Next Article in Journal
The Functions of an NAC Transcription Factor, GhNAC2-A06, in Cotton Response to Drought Stress
Previous Article in Journal
Identification of Accurate Reference Genes for qRT-PCR Analysis of Gene Expression in Eremochloa ophiuroides under Multiple Stresses of Phosphorus Deficiency and/or Aluminum Toxicity
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Ethnobotanical, Phytochemical, and Pharmacological Properties of the Subfamily Nepetoideae (Lamiaceae) in Inflammatory Diseases

by
Nancy Ortiz-Mendoza
1,2,
Martha Juana Martínez-Gordillo
3,*,
Emmanuel Martínez-Ambriz
4,
Francisco Alberto Basurto-Peña
5,
María Eva González-Trujano
6 and
Eva Aguirre-Hernández
1,*
1
Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
2
Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria Coyoacán, Edificio D, 1° Piso, Circuito de Posgrados, Mexico City 04510, Mexico
3
Departamento de Biología Comparada, Herbario de la Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
4
Instituto de Ecología, A.C., Red de Biodiversidad y Sistemática, Xalapa 91073, Veracruz, Mexico
5
Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
6
Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
*
Authors to whom correspondence should be addressed.
Plants 2023, 12(21), 3752; https://doi.org/10.3390/plants12213752
Submission received: 8 September 2023 / Revised: 15 October 2023 / Accepted: 31 October 2023 / Published: 2 November 2023

Abstract

:
Nepetoideae is the most diverse subfamily of Lamiaceae, and some species are well known for their culinary and medicinal uses. In recent years, there has been growing interest in the therapeutic properties of the species of this group regarding inflammatory illnesses. This study aims to collect information on traditional uses through ethnobotanical, pharmacological, and phytochemical information of the subfamily Nepetoideae related to inflammatory diseases. UNAM electronic resources were used to obtain the information. The analysis of the most relevant literature was compiled and organised in tables. From this, about 106 species of the subfamily are traditionally recognised to alleviate chronic pain associated with inflammation. Pharmacological studies have been carried out in vitro and in vivo on approximately 308 species belonging to the genera Salvia, Ocimum, Thymus, Mentha, Origanum, Lavandula, and Melissa. Phytochemical and pharmacological evaluations have been performed and mostly prepared as essential oil or high polarity extracts, whose secondary metabolites are mainly of a phenolic nature. Other interesting and explored metabolites are diterpenes from the abietane, clerodane, and kaurane type; however, they have only been described in some species of the genera Salvia and Isodon. This review reveals that the Nepetoideae subfamily is an important source for therapeutics of the inflammatory process.

1. Introduction

Within the Angiosperms, the Lamiaceae is the sixth most diverse family worldwide. It is divided into 12 subfamilies, where Nepetoideae stands out due to its diversity. Based on molecular and morphological data, it is a monophyletic subfamily, with approximately 123 genera and 3685 species [1,2]. Morphologically, Nepetoideae is characterised by herbaceous, shrubby, or rarely arboreal individuals; they are generally aromatic as they contain a diversity of terpenoids and the presence of the well-known rosmarinic acid [3,4]. Many species belonging to genera of this subfamily are known for their medicinal and culinary uses as condiments, e.g., Ocimum, Origanum, Thymus, Salvia, Melissa, and Lavandula, among others [5,6,7,8]. Other genera of economic importance are Perilla and Prunella. Perilla frutescens is used as a condiment in oriental cuisine and Prunella vulgaris is outstanding for its medicinal, culinary, and ornamental uses, respectively [9,10]. On the other hand, the need for alternative and complementary therapies to treat several health problems around the world is continuous. Relevant areas looking for relevant information on these issues include agriculture and biological sciences in the fields of biochemistry, genetics, and molecular biology, as well as in the fields of pharmacology, toxicology, and pharmaceuticals. Thus, certain countries, such as India and China, have contributed almost 25% of the publications in this research area [11,12]. An interesting topic is inflammation, which is a complex set of sequential tissue changes to eliminate the initial cause of cellular injury; it presents various signs, such as local redness, swelling, pain, heat, and loss of function [13,14]. In the fields of pharmacology, toxicology, and pharmaceuticals, therapies to treat inflammation are frequently mentioned, as the inflammatory process is implicated in a wide variety of physical and mental diseases that dominate current morbidity and mortality worldwide [15,16]. At the molecular level, several chemical substances are implicated in reducing or increasing inflammation. Frequently, certain cellular stimuli trigger inflammatory processes through the release of proinflammatory cytokines and chemokines (TNF, IL-1β, IL-22, IL-17, IFN-γ, among others). Cytokines can activate endothelial cells and acute phase protein synthesis and recruit immune system cells that play a crucial role in phagocytosis and pathogen destruction. Once the cells of the immune system are activated, they release cytokines and stimulate the release of prostaglandins that mediate a series of signs and symptoms of this process [17]. Finally, for the closure of the inflammatory response, cytokines, such as IL-10, IL-37, and TGF-β, can largely suppress this mechanism and return to homeostasis; if the anti-inflammatory response is not very pronounced, it can lead to vulnerability [18,19]. Currently, glucocorticoids and non-steroidal anti-inflammatory drugs are the most commonly used therapies in the clinic to treat problems related to inflammation. These drugs provide pain relief to the patient. The main mechanism of action of these drugs is the inhibition of prostaglandins and other proteins released in the inflammatory process [20]. However, there is enough evidence demonstrating the risk of myocardial infarction, heart failure, kidney failure, and arterial hypertension as part of the common adverse effects [21,22]. Due to these inconveniences, research on medicinal plants is relevant because they are a large potential reservoir of active metabolites with fewer harmful effects. The genera and species of the subfamily Nepetoideae (Figure 1) are interesting and important for their useful properties. Therefore, this review aims to compile some of the medicinal uses attributed to species belonging to the subfamily Nepetoideae, as well as the pharmacological properties and phytochemical analysis to isolate bioactive metabolites responsible for the anti-inflammatory activity and mechanism of action, reinforcing them as a potential therapy to improve health.

2. Results and Discussion

2.1. Ethnobotanical Information

According to the Encyclopedic Dictionary of Traditional Mexican Medicine, inflammation is a synonym for swelling; it is caused by blows, infections, rheumatism, local pain, heat, and redness, among others. In traditional medicine, inflammation is almost always understood as a sign or symptom present in various diseases and rarely as a condition [23]. Thus, the search for literature describing traditional uses related to the inflammatory process include 33 genera and 106 species of the Nepetoideae subfamily worldwide (Table S1). Regions where they are used include Chile, Brazil, Ecuador, Nicaragua, Panama, Costa Rica, Mexico, USA, and Canada in the American continent [24,25,26,27,28,29,30,31], Spain, Greece, Italy, Turkey, Algeria, Libya, Morocco, Mauritania, Tunisia, and Israel from the Mediterranean Sea, and China, India, Nepal, and Pakistan from the Himalayan region [32,33,34,35,36,37,38,39,40]. Other regions include the Philippines, Malaysia, and Thailand from Southeast Asia, and some islands, such as Monserrat, Samoa, and Madagascar [41,42,43,44,45,46] (Figure 2).
The genera with the most reports of traditional uses for inflammation-related conditions are Mentha, Ocimum, and Salvia. The most mentioned species was Mentha longifolia (L.) Hudson, M. spicata L., Ocimum sanctum L., and Salvia rosmarinus L. (Figure 3) (Table S1). M. longifolia and M. spicata are used for inflammation of the throat, gums, and eyes. O. sanctum is used in India to treat everything from constipated flu to chronic pain. Meanwhile, S. rosmarinus is used against neuritis, rheumatism, and uterine fibrosis [33,36,37,47]. The genera distributed in the American continent are Agastache, Cunila, Hedeoma, and Hyptis, all of which are used to treat various conditions, such as gastrointestinal pain and inflammation, gingivitis, blows, rheumatism, wounds, earaches, bones, and colic [23,48,49].
Elsholtzia, Isodon, and Orthosiphon are widely used in Oriental medicine for skin conditions (e.g., wounds and psoriasis), the respiratory tract (tonsillitis and pharyngitis), and colic pain, respectively [50,51,52]. Some genera are part of the culinary culture of many countries, such as Mentha, Ocimum, Origanum, and Thymus, where they are used as condiments and for gastrointestinal ailments (diarrhea, dysentery, and colic), the respiratory system (asthma, colds, catarrh, and bronchitis), to reduce fever, to reduce swelling, and for some chronic issues, such as uterine fibrosis [32,53,54,55]. A highly cited genus is Salvia, known both in Mediterranean cuisine for its culinary use and in traditional medicine in different countries including Mexico, China, and India. Salvias are used to treat wounds, pain, infections, fever, rheumatism, uterine fibrosis, and burns, among others [31,34,52]. Asterohyptis mociniana (Benth.) Epling and Isodon rubescens (Hemsl.) H. Hara are used to treat gastroenteritis, whereas Clinopodium brownei Kuntze and Plectranthus scutellarioides Blume are used for swelling. In the cases of Minthostachys mollis (Kunth) Griseb. and Monarda fistulosa L., they have been reported for bronchitis, while Calamintha acinos Man. and Lepechinia spicata Willd. have been reported for lung problems [23,24,31,35,52,56,57,58]. All of these genera produce a considerable number of secondary metabolites, which alone or in synergy have beneficial biological properties for human health, making excellent functional foods, which could subsequently be developed as nutraceuticals [59].

