Sphenoclea zeylanica-a new record<br />

from India. Current Science 10: 273.


Ponnappa, K.M. 1976. Evaluation of<br />

Alternaria eichhorniae Nag Raj and<br />

Ponnappa as an agent of biological control<br />

of water hyacinth, Eichhornia crassipes,<br />

and some aspects of biology of the fungus.<br />

Technical Bulletin 17: 161-168.<br />

Commonwealth Institute of Biological<br />

Control, Commonwealth Agricultural<br />

Bureaux.<br />

Prabhu, A.S., Filippi, M.C. and Castro, N.<br />

1992. Pathogenic variation among isolates<br />

of Pyricularia oryzae affecting rice, wheat<br />

and grasses in Brazil. Tropical Pest<br />

Management 38: 367-371.<br />

Puckdeedindan, P. 1966. A supplementary<br />

host list of plant diseases in Thailand.<br />

Technical Bulletin 7. Department of<br />

Agriculture, Bangkok. 24pp. (Holm et al.<br />

1977).<br />

Purseglove, J.W. 1968. Tropical Crops.<br />

Dicotyledons 1 and 2 (1-719). Longman,<br />

London.<br />

Puttaswamy and Channabasavanna, G.P.<br />

198 1. Influence of three Amaranthus<br />

species on the development, fecundity and<br />

longevity of Tetranychus novocaledonicus<br />

(Acari: Tetranychidae). Colemania<br />

1: 35-36. (Review of Applied<br />

Entomology, Series A, 70: 261 2, 1982).<br />

Puttaswamy, Reddy, D.N.R. and Naik, L.K.<br />

1981. Redgram bud weevil<br />

Ceuthorhynchus asperulus Faust<br />

(Coleoptera: Curculionidae) a pest on<br />

Amaranthus. Current Research 1 O(2):<br />

33-35. (Review of Applied Entomology,<br />

Series A, 70: 966,1982).<br />

Quintero, J., Rebellon, A. and De Agudelo,<br />

F.V. 1988. Distribution and identification<br />

of host species of Heterodera glycines<br />

Ichinoke race 3 in Valle del Cauca<br />

(Colombia). (Spanish). Acta Agronomica<br />

(Palmira) 38(1): 41-52<br />

Raabe, R. 1965. Checklist of some parasitic<br />

phanerogams and some of their hosts on<br />

the island of Hawaii in 1963. Plant<br />

Disease Reporter 49: 583-585.<br />

5 References 265<br />

Rachie, K.O. and Peters, L.V. 1977. The<br />

Eleusines (a review of the world litera-<br />

ture). International Crops Research<br />

Institute for the Semi-Arid Tropics,<br />

Hyderabad, India. 179pp.<br />

Rader, W.E. 1948. Helminthosporium portu-<br />

lacae a new pathogen of Portulaca oler-<br />

acea L. Mycologica 40: 342-346.<br />

Rahman, R. and Khan, M.W. 1986.<br />

Population growth of some ectoparasitic<br />

nematodes on vegetables and associated<br />

weeds. International Nematology Network<br />

Newsletter 3(3): 1 1-22. (Helminthological<br />

Abstracts Series B, 56: 261, 1987).<br />

Rajapakse, R.H.S., Ashley, T.R., Waddill,<br />

H.van and Van-Waddill, H. 1988.<br />

Interspecific competition of fall army-<br />

worm parasites. Brighton Crop Protection<br />

Conference. Pests and Diseases 1988, Vol<br />

3: 1 137-1 141. (Review of Agricultural<br />

Entomology 79: 2457, 199 1).<br />

Ramakrishran, T.S. 1963. Diseases of Millets.<br />

Indian Council of Agricultural Research,<br />

New Delhi, 152pp. (Wapshere 1990b).<br />

Ramesh, P. and Laughlin, R. 1984. Dispersal<br />

of nymphs of Nysius vinitor Berg. and its<br />

importance in the management of sun-<br />

flower crops. Proceedings of the Fourth<br />

Australian Applied Entomological<br />

Research Conference, Adelaide 1984,<br />

pp. 35-42.<br />

Rao, D.G., Varma, P.M. and Kapoor, S.P.<br />

1965. Studies of mosaic disease of<br />

Eleusine in the Deccan. Indian<br />

Phytopathology 18: 1 39-1 50.<br />

Rao, P.N. 1966. A new species of<br />

Dichotomophthora on Portulaca oleracea<br />

from Hyderabad, India. Mycopathologia et<br />

Mycologia Applicata 28: 137-1 40.<br />

Rao, Y.S., Israel, P. and Biswas, H. 1970.<br />

Weed and rotation crop plants as hosts for<br />

the rice root-knot nematode Meloidogyne<br />

graminicola (Golden and Birchfield).<br />

Oryza 7: 137-1 42. (Helminthological<br />

Abstracts B, 46: 25, 1977).<br />

Raychaudhuri, D.N. 1983. Food Plant<br />

Catalogue of Indian Aphididae. University<br />

of Calcutta. 203pp.


266 Biological Control of Weeds: Southeast Asian Prospects<br />

Raychaudhuri, D.N., Pal, P.K. and Ghosh,<br />

M.R. 1978. Root-infesting aphids<br />

(Homoptera: Aphididae: Pemphiginae)<br />

from north east India. Entomon 3:<br />

234-264.<br />

Reddy, C.N. 1983. Seed mycoflora of finger<br />

millet (Eleusine coracana) and its effect<br />

on seed viability. Current Science<br />

52: 488-490.<br />

Reddy, K.S., Yaraguntaiah, R.C. and Sastry,<br />

K.S. 1981. Strains of leaf curl virus of<br />

tomato in India. Zeitschrift fiir<br />

Pflanzenkrankheiten und Pflanzenschutz<br />

88: 400-404.<br />

Reis, E.M. 1982. Survey of cultivated, native<br />

and weed plants, hosts of fungi that cause<br />

root rots on winter cereals and other crops.<br />

Summa Phytopathology 8: 134-1 40.<br />

(Maun and Barrett 1986).<br />

Reyes, T.T. and Beguico, E.D. 1978.<br />

Nematodes in sugarcane. NSDB<br />

Technology Journal, Philippines 3(3):<br />

25-30. (Helminthological Abstracts B, 49:<br />

1609,1980).<br />

Ribeiro, J.H.C. 1953. Sobre um inimigo do<br />

Bidens pilosus. Agronomia 12: 5 1-53.<br />

Rifai, M.A. 1980. The identity of Ustilago<br />

amadelpha var. glabriuscula (considered<br />

conspecific with Ustilago overeemii which<br />

is reclassified as Sporisorium overeemii,<br />

cause of smut on Panicum repens in Java).<br />

Reinwardtia 9: 399-401.<br />

Rochecouste, E. and Vaughan, R. 1959.<br />

Weeds of Mauritius. Bidens pilosa L.<br />

Leaflet Series 1. Mauritius Sugar Industry<br />

Research Institute, Reduit. (Holm et al.<br />

1 977).<br />

Romm, H.J. 1937. The insect depredators of<br />

purslane (Portulaca oleracea L.). Florida<br />

Entomologist 20: 43-47 and 5 1-61.<br />

Room, P.M. 1993. Biological control of float-<br />

ing weeds in the Pacific: history and sta-<br />

tus. Micronesica, Supplement 4: 41-47.<br />

Room, P.M. and Fernando, I.V.S. 1992. Weed<br />

invasions countered by biological control:<br />

Salvinia molesta and Eichhornia crassipes<br />

in Sri Lanka. Aquatic Botany 42: 99-1 07.<br />

Room, P.M., Forno, I.W. and Taylor, M.F.J.<br />

1984. Establishment in Australia of two<br />

insects for the biological control of the<br />

floating weed Salvinia molesta. Bulletin of<br />

Entomological Research 74: 505-5 16.<br />

Rossel, H.W., Nabukenya, R., Thottapilly, G.<br />

and Zagre, M'B.B. 1984. Maize. Virology.<br />

International Institute of Tropical<br />

Agriculture, 1983 Annual Report<br />

pp. 42-43.<br />

Roy, A.K. 1973. Natural occurrence of<br />

Corticium sasakii on some weeds. Current<br />

Science 42: 842-843.<br />

Russo, V.M. 1985. Leaf spot disease of<br />

Chromolaena odorata caused by Septoria<br />

sp. in Guam. Plant Disease 69: 1 101.<br />

Sabrosky, C.W. 1950. The genus Dicraeus in<br />

North America (Diptera, Chloropidae).<br />

Proceedings of the Entomological Society<br />

of Washington 52(2): 53-62.<br />

Sadana, G.L., Gupta, B.K. and Chopra, R.<br />

1983. Mites associated with the crops and<br />

weeds in the Punjab, India. Science and<br />

Culture 49: 184-1 86.<br />

Safeeulla, K.M. 1976. Biology and Control of<br />

the Downy Mildews of Pearl Millet,<br />

Sorghum and Finger Millet. Mysore<br />

University, Mysore, 304pp. (Wapshere<br />

1 990b).<br />

Sakimura, K. 1937. A survey of host ranges of<br />

thrips in and around Hawaiian pineapple<br />

fields. Proceedings of the Hawaiian<br />

Entomological Society 9: 41 5-427.<br />

Salamat, G.Z., Parejarearn, A. and Hibino, H.<br />

1987. Weed hosts of ragged stunt virus.<br />

International Rice Research Newsletter<br />

12(4): 30.<br />

Salawu, E.O., Ambursa, A.S. and Managa,<br />

Y.B. 1991. Weed and crop hosts of<br />

root-knot nematode, Meloidogyne javanica<br />

(Treub 1885) Chitwood 1949 in north<br />

west Nigeria. Pakistan Journal of<br />

Nematology 9: 109-1 18.<br />

Salgado, M.L.M. 1972. Tephrosia purpurea<br />

(Pila) for the control of Eupatorium and as<br />

a green manure on coconut estates. Ceylon<br />

Coconut Planters Review 6: 160-1 74.


Sampson, M.A. and Kumar, R. 1986.<br />

Alternative host plants of sugar-cane stem-<br />

borers in southern Ghana. Insect Science<br />

and its Application 7: 539-541.<br />

Sands, D.P.A. and Kassulke, R.C. 1983.<br />

Acigona infusella (Walker) (Lepidoptera:<br />

Pyralidae), an agent for biological control<br />

of water hyacinth (Eichhornia crassipes)<br />

in Australia. Bulletin of Entomological<br />

Research 73: 625-632.<br />

Sands, D.P.A. and Kassulke, R.C. 1984.<br />

Samea multiplicalis (Lep.: Pyralidae) for<br />

biological control of two water weeds<br />

Salvinia molesta and Pistia stratiotes in<br />

Australia. Entomophaga 29: 267-273.<br />

Sankaran, T. 1974. Evaluation of natural ene-<br />

mies associated with witchweed, nutsedge<br />

and several other aquatic weeds occumng<br />

in India. Final Report P.L. 480 Project.<br />

India Station, CIBC, Bangalore. 56pp.<br />

Sankaran, T. and Ramaseshiah, G. 1974.<br />

Prospects for biological control of some<br />

major aquatic weeds in Southeast Asia.<br />

CIBC Indian Station. Mimeographed<br />

Report. l5pp.<br />

Sankaran, T. and Rao, V.P. 1972. An annotat-<br />

ed list of insects attacking some terrestrial<br />

and aquatic weeds in India, with records of<br />

some parasites of the phytophagous in-<br />

sects. CIBC Technical Bulletin<br />

15: 131-157.<br />

Sankaran, T. and Sugathan, G. 1974. Host-<br />

specificity tests and field trials with<br />

Ammalo insulata (Wlk.) (Lep.: Arctiidae)<br />

in India. Commonwealth Institute of<br />

Biological Control. Unpublished report.<br />

1 1 PP-<br />

Sankaran, T., Rao, V.P., Rao, H.D. and<br />

Narayanan 1964. Commonwealth Institute<br />

of Biological Control. Report of work car-<br />

ried out during 1963. Insects. pp. 36-39.<br />

Sankaran, T., Srinath, D. and Krishna, K.<br />

1966. Studies on Gesonula punctifrons<br />

Stal. (Orthoptera: Acrididae:<br />

Cyrtacanthacridinae) attacking water hya-<br />

cinth in India. Entomophaga 1 1: 433-440.<br />

5 References 267<br />

Sastroutomo, S.S., Ikusima, I and Numata, M.<br />

1978. Ecological studies of water hyacinth<br />

(Eichhornia crassipes Mart. Solms) with<br />

special emphasis on their growth. Japanese<br />

Journal of Ecology 28: 191-1 97.<br />

Sastry, K.S. 1984. Strains of tomato leaf curl<br />

virus and its perpetuation under field con-<br />

ditions. Journal of Turkish Phytopathology<br />

13: 87-90. (Review of Plant Pathology 64:<br />

3 189,1985).<br />

Satheesan, N.V., Lyla, K.R., Joy, P.J. and<br />

Joseph, D. 1987. Establishment of<br />

Pareuchaetes pseudoinsulata Rego Barros<br />

(- Ammalo insulata Walk.), an arctiid<br />

caterpillar, for the biological control of<br />

Chromolaena odorata. Agricultural<br />

Research Journal of Kerala 25: 142-1 43.<br />

Sathiarajan, P.K. and Sasikumar, S. 1977.<br />

Ageratum conyzoides Linn; a weed host of<br />

Psuedomonas solanacearum, E.F. Smith.<br />

Agricultural Research Journal of Kerala<br />

14: 1 88 (Agricola).<br />

Sauer, M.R. and Alexander, D.M. 1979. Root-<br />

knot resistance in Passiflora foetida.<br />

Australasian Plant Pathology 8(4): 50-5 1.<br />

Savoie, K.L. 1988. Selective feeding by<br />

species of Spodoptera (Lepidoptera:<br />

Noctuidae) in a bean field with minimum<br />

tillage (Spanish). Turrialba 38: 67-70.<br />

(Review of Agricultural Entomology 78:<br />

4848,1990).<br />

Saxena, A.K., Jain, S.K. and Saksena, S.B.<br />

1981. Additions to the host range of<br />

Macrophomina phaseolina. Indian<br />

National Academy of Sciences, Letters<br />

4: 357.<br />

Scheepens, P.C. 1987. Joint action of<br />

Cochliobolus lunatus and atrazine on<br />

Echinochloa crus-galli (L.) Beauv. Weed<br />

Research 27: 43-47.<br />

Schmutz, E., Preenan, B. and Reed, R. 1968.<br />

The livestock poisoning plants of Arizona.<br />

University of Arizona Press, Tucson.<br />

176pp. (Holm et al. 1977).


268 Biological Control of Weeds: Southeast Asian Prospects<br />

Schreiner, I.H., Nafus, D.M. and Dumaliang,<br />

N. 1990. Growth and survival of the Asian<br />

corn borer Ostrinia furnacalis GuenCe<br />

(Lep: Pyralidae) on alternative hosts in<br />

Guam. Tropical Pest Management<br />

36: 93-96.<br />

Seibert, T.F. 1989. Biological control of the<br />

weed, Chromolaena odorata (Asteraceae),<br />

by Pareuchaetes pseudoinsulata<br />

(Lepidoptera: Arctiidae) on Guam and the<br />

Northern Mariana Islands. Entomophaga<br />

34: 531-539.<br />

Seier, M.K. and Evans, H.C. 1993. Proposal<br />

to import the fungus Sphaerulina mi-<br />

mosae-pigrae (Phloeospora mimosae-pi-<br />

grae) into Australia for the biological con-<br />

trol of the giant sensitive plant, Mimosa<br />

pigra. CAB Institute of Biological<br />

Control, Ascot, UK. 13 lpp.<br />

Sher, S.A. 1954. Observations on plant-para-<br />

sitic nematodes in Hawaii. Plant Disease<br />

Reporter 38: 687-689.<br />

Shetty, H.S., Gopinath, A. and Rajashekar, K.<br />

1985. Relationship of seed-borne inocu-<br />

lum of Pyricularia grisea to the incidence<br />

of blast of finger millet in the field. Indian<br />

Phytopathology 38: 154-1 56.<br />

Shinkai, A. 1956. Host range of rice stripe<br />

disease (further report) (Japanese). Annals<br />

of the Phytopathological Society of Japan<br />

21: 47 (Holm et al. 1977).<br />

Shoemaker, R.A. 1962. Drechslera Ito.<br />

Canadian Journal of Botany 40: 809-836.<br />

Shreni, V.C.D., Srivastava, K.M. and Singh,<br />

B.P. l979. Vein yellowing of Ageratum<br />

conyzoides-a whitefly transmitted disease<br />

from India. New Botanist 6: 97-102.<br />

(Review of Plant Pathology 60: 4163,<br />

1981).<br />

Silveira-Guido, A. 197 1. Datos preliminares<br />

de biologia y especificidad de Acigona ignitalis<br />

Hamps. (Lep., Pyralidae) sobre el<br />

hospedero Eichhornia crassipes (Mart.)<br />

Solms-Laubach (Pontederiaceae). Revista<br />

de 'la Sociedad Entomologica Argentina<br />

33: 137-145.<br />

Simmonds, J.H. 1966. Host Index of Plant<br />

Diseases in Queensland. Queensland<br />

Department of Primary Industries,<br />

Brisbane. pp. 22-37.<br />

Singh, K.G. 1980. A check list of host and<br />

disease in Malaysia. Ministry of<br />

Agriculture, Malaysia. Bulletin<br />

154: 1-280.<br />

Singh, N.D. 1974. Some host plants of the<br />

reniform nematode in Trinidad. (eds)<br />

C.W.D. Braithwaite, R.H. Phelps and F.D.<br />

Bennett. Proceedings of a symposium on<br />

the protection of horticultural crops in the<br />

Caribbean held at the University of the<br />

West Indies, St Augustine, Trinidad, 8-1 1<br />

April 1974, pp. 1 19-1 24.<br />

Singh, N., Gill, J.S. and Krishnanada, N.<br />

1979. Prevalence of root-knot nematode in<br />

Nilgiri hills. Indian Phytopathology<br />

32: 499-501.<br />

Singh, R.A. and Misra, A.P. 1978. Some new<br />

hosts for Helminthosporium holmii leaf<br />

spot from India. Indian Phytopathology<br />

3 1 : 264-266. (Agricola).<br />

Singh, S. and Beri, S.K. 1973. Studies on the<br />

immature stages of Agromyzidae (Diptera)<br />

from India. Part 111. Notes on the biology<br />

and description of immature stages of<br />

three species of Melanagromyza Hendel.<br />

Journal of Natural History 7: 23-32.<br />

Singh, S., Verma, V.S. and Padma, R. 1975.<br />

A mosaic disease of Digera arvensis<br />

Forsk. Zeitschrift fiir Pflanzenkrankheiten<br />

und Pflanzenschutz 82: 180-1 82.<br />

Singh, S.R., Kamath, M.K., Kumar, K., Autar,<br />

M.L. and Lal, S.L. 198 1. Fiji Department<br />

of Agriculture Annual Research Report for<br />

1979: 77-78.<br />

Singh, S.R., Prasad, R.S. and Solly, R.K.<br />

1982. The status of Neochetina eichhorni-<br />

ae Warner (Coleoptera, Curculionidae) as<br />

biological control agent for water hyacinth<br />

Eichhornia crassipes (Mart) Solms (Fam:<br />

Pontederiaceae) in Fiji. Report of the<br />

Regional Workshop on Biological Control<br />

of Water Hyacinth. 3-5 May 1982,<br />

Bangalore, India. Commonwealth Science<br />

Council, pp. 35-38.


Sisounthone, C. and Sisombat, L. 1973. Brief<br />

information on weeds in rice fields in<br />

Laos. The Second Indonesian Weed<br />

Science Conference, Yogyakarta, April<br />

2-5,1973, pp. 151-153.<br />

Sivapragasam, A. 1983. Weed hosts for<br />

Cyrtorhinus lividipennis (Reuter) a brown<br />

planthopper predator. International Rice<br />

Research Newsletter 8(6): 19-20.<br />

Smith, C.S. and Wilson, C.G. 1992. Use of an<br />

artificial diet for rearing the Mimosa clear-<br />

wing moth, Carmenta mimosa. Abstracts,<br />

VIII International Symposium on<br />

Biological Control of Weeds, Lincoln<br />

University, Canterbury, New Zealand,<br />

2-7 February 1992, p. 80.<br />

Soerjani, M., Kostermans, A.J.G.H. and<br />

Tjitrosoepomo, G. 1987. Weeds of Rice in<br />

. Indonesia. Balai Pustaka, Jakarta. 732pp.<br />

Spencer, K.A. 1961. A synopsis of the orien-<br />

tal Agromyzidae (Diptera). Transactions<br />

of the Royal Entomological Society of<br />

London 1 13: 55-1 00.<br />

Spencer, K.A. 1973. Agromyzidae (Diptera)<br />

of economic importance. Series<br />

Entomologica. 9. Dr W. Junk, The Hague.<br />

405~~.<br />

Spencer, K.A. 1990. Host Specialization in<br />

the World Agromyzidae. Series<br />

Entomologica. 45, Kluwer Academic<br />

Publishers. 445pp.<br />

Spencer, K.A. and Steyskal, G.C. 1986.<br />

Manual of the Agromyzidae (Diptera) of<br />

the United States. United States<br />

Department of Agriculture. Agriculture<br />

Handbook No 638.478~~.<br />

Srivastava, K.M. Singh, B.P., Dwadash<br />

Shreni, V.C. and Srivastava, B.N. 1977.<br />

Zinnia yellow net disease-transmission,<br />

host range and agent-vector relationship.<br />

Plant Disease Reporter 61: 550-554.<br />

Srivastava, R.C. 1981. Fungi causing plant<br />

disease at Jaunpur (U.P.). IV. Indian<br />

Phytopathology 33: 221-224.<br />

Stevei-IS, F. 1925. Hawaiian fungi. Bernice P.<br />

Bishop Museum, Honolulu, Bulletin 19,<br />

189pp. (Holm et al. 1977).<br />

5 References 269<br />

Steyskal, G.C. 1972. The dipterous fauna of<br />

the heads of Bidens pilosa re-examined.<br />

Florida Entomologist 55: 87-88.<br />

Stoyanov, D. 1972. Heterodera amaranthi<br />

n.sp. (Tylenchida: Heteroderidae); un nC-<br />

matodo formador de quistes en Cuba.<br />

Poeyana 97: 1.<br />

Strider, D.L. and Chi, T.T.L. 1984. Damping-<br />

off of portulaca caused by<br />

Helminthosporiurn (Bipolaris) portulacae<br />

in North Carolina. Plant Disease 68: 826.<br />

Suasa-Ard, W. 1 976. Ecological investigation<br />

on Namangana pectinicornis Hampson<br />

(Lepidoptera: Noctuidae), as a potential<br />

biological control agent of the water let-<br />

tuce, Pistia stratiotes L. (hales: Araceae).<br />

M.S. Thesis Kasetsart University,<br />

Bangkok. 59pp.<br />

Suasa-Ard, W. and Napompeth, B. 1978.<br />

Investigation on Episammia pectinicornis<br />

(Hampson) (Lepidoptera: Noctuidae) for<br />

biological control of the water lettuce in<br />

Thailand. (Thai). National Biological<br />

Control Research Centre, Kasetsart<br />

University, Bangkok Technical Bulletin 3.<br />

1 OPP.<br />

Subagyo, T. 1975. Some aspects of the biolo-<br />

gy of Nymphula responsalis Wlk. attack-<br />

ing Salvinia spp. BIOTROP Newsletter<br />

12: 14.<br />

Sulochana, K.K., Wilson, K.I. and Nair, M.C.<br />

1982. Some new host records for<br />

Cylindrocladium quinqueseptatum from<br />

India. Agricultural Research Journal of<br />

Kerala 20: 106-108. (Review of Plant<br />

Pathology 64: 4207, 1985).<br />

Sunaina, V., Kishore, V. and Shekhawat, G.S.<br />

1989. Latent survival of Pseudomonas<br />

solanacearum in potato tubers and weeds.<br />

Zeitschrift fiir Pflanzenkrankenheiten und<br />

Pflanzenschutz 96: 361-363. (Review of<br />

Plant Pathology 39: 2327, 1990).<br />

Suriapermana, S. 1977. Weed competition in<br />

transplanted rice. International Rice<br />

Research Newsletter 2(3): 9-10.


270 Biological Control of Weeds: Southeast Asian Prospects<br />

Suteri, B.D., Joshi, C.C. and Bala, S. 1980.<br />

Some ornamentals and weeds as reservoirs<br />

of potato virus Y and cucumber mosaic<br />

virus in Kumaon. Indian Phytopathology<br />

32: 640.<br />

Swarbrick, J.T. 1981. Weeds of Australia. 3.<br />

Passifloraceae-the passion flowers.<br />

Australian Weeds l(2): 20-22.<br />

Syed, R.A. 1973. Report on biological control<br />

of Eupatorium odoratum for Sabah.<br />

Commonwealth Institute of Biological<br />

Control. Unpublished report. 10pp.<br />

Syed, R.A. 1975. Commonwealth Institute of<br />

Biological Control. Report of work carried<br />

out during 1974. Biological control of<br />

Eupatorium odoratum. pp. 83-84.<br />

Syed, R.A. 1979a. An attempt on biological<br />

control of Eupatorium odoratum L. f. in<br />

Sabah, Malaysia. (ed.) Soerjani.<br />

Proceedings of the Sixth Asian-Pacific<br />

Weed Science Society, 1977, Jakarta<br />

Indonesia 2: 459-466. (Cock 1984).<br />

Syed, R.A. 1979b. Some aspects of biological<br />

control of weeds in Southeast Asia.<br />

Second Indonesian Weed Science<br />

Conference, Yogyakarta, April 2-5, 1973.<br />

BIOTROP Bulletin 1 1: 31 1-31 8.<br />

Syed, R.A., Setywati, 0. and Kasno 1977.<br />

Commonwealth Institute of Biological<br />

Control. Report of work carried out during<br />

1976. Biological control of some impor-<br />

tant aquatic weeds. pp. 87-89.<br />

Tawfik, M.F.S., .Awadallah, K.T. and<br />

Shalaby, F.F. 1976. Survey of insects<br />

found on common weeds in Giza region,<br />

Egypt. Bulletin of the Entomological<br />

Society of Egypt 60: 7-1 4.<br />

Tedford, E.C. and Fortnum, B.A. 1 988. Weed<br />

hosts of Meloidogyne arenaria and<br />

M. incognita common in tobacco fields in<br />

South Carolina. Annals of Applied<br />

Nematology 2: 102-1 05. (Weed Abstracts<br />

38: 2559, 1989).<br />

Ternpike, G. 1943. Observations sur Hypurus<br />

bertrandi Perris, ColCoptbre,<br />

Curculionidae nuisible au pourpier. Revue<br />

de Zoologie Agricole et AppliquCe<br />

42 (9-10): 49-55. (Review of Applied<br />

Entomology A, 34: 349, 1946).<br />

Tempbre, G. 1944. Remarques sur Hypurus<br />

bertrandi Perris. Bulletin de la SociCtC<br />

LinnCenne de Lyon 13: 78-80.<br />

Tempbre, G. 1950. L'Cthologie des Hypurini<br />

(Col. Curculionidae) (Note prkliminaire).<br />

Bulletin de la SociCtC Entomologique de<br />

France 55: 57-6 1.<br />

Teng, S. 1932. Fungi of Nanking 11.<br />

Contribution from the biological laborato-<br />

ry of the Science Society of China.<br />

Botanical Series 8: 5-48. (Holm et al.<br />

1 977).<br />

Teoh, C.H., Chung, G.F., Liau, S.S., Ghani, I.,<br />

Tan, A.M., Lee, S.A. and Mariati, M.<br />

1985. Prospects for biological control of<br />

Mikania micrantha HBK in Malaysia.<br />

Planter 61: 5 15-530.<br />

Thangavelu, K. 1978. First record of host<br />

plants and additional distribution of Nysius<br />

inconspicuus Distant. Current Science<br />

47: 249.<br />

Thite, A.N. and Chavan, P.D. 1977. A new<br />

leaf spot disease of Pennisetum spp.<br />

caused by Helminthosporium rostratum.<br />

Maharashtra Vidnyan Mandir Patrika<br />

12(2): 63-65. (Review of Plant Pathology<br />

57: 277,1978).<br />

Thomas, P.A. and Room, P.M. 1986.<br />

Taxonomy and control of Salvinia<br />

molesta. Nature 320: 581-584.<br />

Thompson, C.R. and Habeck, D.H. 1988.<br />

Host specificity and biology of the weevil<br />

Neohydronomus pulchellus Hustache, bio-<br />

logical control agent of water lettuce<br />

(Pistia stratiotes L.). U.S. Army Engineer<br />

Waterways Experiment Station,<br />

Vicksberg, MS. Technical Report<br />

A-83-10,23 pp.


Thompson, C.R. and Habeck, D.H. 1989.<br />

Host specificity and biology of the weevil<br />

Neohydronomus affinis (Coleoptera:<br />

Curculionidae) a biological control agent<br />

of Pistia stratiotes. Entomophaga 34:<br />

299-306.<br />

Thottappilly, G., Lent, J.W.M. van, Rossel,<br />

H.W. and Sehgal, O.P. 1992. Rottboellia<br />

yellow mottle virus, a new solemovirus affecting<br />

Rottboellia cochinchinensis (itch<br />

grass) in Nigeria. Annals of Applied<br />

Biology 120: 405-41 5.<br />

Tjitrosoedirdjo, S. 1990. Pennisetum polystachion<br />

(L.) Schult. SEAMEO BIOTROP,<br />

Bogor, Indonesia. Weed Info Sheet 3,2pp.<br />

Tjitrosoedirdjo, S. 199 1. Chromolaena odorata<br />

(L.) R.M. King and H. Robinson.<br />

SEAMEO, BIOTROP, Bogor, Indonesia.<br />

Weed Info Sheet 5,4pp.<br />

Tjitrosoedirdjo, S., Tjitrosoedirdjo, S.S. and<br />

Umaly, R.C. 1991. The status of<br />

Chromolaena odorata (L.) R.M. King and<br />

H. Robinson in Indonesia. Ecology and<br />

Management of Chromolaena odorata.<br />

BIOTROP Special Publication 44: 57-66.<br />

Togashi, K. 1942. A survey of the plant diseases<br />

of cultivated plants in Iwate<br />

Prefecture in 1941. Bulletin 8. Iwate<br />

Agricultural Experiment Station, Morioka.<br />

25pp. (Holm et al. 1977).<br />

Tomes, D.O. 1986. Potential insect biocontrol<br />

agents against the weed Chromolaena<br />

odorata R.M. King and H. Robinson in the<br />

Philippines. Philippine Entomologist<br />

6: 535-536.<br />

Torres, D.O. 1988. Infestation of<br />

Chromolaena odorata R.M. King and H.<br />

Robinson in the Philippines and search for<br />

local insects with potential as biological<br />

control agents. Weedwatcher 849: 12.<br />

Torres, D.O. and Paller, E.C. 1989. The devil<br />

weed (Chromolaena odorata R.M. King<br />

and H. Robinson) and its management.<br />

SEAWIC Weed Leaflet 4.6pp.<br />

Toye, S.A. 1974. Feeding and locomotory activities<br />

of Zonocerus variegatus (L.)<br />

(Orthoptera, Acridoidea). Revue de<br />

Zoologie Africaine 88: 205-21 2.<br />

5 References 271<br />

Trujillo, G.E., Acosta, J.M. and Pinero, A.<br />

1974. A new corn virus found in<br />

Venezuela. Plant Disease Reporter<br />

58: 122-126.<br />

Tryon, R.M. and Tryon, A.F. 1982. Ferns and<br />

Allied Plants with Special Reference to<br />

Tropical America. Springer-Verlag, New<br />

York, 537 pp.<br />

Ueki, K. and Oki, Y. 1979. Seed production<br />

and germination of Eichhornia crassipes<br />

in Japan. Proceedings of the Seventh<br />

Asian-Pacific Weed Science Society<br />

Conference. Australia; Asian-Pacific<br />

Weed Science Societies. 26-30 November<br />

1979. Orange, Australia, 25 pp.<br />

Ukwela, M.U. and Ewete, F.K. 1989. Studies<br />

on the biology and population assessment<br />

of Cletus fuscescens Walk. (Heteroptera:<br />

Coreidae) on Amaranthus in western<br />

Nigeria. National Horticultural Research<br />

Institute, Ibadan. Occasional Paper 24.<br />

15pp. (Review of Agricultural<br />

Entomology 79: 4760, 199 1).<br />

Ullstrup, A.J. 1955. Crazy top of some wild<br />

grasses and the occurrence of the sporangial<br />

stage of the pathogen. Plant Diseases<br />

Reporter 39: 839-841.<br />

Umrath, K., Thaler, I. and Steiner, G. 1979.<br />

Reduced quantity of excitatory substance<br />

and morphological changes in virus infested<br />

Mimosa pudica (German). Phyton<br />

Annales Rei Botanicae 19: 247-25 1.<br />

Valdez, R. 1968. Survey, identification and<br />

host-parasite relationships of root-knot nematodes<br />

occurring in some parts of the<br />

Philippines. Philippine Agriculturist<br />

5 1 : 802-824. (Holm et al. 1977).<br />

Valent, B., Crawford, M.S., Weaver, C.G. and<br />

Chumley, F.G. 1986. Genetic studies of<br />

fertility and pathogenicity in Magnaporthe<br />

grisea (Pyricularia oryzae). Iowa State<br />

Journal of Research 60: 569-594. (Review<br />

of Plant Pathology, 65: 492 1, 1986).<br />

Van Velsen, R.J. 1961. Chlorotic spot, a virus<br />

disease of Passiflora foetida in New<br />

Guinea. Papua and New Guinea<br />

Agricultural Journal 13: 160-1 66.


272 Biological Control of Weeds: Southeast Asian Prospects<br />

Vega, J., Almeida, A.M.R. and Costa, A.S.<br />

198 1. A mycoplasma-like organism asso-<br />

ciated with witches' broom disease of<br />

Bidens pilosa L. (Portuguese).<br />

Fitopathologia Brasiliera 6: 29-33.<br />

Vegh, I. and Le Berre, A. 1984. Presence in<br />

France of two new diseases in purslane<br />

and tarragon. (French). Revue Horticole<br />

249: 15-17 (Review of Plant Pathology<br />

63: 5064, 1984).<br />

Vengris, J., Palacz, A.K., Shaw, F.R. and<br />

Ziener, W.H. 1963. Weevil affects barn-<br />

yard grass in Massachussets. Weeds<br />

1 1: 321-322.<br />

Venkataramaiah, G.H. 1974. A note on<br />

Dialeurodes vulgaris on coffee. Journal of<br />

Coffee Research 1 : 13-1 4.<br />

Venturi, F. 1960. Insetti e aragnidi delle pio-<br />

nte Comuni del Venezuela segnalati nel<br />

period0 1938-1 963. Relazionie<br />

Monographafie Agarie Subtropicale.<br />

Tropicale 86: 149-1 50 (Pemberton 1983).<br />

Viraktamath, C.A. and Muniappan, R. 1992.<br />

New records of insects on Chromolaena<br />

odorata in India. Chromolaena odorata<br />

Newsletter 5: l,4.<br />

Vodianaia, L.A., Maglakelidze, A.I., Lebedev,<br />

V.B., Kozlova, L.F. and Iakushevich, M.I.<br />

1986. Role of the completed stage of the<br />

life cycle of the fungus Pyricularia grisea<br />

(Russian). Bulletin, Academy of Sciences<br />

Georgia USSR 122: 401-404. (Agricola).<br />

Vogel, E. and Oliver, A.D. 1969. Life history<br />

and some factors affecting the population<br />

of Arzama densa in Louisiana. Annals of<br />

the Entomological Society of America<br />

62: 74S752.<br />

Vogt G.B. and Cordo, H.A. 1976. Recent<br />

South American field studies of prospec-<br />

tive biocontrol agents of weeds.<br />

Proceedings Research Planning<br />

Conference on the Aquatic Plant Control<br />

Program. 22-24 October 1975. Charleston,<br />

South Carolina, USA. U.S. Army Engineer<br />

Waterways Experiment Station, Missouri,<br />

Miscellaneous Paper A-76-1 : 36-55.<br />

Vrbanov, V.M. and Krumov, K.I. 1989.<br />

Spreading and hosts of Polymyxa betae<br />

parasite of sugar beet and vector of rhizomal<br />

pathogen. (Bulgarian). Rasteniev<br />

'dn Nauki 26(8): 80-85.<br />

Waage, I.T., Smiley, 3.T. and Gilbert, L.E.<br />

198 1. The Passifora problem in Hawaii:<br />

prospects and problems of controlling the<br />

forest weed P. mollissima (Passifloraceae)<br />

with heliconiinae butterflies.<br />

Entomophaga 26: 275-284.<br />

Wagner, W.L., Herbst, D.R. and Sohmer, S.H.<br />

1990. Manual of the Flowering Plants of<br />

Hawaii. Bishop Museum Special<br />

Publication 83. Volume 11. University of<br />

Hawaii Press.<br />

Walker, H.L. and White, J.C. 1979.<br />

Curvularia cymbopogonis, a pathogen of<br />

itchgrass (Rottboellia exaltata) in southern<br />

Louisiana. Plant Disease Reporter<br />

63: 642-644.<br />

Wapshere, A.J. 1990a. Biological control options<br />

for some grass weeds in Australia.<br />

(eds) C. Bassett, L.J. Whitehouse and J.A.<br />

Zabkiewicz. Alternatives to the Chemical<br />

Control of Weeds. Proceedings of an<br />

International Conference, Rotorua, New<br />

Zealand, July 1989. Ministry of Forestry,<br />

FRI Bulletin 155: 80-84.<br />

Wapshere, A.J. 1990b. Discussion of the biological<br />

control of crowsfoot grass<br />

(Eleusine indica) in India, Africa and<br />

Australia. Proceedings of the 9th<br />

Australian Weeds Conference, Adelaide,<br />

South Australia, August 6-10, 1990, pp.<br />

484-489.<br />

Wapshere, A.J. 1990c. Biological control of<br />

grass weeds in Australia: an appraisal.<br />

Plant Protection Quarterly 5: 62-75.<br />

Wara-Aswapati, 0. 1983. Seed production<br />

and germination of Mimosa pigra L. in<br />

Chiangmai, Thailand. (eds) G.L. Robert<br />

and D.H. Habeck. Proceedings,<br />

International Symposium on Mimosa<br />

pigra Management, Chiang Mai, Thailand.<br />

International Plant Protection Center,<br />

Cowallis, Document 48-A-83: 8 1-83.


5 References 273<br />

Watanakul, L. 1964. A study on the host Wibmer, G.J. and O'Brien, C.W. 1989. Two<br />

range of tungro and orange leaf virus of new neotropical genera in the weevil tribe<br />

rice. M.S. Thesis, College of Agriculture, Stenopelmini. Southwestern Entomologist<br />

University of the Philippines, Los Baiios. 14: 395-408. (Review of Agricultural<br />

(Holm et al. 1977). Entomology 78: 9497, 1990).<br />

Waterhouse, D.F. 1992. Prospects for biologi-<br />

cal control of paddy weeds in Southeast<br />

Asia and some recent successes in the bio-<br />

logical control of aquatic weeds.<br />

Proceedings of International Symposium<br />

on Biological Control and Integrated Pest<br />

Management of Paddy and Aquatic Weeds<br />

in Asia, pp. 21-42. National Agricultural<br />

Research Centre, Kannondai 3-1 -1.<br />

Tsukuba, Ibaraki 305, Japan, October<br />

1992.<br />

Waterhouse, D.F. 1993a. The major arthropod<br />

pests and weeds of agriculture in<br />

Southeast Asia: distribution, importance<br />

and origin. Australian Centre for<br />

International Agricultural Research,<br />

Canberra, Australia. 141pp.<br />

Waterhouse, D.F. 1993b. Biological Control:<br />

Pacific Prospects. Supplement 2.<br />

Australian Centre for International<br />

Agricultural Research, Canberra. 138 pp.<br />

Waterhouse, D.F. and Norris, K.R. 1987.<br />

Biological Control: Pacific Prospects.<br />

Inkata Press, Melbourne, 454pp.<br />

Way, M.O., Grigarick, A.A. and Mahr, S.E.<br />

1983. Effects of rice plant density, rice<br />

water weevil (Coleoptera: Curculionidae)<br />

damage to rice and aquatic weeds on aster<br />

leafhopper (Homoptera: Cicadellidae) density.<br />

Environmental Entomology<br />

12: 949-952.<br />

Webster, F.M. and Mally, C.W. 1900. The<br />

purslane sawfly-Schizocerus zabriskei<br />

Ashm. Canadian Entomologist 32: 51-54.<br />

Wee, Y.C. 1974. Viable seeds and spores of<br />

weed species in peat soil under pineapple<br />

cultivation. Weed Research 14: 193-196.<br />

West, J.G. 1990. Portulacaceae. pp. 178-1 85,<br />

(ed.) G.J. Harden, Flora of NSW, NSW<br />

University Press Volume 1,601 pp.<br />

Wild, C.H. 1986. Host specificity report on<br />

Scamurius sp. (Hemiptera, Heteroptera:<br />

Coreidae) an agent for the biological control<br />

of giant sensitive plant (Mimosa invisa<br />

Mart.: Mimosaceae) in Queensland.<br />

Queensland Department of Lands Report.<br />

15~~.<br />

Wild, C.H. 1987. Supplement to host specificity<br />

report on Scamurius sp. (Hemiptera,<br />

Heteroptera: Coreidae) an agent for the biological<br />

control of giant sensitive plant<br />

(Mimosa invisa Mart.: Mimosaceae) in<br />

Queensland. Queensland Department of<br />

Lands Report. 4pp.<br />

Williams, C., Vagalo, M., Tsatsia, F. and<br />

Pauku, R. 1990. Entomology Section<br />

Report. Research Division Internal Report,<br />

Ministry of Agriculture and Lands.<br />

Solomon Islands. Chapter 13: 1-9.<br />

Willson, B.W. 1987. Host specificity report<br />

on Heteropsylla sp. (Hemiptera,<br />

Homoptera: Psyllidae) an agent for the biological<br />

control of giant sensitive plant<br />

(Mimosa invisa Mart.: Mimosaceae) in<br />

Queensland. Queensland Department of<br />

Lands Report. 12pp.<br />

Willson, B.W. and Ablin, M.P. 1991.<br />

Biological control of Mimosa<br />

invisa-Western Samoa. Progress<br />

Report-ACIAR Project 8801, June 1991.<br />

7pp. Queensland Department of Lands.<br />

Willson, B.W. and Garcia, C.A. 1992. Host<br />

specificity and biology of Hereropsylla<br />

spinulosa (Hom.: Psyllidae) introduced<br />

into Australia and Western Samoa for the<br />

biological control of Mimosa invisa.<br />

Entomophaga 37: 293-299.<br />

A.K. 198 Eu~horbia hetero~h~lla: a<br />

review of distribution, importance and<br />

control. Tropical Pest Management<br />

27: 32-38.


274 Biological Control of Weeds: Southeast Asian Prospects<br />

Wilson, C.G. 1992. The biological control<br />

programme against Mimosa pigra in<br />

Australia's Northern Territory. Abstracts<br />

VIII International Symposium on<br />

Biological Control of Weeds, Lincoln<br />

University, Canterbury, New Zealand,<br />

2-7 February 1992, p. 13.<br />

Wilson, C.G. and Flanagan, G.J. 1990.<br />

Establishment and spread of Neurostrota<br />

gunniella on Mimosa pigra in the<br />

Northern Territory. Proceedings of the<br />

Ninth Australian Weeds Conference,<br />

Adelaide, South Australia, pp. 505-507<br />

Wilson, C.G. and Flanagan, G.J. 1991.<br />

Establishment of Acanthoscelides quadri-<br />

dentatus (Schaeffer) and A. puniceus<br />

Johnson (Coleoptera: Bruchidae) on<br />

Mimosa pigra L. in northern Australia.<br />

Journal of the Australian Entomological<br />

Society 30: 279-280.<br />

Wilson, C.G., Flanagan, G.J. and Gillett, J.D.<br />

1990. The phytophagous insect fauna of<br />

the introduced shrub, Mimosa pigra in<br />

Northern Australia and its relevance to bi-<br />

ological control. Environmental<br />

Entomology 19: 776-784.<br />

Wilson, C.G., Forno, I.W., Smith, C.S. and<br />

Napompeth, B. 1992. Rearing and release<br />

methods for biological control agents.<br />

(ed.) K.L.S. Harley, A Guide to the<br />

Management of Mimosa pigra, CSIRO,<br />

Canberra, pp. 49-62.<br />

Wilson, F. 1964. The biological control of<br />

weeds. Annual Review of Entomology<br />

9: 225-244.<br />

Wolcott, G.N. 1948. The insects of Puerto<br />

Rico. Journal of Agriculture, University of<br />

Puerto Rico 32: 1-975. (Bennett and<br />

Cruttwell 1972).<br />

Wong, P.W. 1964. Evidence for the presence<br />

of growth inhibitory substances in Mikania<br />

cordata (Bum. f.) B.L. Robinson. Journal<br />

of the Rubber Research Institute of<br />

Malaya 18: 231-241.<br />

Wright, A.D. 1979. Preliminary report on<br />

damage to Eichhornia crassipes by an in-<br />

troduced weevil at a central Queensland<br />

liberation site. Proceedings of the Seventh<br />

Asian-Pacific Weed Science Society<br />

Conference. Australia; Asian-Pacific<br />

Weed Science Societies. 26-30 November<br />

1979. Orange, Australia, pp. 227-229.<br />

Wright, A.D. 198 1. Biological control of<br />

water hyacinth in Australia. Proceedings<br />

of the 5th International Symposium on<br />

Biological Control of Weeds, pp.<br />

529-535.<br />

Wright, A.D. 1982. Progress towards biological<br />

control of water hyacinth in Australia.<br />

Proceedings, Workshop on Biological<br />

Control of Water Hyacinth.<br />

Commonwealth Science Council. London.<br />

3-5 May 1982. Bangalore, India, pp.<br />

31-33.<br />

Wright, A.D. 1984. Effect of biological control<br />

agents on water hyacinth in Australia.<br />

Proceedings of the International<br />

Conference on Water Hyacinth. United<br />

Nations Environment Programme.<br />

7-1 1 February 1983. Hyderabad, India,<br />

pp. 823-833.<br />

Wright, A.D. 1987. A basis for integrating biological<br />

and chemical control of water<br />

hyacinth (Eichhornia crassipes (Mart.)<br />

Solms). Master of Philosophy Thesis,<br />

School of Environmental Studies, Griffith<br />

University.<br />

Wright, A.D. and Bourne, A.S. 1986. Effect<br />

of leaf hardness on penetration of water<br />

hyacinth by Sameodes albiguttalis. Journal<br />

of Aquatic Plant Management 24: 90-91.<br />

Wright, A.D. and Bourne, A.S. 1990. Effect<br />

of 2, 4-D on the quality of water hyacinth<br />

as food for insects. Plant Protection<br />

Quarterly 5: 139-141.<br />

Wright, A.D. and Stegeman, D.A. 1990. The<br />

weevil, Neochetina bruchi, could help<br />

control water hyacinth in Australia.<br />

Proceedings of the 9th Australian Weeds<br />

Conference, Adelaide, South Australia,<br />

August 6-1 0, pp. 508-5 10.<br />

Wu, Q.N. and Liang, K.G. 1984. Host range<br />

of Helminthosporium maydis Nish and<br />

Miyake. (Chinese). Acta Phytopathologica<br />

Sinica 14: 79-86. (Review of Plant<br />

Pathology 64: 1088,1985).