2.2. Pharmacology

In general, it is known that polar preparations are the most commonly used medicinal plants in folk medicine, and they are included in the most representative studies explored in bioassays and phytochemical studies [60]. In the case of the Nepetoideae subfamily species, preparations commonly used in folk medicine are produced through infusion or decoction of the whole plant or other independent parts (Table S1). However, not only polar extractions but also non-polar extracts using different organic solvents and the essential oil have been reported to identify and isolate bioactive metabolites with anti-inflammatory activity. A total of 831 species of the Nepetoideae subfamily were obtained with at least one article indexed in any category in the Scopus database. From the 831 species, a total of 39 genera and 308 species were reported in 3124 articles, all of them associated with the anti-inflammatory activity (Table S2). In this regard, the genera with the most publications (100–1400) were Salvia, Ocimum, Thymus, Mentha, Origanum, Lavandula, and Melissa (Figure 4). It was followed by 17 genera with 10 to 100 articles (Figure 5), of which 12 belong to the Menthae tribe (Prunella, Satureja, Zataria, Nepeta, Dracocephalum, Hyssopus, Agastache, Glechoma, Ziziphora, Clinopodium, Monarda, and Lycopus), 4 belong to the Ocimeae tribe (Isodon, Orthosiphon, Plectrathus, and Hyptis), and only 1 is from the Elsholtziae tribe (Elsholtzia) (Figure 4).
Within the genus Salvia, there are approximately 111 species reported in relation to the inflammatory process. The most studied species are S. miltiorrhiza Bunge and S. officinalis L. (Figure 6). For S. miltiorrhiza, its properties have been reported using the root extracts, where a number of isolated diterpenes called tanshinones were also identified as responsible for the effect on the reduction of proinflammatory cytokines in in vitro assays [61]. The reduction of fibrosis in the liver, heart, lung, and kidney was reported in in vivo models, with improvement against allergies, asthma, and rhinitis using clinical tests [62,63]. Anti-inflammatory effects of S. officinalis have been described in in vivo tests prepared as organic extracts of different polarity and aqueous extracts, in which the main component was rosmarinic acid [64]. S. dolomitica Codd, S. frigida L., S. nipponica Miq., S. petrophilla G. X. Hu, E. D. Liu, and Yan Liu, S. plebeia R. Br., and S. sclareoides Brot. reduced the enzymatic activity of elastase and inflammatory mediator molecules, such as nitric oxide (NO), IL-4, IL-13, IL-5, TNF-α, cyclooxygenase (COX)-2, and prostaglandine PGE2 in RAW 264.7 macrophages induced with LPS in organic extracts of different polarities and aqueous extracts [65,66,67,68,69,70]. The polar extracts of S. chudei Batt. and Trab., S. fruticosa Mill., S. leriifolia Benth., S. macilenta Boiss., S. sclarea L., S. transsylvanica (Schur ex Griseb. and Schenk) Schur, and S. virgata Ortega demonstrated anti-inflammatory activity in the carrageenan-induced edema model in rats at a dose range of 250–1500 mg/kg. Finally, the acetone extract and the methanol extract of S. aegyptiaca L. and S. moorcroftiana Wall. ex Benth., respectively, showed antipyretic effects in murine models of hyperthermia (Table S2) [71,72,73,74,75,76,77,78]. After the genus Salvia, the species Ocimum tenuiflorum L. (syn. Ocimum sanctum L.), Thymus vulgaris L., Mentha spicata L., and Origanum vulgare L. are the most studied of their respective genera (Figure 6). The organic and aqueous extracts of O. tenuiflorum showed positive effects on the epithelialization and a reduction in the induced edema in murine models. Likewise, phenolic compounds isolated from this species, including rosmarinic acid, decreased the concentration of COX-1 in in vitro models [79,80]. The aerial part of T. vulgaris increased the activity of antioxidant enzymes in models of renal and hepatic dysfunction in rabbits, and it also had an effect against cholestasis, chronic hepatitis, and liver fibrosis in clinic studies [81]. Both the organic and aqueous extracts of M. spicata decreased edema, granulomas, and mucositis induced in murine models [82]. The essential oil of O. vulgare produced significant effects on the proinflammatory cytokines and chemokines [83]. Lavandula angustifolia Mill. and Melissa officinalis L. have been also explored for their anti-inflammatory effects. Regarding the genus Lavandula, several species have been evaluated, expect for Melissa, where only M. officinalis has been described. With respect to L. angustifolia, both the essential oil and the polyphenolic fraction reduced the levels of proinflammatory cytokines in murine models of induced edema, ischemia, chronic inflammatory pain, and sepsis [84,85,86,87,88,89,90,91]. Anti-inflammatory effects of M. officinalis were corroborated in a model of edema induced with carrageenan in a murine model, mainly from its ethanol and aqueous extract [92,93,94,95]. The genera explored for their anti-inflammatory effects that belong to the Menthae tribe are shown in Figure 5. In the case of Prunella, only P. vulgaris L. has been evaluated in this affection. The essential oil, polar extracts, as well as the isolated compounds from the inflorescences, such as the diterpene prunela diterpenol A and the phenolic compounds prunelanate A and prunelanate B, presented activity in the regulation of proinflammatory cytokines in in vitro tests [96,97,98,99]. Triterpenes, such as 2α,3α,23-trihydroxyursa-12,20(30)-dien-28-oic acid, β-amyrin, and eusapic acid, produced effects on histamine suppression in in vitro studies [100]. For the genera Satureja, Zataria, Nepeta, Glechoma, and Lycopus, few species have been studied in murine models using polar extracts of Satureja montana L. and Nepeta dschuparensis Bornm, which decreased IL-1β levels in the model of traumatic brain injury and artery occlusion infarction, respectively. Glechoma longituba (Nakai) Kuprian attenuated proinflammatory gene expression in retinas exposed to bright light, Lycopus lucidus Turcz. ex Benth. inhibited histamine release in allergy models, and Zataria multiflora Boiss. improved levels of proinflammatory cytokines in asthma models [101,102,103,104,105]. From Agastache mexicana (Kunth) Lint and Epling and Dracocephalum moldavica L., which also belong to the Mentheae tribe, the glycosylated flavonoid tilianin has been isolated, where a reduction in the mRNA expression of proinflammatory cytokines was observed in in vivo and in vitro models [106,107]. Likewise, some little-known diterpenes have been isolated from D. moldavica, such as dracocephalumoids A-E, uncinatone, trichotomone F, and caryopterisoid C, which suppressed TNF-α, IL-1β, and NO in RAW 264.7 macrophages induced with LPS [108]. Finally, the aqueous extracts of Hyssopus officinalis L. and Ziziphora clinopodioides Lam. were used for the synthesis of Zn and Fe nanoparticles, demonstrating their anti-inflammatory effect in murine models of carrageenan-induced edema and hemolytic anemia, respectively [109,110]. Diterpenoid-type compounds isolated from the aqueous extracts of species of the Ocimeae tribe have presented anti-inflammatory activity in both in vitro and in vivo models, such as the case of orthosiphol A and B obtained from Orthosiphon stamineus Benth., parvifloron D from Plectranthus ecklonii Benth., as well as suaveolol and methyl suveolate from Hyptis suaveolens (L.) Poit. [111,112,113]. Regarding the genus Isodon, such as I. adenanthus (Diels) Kudô, I. enanderianus (Hand.-Mazz.) H.W. Li, I. eriocalyx (Dunn) Kudô, I. henryi (Hemsl.) Kudô, I. leucophyllus (Dunn) Kudô, I. rugosiformis (Hand.-Mazz.) H. Hara, I. scoparius C.Y. Wu and H.W. Li) H. Hara, and I. rubescens (Hemsl.) H. Hara, a significant amount of kaurane-type diterpenes have been isolated as responsible for the activity on proinflammatory cytokines both in RAW 264.7 macrophages induced with LPS as well as in a variety of models, such as in murine infections of encephalomyelitis, prostatitis, peritonitis, gouty arthritis, and type II diabetes [114,115,116,117,118,119,120]. In the case of I. ternifolius (D.Don) Kudô, the lignans ternifoliuslignans A, B, C, D, and E and the glycosylated phenylethanoid 3-carboxy-6,7-dihydroxy-1-(3′,4′-dihydroxyphenyl)-naphthalene were characterized to suppress activity of PGE2 and TNF-α in macrophages induced with LPS [121]. I. eriocalyx, from which endophytic fungus Phomopsis sp. was first isolated, allowed the isolation of the phomopchalasins A, B, and C with NO inhibitory activity in in vitro assays [122]. Species with few studies reported in the literature were Cedronella canariensis (L.) Webb and Berthel., Hoslundia opposita Vahl, and Micromeria biflora (Buch. Ham. ex D.Don) Benth., prepared as chloroform extracts of flowers, root, and aerial part, respectively, which demonstrated anti-inflammatory effects in the murine model of edema induced with carrageenan [123,124,125]. Polar extracts of Asterohyptis stellulata (Benth.) Epling promoted skin regeneration in CD-1 mice. Micromeria croatica (Pers.) reduced the expression of proinflammatory cytokines in models of liver injury, and Mosla chinensis Maxim. and M. scabra attenuated levels of inflammatory mediators in models of ulcerative colitis [126,127,128,129]. From the petroleum ether extracts of Horminum pyrenaicum L., abietane-type diterpenes were isolated that suppressed the activity in immunometabolic pathways related to inflammatory processes in murine models [130] (See Table 1). All of this information together demonstrates that different classes of natural compounds are investigated for their anti-inflammatory potential properties in the species of the Nepetoideae subfamily. The chemical structure diversity found in natural products has served as an attractive approach in searching for relevant anti-inflammatory drugs, as it can be possible from this subfamily. Thus, the chemical structure diversity is not a factor in producing similar biological activity; however, the bioactivity can be improved by modifying the structure [131,132]. Due to this, it is important to notice that natural chemical compounds show a wide spectrum of activities and interaction in several molecular targets responsible for the anti-inflammatory activity of these species because it can be more than one at the same time. As an example, several compounds possessing antioxidant properties can prevent and/or reduce oxidative stress, which is relevant in inflammation and neurodegenerative diseases. The activity–structure relationship of several common polyphenols in plants, such as gallic acid reported in some species of the Nepetoideae subfamily, have demonstrated that the higher the number of phenolic hydroxyl groups, the stronger the antioxidant activity that regulates inflammatory mechanisms and pathways [132]. The interaction of some flavonoids in several targets at the same time, such as quercetin derivatives, has been reported using antagonists of inhibitory receptors, such as endogenous opioids, and those of serotoninergic and/or dopaminergic neurotransmission involved in neurodegenerative diseases have been explored by using predictive molecular docking, too, in order to support their important role at peripheral and central levels [131]. Some natural products from a terpenoid nature, such as sclareol, which are also found in species of this subfamily, produced their anti-inflammatory activity by inhibiting not only NO production but also the expression of iNOS and COX-2 proteins, as well as in the MAPK signaling pathway [63]. Meanwhile, tanshinone II activity has been supported by regulating the CCNA2-CDK2 complex and AURKA/PLK1 pathways [133]. Further structure activity relationship studies are encouraged for metabolites found in the Nepetoideae subfamily species, as in other plants, to identify not only the chemical compounds but also their mechanisms of action involved in their potential biological activities as anti-inflammatory therapy to improve health.