Xie, L.H., Lin, Q.Y. and Wang, S.F. 1984. On<br />

the preparation and use of an antiserum to<br />

rice ragged stunt virus. (Chinese). Acta<br />

Phytopathologica Sinica 14: 147-1 51.<br />

(Review of Applied Pathology 64: 2513,<br />

1985).<br />

Yadav, A.S. and Tripathi, R.S. 1982. A study<br />

on seed population dynamics of three<br />

weedy species of Eupatorium odorata.<br />

Weed Research 22: 69-76.<br />

Yaseen, M. 197 1. Mimosa pudica. Report on<br />

work carried out during 1970.<br />

Commonwealth Institute of Biological<br />

Control. Commonwealth Agricultural<br />

Bureaux, p. 92.<br />

Yaseen, M. 1972. Mimosa pudica. Report on<br />

work carried out during 1971.<br />

Commonwealth Institute of Biological<br />

Control. Commonwealth Agricultural<br />

Bureaux, p. 107.<br />

Yaseen, M. and Bennett, F.D. 1977.<br />

Commonwealth Institute of Biological<br />

Control. Report of work carried out during<br />

1976. Control of Siam weed, Eupatorium<br />

odoratum, pp. 75-76.<br />

Yonaha, T., Tamori, M., Yamanoha, S. and<br />

Nakasone, T. 1979. Studies on passion<br />

fruit virus diseases in Okinawa. 1.<br />

Cucumber mosaic virus isolated from dis-<br />

eased Passiflora edulis and Passiflora<br />

foetida plants (Japanese). Science Bulletin<br />

of the College of Agriculture, University<br />

of the Ryukyus 1979 (No 26): 29-38.<br />

(Review of Plant Pathology 60: 1553,<br />

1981).<br />

Yorinori, J.T. 1985. Biological control of milk<br />

weed (Euphorbia heterophylla) with path-<br />

ogenic fungi. Proceedings of the VI<br />

International Symposium on Biological<br />

Control of Weeds. Agriculture Canada<br />

1985, pp. 677-68 1.<br />

5 References 275<br />

Zaka-ur-rab, M. 1991. Leaf mining<br />

Coleoptera of the Indian subcontinent.<br />

Journal of Entomological Research (New<br />

Delhi) 15: 20-30.<br />

Zehr, E.I., Aitken, J.B., Scott, J.M. and<br />

Meyer, J.R. 1990. Additional hosts for the<br />

ring nematode Criconemella xenoplax.<br />

Journal of Nematology 22: 86-89.<br />

Zeigler, R.S. and Lozano, J.C. 1983. The relationship<br />

of some Elsinoe and Sphaceloma<br />

species pathogenic on cassava and other<br />

Euphorbiaceae in Central and South<br />

America. Phytopathology 73: 293-300.<br />

Zem, A.C. and Lordello, L.G.E. 1983. Studies<br />

on hosts of Radopholus similis and<br />

Helicotylenchus multicinctus (Portuguese).<br />

Trabalhos apresentados a VII Reuniao<br />

Brasileira de Nematologia, Brasilia, D.F.<br />

21-25 de fevereiro de 1983. Publicaco<br />

7: 175-187. (Weed Abstracts 34: 100,<br />

1985).<br />

Zhang, S., Shu, X., Zhou, G., Fu, C., Li, Z.<br />

and Wang, L. 1981. Preliminary studies on<br />

the host range of wheat rosette disease<br />

caused by northern cereal mosaic virus.<br />

(Chinese). Acta Phytopathologica Sinica<br />

11: 7-10.<br />

Zimmerman, E.C. 1957. The portulaca<br />

leafmining weevil, Hypurus bertrandi, in<br />

Hawaii (Coleoptera: Curculionidae:<br />

Ceutorhynchinae). Annals of the<br />

Entomological Society of America<br />

50: 221-222.<br />

Zundel, G.L. 1953. The Ustilaginales of the<br />

World. Contribution 176. Department of<br />

Botany, School of Agriculture, State<br />

College, Pennsylvania. 41 Opp.