2.3. Phytochemistry

Chemical secondary metabolites have been identified and isolated using dissolvents of different polarity through several techniques of extraction [194]. Therefore, phytochemical techniques have allowed for the determination of the main components of some species of the subfamily Nepetoideae. This section generally describes some of the compounds commonly identified in the subfamily (mono- and tri-terpenoids, phenolic acids, and flavonoids). It also mentions the case of clerodane and kaurano-type diterpenes, which have different biological activities (see Section 2.2) and have only been isolated in certain genera, such as Salvia and Isodon. Table S3 lists the species studied phytochemically and the secondary metabolites isolated from them. Monoterpenes have been the most identified, such as thymol (C1) and carvacrol (C2), which are important components of the essential oils of Collinsonia, Monarda, Ocimum, Origanum, Satureja, Thymbra, Thymus, and Zataria [83,101,195,196,197,198,199,200]. On the contrary, there are exclusive molecules of certain genera, as exemplified by Mentha, where menthol (C3), menthone (C4), and eucalyptol (C5) predominate. In the case of Lavandula and Melissa, linalool and nerol have been identified as the most important constituents, respectively [94,201,202]. Different phenolic acids have been reported throughout the subfamily, such as caffeic acid, ferulic acid, gallic acid, chlorogenic acid, sinapic acid, and a high presence of rosmarinic acid (C6) [203,204,205,206,207,208]. Similarly, the presence of flavonoids and their glycosylated derivatives, such as quercetin, luteolin, and naringenin, have been very common [126,198,200,201,202]. In contrast, the presence of the flavonoid tilianin (C7) has been reported only in Agastache and Dracocephalum (Figure 7) [104,105]. It is important to notice that diterpenes are the chemical group less explored throughout the subfamily. The species of Dracocephalum taliense Forrest and Horminum pyrenaicum L. included the abietanes sugiol, ferruginol, cryptojaponol, and totarol isolated from roots. Dracocephalumoids A, B, C, and D (C8–C11), and orthosiphol A and B (C12–C13) were purified from Dracocephalum moldavica L. and Orthosiphon stamineus Benth. [108,111,209]. Other genera, such as Salvia and Isodon, stand out for the great diversity of diterpenes that have been isolated and identified in several of their species. In the case of Salvia, terpenes of abietane, clerodane, labdane, and pimarane-type structures have been described. Some examples are tanshinone IIA (C14) and sclareol (C15) isolated from S. miltiorrhiza and S. sclarea, respectively [61,62,63,64,65,66,67,68,69,70,71]. In the case of the genus Isodon, compounds with a Kaurano-type skeleton predominated, and some common cases among the species were adenanthine (C16), eriocalyxin B (C17), and oridonine (C18) [114,117,169]. Finally, the presence of triterpenes, such as oleanolic acid (19), ursolic acid (20), stigmasterol (21), and their derivatives, was very common in the subfamily Nepetoideae (Figure 7) [210,211,212]. Chemical structures of the representative bioactive metabolites are included in Figure 7.

3. Materials and Methods

The species selected for this review, without including Mexican sage (previously reported in ref. [213]), were obtained from the Taxonomy Browser of the National Center for Biotechnology Information [214]. Thus, traditional uses were explored using the Economic Botany database and the books available at the Institute of Biology, UNAM. Then, pharmacological and phytochemistry properties were searched using the Scopus database. The literature research covers a period from the past to December 2022. The optimization of this search was made by developing a script based on the Python programming language through its interface 3.11.1 (python.org) and using the Application Programming Interface (API) provided by Scopus (dev.elsevier.com). For the development of the script, the following elements were used: (1) list of species belonging to the Nepetoideae subfamily, (2) SCOPUS website to access its database, (3) access credentials to the database (API-Key), (4) parameters, search algorithm, and information processing, and (5) printing of the results. The search strategy consisted of two phases. In the first, the presence/absence of information on each species of the subfamily Nepetoideae was explored in all of the indexed fields (All fields) in the Scopus database. In the second phase, the species with the presence of information obtained in the first phase were used, and the search was carried out with the following parameters: “Genus species” AND Anti-inflammatory OR Antiinflammatory (e.g., “Zataria multiflora” AND anti-inflammatory OR antiinflammatory, delimited to the indexed fields “Article title-Abstract-Keywords.” The articles of the species with information more related to anti-inflammatory processes and their phytochemistry were downloaded and analyzed. The results of this search were organized in tables and graphs, as above.

4. Conclusions

In this review, a total of 831 species of the subfamily Nepetoideae were obtained with at least one article indexed in any category based on a search in the Scopus database. From the 831 species, a total of 39 genera and 308 species were reported in 3124 articles, all of them associated with anti-inflammatory activity. Thus, traditional uses of the Nepetoideae subfamily species are reinforced by botanical, pharmacological, and phytochemical information described in the literature related to inflammatory illnesses and compiled in this review. The results revealed that this subfamily plays an essential role as another important source of potential anti-inflammatory drugs from natural products of different chemical natures not only at the central level, in part because of their neuroprotective activity, but also in peripheral systems. The most common extracts prepared not only for phytochemical but also for pharmacological investigation in this review were those obtained from a polar nature. Chemical secondary metabolites have been identified and isolated using dissolvents of different polarities through several techniques of extraction. These results together support medicinal use by preparing infusions or decoctions from the whole plants or from different parts of them.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/plants12213752/s1, Table S1: Traditional uses of species from the subfamily Nepetoideae (Lamiaceae) related to the inflammatory process, Table S2: Pharmacological evaluation of the extracts related to inflammatory processes in species of the Nepetoideae (Lamiaceae) subfamily, Table S3: Phytochemistry related to inflammatory processes in species of the Nepetoideae (Lamiaceae) subfamily.

Author Contributions

Conceptualization, N.O.-M. and M.J.M.-G.; Methodology, N.O.-M. and M.J.M.-G.; Software, Formal analysis, Data curation, and Validation, N.O.-M., M.J.M.-G., F.A.B.-P., E.M.-A. and E.A.-H.; Writing—original draft preparation, N.O.-M.; Writing—review and editing, N.O.-M., M.J.M.-G., F.A.B.-P., E.M.-A., M.E.G.-T. and E.A.-H. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by grants provided by the UNAM-PAPIIT (No. IN221221). Additional funding to cover publication fees required by the National System of Researchers (SNICONAHCYT) was secured through grants provided to E.A.-H. (52151) and M.J.M.-G. (55788).