6 Index of scientific names of insects<br />

abdominalis,<br />

Microcephalothrips<br />

Acanthoscelides pigricola<br />

Kingsolver Col.:<br />

Bruchidae 152<br />

Acanthoscelides puniceus<br />

Johnson Col.: Bruchidae<br />

150,152,153<br />

Acanthoscelides<br />

quadridentatus (Schaeffer)<br />

Col.: Bruchidae 150, 152,<br />

153<br />

Acanthoscelides zebratus<br />

Kingsolver Col.:<br />

Bruchidae 152<br />

Achaea janata (Linnaeus)<br />

Lep.: Noctuidae 105<br />

Acigona infusella, see<br />

Haimbachia infusella<br />

Acrida turrita Linnaeus Ort.:<br />

Acrididae 133<br />

Acrosternum herbidum (Stiil)<br />

Hem.: Pentatomidae 144<br />

Actinote anteas (Doubleday<br />

and Hewitson) Lep.:<br />

Nymphalidae 39,44,47,<br />

48<br />

aculeatum, Coelocephalapion<br />

acuminata, Paulinia<br />

acuta, Leptocorisa<br />

Adaina bipuncta Moschler<br />

Lep.: Pterophoridae 129<br />

adipalis, Ategumia<br />

aeneicollis, Horismenus<br />

aerea, Colaspis<br />

aerea, Maecolaspis<br />

Aerenica hirticornis (Klug)<br />

Col.: Cerambycidae 40<br />

afinis, Neohydronomus<br />

agamemnon, Chi10<br />

Agathis Hyrn.: Braconidae<br />

206<br />

Agraulis vanillae (Linnaeus)<br />

Lep.: Nymphalidae 187,<br />

188<br />

Agrmyza parvicornis Loew<br />

Dip.: Agromyzidae 64<br />

Agromyza proxima Spencer<br />

Dip.: Agromyzidae 65<br />

Agrotera basinotata<br />

Harnpson Lep.:<br />

Pyralidae 122<br />

Agrotis ipsilon (Hufnagel)<br />

Lep.: Noctuidae 21 2<br />

albicinctus, Orosius<br />

albiguttalis, Sameodes<br />

Alcidodes Col.: Curculionidae<br />

1 22<br />

aliphera, Eueides<br />

allecta, Calycomyza<br />

Altica cyanea (Weber) Col.:<br />

Chrysomelidae 121, 1 22<br />

Amata huebneri Boisduval<br />

Lep.: Amatidae 134<br />

Amauromyza Dip.:<br />

Agromyzidae 32,57<br />

Amauromyza maculosa<br />

(Malloch) Dip.:<br />

Agromyzidae 29,30<br />

amazonus, Longitarsus<br />

arnbrosiae, Dactynotus<br />

ambrosiae, Uroleucon<br />

Ammalo arravica, see<br />

Pareuchaetes<br />

pseudoinsulata<br />

Ammalo insulata, see<br />

Pareuchaetes insulata<br />

Amsacta gangis, see<br />

Creatonotos gangis<br />

Amsacta lactinea (Cramer)<br />

Lep.: Arctiidae 45<br />

anaphalidis, Masonaphis<br />

anaphalidis, Neomasonaphis<br />

andropogonis, Dyodiplosis<br />

andropogonis, Orseolia<br />

anisodactylus, Sphenarches<br />

Anoecia querci , see<br />

Stegophylla querci<br />

antem, Actinote<br />

antica, Pochazia<br />

antonii, Helopeltis<br />

Apanteles Hyrn.: Braconidae<br />

206<br />

Apanteles cordoi De Santis<br />

Hyrn.: Braconidae 80<br />

Apanteles creatonoti Viereck<br />

Hyrn.: Braconidae 43,<br />

Apantelesfluitantis De Santis<br />

Hyrn.: Braconidae 80<br />

Aphis Hem.: Aphididae 121<br />

Aphis citricola, see Aphis<br />

spiraecola<br />

Aphis coreopsidis (Thomas)<br />

Hem.: Aphididae 30<br />

Aphis craccivora Koch Hem.:<br />

Aphididae 13,45, 105<br />

Aphis fabae Scopoli Hem.:<br />

Aphididae 41,64, 188<br />

Aphis gossypii Glover Hem.:<br />

Aphididae 13,45, 105, 133<br />

188<br />

Aphis illinoisensis Shimer<br />

Hem.: Aphididae 30<br />

Aphis nigricauda, see Aphis<br />

spiraecola<br />

Aphis spiraecola Patch Hem.:<br />

Aphididae 1 3,41,44,45,<br />

133,188<br />

aphodoides, Temnodachrys<br />

Apion Col.: Apionidae 130,<br />

213,215<br />

Apion brunneonigrum<br />

BCguin-Billecocq Col.:<br />

Apionidae 38,39,42-44,<br />

46-48<br />

Apion luteirostre Gerstaecker<br />

Col.: Apionidae 30, 127,<br />

129,130<br />

Apsilops sp. Hyrn.:<br />

Ichneumonidae 206<br />

archboldi, Liriomyza<br />

Archips Lep.: Tortricidae<br />

23<br />

Archips micaceana (Walker)<br />

Meyrick Lep.: Tortricidae<br />

123<br />

arctithorax, Baris<br />

argentiniensis, Disonycha<br />

Argentinorhynchus bennetti<br />

O'Brien and Wibmer Col.:<br />

Curculionidae 200


278 Biological Control ( ~f Weeds: Southeast Asian Prc<br />

Argentinorhynchus breyeri<br />

Br2thes Col.:<br />

Curculionidae 200<br />

Argentinorhynchus bruchi<br />

(Hustache) Col.:<br />

Curculionidae 200,204<br />

Argentinorhynchus minimus<br />

O'Brien and Wibmer Col.:<br />

Curculionidae 200<br />

Argentinorhynchus<br />

squamosus (Hustache)<br />

Col.: Curculionidae 200<br />

argentinus, Horciacinus<br />

Argyractis subornata<br />

(Hampson) Lep.: Pyralidae<br />

72,201<br />

Argyresthia leuculias<br />

Meyrick Lep.:<br />

Argyresthiidae 122<br />

armatus, Chariesterus<br />

armigera, Dicladispa<br />

Aroga Lep.: Gelechiidae 15 1<br />

arravaca, Ammalo<br />

arravaca, Pareuchaetes<br />

artemisia, Dynamine<br />

Arthrocnodax meridionalis<br />

Felt Dip.: Cecidomyiidae<br />

48<br />

Ascia buniae phaloe, see<br />

Perrhybris phaloe<br />

aspersa, Sibinia<br />

asperulus, Ceutorhynchus<br />

Asphondylia Dip.:<br />

Cecidomyiidae 2 1 6<br />

Asphondylia bidens<br />

Johannsen Dip.:<br />

Cecidomyiidae 3 1<br />

Asphondylia corbulae Mohn<br />

Dip.: Cecidomyiidae 40<br />

Asphondylia portulacae<br />

Mohn Dip.: Cecidomyiidae<br />

213,216<br />

Astylus lineatus (Fabricius)<br />

Col.: Melyridae 22<br />

Asynonychus godmani Crotch<br />

Col.: Curculionidae 144<br />

Ategumia adipalis (Zeller)<br />

Lep.: Pyralidae 120, 122,<br />

123<br />

Ategumia fatualis (Lederer)<br />

Lep.: Pyralidae 120, 122,<br />

123<br />

Atherigona soccata Rondani<br />

Dip.: Muscidae 225<br />

atilus, Sphaeniscus<br />

atricornis, Phytomyza<br />

atrovenosa, Nisia<br />

Atractomorpha crenulata<br />

(Fabricius) Ort.: Acrididae<br />

78<br />

Aulacorthum solani<br />

(Kaltenbach) Hem.<br />

Aphididae 13<br />

Aulacochlamys Col.<br />

Chrysomelidae 39,49<br />

aurata aurantior,<br />

Pareuchaetes<br />

aurata aurata, Pareuchaetes<br />

aurata, Pareuchaetes<br />

Austelasmus Hym.:<br />

Elasmidae 5 1<br />

Autoba versicolor (Walker)<br />

Lep.: Noctuidae 122<br />

avenae, Sitobion<br />

Azarma densa, see Bellura<br />

densa<br />

azia, Thecla<br />

azia, Tmolus<br />

Bactrocera dorsalis (Hendel)<br />

Dip.: Tephritidae 120, 122<br />

Bactrocera pedestris, see<br />

Bactrocera dorsalis<br />

bada, Parnara<br />

Baliothrips biformis, see<br />

Stenchaetothrips biformis<br />

baridiiformis,<br />

Psuedoderelomus<br />

Baris Col.: Curculionidae 29,<br />

30,40<br />

Baris arctithorax (Pic) Col.:<br />

Curculionidae 2 12,213,<br />

216<br />

Baris lorata Marshall Col.:<br />

Curculionidae 2 1 3<br />

Baris portulacae Marshall<br />

Col.: Curculionidae 2 13<br />

basalis, Xyonysius<br />

basinotata, Agrotera<br />

basui, Tetraneura<br />

Bellura densa (Walker) Lep.:<br />

Noctuidae 73,79,80<br />

Bemisia costa-limai, see<br />

Bemisia tabaci<br />

Bemisia tabaci (Gennadius)<br />

Hem.: Aleyrodidae 14, 16,<br />

99,100,105<br />

bennetri, Argentinorhynchus<br />

bertrandi, Hypurus<br />

bessus, Nisoniades<br />

bibiana, Syphrea<br />

biblis, Didonis<br />

bicincta fraterna,<br />

Monecphora<br />

bicincta fraterna, Prosapia<br />

bicolor, Stirellus<br />

bidens, Asphondylia<br />

bidentis, Melanogromyza<br />

bifidalis, Loxostege<br />

biformis, Baliothrips<br />

biformis, Stenchaetothrips<br />

bigaria, Desmogramma<br />

binaria, Micrutalis<br />

bipartista, Dactylispa<br />

bipuncta, Adaina<br />

bissellata, Coelophora<br />

Blissus leucopterus (Say)<br />

Hem.: Lygaeidae 90<br />

botanephaga, Sesamia<br />

Bothrogonia ferrugenea<br />

(Fabricius) Hem.:<br />

Cicadellidae 133<br />

Brachycaudus helichrysi<br />

(Kaltenbach) Hem.:<br />

Aphididae 13<br />

Brachycyttarus griseus De<br />

Joannis Lep.: Psychidae<br />

181,182<br />

Brachymeria ovata (Say)<br />

Hym.: Chalcididae 187<br />

Brachymeria russelli Burks<br />

Hym.: Chalcididae 130<br />

breyeri, Argentinorhynchus<br />

brickelliae, Neolasioptera<br />

bruchi, Argentinorhynchus<br />

bruchi, Neochetina<br />

bruchi, Ochetina<br />

brunella, Selca<br />

brunnea, Myrmicaria<br />

brunneonigrum, Apion<br />

bryoniae, Liriomyza<br />

Bucculatrix sp. Lep.:<br />

Bucculatricidae 39,49<br />

buniae phaloe, Ascia


Caicella calchas, see Cogia<br />

calchas<br />

calamistis, Sesamia<br />

calchas, Caicella<br />

calchas, Cogia<br />

Calephelis Lep.: Lycaenidae<br />

162<br />

Calephelis laverna Godman<br />

and Salvin Lep.:<br />

Lycaenidae 40<br />

Caliothrips ipomoeae<br />

Moulton Thy.: Thripidae<br />

14<br />

Calycomyza Dip.:<br />

Agromyzidae 14,32<br />

Calycomyza allecta<br />

(Melander) Dip.:<br />

Agromyzidae 29,3 1<br />

Calycomyza mikaniae<br />

Spencer Dip.:<br />

Agromyzidae 128<br />

Calycomyza platyptera<br />

(Thornson) Dip.:<br />

Agromyzidae 29,3 1<br />

campanulicollis, Promecops<br />

Capitophorus hippophaes<br />

(Walker) Hem.: Aphididae<br />

13<br />

carduana,Lobesia<br />

carduana, Polychrosis<br />

carduellinus, Hyperomyzus<br />

cariniventris, Rhodobaenus<br />

Cannenta mimosa Eichlin<br />

and Passoa Lep.: Sesiidae<br />

147,150,152-154,156<br />

Caryedes pickeli (Pic) Col.:<br />

Bruchidae 101<br />

Cassida exilis Col.:<br />

Chrysomelidae 22<br />

Cassida nigriventris Col.:<br />

Chrysomelidae 21,22<br />

Catantops humilis Serville<br />

Ort.: Acrididae 133<br />

catenulata, Lophocampa<br />

caulophaga, Liriomyza<br />

Cecidochares fluminensis<br />

(Lima) Dip.: Tephritidae<br />

40<br />

Cecidomyia Dip.:<br />

Cecidomyiidae 193<br />

6 Index of scientific names of insects 279<br />

Cecidomyia penniseti Felt<br />

Dip.: Cecidomyiidae 193,<br />

194<br />

Centrotypus flexuosus<br />

(Fabricius) Hem.:<br />

Membracidae 133<br />

Centrinaspis Col.:<br />

Curculionidae 29,30,40<br />

Centrinaspis perscitus see<br />

Linogeraeus perscitus<br />

Ceresa ustulata Fairmaire<br />

Hem.: Membracidae 143<br />

Cerodontha muscina<br />

(Meigen) Dip.:<br />

Agromyzidae 65<br />

cervinus, Pantomorus<br />

Ceutorhynchus Col.:<br />

Curculionidae 122,215<br />

Ceutorhynchus asperulus<br />

Faust Col.: Curculionidae<br />

22<br />

Ceutorhynchus oleracae<br />

Marshall Col.:<br />

Curculionidae 2 1 3<br />

Ceutorhynchus portulacae<br />

Marshall Col.:<br />

Curculionidae 2 1 1,213<br />

Chaetogeoica graminiphaga<br />

Raychaudhuri, Pal and<br />

Ghosh Hem.: Aphididae<br />

0 0<br />

00<br />

Chalcodermus Col.:<br />

Curculionidae 144, 162<br />

Chalcodermus segnis Fielder<br />

Col.: Curculionidae 144<br />

Chalcodermus serripes<br />

Fahraeus Col.:<br />

Curculionidae 15 1, 154<br />

Chalcophana viridipennis<br />

Germar Col.:<br />

Chrysomelidae 30<br />

Chariesterus armatus<br />

(Thunberg) Hem.:<br />

Coreidae 101<br />

charitonia, Heliconius<br />

Chilo Lep.: Pyralidae 225<br />

Chilo agamemnon Bleszynski<br />

Lep.: Pyralidae 65<br />

Chilo zacconius Bleszynski<br />

Lep.: Pyralidae 65<br />

Chlamisus Col.:<br />

Chrysomelidae 16 1<br />

Chlamisus insularis (Jacoby)<br />

Col.: Chrysomelidae 49<br />

Chlamisus mimosae Karren<br />

Col.: Chrysomelidae 30,<br />

39,49,150,152,154<br />

Chloropteryx Lep.:<br />

Geometridae 129<br />

Chnootriba similis<br />

(Thunberg) Col.:<br />

Coccinellidae 225<br />

Chortogonus trachypterus<br />

Blanchard Ort.: Acrididae<br />

105<br />

Chromatomyia Dip.<br />

Agromyzidae 32<br />

Chrysolina Col.:<br />

Chrysomelidae 130<br />

Cicadulina triangula Hem.:<br />

Cicadellidae 93<br />

cinerea, Piesma<br />

Circulifer haematoceps<br />

(Mulsant and Rey) Hem.:<br />

Cicadellidae 21 1<br />

citri, Planococcus<br />

citricola, Aphis<br />

civiloides, Exorista<br />

Cladochaeta nebulosa<br />

Coquillett Dip.:<br />

Drosophilidae 3 1<br />

claripennis, Phorocera<br />

claudina, Tegosa<br />

Cleitodiplosis graminis<br />

(Tavares) Dip.:<br />

Cecidomyiidae 1 8 1, 182<br />

Cletusfuscescens Walker<br />

Hem.: Coreidae 21<br />

Clinodiplosis Dip.:<br />

Cecidomyiidae 39, 40,49<br />

Clinodiplosis eupatorii (Felt)<br />

Dip.: Cecidomyiidae 40<br />

Clovia conifer (Walker)<br />

Hem.: Cercopidae 133<br />

Cnaphalocrocis medinalis<br />

(GuenCe) Lep.: Pyralidae<br />

65,90,176,182,194<br />

Cnaphalocrocis patnalis<br />

Bradley Lep.: Pyralidae<br />

65,90,176,182<br />

Coccus Hem.: Coccidae 100


280 Biological Control of Weeds: Southeast Asian Pra<br />

Coccus longulus (Douglas)<br />

Hem.: Coccidae 161<br />

Coelocephalapion aculeatum<br />

(Fall) Col.: Apionidae 150,<br />

152,154<br />

Coelocephalapion pigrae<br />

Kissinger Col.: Apionidae<br />

151,154<br />

Coelocephalapion<br />

spretissimum (Sharp) Col.:<br />

Apionidae 154<br />

Coelophora bissellata<br />

Mulsant Col.:<br />

Coccinellidae 134<br />

Coelosternus notaticeps, see<br />

Sternocoelus notaticeps<br />

coffearia, Homona<br />

Cogia calchas (Herrich-<br />

Schaffer) Lep.:<br />

Hesperiidae 145, 162<br />

Colaspis Col.: Chrysomelidae<br />

144,181<br />

Colaspis aerea Lefevre Col.:<br />

Chysomelidae 182<br />

Coleophora versurella Zeller<br />

Lep.: Coleophoridae 21,22<br />

commelinae, Liriomyza<br />

complicata, Exema<br />

compositae, Uroleucon<br />

concinnus, Euscyrtus<br />

conifer, Clovia<br />

conjuncta, Desmogramma<br />

connexa, Eriopis<br />

connexa, Procecidochares<br />

consimilis, Phaedon<br />

Contarinia Dip.:<br />

Cecidomyiidae 40,88,93,<br />

194<br />

Contarinia panici (Plotnikov)<br />

Dip.: Cecidomyiidae 175,<br />

177<br />

Contarinia sorghicola<br />

(Coquillett) Dipt.:<br />

Cecidomyiidae 93, 193,<br />

194<br />

corbulae, Asphondylia<br />

cordoi, Apanteles<br />

coreopsidis, Aphis<br />

Corythuca pellucidu Drake<br />

and Hambleton Hem.:<br />

Tingidae 101<br />

Corythuca socia Monte<br />

Hem.: Tingidae 101<br />

costa-limai, Bemisia<br />

Courteia graminis, see<br />

Orseolia graminis<br />

craccivora, Aphis<br />

creatonoti, Apanteles<br />

Creatonotos gangis<br />

(Linnaeus) Lep.: Arctiidae<br />

90,111,182<br />

crenulata, Atractomorpha<br />

cretatus, Onychylis<br />

cretatus, Pistiacola<br />

cretica, Sesamia<br />

cribarius, Euschistus<br />

Criotettrix Ort.: Tetrigidae<br />

200,202<br />

Cropia minthe (Dyar) Lep.:<br />

Noctuidae 3 1<br />

cruttwellae, Neolasioptera<br />

Cryptocephalus miserabilis<br />

Suffrian Col.:<br />

Chrysomelidae 15 1<br />

Cryptocephalus viridiaeneus<br />

Boheman Col.:<br />

Chrysomelidae 1 44<br />

Cryptorhynchus Col.:<br />

Curculionidae 122<br />

cubana, Heteropsylla<br />

curvifascia, Erastroides<br />

cyanea, Altica<br />

cyanea, Haltica<br />

Cyanotricha necyria (Felder<br />

and Rogenhofer) Lep.:<br />

Dioptidae 188<br />

cydno, Heliconius<br />

cymoides, Nysius<br />

cynodontis. Orseolia<br />

Cyrtorhinus lividipennis<br />

Reuter Hem.: Miridae 64<br />

Dactylispa bipartista Col.:<br />

Chrysomelidae 134<br />

Dactynotus ambrosiae, see<br />

Uroleucon ambrosiae<br />

Dactynotus, see Uroleucon<br />

Delphacodes idonea Hem.:<br />

Delphacidae 176<br />

densa, Bellura<br />

depunctalis, Nymphula<br />

Desmogramma 130<br />

Desmogramma bigaria<br />

Erichson Col.:<br />

Chrysomelidae 130<br />

Desmogramma conjuncta<br />

BechynC Col.:<br />

Chrysomelidae 127, 130<br />

Diacamma rugosum (Le<br />

Guillou) Hym.: Formicidae<br />

43<br />

Diachrysia orichalcea, see<br />

Thysanoplusia orichalcea<br />

Dialeurodes vulgaris Singh<br />

Hem.: Aleyrodidae 30<br />

Dichelops fircatus<br />

(Fabricius) Hem.:<br />

Pentatomidae 144<br />

Dichomeris Lep.: Gelechiidae<br />

14,40<br />

Dicladispa armigera<br />

(Olivier) Col.:<br />

Chrysomelidae 64<br />

Didonis biblis (Fabricius)<br />

Lep.: Nymphalidae 101<br />

diemenalis, Lamprosema<br />

dilatatum, Sipylus<br />

diminutalis, Nymphula<br />

diminutalis, Paraponyx<br />

Dinarmus Hym.:<br />

Pteromalidae 152<br />

Dione juno (Cramer) Lep.:<br />

Nymphalidae 186, 1 87<br />

Dioxyna picciola, see<br />

Dioxyna sororcula<br />

Dioxyna sororcula<br />

(Wiedemann) Dip.:<br />

Tephritidae 3 1<br />

Diplacaspis miserabilis, see<br />

Cryptocephalus<br />

miserabilis<br />

Diplacaspis prosternalis<br />

(Schaeffer) Col.:<br />

Chrysomelidae 15 1<br />

Disonycha argentiniensis<br />

BechynC Col.:<br />

Chrysomelidae 10 1<br />

distincta, Lamprosema<br />

dolosa, Pegomya<br />

dorsalis, Bactrocera<br />

dorsalis, Recilia<br />

drumalis, Petrophila<br />

Dryas julia (Fabricius) Lep.:<br />

Nymphalidae 187


Dynamine artemisia<br />

(Fabricius) Lep.:<br />

Nymphalidae 101<br />

Dyodiplosis andropogonis,<br />

see Orseolia andropogonis<br />

Dyodiplosisfluitans, see<br />

Lasioptera fluitans<br />

Dyodiplosisfluvialis, see<br />

Orseolia fluvialis<br />

Dyops minthe, see Cropia<br />

minthe<br />

echeclus, Hippotion<br />

echinochloa, Lasioptera<br />

Echinocnemus Col.:<br />

Curculionidae 1 15<br />

Echoma marginata<br />

(Linnaeus) Col.:<br />

Chrysomelidae 127, 1 30<br />

Echoma quadristillata<br />

(Boheman) Col.:<br />

Chrysomelidae 127, 130<br />

Ecpantheria hambletoni, see<br />

Hypercompe hambletoni<br />

Edessa meditabunda<br />

(Fabricius) Hem.:<br />

Pentatomidae 144<br />

eichhorniae, Neochetina<br />

Elachertus Hym.: Eulophidae<br />

46<br />

Elasmopalpus lignosellus<br />

(Zeller) Lep.: Pyralidae 65<br />

Elasmus Hym.: Elasmidae 46<br />

Eldana saccharins Walker<br />

Lep.: Pyralidae 65<br />

elegans, Neohydronomus<br />

elimatus, Dalbulus<br />

Elophila responsalis<br />

(Walker) Lep.: Pyralidae<br />

115,116,167,201,202<br />

ementitus, Xyonysius<br />

Emmalocera Lep.: Pyralidae<br />

63,65<br />

Enchenopa gracilis (Germar)<br />

Hem.: Membracidae 143<br />

entreriana, Tomaspis<br />

entreriana, Zulia<br />

Entylia Hem.: Membracidae<br />

128<br />

Entylia sinuata (Fabricius)<br />

Hem.: Membracidae 128<br />

6 Index of scientific names of insects 281<br />

Epilachna indica Mulsant<br />

Col.: Coccinellidae 134<br />

Epilachna similis, see<br />

Chnootriba similis<br />

Epipagis albiguttalis, see<br />

Sameodes albiguttalis<br />

Epipsammia pectinicornis,<br />

see Spodoptera<br />

pectinicornis<br />

Episammea pectinicornis, see<br />

Epipsammia pectinicornis<br />

Episcada pascua Schaus<br />

Lep.: Nymphalidae 101<br />

Erastroides curvifascia<br />

Hampson Lep.: Noctuidae<br />

200<br />

erato, Heliconius<br />

Eretmocera impactella<br />

(Walker) Lep.:<br />

Scythrididae 23<br />

eridania, Prodenia<br />

eridania, Spodoptera<br />

Erinnyis oenotrus (Cramer)<br />

Lep.: Sphingidae 101<br />

Eriopis connexa (Germar)<br />

Col.: Coccinellidae 141<br />

Eryphanis polyxena<br />

Meerburgh Lep.:<br />

Nymphalidae 193, 194<br />

erythrocephalus, Stiretrus<br />

etheiella, Eucampyla<br />

Eublemma versicolor, see<br />

Autoba versicolor<br />

Eucalymnatus Hem.:<br />

Coccidae 100<br />

Eucampyla etheiella Meyrick<br />

Lep.: Pyralidae 46,47<br />

Euderus Hym.: Eulophidae<br />

52<br />

Eueides aliphera Godart<br />

Lep.: Nymphalidae 187<br />

Eueides isabella (Cramer)<br />

Lep.: Nymphalidae 187<br />

Eueides procula Butler and<br />

Drull Lep.: Nymphalidae<br />

187<br />

eupatoriella, Melanagromyza<br />

eupatorii, Clinodiplosis<br />

eupatorii, Neolasioptera<br />

euphorbiae, Haplothrips<br />

Eupithecia Lep.: Geometridae<br />

129<br />

Eurema Lep.: Pieridae 139<br />

Eurema lisa (Boisduval and<br />

LeConte) Lep.: Pieridae<br />

162<br />

Eurema tenella (Boisduval)<br />

Lep.: Pieridae 145, 162<br />

Euschistus tristigmus<br />

cribarius Stdl Hem.:<br />

Pentatomidae 144<br />

Euschistus luridus Dallas<br />

Hem.: Pentatomidae 144<br />

Euscyrtus concinnus (de<br />

Haan) Ort.: Gryllidae 57,<br />

64,224<br />

Exema complicata Jacoby<br />

Col.: Chrysomelidae 128,<br />

132<br />

exigua, Spodoptera<br />

exilis, Cassida<br />

Exorista Dip.: Tachinidae 43<br />

Exorista civiloides, see<br />

Exorista xanthaspis<br />

Exorista xanthaspis<br />

Wiedemam Dip.:<br />

Tachinidae 45<br />

explanata, Pentispa<br />

fabae, Aphis<br />

fasciatus, Pistiacola<br />

fascifrons, Macrosteles<br />

fastigiata, Sibinia<br />

fatualis, Ategumia<br />

femorata, Sagra<br />

Ferrisia virgata (Cockerell)<br />

Hem.: Pseudococcidae 105<br />

ferrugenea, Bothrogonia<br />

ferruginae, Temlucha<br />

flexuosus, Centrotypus<br />

floris, Melanagromyza<br />

fluitans, Dyodiplosis<br />

fluitans, Lasioptera<br />

fluitantis, Apanteles<br />

fluminensis, Cecidochares<br />

fluvialis, Dyodiplosis<br />

fluviatilis, Orseolia<br />

fregonalis, Nymphula<br />

frugiperda, Spodoptera<br />

frugivora, Neolasioptera<br />

furcatus, Dichelops


282 Biological Control of Weeds: Southeast Asian Prospects<br />

furcifera, Sogatella<br />

furnacalis, Ostrinia<br />

fuscesens, Cletus<br />

gangis, Amsacta<br />

gangis, Creatonotos<br />

ganglbaueri, Haplothrips<br />

Garcanus gracilentus (St&)<br />

Hem.: Miridae 30<br />

Gargara Hem.: Membracidae<br />

121<br />

geminata, Solenopsis<br />

gentilei, Tetrastichus<br />

gentilei, Thripsastichus<br />

Geoica Iucifuga (Zehntner)<br />

Hem.: Aphididae 88<br />

Germalus unipunctatus<br />

(Montandon) Hem.:<br />

Lygaeidae 21<br />

Geromyia penniseti (Felt)<br />

Dip.: Cecidomyiidae 193,<br />

194<br />

Geromyia seminis (Felt) Dip.:<br />

Cecidomyiidae 193,194<br />

Gesonula punctifrons (Sdl)<br />

Ort.: Acrididae 78, 167<br />

Gibbobruchus pickeli , see<br />

Caryedes pickeli<br />

Gibbobruchus polycoccus<br />

(Fahraeus) Col.: Bruchidae<br />

101<br />

godmani, Asynonychus<br />

gossypii, Aphis<br />

gowdeyi, Haplothrips<br />

gracilentus, Garcanus<br />

gracilis, Enchenopa<br />

graminiphaga, Chaetogeoica<br />

graminis, Cleitodiplosis<br />

graminis, Courteia<br />

graminis, Orseolia<br />

graminum, Schizaphis<br />

granarium, Macrosiphum<br />

griseola, Hydrellia<br />

griseus, Brachycyttarus<br />

guerini, Lexiphanes<br />

guildinii, Piezodorus<br />

gunniella, Neurostrota<br />

Gyrocnemis Hem.:<br />

Thyreocoridae 144<br />

haematoceps, Circulijier<br />

I<br />

Haimbachia infusella<br />

(Walker) Lep.: Pyralidae<br />

69,73,74,76,79,80,82<br />

Haltica cyanea, see Altica<br />

cyanea<br />

Halticus minutus Reuter<br />

Hem.: Miridae 132<br />

hambletoni, Ecpantheria<br />

hambletoni, Hypercompe<br />

hanno, Hemiargus<br />

Haplopeodes Dip.:<br />

Agromyzidae 21 6<br />

Haplopeodes minutus (Frost)<br />

Dip.: Agromyzidae 21,22<br />

Haplopeodes palliatus<br />

(Czoquillett) Dip.:<br />

Agromyzidae 2 12,2 1 3,<br />

216<br />

Haplothrips Thy.:<br />

Phlaeothripidae 134<br />

Haplothrips euphorbiae Thy.:<br />

Phlaeothripidae 105<br />

Haplothrips ganglbaueri<br />

Schmutz Thy.:<br />

Phlaeothripidae 63, 64, 89<br />

Haplothrips gowdeyi<br />

(Franklin) Thy.:<br />

Phlaeothripidae 14, 101,<br />

182<br />

Haplothrips longisetosus<br />

Ananthakrishnan Thy.:<br />

Phlaeothripidae 22<br />

Haplothrips paumalui<br />

Moulton Thy.:<br />

Phlaeothripidae 182<br />

harleyi, Teleonemia<br />

hawaiiensis, Thrips<br />

hecale, Heliconius<br />

helichrysi, Brachycaudus<br />

Heliconius charitonia<br />

(Linnaeus) Lep.:<br />

Nymphalidae 188<br />

Heliconius cydno Bates Lep.:<br />

Nymphalidae 188<br />

Heliconius erato Doubleday<br />

Lep.: Nymphalidae 188<br />

Heliconius hecale Hewitson<br />

Lep.: Nymphalidae 187,<br />

189<br />

Helicoverpa obsoleta, see<br />

Helicoverpa zea<br />

Helicoverpa virescens, see<br />

Heliothis virescens<br />

Helicoverpa zea (Boddie)<br />

Lep.: Noctuidae 188<br />

Heliodines Lep.: Heliodinidae<br />

216<br />

Heliodines quinqueguttata<br />

Walshingham Lep.:<br />

Heliodinidae 2 13,2 16<br />

Heliothis virescens<br />

(Fabricius) Lep.:<br />

Noctuidae188<br />

Hellula undalis (Fabricius)<br />

Lep.: Pyralidae 134<br />

Helopeltis Hem.: Miridae 133<br />

Helopeltis antonii Signoret<br />

Hem.: Miridae 121<br />

Hemiargus hanno (Stoll)<br />

Lep.: Lycaenidae 145, 161,<br />

162<br />

Hemiberlesia lataniae<br />

(Signoret) Hem.:<br />

Diaspididae 161<br />

hennia, Proxenus<br />

herbidum, Acrosternum<br />

Heteropsylla Hem.: Psyllidae<br />

139,142,144,161<br />

Heteropsylla cubana<br />

Craw ford Hem.: Psyllidae<br />

1 42<br />

Heteropsylla spinulosa<br />

Muddiman, Hodkinson and<br />

Hollis Hem.: Psyllidae<br />

137,139-1 45<br />

hieroglyphicus, Poekilocerus<br />

Hilar Col.: Chrysomelidae<br />

1 44<br />

Hippotion echeclus<br />

(Boisduval) Lep.:<br />

Sphingidae 78, 167<br />

hirsuta, Tetraneura<br />

hirticornis, Aerenica<br />

Homoeocerus serrijier<br />

Westwood Hem.: Coreidae<br />

133<br />

Homona cofearia (Nietner)<br />

Lep.: Tortricidae 45<br />

Horciacinus argentinus, see<br />

Horciacinus signoreti<br />

Horciacinus signoreti (Berg)<br />

Hem.: Miridae 143


Horcias nobilellus (Berg)<br />

Hem.: Miridae 22,30<br />

Horismenus ?aeneicollis<br />

Ashmead Hym.:<br />

Eulophidae 130, 132<br />

hospes, Spilostethus<br />

huebneri, Amata<br />

humilis, Catantops<br />

humilis, Hyperodes<br />

humilis, Listronotus<br />

Hyalomyodes triangulifer<br />

(Loew) Dip.: Tachinidae<br />

130<br />

Hyalopeplus vitripennis (Stll)<br />

Hem.: Miridae 121<br />

Hydrellia griseola (Falltn)<br />

Dip.: Ephydridae 65<br />

Hymenia recurvalis, see<br />

Spodoptera recurvalis<br />

Hypanthus Col.:<br />

Curculionidae 144<br />

Hypercompe hambletoni<br />

(Schaus) Lep.: Arctiidae<br />

3 1<br />

Hyperodes humilis, see<br />

Listronotus humilis<br />

Hyperomyzus carduellinus<br />

(Theobald) Hem.:<br />

Aphididae 13<br />

Hypolixus ritsemae (Pascoe)<br />

Col.: Curculionidae 22<br />

Hypolixus trunculatus<br />

(Fabricius) Col.:<br />

Curculionidae 19,21,22,<br />

45<br />

Hypomicrogaster Hym.:<br />

Braconidae 81<br />

Hypurus bertrandi Pems<br />

Col.: Curculionidae<br />

21 1-213,215-217<br />

Hysteroneura setariae<br />

(Thomas) Hem.:<br />

Aphididae 89<br />

Icerya seychellarum<br />

(Westwood) Hem.:<br />

Margarodidael61<br />

Idiophantis Lep.: Gelechiidae<br />

122<br />

idonea, Delphacodes<br />

illinoisensis, Aphis<br />

6 Index of scientific names of insects 283<br />

Imerodes Col.: Curculionidae<br />

122<br />

impactella, Eretmocera<br />

ina, Taractrocera<br />

inaequalis, Xyonysius<br />

includens, Pseudoplusia<br />

inconspicuus, Nysius<br />

incurvus, Pycnoderes<br />

indica, Epilachna<br />

indica, Mycodiplosis<br />

infusella, Acigona<br />

infusella, Haimbachia<br />

insecta, Xanthaciura<br />

insignis, Liriomyza<br />

insularis, Chlamisus<br />

insulata, Pareuchaetes<br />

insulata, Ammalo<br />

inustorum, Lasioptera<br />

ipomoeae, Caliothrips<br />

ipsilon, Agrotis<br />

irrorata. Milothris<br />

isabella, Eueides<br />

Isothrips Thy.: Thripidae 1 33<br />

Itonida penniseti, see<br />

Geromyia penniseti<br />

Itonida seminis, see<br />

Geromyia seminis<br />

janata, Achaea<br />

javanica, Parallelodiplosis<br />

julia, Dryas<br />

juno, Dione<br />

kanni, Lasioptera<br />

knysna, Zizeeria<br />

kolophon, Sogatella<br />

krupta, Zizeeria<br />

Lactica sp. Col.:<br />

Chrysomelidae 144<br />

lactinea, Amsacta<br />

laevis, Macrotracheliella<br />

Lamprosema diemenalis<br />

(Guenke) Lep.: Pyralidae<br />

132,133<br />

Lamprosema distincta (Kaye)<br />

Lep.: Pyralidae 129<br />

Laodelphax striatellus<br />

(Falltn) Hem.:<br />

Delphacidae 64,89,93<br />

laphygmae, Meteorus<br />

Lasioptera Dip.:<br />

Cecidomyiidae 18 1<br />

Lasioptera echinochloa Felt<br />

Dip.: Cecidomyiidae 63,<br />

65<br />

Lasiopterafluitans Felt Dip.:<br />

Cecidomyiidae 177<br />

Lasioptera inustorum Felt<br />

Dip.: Cecidomyiidae 177<br />

Lasioptera kanni Felt Dip.:<br />

Cecidomyiidae 177<br />

Lasioptera panici Felt Dip.:<br />

Cecidomyiidae 177<br />

Lasioptera paniculi Felt Dip.:<br />

Cecidomyiidae 177<br />

Lasioptera portulaceae Felt<br />

Dip.: Cecidomyiidae 21 3<br />

lataniae, Hemiberlesia<br />

latigenis, Notiphila<br />

latipes, Mocis<br />

latiuscula, Scotinophara<br />

laverna, Calepheles<br />

leelamaniae, Macrosiphum<br />

leelamaniae, Sitobion<br />

Leptocentrus taurus<br />

(Fabricius) Hem.:<br />

Membracidae 12 1<br />

Leptocorisa acuta (Thunberg)<br />

Hem.: Alydidae 99<br />

Leptocorisa oratorius<br />

(Fabricius) Hem.:<br />

Alydidae 64,99<br />

Leptocorisa solomonensis<br />

Ahmad Hem.: Alydidae 99<br />

Leptocysta sexnebulosa (Stll)<br />

Hem.: Tingidae 128<br />

leucaenae, Tamarixia<br />

leucopterus, Blissus<br />

leuculias, Argyresthia<br />

Lexiphanes Col.:<br />

Chrysomelidae 144<br />

Lexiphanes guerini (Perbose)<br />

Col.: Chrysomelidae 15 1<br />

Lexiphanes semicyaneus<br />

(Suffrian) Col.:<br />

Chrysomelidae 144<br />

licarsisalis, Herpetogramma<br />

Eignosellus, Elasmopalpus<br />

linearis, Riptortus<br />

lineatus, Astylus<br />

Linogeraeus perscitus<br />

(Herbst) Curculionidae 2 13


284 Biological Control of Weeds: Southeast Asian Prospects<br />

Liothrips mikaniae (Priesner)<br />

Thy.: Phlaeothripidae 125,<br />

127,130,134,135<br />

liothrips, Thripsobremia<br />

Liriomyza Dip.: Agromyzidae<br />

31,32<br />

Liriomyza archboldi Frost<br />

Dip.: Agromyzidae 29,3 1<br />

Liriomyza bryoniae<br />

(Kaltenbach) Dip.:<br />

Agromyzidae 105<br />

Liriomyza caulophaga<br />

(Kleinschmidt) Dip.:<br />

Agromyzidae 21 1,212<br />

Liriomyza commelinae Frost<br />

Dip.: Agromyzidae 57<br />

Liriomyza insignis Spencer<br />

Dip.: Agromyzidae 29,3 1<br />

Liriomyza marginalis<br />

Malloch Dip.:<br />

Agromyzidae 89<br />

Liriomyza robustae Spencer<br />

Dip.: Agromyzidae 57<br />

Liriomyza strigata Meigen<br />

Dip.: Agromyzidae 105<br />

Liriomyza trifolii (Burgess)<br />

Dip.: Agromyzidae 3 1,211<br />

Liriomyza venegasiae<br />

Spencer Dip.:<br />

Agromyzidae 29,3 1<br />

lisa, Eurema<br />

Lissorhoptrus oryzophilus<br />

Kuschel Col.:<br />

Curculionidae 64<br />

Listronotus humilis<br />

(Gyllenhall) Col.:<br />

Curculionidae 63,64<br />

litura, Spodoptera<br />

lividipennis, Cyrtorhinus<br />

Lixophaga Dip.: Tachinidae<br />

206<br />

Lobesia carduana (Busck)<br />

Lep.: Tortricidae 129<br />

longifircifera, Sogatella<br />

longisetosus, Haplothrips<br />

Longitarsus Col.:<br />

Chrysomelidae 13 1, 132<br />

Longitarsus nr amazonus<br />

Baly Col.: Chrysomelidae<br />

128,132<br />

longulus, Coccus<br />

Lophocampa catenulata<br />

(Hubner) Lep.: Arctiidae<br />

161,162<br />

lorata, Baris<br />

Loxostege Lep.: Pyralidae 23<br />

Loxostege bijidalis<br />

(Fabricius) Lep.: Pyralidae<br />

212<br />

lucifuga, Geoica<br />

lugens, Nilaparvata<br />

luridus, Euschistus<br />

luteirostre, Apion<br />

macminni, Cerodontha<br />

rnacrophthalma, Diopsis<br />

Macrosiphum granarium, see<br />

Sitobion avenue<br />

Macrosiphum leelamaniae,<br />

see Sitobion leelamaniae<br />

Macrosiphum miscanthi, see<br />

Sitobion miscanthi<br />

Macrosiphum solidaginis, see<br />

Uroleucon solidaginis<br />

Macrosteles fascifrons (Still)<br />

Hem.: Cicadellidae 167<br />

maculosa, Amauromyza<br />

Maecolaspis aerea, see<br />

Colaspis aerea<br />

maidis, Dalbulus<br />

maidis, Peregrinus<br />

malayanus, Nephotettix<br />

Mansonia Dip.: Culicidae<br />

199<br />

Marasmia patnalis, see<br />

Cnaphalocrocis patnalis<br />

marginalis, Liriomyza<br />

marginata, Echoma<br />

Masonaphis anaphalidis, see<br />

Neomasonavhis<br />

anaphalidis<br />

mauritia, Spodoptera<br />

mazans, Staphylus<br />

medinalis, Cnaphalocrocis<br />

meditabunda, Edessa<br />

Melanagromyza Dip.:<br />

Agromyzidae 32<br />

Melanagromyza bidentis<br />

Spencer Dip.:<br />

Agromyzidae 29,3 1<br />

Melanagromyza eupatoriella<br />

Spencer Dip.:<br />

Agromyzidae 39,44,45<br />

Melanagromyza floris<br />

Spencer Dip.:<br />

Agromyzidae 29,3 1<br />

Melanagromyza metallica<br />

(Thomson) Dip.:<br />

Agromyzidae 13, 14<br />

Melanagromyza polyphyta<br />

Kleinschmidt Dip.:<br />

Agromyzidae 1 88<br />

Melanagromyza splendida<br />

Frick Dip.: Agromyzidae<br />

3 1<br />

rneridionalis, Arthrocnoda.<br />

Mescinia parvula (Zeller)<br />

Lep.: Pyralidae 39,42,44,<br />

46,49,50<br />

metallica, Melanagromyza<br />

Metqonycha pallidula<br />

(Boheman) Col.:<br />

Chrysomelidae 144<br />

Meteorus Hym.: Braconidae<br />

121<br />

micaceana, Archips<br />

Microcephalothrips Thy.:<br />

Thripidae 133<br />

Microcephalothrips<br />

abdominalis (D.L.<br />

Crawford) Thy.: Thripidae<br />

14<br />

Microcomps~s, see<br />

Microporus<br />

Microporus Hem.: Cydnidae<br />

161<br />

Micrutalis Hem.:<br />

Membracidae 143<br />

Micrutalis binaria<br />

(Fairmaire) Hem.:<br />

Membracidae 128<br />

mikaniae, Calycomyza<br />

mikaniae, Liothrips<br />

Milothris irrorata (Fabricius)<br />

Col.: Cerambycidae 153<br />

mimosa, Carmenta<br />

mimosae, Chlamisus<br />

minimus, Argentinorhynchus<br />

minthe, Cropia<br />

minthe, Dyops<br />

minuta, Oxya<br />

minutispina, Nilautama<br />

minutus, Halticus<br />

minutus, Haplopeodes


misantlensis, Pareuchaetes<br />

miscanthi, Macrosiphum<br />

miscanthi, Sitobion<br />

miserabilis, Cryptocephalus<br />

miserabilis, Diplacaspis<br />

Mocis latipes (GuenCe) Lep.:<br />

Noctuidae 3 1<br />

Monecphora bicincta<br />

fraterna, see Prosapia<br />

bicincta fraterna<br />

multiplicalis, Samea<br />

multistrigata, Phalonidia<br />

muscina, Cerodontha<br />

Mycetaspis personata<br />

(Comstock) Hem.:<br />

Diaspididae 14<br />

Mycodiplosis indica Felt<br />

Dip.: Cecidomyiidae 194<br />

Myrmicaria brunnea<br />

Saunders Hym.:<br />

Formicidae 43<br />

Mythimna unipuncta<br />

(Haworth) Lep.: Noctuidae<br />

65<br />

Myzus ornatus Laing Hem.:<br />

Aphididae 13<br />

Myzus persicae (Sulzer)<br />

Hem.: Aphididae 13,21,<br />

24, 188., 21 1,224<br />

Namangana pectinicornis,<br />

see Epipsammia pectini<br />

cornis<br />

nebulosa, Cladochaeta<br />

necyria, Cyanotricha<br />

Neochetina Col.:<br />

Curculionidae 73,76,78<br />

Neochetina bruchi Hustache<br />

Col.: Curculionidae 69,73,<br />

74,76-82<br />

Neochetina eichhorniae<br />

Warner Col.:<br />

Curculionidae 69,73-80,<br />

82<br />

Neogalea sunia (GuenCe)<br />

Lep.: Noctuidae 22,212<br />

Neohydronomus afJinis<br />

Hustache Col.:<br />

Curculionidae 197, 199,<br />

200,202-206<br />

6 Index of scientific names of insects 285<br />

Neohydronomus elegans<br />

O'Brien and Wibmer Col.:<br />

Curculionidae 200<br />

Neohydronomus pulchellus<br />

Hustache Col.:<br />

Curculionidae 200,205<br />

Neolasioptera Dip.:<br />

Cecidomyiidae 128, 132,<br />

217<br />

Neolasioptera brickelliae<br />

Mohn Dip.: Cecidomyiidae<br />

40<br />

Neolasioptera cruttwellae<br />

Gagne Dip.:<br />

Cecidomyiidae 40<br />

Neolasioptera eupatorii (Felt)<br />

Dip.: Cecidomyiidae 40<br />

Neolasioptera frugivora<br />

Gagne Dip.:<br />

Cecidomyiidae 40<br />

Neolasioptera portulacae<br />

(Cook) Dip.:<br />

Cecidomyiidae 21 3,2 17<br />

Neomasonaphis anaphalidis<br />

(Basu) Hem.: Aphididae<br />

13<br />

Nephotettix Hem.:<br />

Cicadellidae 133<br />

Nephotettix malayanus<br />

Ishihara and Kawase<br />

Hem.: Cicadellidae 89<br />

Nephotettix nigropictus, see<br />

Nephotettix<br />

nigromaculatus<br />

Nephotettix nigromaculatus<br />

(Motschulsky) Hem.:<br />

Cicadellidae 89,225<br />

Nephotettix virescens<br />

(Distant) Hem.:<br />

Cicadellidae 89<br />

nervosa, Nisia<br />

Nesoclutha pallida (Evans)<br />

Hem.: Cicadellidae 93<br />

Neurostrota gunniella<br />

(Busck) Lep.:<br />

Gracillariidae 147, 150,<br />

152,154156,162<br />

nigriabdominalis, Tetraneura<br />

nigricauda, Aphis<br />

nigrifrons, Graminella<br />

nigrirostris, Pistiacola<br />

nigriventris, Cassida<br />

nigromaculatus, Nephotettix<br />

nigropictus, Nephotettix<br />

Nilaparvata lugens (StAl)<br />

Hem.: Delphacidae 64<br />

Nilautama minutispina<br />

Funkhouser Hem.:<br />

Membracidae 121<br />

Nisaga simplex Walker Lep.:<br />

Eupterotidae 176<br />

Nisia atrovenosa, see Nisia<br />

nervosa<br />

Nisia nervosa (Motschulsky)<br />

Hem.: Meenoplidae 199,<br />

200,202<br />

Nisoniades bessus, see Cogia<br />

calchas<br />

noacki, Platinglisia<br />

nobilellus, Horacias<br />

Nodonota Col.:<br />

Chrysomelidae 144<br />

notaticeps, Coelosternus<br />

notaticeps, Sternocoelus<br />

Notiphila latigenis Hendel<br />

Dip.: Ephydridae 1 15,116<br />

Notophila similis de Meijere<br />

Dip.: Ephydridae 1 15,116<br />

nymphaeae, Rhopalosiphum<br />

Nymphula depunctalis, see<br />

Parapoynx stagnalis<br />

Nymphula diminutalis<br />

Snellen, see Parapoynx<br />

diminutalis<br />

Nymphulafregonalis Snellen<br />

Lep.: Pyralidae 167<br />

Nymphula responsalis, see<br />

Elophila responsalis<br />

Nymphula tenebralis, see<br />

Parapoynx tenebralis<br />

Nymphula turbata, see<br />

Parapoynx turbata<br />

Nysius Hem.:Lygaeidae 21<br />

Nysius cymoides (Spinola)<br />

Hem.: Lygaeidae 21 1<br />

Nysius inconspicuus Distant<br />

Hem.: Lygaeidae 14, 105<br />

Nysius vinitor Bergroth<br />

Hem.: Lygaeidae 21 1<br />

obliteralis, Synclita<br />

obsoleta, Helicoverpa


286<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Ochetina bruchi Hustache<br />

Col.: Curculionidae 200<br />

ochreosa, Sibinia<br />

Odontomachus simillimus Fr.<br />

Smith Hym.: Formicidae<br />

43<br />

Oecophylla smaragdina<br />

(Fabricius) Hym.:<br />

Formicidae 43<br />

oenotrus, Erinnyis<br />

Olcella pleuralis Becker<br />

Dip.: Chloropidae 14<br />

oleracae, Ceutorhynchus<br />

Omoplata rnarginata, see<br />

Echoma marginata<br />

Onebala tegulella<br />

(Walshingham) Lep.:<br />

Gelechiidae 128<br />

. Onychylis cretatus, see<br />

Pistiacola cretatus<br />

Onychylis sp. nr nigrirostris,<br />

see Pistiacola sp. nr<br />

nigrirostris<br />

oo, Plusia<br />

oratorius, Leptocorisa<br />

orichalcea, Diachrysia<br />

orientalis, Orosius<br />

ornatus, Myzus<br />

Orosius albicinctus, see<br />

Orosius orientalis<br />

Orosius orientalis<br />

(Matsumura) Hem.:<br />

Cicadellidae 21 1<br />

Orseolia Dip.: Cecidomyiidae<br />

87<br />

Orseolia andropogonis Felt<br />

Dip.: Cecidomyiidae 177<br />

Orseolia cynohntis Kieffer<br />

and Massalongo Dip.:<br />

Cecidomyiidae 177<br />

Orseoliafluvialis Dip.:<br />

Cecidomyiidae 177<br />

Orseoliafluviatilis (Felt)<br />

Dip.: Cecidomyiidae 88,<br />

90<br />

Orseolia graminis (Kreffer<br />

and Docters Van Leeuwen-<br />

Reijnvaan) Dip.:<br />

Cecidomyiidae 177<br />

Orseolia oryzae (Wood-<br />

Mason) Dipt.:<br />

Cecidomyiidae 65,90,<br />

175,177<br />

oryzae, Orseolia<br />

oryzae, Pachydiplosis<br />

oryzivora, Thaia<br />

oryzophilus, Lissorhoptrus<br />

Ostriniafurnacalis (GuenCe)<br />

Lep.: Pyralidae 90<br />

ovata, Brachymeria<br />

Oxya minuta Carl Ort.:<br />

Acrididae 78<br />

Oxysychus Hym.:<br />

Pteromalidae 21<br />

Pachybrachys Col.:<br />

Chrysomelidae 144<br />

Pachydiplosis, see Orseolia<br />

SP-<br />

Pachydiplosis oryzae, see<br />

Orseolia oryzae<br />

pacificus, Brachyplatys<br />

pacificus, Planococcus<br />

palegon, Thecla<br />

palegon, Thereus<br />

palliata, Phytomyza<br />

palliatus, Haplopeodes<br />

pallida, Nesoclutha<br />

pallidula, Metaxyonycha<br />

pallidulus, Taylorilygus<br />

panici, Contarinia<br />

panici, Lasioptera<br />

panici, Stenodiplosis<br />

panicola, Sogatella<br />

paniculi, Lasioptera<br />

Pantomorus cervinus, see<br />

Asynonychus godrnani<br />

Parallelodiplosis Dip.:<br />

Cecidomyiidae 177<br />

Parallelodiplosis javanica<br />

Felt Dip.: Cecidomyiidae<br />

177<br />

Parallelodiplosis paspali<br />

Dip.: Cecidomyiidae 18 1<br />

Parapoynx diminutalis<br />

Snellen Lep.: Pyralidae<br />

20 1<br />

Parapoynx stagnalis (Zeller)<br />

Lep.: Pyralidae 176, 182<br />

Parapoynx tenebralis<br />

(Lower) Lep.: Pyralidae<br />

199,20 1<br />

Parapoynx turbata Butler<br />

Lep.: Pyralidae 199,201<br />

Pareuchaetes Lep.: Arctiidae<br />

38,40<br />

Pareuchaetes arravaca<br />

(Jordan) Lep.: Arctiidae 40<br />

Pareuchaetes aurata<br />

aurantior Rothschild Lep.:<br />

Arctiidae 40<br />

Pareuchaetes aurata aurata<br />

(Butler) Lep.: Arctiidae 40,<br />

42,47,50<br />

Pareuchaetes insulata<br />

(Walker) Lep.: Arctiidae<br />

40<br />

Pareuchaetes misantlensis<br />

Rego Barros Lep.:<br />

Arctiidae 40<br />

Pareuchaetes pseuhinsulata<br />

Rego Barros Lep.:<br />

Arctiidae 14,35,38,39,<br />

42-47,50,52<br />

Parnara bada (Moore) Lep.:<br />

Hesperiidae 194<br />

Parthenothrips Thy.:<br />

Thripidae 134<br />

parvicornis, Agromyza<br />

parvula, Mescinia<br />

parvus, Phenacoccus<br />

pascua, Episcada<br />

paspali, Parallelodiplosis<br />

patnalis, Cnaphalocrocis<br />

patnalis, Marasmia<br />

Paulinia acuminata De Geer<br />

Ort.: Acrididae 200<br />

paumalui, Haplothrips<br />

pectinicornis, Epipsammia<br />

pectinicornis, Spohptera<br />

pedestris, Bactrocera<br />

Pegomya dolosa Stein Dip.:<br />

Anthomyiidae 21 3,217<br />

pellucida, Corythuca<br />

pennatula, Psalis<br />

penniseti, Cecidomyia<br />

penniseti, Geromyia<br />

penniseti, ltonida<br />

penniseti, Sesamia<br />

Pentispa explanata (Chapuis)<br />

Col.: Chrysomelidae 39,<br />

5 1<br />

Perasphondylia reticulata<br />

Mohn Dip.: Cecidomyiidae<br />

39,51


perditor, Thyanta<br />

Peregrinus maidis (Ashmead)<br />

Hem.: Delphacidae 89,225<br />

perlata, Ptychamalia<br />

Perrhybris phaloe (Godart)<br />

Lep.: Pieridae 3 1<br />

perscitus, Centrinaspis<br />

perscitus, Linogeraeus<br />

persicae, Myzus<br />

personata, Micetaspis<br />

pertinax, Phaedon<br />

peruana, Sibinia<br />

Petrophila drumalis (Dyar)<br />

Lep.: Pyralidae 201<br />

Phaedon consimilis, see<br />

Phaedon pertinax<br />

Phaedon pertinax StAl Col.:<br />

Chrysomelidae 29,30<br />

phaloe, Perrhybris<br />

Phalonidia multistrigata<br />

Walshingham Lep.:<br />

Tortricidae 129<br />

philippinensis,<br />

Pseudonapomyza<br />

Pholetesor sp.<br />

(circumscriptus group)<br />

Hym.: Braconidae 2 1 6<br />

Phorocera claripennis Pales<br />

Dip.: Tachinidae 187<br />

Physimerus Col.:<br />

Chrysomelidae 13 1<br />

Physimerus pygmaeus Jacoby<br />

Col.: Chrysomelidae 30,<br />

127,131<br />

Phytomyza atricornis Meigen<br />

Dip.: Agromyzidae 3 1<br />

Phytomyza palliata, see<br />

Haplopeodes palliatus<br />

picciola, Dioxyna<br />

pickeli, Caryedes<br />

pickeli, Gibbobruchus<br />

pieridis, Vesiculaphis<br />

Piesma cinereum Say Hem.:<br />

Piesmatidae 22<br />

Piezodorus guildinii<br />

(Westwood) Hem.:<br />

Pentatomidae 144<br />

pigrae, Coelocephalapion<br />

pigricola, Acanthoscelides<br />

pilicornis, Schizocerella<br />

6 Index of scientific names of insects 287<br />

Pinnaspis strachani (Cooley)<br />

Hem.: Diaspididae 16 1<br />

Pionea upalusalis (Walker)<br />

Lep.: Pyralidae 15<br />

Pistiacola cretatus<br />

(Champion) Col.:<br />

Curculionidae 200,205<br />

Pistiacola fasciatus Wibmer<br />

and O'Brien Col.:<br />

Curculionidae 200<br />

Pistiacola sp. nr nigrirostris<br />

Col.: Curculionidae 200<br />

Planococcus citri (Risso)<br />

Hem.: Pseudococcidae 200<br />

Platinglisia noacki Cockerel1<br />

Hem.: Coccidae 101<br />

Platynota rostrana (Walker)<br />

Lep.: Tortricidae 162<br />

platyptera, Calycomyza<br />

pleuralis, Olcella<br />

Plusia oo , see Pseudoplusia<br />

includens 14<br />

Plutella xylostella (Curtis)<br />

Lep.: Yponomeutidae 23<br />

Pochazia antica (Gray)<br />

Hem.: Ricaniidae 121<br />

Podogaster Hym.:<br />

Ichneumonidae 206<br />

Poekilocerus hieroglyphicus<br />

(Klug) Ort.: Acrididae 99<br />

Polychrosis ?carduana, see<br />

hbesia ?carduana<br />

polycoccus, Gibbobruchus<br />

polyphyta, Melangromyza<br />

polyxena, Eryphanis<br />

portulacae, Asphondylia<br />

portulacae, Baris<br />

portulacae, Ceutorhynchus<br />

portulacae, Neolasioptera<br />

portulaecae, Lasioptera<br />

Procecidochares Dip.:<br />

Tephritidae 39<br />

Procecidochares connexa<br />

Macquart Dip.: Tephritidae<br />

40,44,51<br />

procula, Eueides<br />

Prodenia eridania, see<br />

Spodoptera eridania<br />

prolixa, Teleonemia<br />

Promecops Col.:<br />

Curculionidae 29,30, 144<br />

Promecops campanulicollis<br />

Voss Col.: Curculionidae<br />

162<br />

Prosapia bicincta fraterna<br />

(Uhler) Hem.: Cercopidae<br />

89<br />

proserpina, Tarophagus<br />

prosternalis, Diplacaspis<br />

Protonectarina sylveiriae<br />

(Saussure) Hym.: Vespidae<br />

141<br />

Proxenus hennia Swinhoe<br />

Lep.: Noctuidae 202<br />

proxirna, Agromyza<br />

Psalis pennatula (Fabricius)<br />

Lep.: Lymantriidae 225<br />

Pseudaletia unipuncta, see<br />

Mythimna unipuncta<br />

Pseudoderelomus<br />

baridiiformis Champion<br />

Col.: Curculionidae 127,<br />

131<br />

pseudoinsulata, Pareuchaetes<br />

pseudoinsulata, Pareuchaetes<br />

Pseudonapomyza<br />

philippinensis Spencer<br />

Dip.: Agromyzidae 225<br />

Pseudonapomyza spicata<br />

Malloch Dip.:<br />

Agromyzidae 90<br />

Pseudoplusia includens<br />

(Walker) Lep.: Noctuidae<br />

1 "<br />

14<br />

Psigida walkeri (Grote) Lep.:<br />

Cercophanidae 137, 139,<br />

141,144<br />

Psyllaephagus yaseeni Noyes<br />

Hym.: Encyrtidae 141, 142<br />

Psylopigida walkeri, see<br />

Psigida walkeri<br />

Pteronemobius Ort.:<br />

Gryllidae 224<br />

Ptychamalia perlata<br />

(Warren) Lep.:<br />

Geometridae 162<br />

pulchellus, Neohydronomus<br />

punctifrons, Gesonula<br />

puniceus, Acanthoscelides<br />

pusanus, Sogatodes<br />

pusanus, Tagosodes


288<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Pycnoderes incurvus<br />