Acknowledgments

This paper is part of the requirement for obtaining a doctoral degree at the Posgrado en Ciencias Biológicas, UNAM of N.O.-M. The project also had the following CONAHCYT graduate scholarship number: 793655. This work was supported by UNAM-PAPIIT (No. IN221221). The authors thank Julio Javier Meraz Martínez for automating the information search through the development of a script based on the Python programming language and the usage of APIs provided by Scopus.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Gul, S.; Ahmad, M.; Zafar, M.; Bahadur, S.; Sultana, S.; Begum, N.; Shah, S.N.; Zaman, W.; Ullah, F.; Ayaz, A.; et al. Taxonomic study of subfamily Nepetoideae (Lamiaceae) by polynomorphological approach. Microsc. Res. Tech. 2019, 82, 1021–1031. [Google Scholar] [CrossRef]
  2. da Silva-Monteiro, F.K.; de Melo, J.I.M. Flora of Paraíba, Brazil: Subfamily Nepetoideae (Lamiaceae). Rodriguesia 2020, 71, 1–22. [Google Scholar] [CrossRef]
  3. Harley, R.M.S.; Atkins, A.L.; Budantsev, P.D.; Cantino, B.J.; Conn, R.; Grayer, M.M.; Harley, R.; De Kok, T.; Krestovskaja, R.; Morales, A.J.; et al. Labiatae. In Labiatae. The Families and Genera of Vascular Plants VII. Flowering Plants Dicotyledons: Lamiales (Except Acanthaceae including Avicenniaceae); Kubitzki, J.K.Y., Kadereit, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 167–275. [Google Scholar]
  4. Omar, S.H. Biophenols: Impacts and prospects in anti-Alzheimer drug discovery. In Discovery and Development of Neuroprotective Agents from Natural Products; Brahmachari, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 103–148. [Google Scholar] [CrossRef]
  5. Burk, L.; O’Brien, B.; Charron, J.M.; Sherman, K.J.; Bullock, M.L. Psychic/intuitive diagnosis: Two case reports and commentary; experiences with aromatherapy in the elderly; use of Lavandula latifolia as an expectorant; characteristics and complaints of patients seeking therapy. J. Altern. Complement. Med. 1997, 3, 209–212. [Google Scholar] [CrossRef]
  6. Bornowski, N.; Hamilton, J.P.; Liao, P.; Wood, J.C.; Dudareva, N.; Buell, C.R. Genome sequencing of four culinary herbs reveals terpenoid genes underlying chemodiversity in the Nepetoideae. DNA Res. 2020, 27, 1–12. [Google Scholar] [CrossRef]
  7. El Yaagoubi, M.; Mechqoq, H.; el Hamdaoui, A.; Jrv Mukku, V.; el Mousadik, A.; Msanda, F.; el Aouad, N. A review on Moroccan Thymus species: Traditional uses, essential oils chemical composition and biological effects. J. Ethnopharmacol. 2021, 278, 114205. [Google Scholar] [CrossRef]
  8. Draginic, N.; Jakovljevic, V.; Andjic, M.; Jeremic, J.; Srejovic, I.; Rankovic, M.; Tomovic, M.; Nikolic Turnic, T.; Svistunov, A.; Bolevich, S.; et al. Melissa officinalis L. as a nutritional strategy for cardioprotection. Front. Physiol. 2021, 12, 1778. [Google Scholar] [CrossRef]
  9. Li, P.; Qi, Z.C.; Liu, L.X.; Ohi-Toma, T.; Lee, J.; Hsieh, T.H.; Fu, C.X.; Cameron, K.M.; Qiu, Y.X. Molecular phylogenetics and biogeography of the mint tribe Elsholtzieae (Nepetoideae, Lamiaceae), with an emphasis on its diversification in East Asia. Sci. Rep. 2017, 7, 2057. [Google Scholar] [CrossRef]
  10. Pan, J.; Wang, H.; Chen, Y. Prunella vulgaris L.—A review of its ethnopharmacology, phytochemistry, quality control and pharmacological effects. Front. Pharmacol. 2022, 13, 3171. [Google Scholar] [CrossRef]
  11. Elsevier, B.V. Analyze Search Results: Lamiaceae 1980–2023. Available online: www.scopus.com (accessed on 15 January 2023).
  12. Youn, B.Y.; Moon, S.; Mok, K.; Cheon, C.; Ko, Y.; Park, S.; Jang, B.H.; Shin, Y.C.; Ko, S.G. Use of traditional, complementary and alternative medicine in nine countries: A cross-sectional multinational survey. Complement. Ther. Med. 2022, 71, 102889. [Google Scholar] [CrossRef]
  13. Liu, C.H.; Abrams, N.D.; Carrick, D.M.; Chander, P.; Dwyer, J.; Hamlet, M.R.J.; Macchiarini, F.; Prabhudas, M.; Shen, G.L.; Tandon, P.; et al. Biomarkers of chronic inflammation in disease development and prevention: Challenges and opportunities. Nat. Immunol. 2017, 18, 1175–1180. [Google Scholar] [CrossRef]
  14. What Is an Inflammation? Institute for Quality and Efficiency in Health Care (IQWiG): Cologne, Germany, 2006. Available online: www.ncbi.nlm.nih.gov/books/NBK279298 (accessed on 12 December 2022).
  15. Slavich, G.M. Understanding inflammation, its regulation, and relevance for health: A top scientific and public priority. Brain Behav. Immun. 2015, 45, 13–14. [Google Scholar] [CrossRef]
  16. Bennett, J.M.; Reeves, G.; Billman, G.E.; Sturmberg, J.P. Inflammation-nature’s way to efficiently respond to all types of challenges: Implications for understanding and managing “the epidemic” of chronic diseases. Front. Med. 2018, 5, 316. [Google Scholar] [CrossRef]
  17. Netea, M.G.; Balkwill, F.; Chonchol, M.; Cominelli, F.; Donath, M.Y.; Giamarellos-Bourboulis, E.J.; Golenbock, D.; Gresnigt, M.S.; Heneka, M.T.; Hoffman, H.M.; et al. A guiding map for inflammation. Nat. Immunol. 2017, 18, 826–831. [Google Scholar] [CrossRef]
  18. Ouyang, W.; Rutz, S.; Crellin, N.K.; Valdez, P.A.; Hymowitz, S.G. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 2011, 29, 71–109. [Google Scholar] [CrossRef]
  19. Dinarello, C.A.; Nold-Petry, C.; Nold, M.; Fujita, M.; Li, S.; Kim, S.; Bufler, P. Suppression of innate inflammation and immunity by interleukin-37. Eur. J. Immunol. 2016, 46, 1067–1081. [Google Scholar] [CrossRef]
  20. Nunes, C.d.R.; Barreto Arantes, M.; Menezes de Faria Pereira, S.; Leandro da Cruz, L.; de Souza Passos, M.; Pereira de Moraes, L.; Vieira, I.J.C.; Barros de Oliveira, D. Plants as sources of anti-inflammatory agents. Molecules 2020, 25, 3726. [Google Scholar] [CrossRef]
  21. Harirforoosh, S.; Asghar, W.; Jamali, F. Adverse effects of nonsteroidal antiinflammatory drugs: An update of gastrointestinal, cardiovascular and renal complications. J. Pharm. Pharm. Sci. 2013, 16, 821–847. [Google Scholar] [CrossRef]
  22. Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the lifespan. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
  23. Argueta, A.; Cano, L.; Rodarte, M.; Gallardo, C. Atlas de las Plantas de la Medicina Tradicional Mexicana; Instituto Nacional Indigenista: Mexico City, Mexico, 1994; 1786p.
  24. Core, E.L. Ethnobotany of the southern Appalachian aborigines. Econ. Bot. 1966, 21, 198–214. [Google Scholar] [CrossRef]
  25. Turner, N.; Bell, M. The ethnobotany of the coast Salish Indians of Vancouver island. Econ. Bot. 1971, 25, 63–99. [Google Scholar] [CrossRef]
  26. Aldunate, C.; Armesto, J.J.; Castro, V.; Villagran, C. Ethnobotany of pre-altiplanic community in the Andes of Northern Chile. Econ. Bot. 1983, 37, 120–135. [Google Scholar] [CrossRef]
  27. Hazlett, D.L. Ethnobotanical observations from Cabecar and Guaymi settlements in Central America. Econ. Bot. 1986, 40, 339–352. [Google Scholar] [CrossRef]
  28. Bye, R.A. Medicinal plants of the Sierra Madre: Comparative study of Tarahumara and Mexican market plants. Econ. Bot. 1986, 40, 103–124. [Google Scholar] [CrossRef]
  29. Barret, B. Medicinal plants of Nicaragua’s Atlantic coast. Econ. Bot. 1994, 48, 8–20. [Google Scholar] [CrossRef]
  30. Voeks, R.A. Tropical forest healers and habitat preference. Econ. Bot. 1996, 50, 381–400. [Google Scholar] [CrossRef]
  31. Rios, M.; Koziol, M.; Borgtoft, H.; Granda, G. Plantas Útiles del Ecuador; Abya-Yala: Quito, Ecuador, 2007; p. 652. [Google Scholar]
  32. Fujita, T.; Sezik, E.; Tabata, M.; Yesilada, G.; Takeda, Y.; Tanaka, T.; Takaishi, Y. Traditional medicine in Turkey VII. Folk medicine in middle and west black sea regions. Econ. Bot. 1995, 49, 406–422. [Google Scholar] [CrossRef]
  33. Martínez-Lirola, M.J.; Gonzalez-Tejero, M.R.; Molero-Mesa, J. Ethnobotanical resources in the province of Almería, Spain: Campos de Nijar. Econ. Bot. 1996, 50, 40–56. [Google Scholar] [CrossRef]
  34. Rivera, D.; Obón, C.; Cano, F. The botany, history and traditional uses of three-lobed sage (Salvia fruticosa Miller) (Labiatae). Econ. Bot. 1994, 48, 190–195. [Google Scholar] [CrossRef]
  35. Brussell, D. A medicinal plant collection from Montserrat, west indies. Econ. Bot. 2004, 58, s203–s220. [Google Scholar] [CrossRef]
  36. Dagar, H.S.; Dagar, J.C. Plant folk medicines among the Nicobarese of Katchal Island, India. Econ. Bot. 1990, 45, 114–119. [Google Scholar] [CrossRef]
  37. Bhattarai, N.K. Medical ethnobotany in the Karnali zone, Nepal. Econ. Bot. 1992, 46, 257–261. [Google Scholar] [CrossRef]
  38. Huai, H.Y.; Pei, S.J. Plants used medicinally by folk healers of the Lahu people from the autonomous county of Jinping Miao, Yao, and Dai in southwest China. Econ. Bot. 2004, 58, 265s–273s. [Google Scholar] [CrossRef]
  39. Ajaib, M.; Ishtiaq, M.; Bhatti, K.H.; Hussain, I.; Maqbool, M.; Hussain, T.; Mushtaq, W.; Ghani, A.; Azeem, M.; Khan, S.M.R.; et al. Inventorization of traditional ethnobotanical uses of wild plants of Dawarian and Ratti Gali areas of District Neelum, Azad Jammu and Kashmir Pakistan. PLoS ONE 2021, 16, e0255010. [Google Scholar] [CrossRef]
  40. Lahlou, R.A.; Samba, N.; Soeiro, P.; Alves, G.; Gonçalves, A.C.; Silva, L.R.; Silvestre, S.; Rodilla, J.; Ismael, M.I. Thymus hirtus Willd. ssp. algeriensis Boiss. and Reut: A Comprehensive Review on Phytochemistry, Bioactivities, and Health-Enhancing Effects. Foods 2022, 11, 3195. [Google Scholar] [CrossRef]
  41. Anderson, E.F. Ethnobotany of hill tribes of northern Thailand. I. Medicinal plants of Akha, I. Econ. Bot. 1986, 40, 38–53. [Google Scholar] [CrossRef]
  42. Cox Bodner, C.; Gereau, R.E. A contribution to Bontoc ethnobotany. Econ. Bot. 1988, 42, 307–369. [Google Scholar] [CrossRef]
  43. Christensen, H. Ethnobotany of the Iban & the Kelabit; Oko-Tryk Press: Copenhagen, Denmark, 2002; 384p. [Google Scholar]
  44. Uhe, G. Medicinal plants of Samoa a preliminary survey of the use of plants for medicinal purposes in the Samoan Islands. Econ. Bot. 1974, 28, 1–30. [Google Scholar] [CrossRef]
  45. Quansah, N. Ethnomedicine in the Maroantsetra region of Madagascar. Econ. Bot. 1988, 42, 370–375. [Google Scholar] [CrossRef]
  46. Brussell, D. Medicinal plants of Mt. Pelion, Greece. Econ. Bot. 2004, 58, 176s–202s. [Google Scholar] [CrossRef]
  47. Weckerle, C.; Huber, F.; Yongping, Y.; Weibang, S. Plant knowledge of the Shuhi in the Hengduan mountains, southwest China. Econ. Bot. 2006, 60, 3–23. [Google Scholar] [CrossRef]
  48. Gispert Cruells, M.; Rodríguez González, H. Los Coras: Plantas Alimentarias y Medicinales de su Ambiente Natural; CONACULTA Culturas Populares: Mexico City, Mexico, 1988; 128p. [Google Scholar]
  49. Monroy-Ortiz, C.; Monroy, R. Las plantas, Compañeras De Siempre: La Experiencia En Morelos; Universidad Autónoma del Estado de Morelos: Cuernavaca, Mexico, 2006; 184p, ISBN 9701816145. [Google Scholar]
  50. Manandhar, N.P. Medicinal plant-lore of Tamang tribe of Kabhrepalanchok district, Nepal. Econ. Bot. 1991, 45, 58–71. [Google Scholar] [CrossRef]
  51. Pal, D.C.; Jain, S.K. Notes on Lodha medicine in Midnapur district, West Bengal, India. Econ. Bot. 1989, 43, 464–470. [Google Scholar] [CrossRef]
  52. Chen, X.; Dai, X.; Liu, Y.; He, X.; Gong, G. Isodon rubescens (Hemsl.) Hara.; A comprehensive review in traditional uses, phytochemistry, and pharmacological activities. Front. Pharmacol. 2022, 13, 766581. [Google Scholar] [CrossRef] [PubMed]
  53. Balick, M.J.; Kronenberg, F.; Ososki, A.L.; Fugh-Berman, A.; Roble, M.; Lohr, P.; Atha Balick, D.; Reiff, M. Medicinal plants used by Latino healers for women’s health conditions in New York city. Econ. Bot. 2000, 54, 344–357. [Google Scholar] [CrossRef]
  54. Dolores, B.M.; Croce, H.M.; Cerda, L.M. Plantas Útiles de la Región Semiárida de Aguascalientes; Universidad Autónoma de Aguascalientes: Aguascalientes, Aguascalientes, 2003. [Google Scholar]
  55. Pérez-Nicolás, M.; Vibrans, H.; Romero-Manzanares, A.; Saynes-Vásquez, A.; Luna-Cavazos, M.; Flores-Cruz, M.; Lira-Saade, R. Patterns of Knowledge and Use of Medicinal Plants in Santiago Camotlán, Oaxaca, México. Econ. Bot. 2017, 71, 209–223. [Google Scholar] [CrossRef]
  56. Breedlove, D.; Laughlin, R. The Flowering of Man: A Tzotzil Botany of Zinacantán, Volume I; Smithsonian Contributions to Anthropology, Number 35; Smithsonian Institution Press: Washington, DC, USA, 1993. [Google Scholar]
  57. Isidro, V.M. Etnobotánica de los Zoques de Tuxtla Gutiérrez, Chiapas; Instituto de Historia Natural: Chiapas, México, 1997; p. 59. [Google Scholar]
  58. De La Cruz-Jiménez, L.; Guzmán-Lucio, M.; Viveros-Valdez, E. Traditional medicinal plants used for the treatment of gastrointestinal diseases in Chiapas, México. World Appl. Sci. J. 2014, 31, 508–515. [Google Scholar] [CrossRef]
  59. Carović-Stanko, K.; Petek, M.; Grdiša, M.; Pintar, J.; Bedeković, D.; Herak, M. Medicinal plants of the family Lamiaceae as functional foods—A Review. J. Food Sci. 2016, 5, 377–390. [Google Scholar] [CrossRef]
  60. Abubakar, A.R.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
  61. Feng, J.; Liu, L.; Yao, F.; Zhou, D.; He, Y.; Wang, J. The protective effect of tanshinone IIA on endothelial cells: A generalist among clinical therapeutics. Expert. Rev. Clin. Pharmacol. 2021, 14, 239–248. [Google Scholar] [CrossRef]
  62. Mahalakshmi, B.; Huang, C.Y.; da Lee, S.; Maurya, N.; Kiefer, R.; Bharath Kumar, V. Review of Danshen: From its metabolism to possible mechanisms of its biological activities. J. Funct. Foods 2021, 85, 104613. [Google Scholar] [CrossRef]
  63. Yang, N.; Zou, C.; Luo, W.; Xu, D.; Wang, M.; Wang, Y.; Wu, G.; Shan, P.; Liang, G. Sclareol attenuates angiotensin II -induced cardiac remodeling and inflammation via inhibiting MAPK signaling. Phytother. Res. 2022, 37, 578–591. [Google Scholar] [CrossRef] [PubMed]
  64. Miraj, S.; Kiani, S. A review study of therapeutic effects of Salvia officinalis L. Pharm. Lett. 2016, 8, 299–303. Available online: www.researchgate.net/publication/305147951 (accessed on 20 January 2023).
  65. Kamatou, G.P.P.; Van Zyl, R.L.; Van Vuuren, S.F.; Viljoen, A.M.; Figueiredo, A.C.; Barroso, J.G.; Tilney, P.M. Chemical composition, leaf trichome types and biological activities of the essential oils of four related Salvia species indigenous to southern Africa. J. Essent. Oil Res. 2006, 18, 72–79. [Google Scholar] [CrossRef]
  66. Chan, H.H.; Hwang, T.L.; Su, C.R.; Reddy, M.V.B.; Wu, T.S. Anti-inflammatory, anticholinesterase and antioxidative constituents from the roots and the leaves of Salvia nipponica Miq. var. formosana. Phytomedicine 2011, 18, 148–150. [Google Scholar] [CrossRef]
  67. Jang, H.H.; Cho, S.Y.; Kim, M.J.; Kim, J.B.; Lee, S.H.; Lee, M.Y.; Lee, Y.M. Anti-inflammatory effects of Salvia plebeia R. Br. extract in vitro and in an ovalbumin-induced mouse model. Biol. Res. 2016, 49, 41. [Google Scholar] [CrossRef]
  68. Batista, D.; Falé, P.L.; Serralheiro, M.L.; Araújo, M.E.; Dias, C.; Branco, I.; Grosso, C.; Coelho, J.; Palavra, A.; Madeira, P.J.A.; et al. Phytochemical characterization and biological evaluation of the aqueous and supercritical fluid extracts from Salvia sclareoides Brot. Open Chem. 2017, 15, 82–91. [Google Scholar] [CrossRef]
  69. Hassan, Z.Y.; Hassan, T.Y.; Abu-Raghif, A.R. Evaluation the Effectiveness of Phenolic Compound of Salvia frigida on Induced Atopic Dermatitis in Experimental Mice. Iraqi J. Pharm. Sci. 2022, 31, 154–166. [Google Scholar] [CrossRef]
  70. Zou, Z.Q.; Ning, D.S.; Liu, Y.; Fu, Y.X.; Li, L.C.; Pan, Z.H. Five new germacrane sesquiterpenes with anti-inflammatory activity from Salvia petrophila. Phytochem. Lett. 2022, 47, 111–114. [Google Scholar] [CrossRef]