(Distant) Hem.: Miridae<br />

128<br />

pygmaeus, Physimerus<br />

quadridentatus,<br />

Acanthoscelides<br />

quadristillata, Echoma<br />

querci, Anoecia<br />

querci, Stegophylla<br />

quinqueguttata, Heliodines<br />

Rastrococcus Hem.:<br />

Pseudococcidae 121<br />

Recilia dorsalis<br />

(Motschulsky) Hem.:<br />

Cicadellidae 89<br />

, recurvalis, Hymenia<br />

recurvalis, Spodoptera<br />

recurvalis, Spoladea<br />

Recurvaria Lep.: Gelechiidae<br />

128<br />

responsalis, Elophila<br />

responsalis, Nymphula<br />

reticulata, Peraphondylia<br />

Rhodobaenus cariniventris<br />

Champ. Col.:<br />

Curculionidae 30,39,47,<br />

51,52<br />

Rhodobaenus<br />

tredecimpunctatus (Illiger)<br />

Col.: Curculionidae 30<br />

Rhopalosiphum nymphaeae<br />

(Linnaeus) Hem.:<br />

Aphididae 77,200,201<br />

Riptortus linearis (Linnaeus)<br />

Hem.: Coreidae 133<br />

ritsemae, Hypolixus<br />

robustae, Liriomyza<br />

rostrana, Platynota<br />

rugosum, Diacamma<br />

russelli, Brachymeria<br />

s-littera, Systena<br />

saccharina, Eldana<br />

Sagra femorata (Drury) Col.:<br />

Chrysomelidae 152<br />

Samea multiplicalis (Guente)<br />

Lep.: Pyralidae 197, 199,<br />

201-203,205<br />

Sameodes Lep.: Pyralidae 76<br />

Sameodes albiguttalis<br />

(Warren) Lep.: Pyralidae<br />

69,73,75-82<br />

Scamurius Hem.: Coreidae<br />

137,139,140,142,143,<br />

145<br />

Sceloenopla Col.:<br />

Chrysomelidae 128, 132<br />

Schizaphis graminum<br />

(Rondani) Hem.:<br />

Aphididae 89<br />

Schizocerella pilicornis<br />

(Holmgren) Hym.:<br />

Tenthredinidae 21 2,213,<br />

217,218<br />

Scotinophara latiuscula<br />

(Breddin) Hem.:<br />

Pentatomidae 57,64, 1 11<br />

scrupulosa, Teleonemia<br />

segnis, Chalcodermus<br />

Selca brunella (Hampson)<br />

Lep.: Noctuidae 120- 123<br />

semicyaneus, Lexyphanes<br />

seminicola, Sibinia<br />

seminis, Geromyia<br />

seminis, Itonida<br />

septentrionalis. Platysimus<br />

serrifer, Homoeocerus<br />

serripes, Chalcodermus<br />

Sesamia Lep.: Noctuidae 225<br />

Sesamia botanephaga Tams<br />

and Bowden Lep.:<br />

Noctuidae 65<br />

Sesamia calamistis Hampson<br />

Lep.: Noctuidae 65<br />

Sesamia cretica Lederer Lep.:<br />

Noctuidae 176<br />

Sesamia penniseti Tams and<br />

Bowden Lep.: Noctuidae<br />

65<br />

setariae, Hysteroneura<br />

sexnebulosa, Leptocysta<br />

seychellarum, Icerya<br />

Sibinia Col.: Curculionidae<br />

144,153<br />

Sibinia aspersa Champion<br />

Col.: Curculionidae 144<br />

Sibinia fatigiata Clark Col.:<br />

Curculionidae 15 1, 155<br />

Sibinia ochreosa Casey Col.:<br />

Curculionidae 15 1, 1 55<br />

Sibinia peruana Pierce Col.:<br />

Curculionidae 15 1, 155<br />

Sibinia seminicola Clark<br />

Col.: Curculionidae 151,<br />

155<br />

Sibinia subulirostris<br />

Hustache Col.:<br />

Curculionidae 144<br />

signoreti, Horciacinus<br />

similis, Chnootriba<br />

similis, Epilachna<br />

similis, Notiphila<br />

similis, Tegosa<br />

simillimus, Odontomachus<br />

simplex, Nisaga<br />

sinuata, Entylia<br />

Sipylus Hem.: Membracidae<br />

121<br />

Sipylus dilatatum (Walker)<br />

Hem.: Membracidae 1 2 1<br />

Sitobion avenue (Fabricius)<br />

Hem.: Aphididae 89<br />

Sitobion leelamaniae (David)<br />

Hem.: Aphididae 94<br />

Sitobion miscanthi<br />

(Takahashi) Hem.:<br />

Aphididae 89<br />

smaragdina, Oecophylla<br />

soccata, Atherigona<br />

socia, Corythuca<br />

Sogatellafurcifera (Horviith)<br />

Hem.: Delphacidae 64, 89<br />

Sogatella kolophon<br />

(Kirkaldy) Hem.:<br />

Delphacidae 176<br />

Sogatella longifurcifera, see<br />

Sogatella vibix<br />

Sogatella panicicola, see<br />

Sogatella vibix<br />

Sogatella vibix (Haupt) Hem.:<br />

Delphacidae 64<br />

Sogatodes pusanus, see<br />

Tagosodes pusanus<br />

solani, Aulacorthum<br />

Solenopsis geminata<br />

(Fabricius) Hym.:<br />

Forrnicidae 1 8 1<br />

solidaginis, Macrosiphum<br />

solidaginis, Uroleucon<br />

solomonensis, Leptocorisa<br />

sorghicola, Contarinia


sororcula, Dioxyna<br />

Sphaeniscus atilus (Walker)<br />

Dip.: Tephritidae 134<br />

Sphenarches anisodactylus<br />

(Walker) Lep.:<br />

Pterophoridae 188, 189<br />

spicata, Pseudonapomyza<br />

Spilosoma virginica<br />

(Fabricius) Lep.: Arctiidae<br />

200,201<br />

spinulosa, Heteropsylla<br />

spiraecola, Aphis<br />

splendida, Melanagromyza<br />

Spoabptera eridania (Stoll)<br />

Lep.: Noctuidae 22, 101,<br />

212<br />

Spoabptera exigua (Hiibner)<br />

Lep.: Noctuidae 22,212<br />

Spodopterafrugiperda (J.E.<br />

Smith) Lep.: Noctuidae 14,<br />

90,225<br />

Spodoptera Iitura (Fabricius)<br />

Lep.: Noctuidae 22,78,<br />

162,167<br />

Spoabptera mauritia<br />

(Boisduval) Lep.:<br />

Noctuidae 78,202<br />

Spoabptera pectinicornis<br />

(Hampson) Lep.:<br />

Noctuidae 197,200,<br />

202-204,206<br />

Spoabptera sunia, see<br />

Neogalea sunia<br />

Spoladea recurvalis<br />

(Fabricius) Lep.:<br />

Pyralidae 23<br />

spretissimum,<br />

Coelocephalapion<br />

squamosus,<br />

Argentinorhynchus<br />

stagnalis, Parapoynx<br />

Staphylus mazans (Reakirt)<br />

Lep.: Hesperiidae 162<br />

Stenchaetothrips biformis<br />

Bagnall Thy.: Thripidae 64<br />

Stegophylla querci (Fitch)<br />

Hem.: Aphididae 89<br />

Stenodiplosis Dip.:<br />

Cecidomyiidae 90<br />

Stenodiplosis panici, see<br />

Contarinia panici<br />

6 Index of scientific names of insects 289<br />

Sternocoelus Col.:<br />

Curculionidae 101<br />

Sternocoelus notaticeps<br />

(Marshall) Col.:<br />

Curculionidae 101<br />

Stiretrus erythrocephalus<br />

Lepeletier and Serville<br />

Hem.: Pentatomidae 29,30<br />

Stomatomyia Dip.:<br />

Tachinidae 1 8 1<br />

strachani, Pinnaspis<br />

striatellus, Laodelphax<br />

strigata, Liriomyza<br />

subornata, Argyractis<br />

subulirostris. Sibinia<br />

sunia, Neogalea<br />

sunia, Spodoptera<br />

Sycanus Hem.: Reduviidae 43<br />

sylveiriae, Protonectarina<br />

Synclita obliteralis (Walker)<br />

Lep.: Pyralidae 201<br />

Syphrea bibiana Bechynk<br />

Jacoby Col.:<br />

Chrysomelidae 15 1<br />

Systena s-littera (Linnaeus)<br />

Col.: Chrysomelidae 144<br />

tabaci, Bemisia<br />

tabaci, Thrips<br />

Tagosodes pusanus (Distant)<br />

Hem.: Delphacidae 64<br />

Tamarixia Eeucaenae Boucek<br />

Hym.: Eulophidae 142<br />

Taractrocera ina Waterhouse<br />

Lep.: Hesperiidae 182<br />

Tarophagus proserpina<br />

(Kirkaldy) Hem.:<br />

Delphacidae 57, 105, 167<br />

taurus, Leptocentrus<br />

Taylorilygus pallidulus<br />

(Blanchard) Hem.: Miridae<br />

1 43<br />

Tegosa claudina<br />

(Eschscholtz) Lep.:<br />

Nymphalidae 129,132<br />

Tegosa similis, see Tegosa<br />

claudina<br />

tegulella, Onebala<br />

Teleonemia Hem.: Tingidae<br />

125,131,132<br />

Teleonemia harleyi<br />

Froeschner Hem.: Tingidae<br />

131<br />

Teleonemia prolixa St31<br />

Hem.: Tingidae 131<br />

Teleonemia scrupulosa Stil<br />

Hem.: Tingidae 132<br />

Teleonemia sp. or spp. nr<br />

prolixa Hem.: Tingidae<br />

127,131<br />

Temelucha ferruginae<br />

(Davis) Hym.:<br />

Ichneumonidae 206<br />

Temnodachrys aphodoides<br />

Col.: Chrysomelidae 144<br />

tenebralis, Nymphula<br />

tenebralis, Parapoynx<br />

tenella, Eurema<br />

Tetraneura basui Hille Ris<br />

Lambers Hem.: Aphididae<br />

89<br />

Tetraneura hirsuta, see<br />

Tetraneura<br />

nigriabdominalis<br />

Tetraneura nigriabdominalis<br />

(Sasaki) Hem.: Aphididae<br />

89<br />

Tetrastichus Hym.:<br />

Eulophidae 1 15, 132<br />

Tetrigella Hem.: Cicadellidae<br />

121<br />

Tettigoniella, see Tettigella<br />

Thagona tibialis (Walker)<br />

Lep.: Lymantriidae 101<br />

Thaia oryzivora Ghauri<br />

Hem.: Cicadellidae 176<br />

theae, Tropicomyza<br />

Thecla azia, see Tmolus azia<br />

Thecla palegon, see Thereus<br />

palegon<br />

Thereus palegon (Cramer)<br />

Lep.: Lycaemidae 129<br />

thetis, Eucerocoris<br />

Thrips hawaiiensis Morgan<br />

Thy.: Thripidae 134<br />

Thrips tabaci Lindeman Thy.:<br />

Thripidae 14, 134<br />

Thrypticus Dip.:<br />

Dolichopodidae 72<br />

Thyanta perditor (Fabricius)<br />

Hem.: Pentatomidae 30


290 Biological Control of Weeds: Southeast Asian Prospects<br />

Thysanoplusia orichalcea Uroleucon Hem.: Aphididae walkeri, Psigida<br />

(~abicius) Lep.:<br />

Noctuidae 3 1<br />

tibialis, Thagona<br />

Tmolus azia (Hewitson) Lep.:<br />

Lycaenidae 145,162<br />

Tomaspis entreriana Berg<br />

Hem.: Cercopidae 143<br />

Toxoptera graminum, see<br />

Schizaphis graminum<br />

trachypterus, Chortogonus<br />

tredecimpunctatus,<br />

Rhodobaenus<br />

triangula, Cicadulina<br />

triangulifer, Hyalomyodes<br />

Tricentrus Hem.:<br />

Membracidae 1 2 1<br />

Trichogramma Hym.:<br />

30<br />

Uroleucon ambrosiae<br />

(Thomas) Hem.:<br />

Aphididae 224<br />

Uroleucon cornpositae<br />

(Theobald) Hem.:<br />

Aphididae 188<br />

Uroleucon solidaginis<br />

(Fabricius) Hem.:<br />

Aphididae 13<br />

ustulata, Ceresa<br />

Valtissius Hem.: Lygaeidae<br />

200<br />

vanillae, Agraulis<br />

variegatus, - Zonocerus<br />

venegasiae, Liriomyza<br />

Xanthaciura insecta (Loew)<br />

Dip.: Tephritidae 14,3 1,<br />

128<br />

xanthaspis, Exorista<br />

Xyloplothrips Thy.:<br />

Phlaeothripidae 134<br />

xylostella, Plutella<br />

xyonysius Hem.: Lygaeidae<br />

132<br />

Xyonysius basalis (Dallas)<br />

Hem.: Lygaeidae 128<br />

Xyonysius inaequalis, see<br />

Xyonysius basalis<br />

Xyonysius sp. nr ementitus,<br />

see Xyonysius basalis<br />

yaseeni, Psyllaephagus<br />

Trichogrammatidae 1 15<br />

Trichotaphe, see Dichomeris<br />

trifolii, Liriomyza<br />

tripsaci, Dalbu lus<br />

Tropicomyia theae (Cotes)<br />

Dip.: Agromyzidae 188<br />

trunculatus, Hypolixus<br />

turbata, Nymphula<br />

turbata, Parapoynx<br />

turrita, Acrida<br />

undalis, Hellula<br />

unipunctata, Mythimna<br />

unipunctata, Pseudaletia<br />

unipunctatus, Germalus<br />

upalusalis, Pionea<br />

urichi, Liothrips<br />

versicolor, Autoba<br />

versicolor, Eublemma<br />

versurella, Coleophora<br />

Vesiculaphis pieridis Basu<br />

Hem.: Aphididae 13<br />

vibix, Sogatella<br />

vinitor, Nysius<br />

virescens, Heliothis<br />

virescens, Nephotettix<br />

virgata, Ferrisia<br />

virginica, Spilosoma<br />

viridiaeneus, Criptocephalus<br />

viridigrisea, Austroasca<br />

viridipennis, Chalcophana<br />

vitripennis, Hyalopeplus<br />

vulgaris, Dialeurodes<br />

zacconius, Chilo<br />

Zatropis Hym.: Pteromalidae<br />

130<br />

zea, Helicoverpa<br />

zebratus, Acanthoscelides<br />

Zizeeria knysna (Trimen)<br />

Lep.: Lycaenidae 22<br />

Zizeeria krupta (Trimen)<br />

Lep.: Lycaenidae 22<br />

Zonocerus variegatus<br />

(Linnaeus) Ort.: Acrididae<br />

13,37<br />

Zulia entreriana, see<br />

Tomaspis entreriana<br />

Zygina Hem.: Cicadellidae<br />

202


General index<br />

(Bold type indicates the pages alternifolius, Mariscus<br />

for the main weeds of altissima, Ageratina<br />

Chapter 4) Amaranthaceae 3,20,21,23,<br />

abaca (Musa textilis) 1 10<br />

Acacia mearnsii 1 41,<br />

143-1 45<br />

Acacia riparia 132<br />

Acalitus 125,127,129<br />

Acalitus adoratus 41,45-48<br />

Acalypha 100<br />

Acremonium zonatum 75,76,<br />

79,82<br />

adenophora, Ageratum<br />

adoratus, Acalitus<br />

Aecidium tithymali 105<br />

aegyptium, Dactyloctenium<br />

Aeschynomene sensitiva 161,<br />

162<br />

afine, Melastoma<br />

agerati, Cercospora<br />

Ageratina altissima 52<br />

Ageratum adenophora 52<br />

Ageratum conyzoides 1,3,<br />

10-16,31,33,50,52,91<br />

Ageratum riparia 52<br />

Ageratum vein yellowing 16<br />

agor 1 10<br />

Agropyron repens 65<br />

aguifigay 222<br />

alang-alang (Imperata<br />

cylindrica) 37<br />

alba, Basella<br />

albida, Mimosa<br />

albilineans, Xanthornonas<br />

Albugo bliti 23<br />

Albugo portulaceae 21 4<br />

Albugo portulacearum 21 4<br />

album, Chenopodium<br />

albus, Amaranthus<br />

alikbangon 56<br />

allelopathy 37, 46, 174,230<br />

Alternanthera philoxeroides 5<br />

Alternaria 98, 100, 1 16<br />

Alternaria compacta 23<br />

Alternaria eichhorniae 77,78<br />

Alternaria passiforae 189<br />

Alternaria tenuis 189<br />

24,216<br />

amaranthi, Aposphaeria<br />

amaranthi, Cacodera<br />

amaranthi, Cercospora<br />

Amaranthus 20-23<br />

Amaranthus albus 24<br />

Amaranthus cruentus 2 1<br />

Amaranthus dubius 21<br />

Amaranthus<br />

hypochondriachus 2 1<br />

Amaranthus oleosa 22<br />

Amaranthus spinosus l,3,<br />

1&24,30,214<br />

Amaranthus tricolor 22,23<br />

Amaranthus viridis 2 1-23<br />

Amblyseius glorius 72<br />

Amblyseius pederosus 72<br />

americanum, Pennisetum<br />

Amphobotrys ricini 100,105<br />

Anacamseros 2 1 8<br />

Andropogon annulatus 89<br />

Andropogon vulgare 94<br />

Andropogoneae 224<br />

anemone 2 1 4<br />

anemone brown ring 21 4<br />

anemone mosaic 16<br />

Anhellia niger 41<br />

anil, Indigofera<br />

annulatus, Andropogon<br />

annuus, Helianthus<br />

anthelminthicum,<br />

Chenopodium<br />

Anthemidae 33<br />

anthocyanin 70<br />

antidotale, Panicum<br />

ants 43,45-47,50,52<br />

anuus, Helianthus<br />

Aphelenchoides fragariae 15,<br />

170<br />

apoda, Phakospora<br />

apoe apoe 198<br />

aponapon 198<br />

Aposphaeria arnaranthi 23<br />

aquatica, Ipomoea<br />

ara tanah 104<br />

Araceae 3, 198<br />

Arctoteae 33<br />

arenaria thamesis,<br />

Meloidogyne<br />

arenaria, Meloidogyne<br />

Arundo donax 8<br />

arvensis, Digera<br />

arvensis, Mentha<br />

Ascochyta 225<br />

Ascochyta portulaceae 2 1 4<br />

asper, Sonchus<br />

asperatg, Mimosa<br />

Aspidosperma ramiflorum<br />

100<br />

Aster31,33,214<br />

aster yellows 32,214<br />

Asteraceae 3, 12,28-31,33,<br />

36,38,50,52,<br />

126,128-130,132<br />

Astereae 33<br />

asthma plant (Euphorbia<br />

hirta) 104<br />

atramentosa,<br />

Myriogenospora<br />

australis, Emex<br />

Austroeupatorium<br />

inulaefolium 14,30,52<br />

Avena, 227<br />

Azolla 7 1<br />

Azolla caroliniana 205<br />

Azolla pinnata 1 15,206<br />

azurea, Eichhornia<br />

ba bawagan 1 10<br />

baccata, Wulfla<br />

baccifera, Melocanna<br />

bamboo 8<br />

Bambusa 8,227<br />

banana 57,63,110,160,180,<br />

21 4<br />

banana poka (Pmsifora<br />

tripartita) 187<br />

bandotan 12<br />

banla saet 138<br />

barley (Hordeum) 8,89,92,<br />

93


292 Biological Control of Weeds: Southeast Asian Prospects<br />

barley stripe mosaic 66<br />

barnyard grass (Echinochloa<br />

crus-galli) 62<br />

Basella alba 22<br />

bayam duri 20<br />

bayokibok 62<br />

bean 88,99<br />

beda bin 70<br />

beet curly top 2 14<br />

Begonia 1 0 1<br />

benghalensis, Commelina<br />

bbo chi 198<br />

Beta vulgaris var. cicla 2 1 1,<br />

212<br />

betae f.sp. portulaceae,<br />

Polymyxa<br />

bicolor, Cochliobolus<br />

. bicolor, Helminthosporium<br />

bicolor, Sorghum<br />

Bidens 29,3 1<br />

Bidens mosaic 32<br />

Bidens mottle 16<br />

Bidens pilosa l,3,26-33,49,<br />

52,91,129-131,181<br />

Bidens witches broom 32<br />

bidenticola. Uromyces<br />

bidentis, Cercospora<br />

biga bigaan 166<br />

Bignoniaceae 5 1<br />

Bipolaris indica 24,2 14<br />

Bipolaris nodulosa, see<br />

Helminthosporium<br />

nodulosum<br />

Bipolaris papendor-i 194<br />

Bipolaris perotidis 225<br />

Bipolaris portulaceae,<br />

see Helminthosporium<br />

portulaceae<br />

Bipolaris setariae 86,91<br />

birds 43,46<br />

biserrata, Nephrolepis<br />

bizat 36<br />

black pepper (Piper nigrum)<br />

100,122,214<br />

black wattle (Acacia<br />

mearnsii) 141,143-1 45<br />

blady grass (Imperata<br />

cylindrica) 193<br />

bliti, Albugo<br />

blue panic (Panicum<br />

antidotab) 175<br />

bb xit 12<br />

borhg 138<br />

botrys, Chenopodium<br />

Brachiaria subquadripara 89<br />

brachiata, Cercospora<br />

brAnjiingAn 222<br />

brassicae, Tylenchorhynchus<br />

braziliensis, Euphorbia<br />

Brevipalpus obovatus 15<br />

Brillantaisia laminum 188<br />

broad sword fern<br />

(Nephrolepis biserrata)<br />

170<br />

buah tikus 186<br />

Buddleia variabilis 101<br />

buffalo grass 180<br />

bulak manok 12<br />

bulbosum, Panicum<br />

bulbous panic (Panicum<br />

bulbosum) 175<br />

bullatum, Tolyposporium<br />

Cacodera amaranthi 23<br />

cactus 214<br />

caerulia, Passiflora<br />

Caesalpiniaceae 139<br />

cajan, Cajanus<br />

Cajanus cajan 16 1, 162,188<br />

Cajanus indicus, see Cajanus<br />

cajan<br />

Calacarus 40,41<br />

Caladium 78<br />

Calendula 3 1<br />

Calenduleae 33<br />

Calliandra selloi 144, 145<br />

camara, Lantana<br />

campestiis, Cuscuta<br />

cancriformis, Triops<br />

canescens, Cercospora<br />

capansa, Euphorbia<br />

capillare, Panicum<br />

capsicum 91,2 14<br />

caracasana, Fleischmannia<br />

caracasana, Wedelia<br />

Cardueae 33<br />

Carlineae 33<br />

caroliniana, Azolla<br />

carpesioides, Venegasia<br />

Carthamnus 33<br />

Caryota 100<br />

cashew 37<br />

cassava (Manihot esculenta)<br />

28,57,63,99,100,181<br />

Cassia 100<br />

cassiicola, Corynespora<br />

Cassytha filiformis 32<br />

cebbensis, Kordyana<br />

cenchroides, Pennisetum<br />

Cercospora 41,167,225<br />

Cercospora agerati 16<br />

Cercospora amaranthi 24<br />

Cercospora bidentis 32<br />

Cercospora brachiata 24<br />

Cercospora canescens 145<br />

Cercospora eupatorii 41<br />

Cercospora eupatorii-<br />

ohratii 41<br />

Cercospora eupatoriicola 41<br />

Cercospora fusimaculans 225<br />

Cercospora marsileae 1 16<br />

Cercospora megalopotamica<br />

32<br />

Cercospora piaropi 77,82<br />

Cercospora portulaceae 2 1 4<br />

Cercospora rodmanii 69,73,<br />

75,77,82,83<br />

Cercospora rottboelliae 226<br />

Cercosporella dominicana<br />

214<br />

Cercosporidium helleri 230,<br />

23 1<br />

cereal chlorotic mottle 93<br />

cespitosa, Euphorbia<br />

chaetochloae, Puccinia<br />

chak thorn 198<br />

Chasmopodium 223<br />

Chenopodiaceae 2 16<br />

Chenopodium 2 1,22<br />

Chenopodium album 22,23<br />

Chenopodium<br />

anthelminthicum 22<br />

Chenopodium botrys 22<br />

cheroma 126<br />

chhlong 174<br />

chi yop luang 148<br />

chili 2 14<br />

chili vein banding 2 14<br />

chinensis, Cuscuta<br />

Chloridoideae 86<br />

Chloris gayana 9 1<br />

chok 198<br />

Chromolaena 37.52


Chromolaena inulaefolium 52<br />

Chromolaena iresinoides 14<br />

Chromolaena ivaefolia 14,<br />

30,48-52<br />

Chromolaena jujuensis 47,<br />

49,50<br />

Chromolaena laevigata 52<br />

Chromolaena microstemon<br />

50<br />

Chromolaena odorata l,3,<br />

13, 14,22,24,30,31,<br />

33,3443,128-132<br />

Chrysanthemum 3 1,33<br />

chrysopids 47<br />

chuntul phnom 1 14<br />

Cichorium 33<br />

Cichorium intybus 15<br />

ciliaris, Digitaria<br />

Cinchona 13 1,132<br />

Cineraria 3 1,33<br />

cinereum, Physarum<br />

Cionothrix praelonga 38,41<br />

citrus 22,28,63, 100, 104,<br />

160,180<br />

clandestinum, Pennisetum<br />

Claviceps 175<br />

clover 2 14<br />

clover big vein 21 4<br />

clover fern (Marsilea minuta)<br />

114<br />

cb c6t heo 12<br />

cb hoi 36<br />

cb l6ng viit 62<br />

cb m2n Mh 86<br />

cb 6ng 174<br />

cb sua l6ng 104<br />

cb trinh nu m6c 138<br />

cobbler's pegs (Bidens<br />

pilosa) 28, 1 30<br />

cochinchinesis, Rottboellia<br />

Cochliobolus bicolor 226<br />

Cochliobolus cymbopogonis<br />

226<br />

Cochliobolus heterostrophus<br />

226<br />

Cochliobolus lunatus 65<br />

Cochliobolus nodulosus, see<br />

Helminthosporium<br />

nodulosum<br />

cocoa 37,127,174,18 1<br />

coconut 28,37,127,139,<br />

160,174,180,186<br />

coffee 28,30,3 1,37,63,98,<br />

100,101,160,180<br />

Coix lacryma-jobi 8<br />

Colletotrichium 16, 133,224,<br />

226<br />

Colletotrichium<br />

gloeosporioides f.sp.<br />

clidemiae 188<br />

Colletotrichium<br />

gloesporioides 133,149,<br />

189<br />

Colletotrichium graminicola,<br />

see Glornerella<br />

grminicola<br />

Colocasia 78<br />

Colocasia esculenta 79<br />

colona, Echinochloa<br />

coloratum, Panicum<br />

Commelina 56,57<br />

Commelina benghalensis 3,<br />

54-58,91,111<br />

Commelina difisa 58<br />

Commelina robusta 57<br />

Commelinaceae 3,56<br />

common heliotrope<br />

(Heliotropiurn europaeum)<br />

131<br />

common sensitive plant<br />

(Mimsa pudica) 160<br />

compacts, Alternaria<br />

compressa, Rottboellia<br />

Coniothyrium 226<br />

conjugatum, Paspalum<br />

conoclinii, Puccinia<br />

conyzoides, Ageratum<br />

coolah grass (Panicum<br />

coloratum) 175<br />

coracana, Eleusine<br />

cordata, Mikania<br />

cordata, Pontederia<br />

cordifolia, Mikania<br />

Coreopsidae 29,32,33<br />

Coreopsis 29,33<br />

corn leaf gall 93,227<br />

corn stunt 93<br />

Corticium sasakii 58,91, 1 1 1<br />

Corynespora cassiicola 1 39,<br />

1 42<br />

Cosmos 33<br />

cotton 20,63,99, 104, 160<br />

couch grass (Cynodon<br />

dactylon) 4<br />

7 General index 293<br />

coumarin 12<br />

cowpea 20,142<br />

crassipes, Eichhornia<br />

creeping panic grass<br />

(Panicum repens) 174<br />

creeping sensitive plant<br />

(Mimosa invisa) 137,138<br />

crenata, Marsilea<br />

Criconemella onoensis 1 1 1<br />

Criconemella xenoplax 2 1 4<br />

Crotolaria 10 1<br />

crotolariae, Phaeotrichoconis<br />

Croton lobatus 15,91<br />

crowsfoot grass (Eleusine<br />

indica) 86<br />

cruentus, Amaranthus<br />

crus-galli var. frumentacea,<br />

Echinochloa<br />

crus-galli, Echinochloa<br />

crusgalli, Ustilago<br />

Ctenopharyngodon idella 72,<br />

75,76<br />

cubensis, Diabole<br />

cucullata, Salvinia<br />

cucumber 24,214<br />

cucumber mosaic 24,189,<br />

214<br />

cucumeris, Thanatephorus<br />

Curvularia 133,223,226<br />

Curvularia cymbopogonis,<br />

see Cochliobolus<br />

cymbopogonis<br />

Cuscuta cmpestris 135<br />

Cuscuta chinensis 135<br />

cylindrica, Impera ta<br />

Cylindrocladium<br />

quinqueseptatum 16, 105<br />

Cymbopogon 8<br />

cymbopogonis, Cochliobolus<br />

cymbopogonis, Curvularia<br />

Cynara 33<br />

Cynara scolymus 33<br />

Cynodon227<br />

Cynodon dactylon 3,4,15,<br />

58,64,88-91,111<br />

cyparissias, Euphorbia<br />

Cyperaceae 3, 1 10<br />

Cyperus iria 9 1<br />

Cyperus rotundus 88,224


294<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Dactyloctenium 86,92,94<br />