  71. Moretti, M.D.L.; Peana, A.T.; Satta, M. A study on anti-inflammatory and peripheral analgesic action of Salvia sclarea oil and its main components. J. Essent. Oil Res. 1997, 9, 199–204. [Google Scholar] [CrossRef]
  72. Hosseinzadeh, H.; Yavary, M. Anti-inflammatory effect of Salvia leriifolia Benth. leaf extract in mice and rats. Pharm. Pharmacol. Lett. 1999, 9, 60–61. [Google Scholar]
  73. Maklad, Y.A.; Aboutabl, E.A.; El-Sherei, M.M.; Meselhy, K.M. Bioactivity studies of Salvia transsylvanica (Schur. ex Griseb.) grown in Egypt. Phytother. Res. 1999, 13, 147–150. [Google Scholar] [CrossRef]
  74. Al-Yousuf, M.H.; Bashir, A.K.; Ali, B.H.; Tanira, M.O.M.; Blunden, G. Some effects of Salvia aegyptiaca L. on the central nervous system in mice. J. Ethnopharmacol. 2002, 81, 121–127. [Google Scholar] [CrossRef] [PubMed]
  75. Boukhary, R.; Raafat, K.; Ghoneim, A.I.; Aboul-Ela, M.; El-Lakany, A. Anti-inflammatory and antioxidant activities of Salvia fruticosa: An HPLC determination of phenolic contents. Evid.-Based Complement. Altern. Med. 2016, 2016, 7178105. [Google Scholar] [CrossRef] [PubMed]
  76. Hussain, L.; Sajid Hamid Akash, M.; Imran Qadir, M.; Pharm Sci, P.J.; Iqbal, R.; Irfan, M.; Imran Qadir, M. Analgesic, anti-inflammatory, and antipyretic activity of Salvia moorcroftiana. Pak. J. Pharm. Sci. 2017, 30, 7134. Available online: https://www.researchgate.net/publication/316007134_Analgesic_anti-inflammatory_and_antipyretic_activity_of_Salvia_moorcroftiana (accessed on 25 June 2023).
  77. Semaoui, R.; Ouafi, S.; Machado, S.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Infusion of aerial parts of Salvia chudaei Batt. & Trab. from Algeria: Chemical, toxicological and bioactivities characterization. J. Ethnopharmacol. 2021, 280, 114455. [Google Scholar] [CrossRef]
  78. Taheri, S.; Khalifeh, S.; Shajiee, H.; Ashabi, G. Dietary uptake of Salvia macilenta extract improves Nrf2 antioxidant signaling pathway and diminishes inflammation and apoptosis in amyloid beta-induced rats. Mol. Biol. Rep. 2021, 48, 7667–7676. [Google Scholar] [CrossRef]
  79. Pattanayak, P.; Behera, P.; Das, D.; Panda, S. Ocimum sanctum L. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev. 2010, 4, 95–105. [Google Scholar] [CrossRef]
  80. Singh, D.; Chaudhuri, P.K. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Ind. Crops Prod. 2018, 118, 367–382. [Google Scholar] [CrossRef]
  81. Bacalbasa, N.; Balescu, I.; Stoica, C.; Pop, L.; Varlas, V.; Martac, C.; Voichitoiu, A.; Gaspar, B. The anti-inflammatory, anti-infectious and anti-cancerous effects of Thymus vulgaris. Rom. Med. J. 2022, 17, 21–23. [Google Scholar] [CrossRef]
  82. el Menyiy, N.; Mrabti, H.N.; el Omari, N.; Bakili, A.E.; Bakrim, S.; Mekkaoui, M.; Balahbib, A.; Amiri-Ardekani, E.; Ullah, R.; Alqahtani, A.S.; et al. Medicinal Uses, Phytochemistry, Pharmacology, and Toxicology of Mentha spicata. Evid.-Based Complement. Altern. Med. 2022, 2022, 7990508. [Google Scholar] [CrossRef]
  83. Sharifi-Rad, M.; Berkay Yılmaz, Y.; Antika, G.; Salehi, B.; Tumer, T.B.; Kulandaisamy Venil, C.; Das, G.; Patra, J.K.; Karazhan, N.; Akram, M.; et al. Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum. Phytother. Res. 2021, 35, 95–121. [Google Scholar] [CrossRef]
  84. Hajhashemi, V.; Ghannadi, A.; Sharif, B. Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J. Ethnopharmacol. 2003, 89, 67–71. [Google Scholar] [CrossRef] [PubMed]
  85. Zhao, J.; Xu, F.; Huang, H.; Ji, T.; Li, C.; Tan, W.; Chen, Y.; Ma, L. Evaluation on bioactivities of total flavonoids from Lavandula angustifolia. Pak. J. Pharm. Sci. 2015, 28, 1245–1251. [Google Scholar] [PubMed]
  86. Giovannini, D.; Gismondi, A.; Basso, A.; Canuti, L.; Braglia, R.; Canini, A.; Mariani, F.; Cappelli, G. Lavandula angustifolia mill. Essential oil exerts antibacterial and anti-inflammatory effects in macrophage mediated immune response to staphylococcus aureus. Immunol. Investig. 2016, 45, 11–28. [Google Scholar] [CrossRef] [PubMed]
  87. Georgiev, Y.N.; Paulsen, B.S.; Kiyohara, H.; Ciz, M.; Ognyanov, M.H.; Vasicek, O.; Rise, F.; Denev, P.N.; Yamada, H.; Lojek, A.; et al. The common lavender (Lavandula angustifolia Mill.) pectic polysaccharides modulate phagocytic leukocytes and intestinal Peyer’s patch cells. Carbohydr. Polym. 2017, 174, 948–959. [Google Scholar] [CrossRef]
  88. Cardia, G.F.E.; Silva-Filho, S.E.; Silva, E.L.; Uchida, N.S.; Cavalcante, H.A.O.; Cassarotti, L.L.; Salvadego, V.E.C.; Spironello, R.A.; Bersani-Amado, C.A.; Cuman, R.K.N. Effect of lavender (Lavandula angustifolia) essential oil on acute inflammatory response. Evid. Based Complementary Altern. Med. 2018, 2018, 1413940. [Google Scholar] [CrossRef]
  89. Souri, F.; Rakhshan, K.; Erfani, S.; Azizi, Y.; Maleki, S.; Aboutaleb, N. Natural lavender oil (Lavandula angustifolia) exerts cardioprotective effects against myocardial infarction by targeting inflammation and oxidative stress. Inflammopharmacology 2019, 27, 799–807. [Google Scholar] [CrossRef]
  90. Chen, X.; Zhang, L.; Qian, C.; Du, Z.; Xu, P.; Xiang, Z. Chemical compositions of essential oil extracted from Lavandula angustifolia and its prevention of TPA-induced inflammation. Microchem. J. 2020, 153, 104458. [Google Scholar] [CrossRef]
  91. Xie, Q.; Wang, Y.; Zou, G.L. Protective effects of lavender oil on sepsis-induced acute lung injury via regulation of the NF-κB pathway. Pharm. Biol. 2022, 60, 968–978. [Google Scholar] [CrossRef]
  92. Guginski, G.; Luiz, A.P.; Silva, M.D.; Massaro, M.; Martins, D.F.; Chaves, J.; Mattos, R.W.; Silveira, D.; Ferreira, V.M.M.; Calixto, J.B.; et al. Mechanisms involved in the antinociception caused by ethanolic extract obtained from the leaves of Melissa officinalis (lemon balm) in mice. Pharmacol. Biochem. Behav. 2009, 93, 10–16. [Google Scholar] [CrossRef]
  93. Müzell, D.; Lunardelli, A.; Leite, C.E.; Medeiros Fagundes, R.; Saciura, V.C.; Reichel, C.L.; Rodrigues De Oliveira, J.; Vieira Astarita, L. Nephroprotective and anti-inflammatory effects of aqueous extract of Melissa officinalis L. on acetaminophen-induced and pleurisy-induced lesions in rats. Braz. Arch. Biol. Technol. 2013, 56, 383–392. [Google Scholar] [CrossRef]
  94. Bounihi, A.; Hajjaj, G.; Alnamer, R.; Cherrah, Y.; Zellou, A. In vivo potential anti-inflammatory activity of Melissa officinalis l. essential oil. Adv. Pharmacol. Sci. 2013, 2013, 101759. [Google Scholar] [CrossRef] [PubMed]
  95. Draginic, N.; Andjic, M.; Jeremic, J.; Zivkovic, V.; Kocovic, A.; Tomovic, M.; Bozin, B.; Kladar, N.; Bolevich, S.; Jakovljevic, V.; et al. Anti-inflammatory and antioxidant effects of Melissa officinalis extracts: A comparative study. Iran. J. Pharm. Res. 2022, 21, 126561. [Google Scholar] [CrossRef]
  96. Hwang, Y.J.; Lee, E.J.; Kim, H.R.; Hwang, K.A. NF-κB-targeted anti-inflammatory activity of Prunella vulgaris var. lilacina in macrophages RAW 264.7. Int. J. Mol. Sci. 2013, 14, 21489–21503. [Google Scholar] [CrossRef] [PubMed]
  97. Ryu, S.Y.; Oak, M.-H.; Yoon, S.-K.; Cho, D.-I.; Yoo, G.-S.; Kim, T.-S.; Kim, K.-M.; Thieme, G.; Stuttgart, V.; York, N. Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris. Planta Med. 2000, 66, 358. [Google Scholar] [CrossRef]
  98. Tang, Y.Q.N.; Deng, J.; Li, L.; Yan, J.; Lin, L.M.; Li, Y.M.; Lin, Y.; Xia, B.H. Essential oil from Prunella vulgaris L. as a valuable source of bioactive constituents: In vitro anti-bacterial, anti-viral, immunoregulatory, anti-inflammatory, and chemical profiles. S. Afr. J. Bot. 2022, 151, 614–627. [Google Scholar] [CrossRef]
  99. Zheng, X.Q.; Song, L.X.; Qiu, H.; Yang, Y.B.; Han, Z.Z.; Wang, Z.T.; Gu, L.H. Novel phenolic and diterpenoid compounds isolated from the fruit spikes of Prunella vulgaris L. and their anti-inflammatory activities. Phytochem. Lett. 2022, 49, 60–64. [Google Scholar] [CrossRef]
  100. Choia, H.; Kim, T.; Kim, S.-H.; Kim, J. Anti-allergic inflammatory triterpenoids isolated from the spikes of Prunella vulgaris. Nat. Prod. Commun. 2016, 11, 2–31. [Google Scholar] [CrossRef]
  101. Khazdair, M.R.; Ghorani, V.; Alavinezhad, A.; Boskabady, M.H. Pharmacological effects of Zataria multiflora Boiss L. and its constituents focus on their anti-inflammatory, antioxidant, and immunomodulatory effects. Fundam. Clin. Pharmacol. 2018, 32, 26–50. [Google Scholar] [CrossRef]
  102. Milijasevic, B.; Steinbach, M.; Mikov, M.; Raskovic, A.; Capo, I.; Zivkovic, J.; Borisev, I.; Canji, J.; Teofilovic, B.; Vujcic, M.; et al. Impact of winter savory extract (Satureja montana L.) on biochemical parameters in serum and oxidative status of liver with application of the principal component analysis in extraction solvent selection. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 4721–4734. [Google Scholar]
  103. Shin, T.Y.; Kim, S.H.; Suk, K.; Ha, J.H.; Kim, I.K.; Lee, M.G.; Jun, C.D.; Kim, S.Y.; Lim, J.P.; Eun, J.S.; et al. Anti-allergic effects of Lycopus lucidus on mast cell-mediated allergy model. Toxicol. Appl. Pharmacol. 2005, 209, 255–262. [Google Scholar] [CrossRef] [PubMed]
  104. Mousavi Nia, A.; Pari Kalantaripour, T.; Basiri, M.; Vafaee, F.; Asadi-Shekaari, M.; Eslami, A.; Darvish Zadeh, F. Nepeta Dschuparensis Bornm extract moderates COX-2 and IL-1β proteins in a rat model of cerebral ischemia. Iran. J. Med. Sci. 2017, 42, 179–186. [Google Scholar]
  105. Bian, M.; Zhang, Y.; Du, X.; Xu, J.; Cui, J.; Gu, J.; Zhu, W.; Zhang, T.; Chen, Y. Apigenin-7-diglucuronide protects retinas against bright light-induced photoreceptor degeneration through the inhibition of retinal oxidative stress and inflammation. Brain Res. 2017, 1663, 141–150. [Google Scholar] [CrossRef] [PubMed]
  106. García-Díaz, J.A.; Navarrete-Vázquez, G.; García-Jiménez, S.; Hidalgo-Figueroa, S.; Almanza-Pérez, J.C.; Alarcón-Aguilar, F.J.; Gómez-Zamudio, J.; Cruz, M.; Ibarra-Barajas, M.; Estrada-Soto, S. Antidiabetic, antihyperlipidemic and anti-inflammatory effects of tilianin in streptozotocin-nicotinamide diabetic rats. Biomed. Pharmacother. 2016, 83, 667–675. [Google Scholar] [CrossRef] [PubMed]
  107. Shen, W.; Anwaier, G.; Cao, Y.; Lian, G.; Chen, C.; Liu, S.; Tuerdi, N.; Qi, R. Atheroprotective Mechanisms of Tilianin by Inhibiting Inflammation Through Down-Regulating NF-κB Pathway and Foam Cells Formation. Front. Physiol. 2019, 10, 825. [Google Scholar] [CrossRef]
  108. Nie, L.; Li, R.; Huang, J.; Wang, L.; Ma, M.; Huang, C.; Wu, T.; Yan, R.; Hu, X. Abietane diterpenoids from Dracocephalum moldavica L. and their anti-inflammatory activities in vitro. Phytochemistry 2021, 184, 112680. [Google Scholar] [CrossRef]
  109. Chen, S.; Fang, A.; Zhong, Y.; Tang, J. Ziziphora clinopodioides Lam leaf aqueous extract mediated novel green synthesis of iron nanoparticles and its anti-hemolytic anemia potential: A chemobiological study. Arab. J. Chem. 2022, 15, 103561. [Google Scholar] [CrossRef]
  110. Mohammad, G.; Tabrizi, M.; Ardalan, T.; Yadamani, S.; Safavi, E. Green synthesis of zinc oxide nanoparticles and evaluation of anti-angiogenesis, anti-inflammatory and cytotoxicity properties. J. Biosci. 2019, 44, 30. [Google Scholar]
  111. Singh, M.K.; Gidwani, B.; Gupta, A.; Dhongade, H.; Kaur, C.D.; Kashyap, P.P.; Tripathi, D.K. A review of the medicinal plants of genus Orthosiphon (Lamiaceae). Int. J. Biol. Chem. 2015, 9, 318–331. [Google Scholar] [CrossRef]
  112. Andrade, J.M.; Custódio, L.; Romagnoli, A.; Reis, C.P.; Rodrigues, M.J.; Garcia, C.; Petruccioli, E.; Goletti, D.; Faustino, C.; Fimia, G.M.; et al. Antitubercular and anti-inflammatory properties screening of natural products from Plectranthus species. Future Med. Chem 2018, 10, 1677–1691. [Google Scholar] [CrossRef]
  113. Almeida-Bezerra, J.W.; Rodrigues, F.C.; Lima Bezerra, J.J.; Vieira Pinheiro, A.A.; Almeida De Menezes, S.; Tavares, A.B.; Costa, A.R.; Augusta De Sousa Fernandes, P.; Bezerra Da Silva, V.; Martins Da Costa, J.G.; et al. Traditional Uses, Phytochemistry, and Bioactivities of Mesosphaerum suaveolens (L.) Kuntze. Evid.-Based Complement. Altern. Med. 2022, 10, 3829180. [Google Scholar] [CrossRef] [PubMed]
  114. Leung, C.H.; Grill, S.P.; Lam, W.; Gao, W.; Sun, H.D.; Cheng, Y.C. Eriocalyxin B inhibits nuclear factor-κB activation by interfering with the binding of both p65 and p50 to the response element in a noncompetitive manner. Mol. Pharmacol. 2006, 70, 1946–1955. [Google Scholar] [CrossRef] [PubMed]
  115. Jiang, H.; Li, X.; Sun, H.; Zhang, H.; Puno, P. Scopariusols L-T, nine new ent-kaurane diterpenoids isolated from Isodon scoparius. Chin. J. Nat. Med. 2018, 16, 456–464. [Google Scholar] [CrossRef]
  116. Zhang, Y.Y.; Jiang, H.Y.; Liu, M.; Hu, K.; Wang, W.G.; Du, X.; Li, X.N.; Pu, J.X.; Sun, H.D. Bioactive ent-kaurane diterpenoids from Isodon rubescens. Phytochemistry 2017, 143, 199–207. [Google Scholar] [CrossRef] [PubMed]
  117. Yin, Q.-Q.; Liu, C.-X.; Wu, Y.-L.; Wu, S.-F.; Wang, Y.; Zhang, X.; Hu, X.-J.; Pu, J.-X.; Lu, Y.; Zhou, H.-C.; et al. Preventive and Therapeutic Effects of Adenanthin on Experimental Autoimmune Encephalomyelitis by Inhibiting NF-κB Signaling. J. Immunol. 2013, 191, 2115–2125. [Google Scholar] [CrossRef]
  118. Lu, Y.; Chen, B.; Song, J.H.; Zhen, T.; Wang, B.Y.; Li, X.; Liu, P.; Yang, X.; Zhang, Q.L.; Xi, X.D.; et al. Eriocalyxin B ameliorates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells. Proc. Natl. Acad. Sci. USA 2013, 110, 2258–2263. [Google Scholar] [CrossRef]
  119. Zhang, L.G.; Yu, Z.Q.; Yang, C.; Chen, J.; Zhan, C.S.; Chen, X.G.; Zhang, L.; Hao, Z.Y.; Liang, C.Z. Effect of Eriocalyxin B on prostatic inflammation and pelvic pain in a mouse model of experimental autoimmune prostatitis. Prostate 2020, 80, 1394–1404. [Google Scholar] [CrossRef]
  120. He, H.; Jiang, H.; Chen, Y.; Ye, J.; Wang, A.; Wang, C.; Liu, Q.; Liang, G.; Deng, X.; Jiang, W.; et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun. 2018, 9, 2550. [Google Scholar] [CrossRef]
  121. Zhang, Y.; Wang, K.; Chen, H.; He, R.; Cai, R.; Li, J.; Zhou, D.; Liu, W.; Huang, X.; Yang, R.; et al. Anti-inflammatory lignans and phenylethanoid glycosides from the root of Isodon ternifolius (D.Don) Kudô. Phytochemistry 2018, 153, 36–47. [Google Scholar] [CrossRef]
  122. Yan, B.C.; Wang, W.G.; Hu, D.B.; Sun, X.; Kong, L.M.; Li, X.N.; Du, X.; Luo, S.H.; Liu, Y.; Li, Y.; et al. Phomopchalasins A and B, two cytochalasans with polycyclic-fused skeletons from the endophytic fungus Phomopsis sp. Org. Lett. 2016, 18, 1108–1111. [Google Scholar] [CrossRef]
  123. Ĺopez-Garcia, R.E.; Rabanal, R.M.; Darias, V.; Martín-Herrera, D.; Carreiras, M.C.; Rodríguez, B. A preliminary study of Cedronella canariensis (L.) var. canariensis extracts for antiinflammatory and analgesic activity in rats and mice. Phytother. Res. 1991, 5, 273–275. [Google Scholar] [CrossRef]
  124. Olajide, O.A.; Oladiran, O.O.; Awe, S.O.; Makinde, J.M. Pharmacological evaluation of Hoslundia opposita extract in rodents. Phytother. Res. 1998, 12, 364–366. [Google Scholar] [CrossRef]
  125. Aljohani, A.S.M.; Alhumaydhi, F.; Rauf, A.; Hamad, E.; Rashid, U. In Vivo and In Vitro biological evaluation and molecular docking studies of compounds isolated from Micromeria biflora (Buch. Ham. ex D.Don) Benth. Molecules 2022, 27, 3377. [Google Scholar] [CrossRef]
  126. Vladimir-Knežević, S.; Cvijanović, O.; Blažeković, B.; Kindl, M.; Štefan, M.B.; Domitrović, R. Hepatoprotective effects of Micromeria croatica ethanolic extract against CCl4-induced liver injury in mice. BMC Complement. Altern. Med. 2015, 15, 1–12. [Google Scholar] [CrossRef]