Dactyloctenium aegyptium<br />

90,92,224<br />

Dactyloctenium radulans 92,<br />

94<br />

dactylon, Cynodon<br />

Dahlia 33,50<br />

daoen kaget kaget 160<br />

dasheen<br />

(Colocasia esculenta) 79<br />

daua daua 62<br />

Davalliaceae 170<br />

dayflower (Commelina<br />

benghalensis) 56<br />

delvii, Heterodera<br />

den gai 20<br />

Dendrocalamus 8<br />

Dendrographium<br />

lucknowense 2 14<br />

destructor, Ditylenchus<br />

devil weed (Chromolaena<br />

odorata) 36<br />

Diabole cubensis 149, 150,<br />

151, 155, 156<br />

Diaporthe 226<br />

dichotomiflorum, Panicum<br />

Dichotomophthora indica 2 14<br />

Dichotomophthora lutea,<br />

see Dichotomophthora<br />

indica<br />

Dichotomophthora<br />

portulaceae 21 4<br />

dictyoides, Drechslera<br />

difisa, Commelina<br />

dzfsusa, Marsilea<br />

Digera arvensis 2 1,22<br />

Digera mosaic 24<br />

Digitaria 90,227<br />

Digitaria ciliaris 91<br />

Digitaria sanguinalis 63,224<br />

dilatatum, Paspalum<br />

Diplodia 226<br />

dipsaci, Ditylenchus<br />

distichum, Paspalum<br />

Ditylenchus destructor 91<br />

Ditylenchus dipsaci 2 1 4<br />

djaringan ketul 28<br />

djawan 62<br />

Doassansia 167<br />

dominicana, Cercosporella<br />

donax, Arundo<br />

Drechslera dictyoides 65<br />

Drechslera gigantea 91<br />

Drechslera hawaiiensis 58<br />

Drechslera indica, see<br />

Bipolaris indica<br />

Drechslera maydis, see<br />

Cochliobolus<br />

heterostrophus<br />

Drechslera setariae, see<br />

Bipolaris setariae<br />

dubius, Amaranthus<br />

dumetorum, Schizostachyum<br />

duri semalu 138<br />

2c2ng 70<br />

echeng padi 166<br />

echinatum, Pithecoctenium<br />

Echinochloa 63,227<br />

Echinochloa colona 63-65,<br />

89,91,93<br />

Echinochloa crus-galli 3,57,<br />

60-66 89,91,111,166<br />

Echinochloa crus-galli var.<br />

fiumentacea 62<br />

Echinochloa glabrescens 93<br />

Echinochloa oryzicola 63<br />

Echinochloa pic ta 63.65<br />

Echinochloa utilis 65<br />

Echinochloa walteri 65<br />

Echinopsideae 33<br />

Echium plantagineum 13 1<br />

edulis var. flavicarpa,<br />

Passiflora<br />

edulis, Passiflora<br />

eggplant 2 15<br />

Eichhornia azurea 73, 80, 81<br />

Eichhornia crassipes 1,3,5,<br />

68-83,203,205,206<br />

eichhorniae, Alternaria<br />

eichhorniae, Flechtmannia<br />

eichhorniae, Uredo<br />

ekmaniana, Septoria<br />

ekor kucing 192<br />

elephant grass (Pennisetum<br />

purpureum) 194<br />

Eleusine 86-88,92,94,226,<br />

227<br />

Eleusine coracana 85-89,92,<br />

93<br />

Eleusine indica 1,3,5, 15,<br />

58,84-95,111.224<br />

Eleusine mosaic 89,93<br />

Eleusine tristachya 86<br />

eleusines, Phyllachora<br />

eleusinis, Melanopsichium<br />

eleusinis, Ustilago<br />

Elsinoe 100<br />

Emex australis 130<br />

Emex spinosa 130<br />

encephalitis 71<br />

Entyloma guaraniticum 32<br />

Eragrostis 92<br />

erecta, Tagetes<br />

ergot 18 1<br />

erineum 48,129<br />

erosus, Marsilea<br />

Erythrina lithosperma 30<br />

esculenta, Colocasia<br />

esculenta, Manihot<br />

etjeng padi 70, 166<br />

Euchlaena 90<br />

Eugenia 101<br />

Eupatorieae 33,52<br />

eupatorii, Cercospora<br />

eupatorii, Guignardia<br />

eupatorii-formosani,<br />

Pseudocercospora<br />

eupatorii-odoratii,<br />

Cercospora<br />

eupatoriicola, Cercospora<br />

eupatoriicola, Phomopsis<br />

eupatoriicola, Phyllosticta<br />

Eupatorium 13,5 1<br />

Eupatorium hookerianum,<br />

see Chromolaena jujuensis<br />

Eupatorium odoratum,<br />

see Chromolaena odorata<br />

Euphorbia 97,99,101<br />

Euphorbia braziliensis 101<br />

Euphorbia capansa 100<br />

Euphorbia cespitosa 101<br />

Euphorbia cyparissias 99<br />

Euphorbia geniculata, see<br />

Euphorbia heterophylla<br />

Euphorbia heterophylla 3,91,<br />

96-101,104<br />

Euphorbia hirta 3, 15,99,<br />

102-106<br />

Euphorbia hirtella 100<br />

Euphorbia mosaic 100<br />

Euphorbia ovalifolia 101<br />

Euphorbia pilulifera, see<br />

Euphorbia hirta


Euphorbia prunifolia, see<br />

Euphorbia heterophylla<br />

Euphorbia pseudovirgata 99<br />

Euphorbia pulcherrima 99,<br />

101<br />

Euphorbiaceae 3,98, 100,<br />

101,104<br />

euphorbiae, Uromyces<br />

europaeum, Heliotropium<br />

exaltata, Rottboellia<br />

exigua, Meloidogyne<br />

Exserohilum paspali 182<br />

feather Pennisetum<br />

(Pennisetum polystachion)<br />

192<br />

Ficus 77<br />

filariasis 71<br />

fili2iformis, Cassytha<br />

Fimbristylis littoralis, see<br />

Fimbristylis miliacea<br />

Fimbristylis miliacea 3,57,<br />

58,91,108-111<br />

finger millet (Eleusine<br />

coracana) 85-87<br />

Flechtmannia eichhorniae 72<br />

Fleischmannia caracasana<br />

3 1<br />

Fleischmannia microstemon<br />

14<br />

fluitans, Panicum<br />

foetida, Passiflora<br />

fontana, Montia<br />

foxtail millet (Setaria italica)<br />

8<br />

fragariae, Aphelenchoides<br />

French weed 36<br />

fujikuroi, Gibberella<br />

Fusarium 145<br />

Fusarium moniliforme 226<br />

Fusarium oxysporum f.sp.<br />

elaeidis 24, 41<br />

Fusarium oxysporum f.sp.<br />

passiflorae 188,189<br />

Fusarium roseum 65<br />

fusimaculans, Cercospora<br />

Galinsoga parvi'ora 9 1<br />

garden spurge (Euphorbia<br />

hirta) 104<br />

gatas gatas 104<br />

gayana, Chloris<br />

gelang 10<br />

gelang pasir 210<br />

gelang susu 104<br />

gbndong hcok 104<br />

geniculata, Euphorbia<br />

gewor 56<br />

giant sensitive plant (Mimosa<br />

pigra) 148<br />

Gibberellafujikuroi, see<br />

Fusarium moniliforme<br />

gigantea, Drechslera<br />

Gigantochloa 8<br />

glabrescens,. Echinochloa<br />

glauca, Setaria<br />

glaucum, Pennisetum<br />

globe artichoke (Cynara<br />

scolymus) 33<br />

Gloeocercospora 194<br />

gloeosporioides f.sp.<br />

clidemiae, Colletotrichium<br />

gloeosporioides,<br />

Colletotrichium<br />

Glomerella graminicola 226<br />

glorius, Amblyseius<br />

glumae, Pseudomonas<br />

Glycine max 21 4<br />

glycines, Heterodera<br />

goatweed (Ageratum<br />

conyzoides) 12<br />

goenda 230<br />

golasiman 2 10<br />

goosegrass (Eleusine indica)<br />

86<br />

gooseweed (Sphenoclea<br />

zeylanica) 230<br />

graminicola, Colletotrichium<br />

graminicola, Glomerella<br />

graminicola, Meloidogyne<br />

grandiflora, Portulaca<br />

grass carp<br />

(Ctenopharyngodon idella)<br />

72<br />

grass-like fimbristylis<br />

(Fimbristylis miliacea) 1 10<br />

Grevillea robusta 101<br />

grisea, Magnaporthe<br />

groundnut 20,63,91,93, 104<br />

210,214<br />

groundnut rosette 24,32,57,<br />

93,106,214<br />

7 General index 295<br />

guaraniticum, Entyloma<br />

Guignardia eupatorii 41<br />

guinea grass (Panicum<br />

maximum) 175<br />

hagonoy 36<br />

hairy spurge (Euphorbia<br />

hirta) 104<br />

hairy wandering jew<br />

(Commelina benghalensis)<br />

56<br />

hapla, Meloidogyne<br />

Haplosporella passifloridia<br />

189<br />

hastata, Monochoria<br />

hawaiiensis, Drechslera<br />

hay kai mangda 62<br />

Heleniae 33<br />

Heliantheae 33<br />

Helianthus 24,3 1,33,214<br />

Helianthus annuus 33<br />

Helicotylenchus indicus 2 14<br />

Helicotylenchus multicinctus<br />

15,57,214<br />

Heliotropium europaeum 13 1<br />

helleri, Cercosporidium<br />

Helminthosporium 65,91,98,<br />

100<br />

Helminthosporium bicolor,<br />

see Cochliobolus bicolor<br />

Helminthosporium holmii 91<br />

Helminthosporium maydis 91<br />

Helminthosporium<br />

nodulosum 92<br />

Helminthosporium portulacae<br />

214<br />

Helminthosporium rostratum<br />

194<br />

Helminthosporium turicum<br />

65<br />

Hemphyllium 189<br />

Heterocentron<br />

subtriplinenium 12 1<br />

Heterodera delvii 87,94<br />

Heterodera glycines 2 1 5<br />

Heterodera marioni 21 5<br />

heterophylla, Euphorbia<br />

heterostrophus, Cochliobolus<br />

hibiscus yellow vein mosaic<br />

16,106<br />

hin nu nive tsu bauk 20


296<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Hirschmaniella 1 1 1, 167,230<br />

Hirschmaniella oryzae 65<br />

Hirschmaniella spinicaudata<br />

9 1<br />

hirta, Euphorbia<br />

hirtella, Euphorbia<br />

holmii, Helminthosporium<br />

hookeriana, Mikania<br />

hookerianum, Eupatorium<br />

Hoplolaimus indicus 2 15<br />

hordeoides, Pennisetum<br />

Hordeum 8,227<br />

hulape 180<br />

Hydrozetes subornata 20 1<br />

Hyparrhenia rufa 3 1<br />

Hypericum perforatum<br />

angustifolium 130<br />

hypochondriachus,<br />

Amaranthus<br />

idella, Ctenopharyngodon<br />

Ilex 101<br />

Impatiens 15<br />

Imperata cylindrica 5,8,24,<br />

37,91,186,193<br />

incognita, Meloidogyne<br />

Indian rhododendron<br />

(Melastoma<br />

rnalabathricum) 120<br />

indica, Bipolaris<br />

indica, Dichotomophthora<br />

indica, Drechslera<br />

indica, Eleusine<br />

indicum, Panicum<br />

indicus, Cajan<br />

indicus, Hoplolaimus<br />

indicus, Pseudocephalobus<br />

Indigofera anil143<br />

intybus, Cichorium<br />

inulaefolium,<br />

Austroeupatorium<br />

Inuleae 33<br />

invadens, Nosema<br />

invisa inermis, Mimosa<br />

invisa, Mimosa<br />

Ipomoea aquatica 78<br />

iresinoides, Chromolaena<br />

iria, Cyperus<br />

Ischaemum rugosum 225<br />

italica, Setaria<br />

itch grass (Rottboellia<br />

cochinchinensis) 222<br />

ivaefolia, Chromolaena<br />

jacobaea, Senecio<br />

jampang canggah 180<br />

Japanese millet (Echinochloa<br />

crus-galli var.<br />

frumentacea) 62<br />

javanica, Meloidogyne<br />

jawg 198<br />

job's tears (Coix lacryma-<br />

jobi) 9<br />

jojoba 2 1 1<br />

jujuensis, Chromolaena<br />

jute 63<br />

ka kiad chrach 166<br />

ka thok rok 186<br />

kak phr6k kdam 1 10<br />

kamplauk 70<br />

kbet choun 210<br />

keladi bunting 70<br />

kelayar 166<br />

kembang gajah 148<br />

keruong padi 174<br />

kiambang besar 198<br />

kikuyu grass (Pennisetum<br />

clandestinum) 193<br />

kirinyu 36<br />

kolokong kabayo 12<br />

Kordyana celebensis 58<br />

krokot 2 10<br />

kumpai jepang 36<br />

Lablab purpureus 188<br />

lablab bean (Lablab<br />

purpureus)<br />

lacryma-jobi, Coix<br />

Lactuca 3 1,33<br />

Lactuca sativa 33<br />

Lactuceae 33<br />

laevigata, Chromolaena<br />

Lagenaria siceraria 188<br />

lamaan 62<br />

laminum, Brillantaisia<br />

lanceolata, Pontederia<br />

Lantana 129<br />

Lantana camara 13,13 1,132<br />

latex 98,99<br />

latifolia, Zizania<br />

Laurus 101<br />

lawn 4,86, 104, 161, 174,<br />

181<br />

legumes 56<br />

Lemna 71<br />

Lemna polyrhiza 1 15<br />

Lemna purpusilla 1 15<br />

lemon grass (Cymbopogon) 8<br />

Leptosphaeria 226<br />

Leptosphaeria proteispora<br />

182<br />

lesser fimbristylis<br />

(Fimbristylis miliacea) 1 10<br />

lettuce (Lactuca sativa) 30<br />

Leucaena leucocephala 141,<br />

142,144,145<br />

leucocephala, Leucaena<br />

Lewisia 218<br />

ligularis, Passifora<br />

lithosperma, Erythrina<br />

littoralis, Fimbristylis<br />

lizards 43,45,46<br />

lobata, Neurolaena<br />

lobatus, Croton<br />

lonchocarpa, Passifora<br />

love-in-a-mist (Passifora<br />

foetida) 186<br />

luc binh 70<br />

lucerne dwarf 66<br />

lucknowense,<br />

Dendrographium<br />

lunatus, Cochliobolus<br />

lutea, Dichotomophthora<br />

luya luyahan 174<br />

luzonense, Panicum<br />

Lyonia ovalifolia 13<br />

mac co 160<br />

Macrophomina phaseolina<br />

100<br />

macrospora, Sclerophthora<br />

Madieae 33<br />

Magnaporthe grisea 87, 92,<br />

226<br />

Magnolia pumila 10 1<br />

mai yah raap yak 148<br />

maiyaraap thao 138<br />

mai yarap 160<br />

mai yarap ton 148<br />

maize (Zea mays) 5,8,20,<br />

28,63-65,80,89-93,<br />

104, 110, 111, 160, 174,<br />

181,210,222,222-226,<br />

maize dwarf mosaic 66,93,<br />

227


maize hoja blanca 227<br />

maize mosaic 227<br />

maize nematode<br />

(Pratylenchus zeae) 91<br />

maize rayado fine 227<br />

maize streak 93<br />

maize stripe 227<br />

maize stripe tenuivirus 227<br />

maize white leaf 227<br />

maize yellow mottle 227<br />

makahiya 160<br />

makahiyang lalaki 138<br />

mala malu 160<br />

malabathricum, Melastoma<br />

malaria 7 1<br />

manatee (Trichechus) 72<br />

mango 20<br />

manicata, Passifora<br />

Manihot esculenta 99<br />

marioni, Heterodera<br />

Mariscus alternifolius 24<br />

Marsilea crenata, see<br />

Marsilea minuta<br />

Marsilea difisa,<br />

see Marsilea minuta<br />

Marsilea erosus, see<br />

Marsilea minuta<br />

Marsilea minuta 3,112116,<br />

167<br />

Marsilea perrieriana, see<br />

Marsilea crenata<br />

Marsilea senegalensis, see<br />

Marsilea minuta<br />

Marsileaceae 3,114<br />

marsileae, Cercospora<br />

max, Glycine<br />

maximum, Panicum<br />

maydis, Drechslera<br />

maydis, Helminthosporium<br />

mayo 104<br />

mays, Zea<br />

mearnsii, Acacia<br />

megalopotamica, Cercospora<br />

Melanopsichium eleusinis 87,<br />

92,94<br />

Melastoma 120<br />

Melastoma afJine, see<br />

Melastoma malabathricum<br />

Melastoma malabathricum 1,<br />

3,118-123<br />

Melastoma polyanthum 121<br />

melastoma (Melastoma<br />

malabathricum) 120<br />

Melastomataceae 3, 120, 121<br />

Melocanna baccifera 8<br />

Meloidogyne 15,32,91, 162,<br />

215,224<br />

Meloidogyne arenaria 15,91,<br />

215<br />

Meloidogyne arenaria<br />

thamesis 15<br />

Meloidogyne exigua 100<br />

Meloidogyne graminicola 65,<br />

91,111,167,176,231<br />

Meloidogyne hapla 32,215<br />

Meloidogyne incognita 15,<br />

23,57,91,105,189,215<br />

Meloidogyne javanica 15,57,<br />

91,100,106,215<br />

Meloidogyne oryzae 1 1 1<br />

melon 99<br />

Mentha arvensis 100<br />

Mexican fire plant<br />

(Euphorbia heterophylla)<br />

98<br />

micrantha, Mikania<br />

microsporida 47,50,52,79<br />

microstemon, Chromolaena<br />

microstemon, Fleischmannia<br />

Mikania 128-1 30,132<br />

Mikania cordata 126<br />

Mikania cordifolia 128-1 32<br />

Mikania hookeriana 13 1<br />

Mikania micrantha l,3,30,<br />

33,52,124-135<br />

Mikania scandens 126<br />

Mikania trinitaria 128, 13 1,<br />

132<br />

Mikania vitifolia 128-1 3 1<br />

mile-a-minute weed (Mikania<br />

micrantha) 126<br />

miliacea, Fimbristylis<br />

miliaceum, Panicum<br />

millet 5,20,63,94<br />

millet panic (Panicum<br />

miliaceum) 175<br />

millet, Japanese (Echinochloa<br />

crus-galli var.<br />

frumentacea) 62<br />

Mimosa<br />

Mimosa albida 144<br />

Mimosa asperata 148<br />

7 General index 297<br />

Mimosa invisa 1,3,136-145,<br />

161,162<br />

Mimosa invisa inermis 139,<br />

141<br />

Mimosa pigra I, 3,138, 140,<br />

142-1 44,146-156,161<br />

Mimosa pigra berlandieri,<br />

see Mimosa asperata<br />

Mimosa pudica l,3, 1 38,<br />

140-142,144,145,<br />

158-162<br />

Mimosa pudica hispida 160<br />

Mimosa pudica unijuga 160<br />

Mimosa quadrivalis 144<br />

Mimosa rixosa 141,144<br />

Mimosa scabrella 143,145<br />

Mimosa somnians 141<br />

Mimosa velloziana 141<br />

Mimosaceae 3,138,139,148,<br />

160<br />

mimosae-invisae, Uredo<br />

mimosae-pigrae,<br />

Phloeospora<br />

mimosine, 149<br />

minuta, Marsilea<br />

minutus, Pratylenchus<br />

Mirabilis 13<br />

mission grass (Pennisetum<br />

polystachion) 192<br />

molesta, Salvinia<br />

mollissima, Passifora<br />

m6nhnyin 1 10<br />

moniliforme, Fusarium<br />

Monochoria hastata 78<br />

Monochoria vaginalis 3,78,<br />

93,115,164-167<br />

monochoria (Monochoria<br />

vaginalis) 166<br />

Montia fontana 2 1 8<br />

Montia pe$oliata 2 1 8<br />

multicinctus, Helicotylenchus<br />

Musa 57<br />

Mutisieae 33<br />

mya by it 2 1 0<br />

Mycovellosiella perfoliata 16,<br />

4 1<br />

mye byet 21 0<br />

myet cho 56<br />

myet ihi 62<br />

myet kha 174<br />

myet ya 222


298 Biological Control of Weeds: Southeast Asian Pro<br />

myet ya nge 222<br />

Myriogenospora atramentosa<br />

182<br />

Myrothecium roridum 78<br />

nam nom raatchasee 104<br />

napier grass (Pennisetum<br />

purpureum) 194<br />

needle burr (Amaranthus<br />

spinosus) 20<br />

Nephrolepidaceae 170<br />

Nephrolepis 17 1<br />

Nephrolepis biserrata 3, 15,<br />

168-171<br />

Neptunia 155<br />

Neptunia oleracea 147, 152,<br />

155<br />

Nerium 100<br />

Neurolaena lobata 13 1<br />

niger, Anhellia<br />

nigrum, Solanum<br />

nodulosa, Bipolaris<br />

nodulosum,<br />

Helminthosporium<br />

nodulosus, Cochliobolus<br />

Nosema 50,206<br />

Nosema nr invadens 8 1<br />

Nosema pilicornis 21 8<br />

notatum, Paspalum<br />

novemnerve, Panicum<br />

novocaledonicus,<br />

Tetranychus<br />

oat pseudorosette 66<br />

oats (Avena sativae) 89,92,<br />

93<br />

obovatus, Brevipalpus,<br />

odorata, Chromolaena<br />

odoratum, Eupatorium<br />

oficinarum, Saccharum<br />

Oidium 149, 162<br />

oil palm 24,28,37, 127, 160,<br />

170,180,193<br />

oleosa, Amaranthus<br />

oleracea, Neptunia<br />

oleracea, Portulaca<br />

oleracea, Spinacia<br />

onoensis, Criconemella<br />

ophiuri, Spacelotheca<br />

ophiuri, Sporisorium<br />

orai 20<br />

Orthogalumna terebrantis 69,<br />

73,75-77,79,80-82<br />

Oryza 227<br />

Oryza sativa 8<br />

oryzae var. commelinae,<br />

Pyricularia<br />

oryzae, Hirschmaniella<br />

oryzae, Meloidogyne<br />

oryzae, Pyricularia<br />

oryzicola, Echinochloa<br />

oryzicola, Eleusine<br />

ovalifolia, Euphorbia<br />

ovalifolia, Lyonia<br />

ovalifolia, Pieris<br />

overeemi, Sporisorium<br />

oxysporum f.sp. elaeidis,<br />

Fusarium<br />

oxysporum f.sp. passiflorae,<br />

Fusarium<br />

paang itik 1 14<br />

painted spurge (Euphorbia<br />

heterophylla) 98<br />

paitan 180<br />

pak prab 56<br />

pak vaen 1 14<br />

paklab 160<br />

pakpawd 230<br />

paku larat 170<br />

palmivora, Phytophthora<br />

paludosum, Panicum<br />

panici,<br />

Parasteneotarsonemus<br />

paniculatum, Talinum<br />

Panicum 91,175,177,227<br />

Panicum antidotale 175<br />

Panicum bulbosum 175<br />

Panicum capillare 175<br />

Panicum coloratum 175<br />

Panicum dichotomiflorum 65<br />

Panicum fluitans 177<br />

Panicum indicum 177<br />

Panicum luzonense 175<br />

Panicum maximum 3 1, 175<br />

Panicum miliaceum 64,90,<br />

175<br />

Panicum novemnerve 175<br />

Panicum paludosum 175<br />

Panicum repens 3,172-177,<br />

181<br />

panicum mosaic 66<br />

papaya 28,142,160,180<br />

papendofli, Bipolaris<br />

Parasteneotarsonemus panici<br />

175,176<br />

Paratylenchus 65<br />

parviflora, Galinsoga<br />

paspali, Exserohilum<br />

paspali, Sorosporium<br />

Paspalum 90, 18 1,227<br />

Paspalum conjugatum 3,89,<br />

178-183<br />

Paspalum dilatatum 18 1<br />

Paspalum distichum 64,93,<br />

181<br />

Paspalum notatum 3 1,89<br />

Paspalum plicatulum 18 1<br />

Pasualum scrobiculatum 18 1<br />

~as>alum vaginatum 1 8 1,<br />

225<br />

paspalum (Paspalum<br />

dilatatum) 18 1<br />

Passiflora 101, 186-189<br />

Passiflora edulis 187<br />

Passiflora edulis var.<br />

flavicarpa 187, 188<br />

Passiflora foetida 3,184-189<br />

Passiflora ligularis 187, 188<br />

Passiflora lonchocarpa 187<br />

Passiflora manicata 187<br />

Passiflora mollissima, see<br />

Passijlora tripartita<br />

Passiflora suberosa 187,188<br />

Passiflora tripartita 185, 187,<br />

188<br />

Passifloraceae 3, 186-1 88<br />

passijlorae, Alternaria<br />

passifloridia, Haplosporella<br />

passion vine butterfly<br />

(Agraulis vanillae) 1 87<br />

passionfruit chlorotic spot<br />

189<br />

passionfruit mosaic 189<br />

passionfruit ringspot<br />

potyvirus 189<br />

passionfruit woodiness<br />

potyvirus 189<br />

pasture 4, 12,28,56,86, 139<br />

181,186<br />

Paterson's curse (Echium<br />

plantagineum) 13 1<br />

pawpaw, see papaya


peanut, see ground nut<br />

pearl millet (Pennisetum<br />

glaucum) 94,193,226<br />

pederosus, Amblyseius<br />

Pellicularia rolfsii 92<br />

penniseti, Spacelotheca<br />

Pennisetum 24, 193, 194,<br />

2 14,227<br />

Pennisetum americanum,<br />

see Pennisetum glaucum<br />

Pennisetum cenchroides 194<br />

Pennisetum clandestinum 193<br />

Pennisetum glaucum 94, 193<br />

Pennisetum hordeoides 1 92<br />

Penniseam polystachion 3,<br />

190-194<br />

Pennisetum polystachion<br />

atrichum 192<br />

Pennisetum polystachion<br />

polystachion 192<br />

Pennisetum polystachion<br />

setosum 192<br />

Pennisetum polystachyon, see<br />

Pennisetum polystachion<br />

Pennisetum purpureum 193<br />

Pennisetum setosum, see<br />

Pennisetum polystachion<br />

Pennisetum typhoideum, see<br />

Pennisetum glaucum<br />

pepperwort (Marsilea<br />

minuta) 1 14<br />

peregrina, Veronica<br />

perfoliata, Montia<br />

perfoliata, Mycovellosiella<br />

perforatum angustifolium,<br />

Hypericum<br />

perotidis, Bipolaris<br />

perrieriana, Marsilea<br />

Pestalopsis 149<br />

Pestalotia 133<br />

petunia 16<br />

Phaeoseptoria 226<br />

phak bia yai 2 10<br />

phak kbiat 166<br />

phak khom nam 20<br />

phak pot 230<br />

phak, top chawaa 70<br />

phak waen 1 14<br />

Phakospora apoda 194<br />

phaseolina, Macrophomina<br />

Phaseolus vulgaris 15<br />

philoxeroides, Alternanthera<br />

Phloeospora mimosae-pigrae<br />

147,150,151,155<br />

Phoenix 100<br />

Phoma 41,214<br />

Phoma tropica 24<br />

Phomopsis 1 49<br />

Phomopsis eupatoriicola 41<br />

Phragmites 8<br />

phti banla 20<br />

Phyllachora eleusines 92<br />

Phyllachora sacchari 226<br />

Phyllostachys 8<br />

Phyllosticta eupatoriicola 41<br />

Phyllosticta stratiotes 157<br />

Physarum cinereum 182<br />

Phytomonas 105<br />

Phytophthora palmivora 100,<br />

105,122,214<br />

piaropi, Cercospora<br />

pickerel weed (Pontederia<br />

cordata) 80<br />

picta, Echinochloa<br />

picta, Eleusine<br />

Pieris ovalifolia 13<br />

pigeon pea (Cajanus cajan)<br />

188<br />

pigra, Mimosa<br />

pigweed (Portulaca oleracea)<br />

210<br />

pilicornis. Nosema<br />

pilosa, Bidens<br />

pilosa, Portulaca<br />

pilulifera, Euphorbia<br />

pineapple 20, 104, 139, 160,<br />

170,180<br />

pineapple yellow spot 14, 16<br />

pinnata, Azolla<br />

pis koetjing 138<br />

pisau pisau 28<br />

Pistia stratiotes 1,3,5,7 1,<br />

1 15. 167,196-207<br />

Pistia virus 1 16, 167<br />

Pithecoctenium 5 1<br />

Pithecoctenium echinatum 5 1<br />

plantagineum, Echium<br />

plantain 1 11<br />

plantarii, Pseudomonas<br />

plicatuhm, Paspalum<br />

Poaceae 3,62,86,174, 180,<br />

192,222,225<br />

7 General index 299<br />

poinsettia (Euphorbia<br />

pulcherrima)<br />

pokok tjerman 36<br />

polyanthes, Vernonia<br />

polyanthum, Melastoma<br />

Polygonum 13<br />

polyhedrosis 5 1,187<br />

Polymyxa betae f.sp.<br />

portulaceae 21 4<br />

polyrhiza, Lemna<br />

polystachion atrichum,<br />

Pennisetum<br />

polystachion setosum,<br />

Pennisetum<br />

polystachion, Pennisetum<br />

Pontederia cordata 73,79,80<br />

Pontederia lanceolata 8 1<br />

Pontederia rotundifolia 80<br />

Pontederiaceae 3,70,79,166<br />

Portulaca 24, 209,218<br />

Portulaca grandijlora 21 4,<br />

216,218<br />

Portulaca oleracea 1,3, 1 5,<br />

91,208-218<br />

Portulaca pilosa 21 6<br />

Portulaca quadrifida 2 16<br />

portulaceae, Albugo<br />

portulaceae, Ascochyta<br />

portulaceae, Bipolaris<br />

portulaceae, Cercospora<br />

portulaceae,<br />

Dichotomophthora<br />

portulaceae,<br />

Helminthosporium<br />

Portulacaecae 3,210,216<br />

portulacearum, Albugo<br />

potato 15,63, 1 1 1, 167<br />

potato virus Y 16<br />

praelonga, Cionothrix<br />

pratensis, Pratylenchus<br />

Pratylenchus 57,215<br />

Pratylenchus minutus ,32,<br />

215<br />

Pratylenchus pratensis 1 5,9 1<br />

Pratylenchus zeae 23,9 1<br />

proso (Panicum novemnerve)<br />

175<br />

proteispora, Leptosphaeria<br />

prunifolia, Euphorbia<br />

Pseudocephalobus indicus 23


300<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Pseudocercospora<br />

eupatorii-formosani 39,41<br />

Pseudomonas glumae 92<br />

Pseudomonas plantarii 92<br />

Pseudomonas solanacearum<br />

16<br />

pseudovirgata, Euphorbia<br />

Puccinia 24, 100, 1 62<br />

Puccinia conoclinii 16<br />

Puccinia chaetochloae 194<br />

Puccinia rottboelliae<br />

223,226<br />

Puccinia substriata 194<br />

pudica hispida, Mimosa<br />

pudica unijuga, Mimosa<br />

pudica, Mimosa<br />

pulcherrima, Euphorbia<br />

pumila, Magnolia<br />

pungens, Zoysia<br />

purpurea, Tephrosia<br />

purpureum, Pennisetum<br />

purpureus, Lablab<br />

purpusilla, Lemna<br />

purslane (Portulaca oleracea)<br />

210<br />

putri malu 1 48<br />

Pyrenochaeta 227<br />

Pyricularia 58, 176<br />

Pyricularia grisea, see<br />

Magnaporthe grisea<br />

Pyricularia oryzae 65,92,<br />

176<br />

Pyricularia owe var.<br />

commelinae 58<br />

quadr$da, Portulaca<br />

quadripara, Brachiaria<br />

quadrivalis, Mimosa<br />

quinqueseptatum,<br />

Cylindrocladium<br />

Radopholus similis 57, 106,<br />

215<br />

radulans, Dactyloctenium<br />

ragi (Eleusine coracana) 86<br />

ragwort (Senecio jacobaea)<br />

131<br />

ramiflorum, Aspidosperma<br />

Ranunculus sceleratus 16<br />

rats<br />

rau mhc 118 thon 166<br />

mu Sam 2 1 0<br />

red gram 22<br />

r&mb&t& 138<br />

reniformis, Rotylenchulus<br />

repens, Agropyron<br />

repens, Panicum<br />

Rhizoctonia 65, 133<br />

Rhizoctonia solani 78, 100,<br />

167<br />

rice (Oryza sativa) 5,8, 12,<br />

20,23,28,56-58,61,<br />

63-65,71,77,80 88-93,<br />

98 101,104,110,<br />

11 1,114,115,149,160<br />

166,167,174,180 , 186,<br />

193, 199,202,210,222,<br />

225 ,226,230<br />

rice dwarf 66<br />

rice leaf gall 93,227<br />

rice orange leaf 93<br />

rice ragged stunt 93, 167<br />

rice root rot nematode 91<br />

rice tungro 66<br />

rice tungro bacilliform 93<br />

rice tungro spherical 93<br />

rice yellow mottle 93<br />

ricini, Amphobotrys<br />

riparia, Acacia<br />

riparia, Ageratum<br />

rixosa, Mimosa<br />

robusta, Commelina<br />

robusta. Grevillea<br />

rodmanii, Cercospora<br />

rolfsii, Pellicularia<br />

rolfsii, Sclerotium<br />

roridum, Myrothecium<br />

roseum, Fusarium<br />

rostratum, Helminthosporium<br />

Rottboellia 223,227<br />

Rottboellia cochinchinensis 3,<br />

92,220-227<br />

Rottboellia compressa 224,<br />

225<br />

Rottboellia exaltata, see<br />

Rottboellia<br />

cochinchinensis<br />

rottboelliae, Cercospora<br />

rottboelliae, Puccinia<br />

rottboelliae, Spacelotheca<br />

rotundifolia, Pontederia<br />

rotundifolia, Salvinia<br />

rotundus, Cyperus<br />

Rotylenchulus reniformis 15,<br />

23,32,91, 100, 106, 11 1,<br />

182,215<br />

rubber 28,37,120,127,139<br />

160, 170, 174, 180, 193,<br />

194<br />

Rudbeckia 3 1<br />

rufa, Hyparrhenia<br />

rugosum, Ischaemum<br />

rumput belulhng 86<br />

rumput berus 192<br />

rumput bukit 1 10<br />

rumput canggah 180<br />

rumput gajah 192<br />

rumput go1 kar 36<br />

rumput jae jae 174<br />

rumput jurig 192<br />

rumput kerbau 1 80<br />

rumput kuning 192<br />

rumput pait 180<br />

rumput sambou 86<br />

rumput tahi ayam 12<br />

rumput tahi berbau 1 10<br />

saab sua 36<br />

sabung sabungan 86<br />

sacchari, Phyllachora<br />

Saccharum 224,227<br />

Saccharum oficinarum 8<br />

Saccharum spontaneum 227<br />

saltwater couch (Paspalum<br />

distichurn or P. vaginatum)<br />

181<br />

Salvinia 77, 1 15, 197,202<br />

Salvinia cucullata 167,<br />

202,<br />

Salvinia molesta 5,71,77,<br />

167,199,202,206<br />

Salvinia rotundifolia 205<br />

sambau 62<br />

sampeas 160<br />

sanguinalis, Digitaria<br />

sasakii, Corticium<br />

sativa, Lactuca<br />

sativa, Oryza<br />

sawah 70<br />

scabrella, Mimosa<br />

scandens, Mikania<br />

sceleratus, Ranunculus


Schizostachyum dumetorum 8<br />

scitaminea, Ustilago<br />

Sclerophthora macrospora 92<br />

Sclerotinia sclerotiorum 100<br />

sclerotiorum, Sclerotinia<br />

Sclerotium rolfsii 16,92<br />

scolymus, Cynara<br />

scrobic (Paspalum<br />

scrobiculatum) 18 1<br />

scrobiculatum, Paspalum<br />

Secale 227<br />

segan 210<br />

selloi, Calliandra<br />

semalu gajah 148<br />

semhggi 1 14<br />

sembung rambat 126<br />

senduduk 120<br />

Senecio jacobaea 13 1<br />

Senecioneae 33<br />

senegalensis, Marsilea<br />

sensitiva, Aeschynomene<br />

Septoria 41,47<br />

Septoria ekrnaniana 41<br />

sesame 14<br />

Setaria 227<br />

Setaria glauca 63<br />

Setaria italica 8<br />

setariae, Bipolaris<br />

setariae, Drechslera<br />

setosum, Pennisetum<br />

Siam weed (Chromolaena<br />

odorata) 36,46<br />

siceraria, Lagenaria<br />

silisilihan 230<br />

silverbeet (Beta vulgaris var.<br />

cicla) 21 2<br />

similis, Raabpholus<br />

sin ngo let kya 86<br />

sin ngo myet 86<br />

Skranquia 145<br />

smao 110<br />

smao bek kbol62<br />

smao choeung tukke 86<br />

Solanaceae 2 16<br />

solanacearum, Pseuabmonas<br />

solani, Rhizoctonia<br />

Solanum nigrum 14,24<br />

somnians, Mimosa<br />

Sonchus 130<br />

Sonchus asper 14<br />

Sonchus yellow net 32<br />

Sorghum 5,8,28,63,89,90,<br />

91,93,104,110,160,210,<br />

222,224,226,227<br />

Sorghum bicolor 8<br />

Sorghum verticillijlorum 93<br />

Sorosporium paspali 1 82<br />

sourgrass (Paspalum<br />

conjugatum) 180<br />

soybean (Glycine mar) 30,99<br />

160,222<br />

soybean mosaic 32<br />

Spaceloma 100<br />

Spacelotheca ophiuri, see<br />

Sporisorium ophiuri<br />

Spacelotheca penniseti 194<br />

Spacelotheca rottboelliae 227<br />

Spanish needle (Bidens<br />

pilosa) 28<br />

Sphenoclea zeylanica 3, 167,<br />

228-231<br />

Sphenocleaceae 3,230<br />

spiders 45,46,52<br />

Spinacia oleracea 22<br />

spinicaudata, Hirschmaniella<br />

spinosa, Emex<br />

spinosus, Amaranthus<br />

spiny amaranth (Amaranthus<br />

spinosus) 20<br />

spiny pigweed (Amaranthus<br />

spinosus) 20<br />

Spirodela 204<br />

spontaneum, Saccharum<br />

Sporisorium ophiuri 22 1,<br />

223,227<br />

Sporisorium overeemi 176<br />

St John's wort (Hypericum<br />

perforatum angustifolium)<br />

130<br />

stinking passionflower<br />

(Passijlora foetida) 186<br />

Straits rhododendron<br />

(Melastoma<br />

malabathricum) 120<br />

stratiotes, Phyllosticta<br />

stratiotes, Pistia<br />

strawberry 157<br />

suberosa, Passzjlora<br />

subornata, Hydrozetes<br />

subquadripara, Brachiaria<br />

substriata, Puccinia<br />

subtriplinenium,<br />

Heterocentron<br />

7 General index 301<br />

sugar beet 2 14<br />

sugarcane (Saccharum<br />

oficinarum) 5,8,20,63,<br />

65,89,90,93, 104, 110,<br />

111, 139, 160, 174, 181,<br />

193,210,222,226<br />

sugarcane mosaic 66,93,182<br />

sugarcane streak 93<br />

sunflower (Helianthus anuus)<br />

33<br />

swamp panic (Panicum<br />

paludosum) 175<br />

sweet potato 30,57<br />

Tageteae 33<br />

Tagetes erecta 24<br />

Talinum paniculatum 2 1 8<br />

Talinum triangulare 21 8<br />

tapah itik 1 14<br />

tapioca mosaic 16, 106<br />

taro (Colocasia) 57,63,71,<br />

79,110<br />

tarragon 2 1 4<br />

tawbizat 36<br />

tea 28, 37, 104, 127, 139,<br />

160,174,180<br />

teak 37,127<br />

tenuis, Alternaria<br />

Tephrosia purpurea 37<br />

terebrantis, Orthogalumna<br />

termites 43<br />

Tetranychus 140<br />

Tetranychus novocaledonicus<br />

23<br />

Tetranychus urticae 15,100<br />

Thanatephorus cucumeris<br />

167<br />

Tiboochina urvilleana 121<br />

timun padang 186<br />

tithymali, Aecidium<br />

toads 45<br />

tobacco 28,30,63,91,214<br />

tobacco broad ring spot 21 4<br />

tobacco bunchy top 24<br />

tobacco etch 21 4<br />

tobacco leaf curl 16, 106<br />

tobacco mosaic 24,2 14<br />

tobacco streak 2 14<br />

Tolyposporium bullatum 66<br />

tomato91, 100, 111, 142<br />

tomato leaf curl 1 6, 106


302 Biological Control of Weeds: Southeast Asian Prospects<br />

tomato spotted wilt 32<br />

tontrem khet 36<br />

torpedo grass (Panicum<br />

repens) 174<br />

Tradescantia 57<br />

Tragia volubilis 101<br />

translucens, Xanthomonas<br />

triangulare, Talinum<br />

Trichechus 72<br />

tricolor, Amaranthus<br />

tricophora, Ustilago<br />

trinh nu nhon 148<br />

trinitaria, Mikania<br />

Triops cancriformis 1 67<br />

tripartita, Passiflora<br />

tristachya, Eleusine<br />

Triticum 8,227<br />

tropica, Phoma<br />

tuk das khla thom 104<br />

tungro 93<br />

turicum, Helminthosporium<br />

Turneraceae 187<br />

Tylenchorhynchus brassicae<br />

215<br />

typhoideum, Pennisetum<br />

ulam tikus 126<br />

ulasiman 21 0<br />

urd bean yellow mosaic 16,<br />

106<br />

Ureab eichhorniae 82<br />

Ureab mimosae-invisae 145<br />

Uromyces bidenticola 32<br />

Uromyces euphorbiae 100<br />

urticae, Tetranychus<br />

urvilleana, Tiboochina<br />

Ustilago 92<br />

Ustilago crusgalli 66<br />

Ustilago eleusinis, see<br />

Melanopsichium eleusinis<br />

92<br />

Ustilago sciraminea 227<br />

Ustilago tricophora 66<br />

utilis, Echinochloa<br />

utilis, Eleusine<br />

vaginalis, Monochoria<br />

vaginatum, Paspalum<br />

Vanda 15<br />

variabilis, Buddleia<br />

vegetables 8,20,28,56,63,<br />

104,181,193,210<br />

velloziana, Mimosa<br />

Venegasia carpesioides 3 1<br />

Verbena 16<br />

Verbesina 3 1<br />

Vemonieae 33<br />

Veronica peregrina 167<br />

verticilliflorwn, Sorghum<br />

viridis, Amaranthus<br />

vitifolia, Mikania<br />

volubilis, Tragia<br />

vulgare, Andropogon<br />

vulgaris var. cicla, Beta<br />

vulgaris, Phaseolus<br />

walteri, Echinochloa<br />

water clover (Marsilea<br />

minuta) 1 1 3-1 15<br />

water hyacinth (Eichhornia<br />

crassipes) 70<br />

water lettuce (Pistia<br />

stratiotes) 198<br />

Wedelia caracasana 1 4<br />

wheat (Triticum) 58,65,<br />

89-93,111,214<br />

wheat rosette 93<br />

wheat streak mosaic 66<br />

white amur<br />

(Ctenopharyngdon idella)<br />

72<br />

wild passionfruit (Passiflora<br />

foetida) 186<br />

witchgrass (Panicum<br />

capillare) 175<br />

Wulfia baccata 14<br />

xB b6ng 230<br />

Xanthium 15<br />

Xanthomonas albilineans 182<br />

Xanthomonas translucens 66<br />

xenoplar, Criconemella<br />

ya hep 180<br />

ya plong 62<br />

ya sap raeng 12<br />

ya tabsua 12<br />

yaa khaehyon chop k92<br />

yaa prong khaai 222<br />

yaa yaang 98<br />

yah chan ah kat 174<br />

yah chanagard 174<br />

yah koen jam khao 28<br />

yah sua mop 36<br />

yah teenka 86<br />

ye padauk 70<br />

Zea 224,227<br />

Zea mays 8<br />

zeae, Pratylenchus<br />

zeylanica, Sphenoclea<br />

Zinnia 16,3 1,33<br />

Zinnia yellow net 16<br />

zonatum, Acremonium<br />

Zoysia pungens 18 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!