  127. Wang, X.; Cheng, K.; Liu, Z.; Sun, Y.; Zhou, L.; Xu, M.; Dai, X.; Xiong, Y.; Zhang, H. Bioactive constituents of Mosla chinensis-cv. Jiangxiangru ameliorate inflammation through MAPK signaling pathways and modify intestinal microbiota in DSS-induced colitis mice. Phytomedicine 2021, 93, 153804. [Google Scholar] [CrossRef] [PubMed]
  128. Álvarez-Santos, N.; Estrella-Parra, E.A.; Benítez-Flores, J.d.C.; Serrano-Parrales, R.; Villamar-Duque, T.E.; Santiago-Santiago, M.A.; González-Valle, M.D.R.; Avila-Acevedo, J.G.; García-Bores, A.M. Asterohyptis stellulata: Phytochemistry and wound healing activity. Food Biosci. 2022, 50, 102150. [Google Scholar] [CrossRef]
  129. Chen, J.; Wang, J.B.; Yu, C.H.; Chen, L.Q.; Xu, P.; Yu, W.Y. Total flavonoids of Mosla scabra leaves attenuates lipopolysaccharide-induced acute lung injury via down-regulation of inflammatory signaling in mice. J. Ethnopharmacol. 2013, 148, 835–841. [Google Scholar] [CrossRef]
  130. Becker, K.; Schwaiger, S.; Waltenberger, B.; Fuchs, D.; Pezzei, C.K.; Schennach, H.; Stuppner, H.; Gostner, J.M. Immunomodulatory effects of diterpene quinone derivatives from the roots of Horminum pyrenaicum in human PBMC. Oxid. Med. Cell. Longev. 2018, 2018, 2980295. [Google Scholar] [CrossRef]
  131. Moreno-Pérez, G.F.; González-Trujano, M.E.; Hernandez-Leon, A.; Valle-Dorado, M.G.; Valdés-Cruz, A.; Alvarado-Vásquez, N.; Aguirre-Hernández, E.; Salgado-Ceballos, H.; Pellicer, F. Antihyperalgesic and Antiallodynic Effects of Amarisolide A and Salvia amarissima Ortega in Experimental Fibromyalgia-Type Pain. Metabolites 2023, 13, 59. [Google Scholar] [CrossRef]
  132. Chen, H.; Li, Y.; Wang, J.; Zheng, T.; Wu, C.; Cui, M.; Feng, Y.; Ye, H.; Dong, Z.; Dang, Y. Plant Polyphenols Attenuate DSS-induced Ulcerative Colitis in Mice via Antioxidation, Anti-inflammation and Microbiota Regulation. Int. J. Mol. Sci. 2023, 24, 10828. [Google Scholar] [CrossRef]
  133. Li, Z.; Zhang, Y.; Zhou, Y.; Wang, F.; Yin, C.; Ding, L.; Zhang, S. Tanshinone IIA suppresses the progression of lung adenocarcinoma through regulating CCNA2-CDK2 complex and AURKA/PLK1 pathway. Sci. Rep. 2021, 11, 23681. [Google Scholar] [CrossRef] [PubMed]
  134. Verano, J.; González-Trujano, M.E.; Déciga-Campos, M.; Ventura-Martínez, R.; Pellicer, F. Ursolic acid from Agastache mexicana aerial parts produces antinociceptive activity involving TRPV1 receptors, cGMP and a serotonergic synergism. Pharmacol. Biochem. Behav. 2013, 110, 255–264. [Google Scholar] [CrossRef] [PubMed]
  135. González-Ramírez, A.; González-Trujano, M.E.; Pellicer, F.; López-Muñoz, F.J. Anti-nociceptive and anti-inflammatory activities of the Agastache mexicana extracts by using several experimental models in rodents. J. Ethnopharmacol. 2012, 142, 700–705. [Google Scholar] [CrossRef]
  136. Liu, Y.; Song, H.; Xu, J.; Bi, G.; Meng, D. Anti-inflammatory abietanes diterpenes and triterpenoids isolated from Clinopodium polycephalum. Fitoterapia 2022, 161, 105244. [Google Scholar] [CrossRef] [PubMed]
  137. Mustarichie, R.; Moektiwardojo, M.; Apriani Dewi, W. Isolation, identification, and characteristic of essential oil of Iler (Plectranthus scutellarioides (L.) R. Br leaves. J. Pharm. Sci. Res. 2017, 9, 2218–2223. [Google Scholar]
  138. Mustarichie, R.; Ramdhani, D.; Mekar Saptarini, N. The anti-inflammatory tablet formulation of Coleus (Plectranthus scutellariodes) leaves extract using Kollicoat® protect coating. Int. J. Appl. Pharm. 2022, 14, 159–162. [Google Scholar] [CrossRef]
  139. Shi, Q.Q.; Dang, J.; Wen, H.X.; Yuan, X.; Tao, Y.D.; Wang, Q.L. Anti-hepatitis, antioxidant activities and bioactive compounds of Dracocephalum heterophyllum extracts. Bot. Stud. 2016, 57, 16. [Google Scholar] [CrossRef]
  140. Bian, J.; Wang, K.; Wang, Q.; Wang, P.; Wang, T.; Shi, W.; Ruan, Q. Dracocephalum heterophyllum (DH) exhibits potent anti-proliferative effects on autoreactive CD4+ T cells and ameliorates the development of experimental autoimmune uveitis. Front. Immunol. 2020, 11, 575669. [Google Scholar] [CrossRef]
  141. Minaiyan, M.; Sadraei, H.; Asghari, G.; Khanabadi, M.; Minaiyan, M. Anti-inflammatory effect of apigenin and hydroalcoholic extract of Dracocephalum kotschyi on acetic acid-induced colitis in rats. Res. Pharm. Sci. 2017, 12, 322–329. [Google Scholar] [CrossRef]
  142. Olennikov, D.N.; Chirikova, N.K.; Okhlopkova, Z.M.; Zulfugarov, I.S. Chemical composition and antioxidant activity of Tánara Ótó (Dracocephalum palmatum Stephan), a medicinal plant used by the North-Yakutian nomads. Molecules 2013, 18, 14105–14121. [Google Scholar] [CrossRef]
  143. Andreyeva, A.A.; Sivtseva, V.V.; Pashayeva, A.T.; Chirikova, N.D.; Okhlopkova, Z.M.; Kim, S.W.; Huseynova, I.M.; Zulfugarov, I.S. Dragonhead as a model plant for biotechnology of biologically active compounds. Azerbaijan Pharm. Pharmacother. J. 2020, 1, 31–35. [Google Scholar]
  144. Chirikova, N.K.; Nokhsorov, V.V.; Nikolaev, W.M. Ethnopharmacological research of plant resources of central and eastern Yakutia. IOP Conf. Ser. Earth Environ. Sci. 2021, 670, 012010. [Google Scholar] [CrossRef]
  145. Zhu, C.-S.; Liu, K.; Wang, J.-L.; Li, J.-F.; Liu, M.-F.; Hao, N.; Lin, Y.-X.; Xiao, Z.-F. Antioxidant activities and hepatoprotective potential of Dracocephalum rupestre Hance extract against CCl4-induced hepatotoxicity in Kunming mice. J. Food Biochem. 2018, 42, e12484. [Google Scholar] [CrossRef]
  146. Zhang, Q.; Porto, N.M.; Guilhon, C.C.; Fernandes, P.D.; Boylan, F. Pharmacognostic study on Elsholtzia ciliata (Thumb.) Hyl.: Anatomy, phytochemistry and pharmacological activities. Pharmaceuticals 2021, 14, 1152. [Google Scholar] [CrossRef] [PubMed]
  147. Nguyen, D.T.X.; Tran, H.; Schwaiger, S.; Stuppner, H.; Marzocco, S. Effect of non-volatile constituents of Elsholtzia ciliata (Thunb.) Hyl. from southern Vietnam on reactive oxygen species and nitric oxide release in macrophages. Chem. Biodivers. 2021, 18, e2000577. [Google Scholar] [CrossRef] [PubMed]
  148. Pudziuvelyte, L.; Liaudanskas, M.; Jekabsone, A.; Sadauskiene, I.; Bernatoniene, J. Elsholtzia ciliata (Thunb.) Hyl. extracts from different plant parts: Phenolic composition, antioxidant, and anti-inflammatory activities. Molecules 2020, 25, 1153. [Google Scholar] [CrossRef] [PubMed]
  149. Kim, H.-H.; Yoo, J.-S.; Lee, H.-S.; Shin, T.-Y.; Kim, S.-H. Elsholtzia ciliata inhibits mast cell-mediated allergic inflammation: Role of calcium, p38 mitogen-activated protein kinase and nuclear factor-kB. Exp. Biol. Med. 2011, 236, 1070–1077. [Google Scholar] [CrossRef]
  150. Kim, T.-W.; Kim, Y.-J.; Seo, C.-S.; Lee, M.-Y.; Jung, J.-Y. Elsholtzia ciliata (Thunb.) Hylander attenuates renal inflammation and interstitial fibrosis via regulation of TGF-β and Smad3 expression on unilateral ureteral obstruction rat model. Phytomedicine 2016, 23, 331–339. [Google Scholar] [CrossRef]
  151. Yang, F.; Pu, H.-Y.; Yaseen, A.; Chen, B.; Li, F.; Gu, Y.-C.; Shen, X.-F.; Wang, M.-K.; Guo, D.-L.; Wang, L. Terpenoid and phenolic derivatives from the aerial parts of Elsholtzia rugulosa and their anti-inflammatory activity. Phytochemistry 2021, 181, 112543. [Google Scholar] [CrossRef]
  152. Xiang, Z.; Wu, X.; Liu, X.; Jin, Y. Glaucocalyxin A: A review. Nat. Prod. Res. 2014, 28, 2221–2236. [Google Scholar] [CrossRef]
  153. Lee, J.W.; Lee, M.S.; Kim, T.H.; Lee, H.J.; Hong, S.S.; Noh, Y.H.; Hwang, B.Y.; Ro, J.S.; Hong, J.T. Inhibitory effect of Inflexinol on nitric oxide generation and iNOS expression via inhibition of NF-κB activation. Mediat. Inflamm. 2007, 2007, 93148. [Google Scholar] [CrossRef] [PubMed]
  154. Ko, H.M.; Koppula, S.; Kim, B.-W.; Kim, I.S.; Hwang, B.Y.; Suk, K.; Park, E.J.; Choi, D.-K. Inflexin attenuates proinflammatory responses and nuclear factor-kappaB activation in LPS-treated microglia. Eur. J. Pharmacol. 2010, 633, 98–106. [Google Scholar] [CrossRef] [PubMed]
  155. Cheng, E.; Chi, J.; Li, Y.X.; Zhang, W.J.; Huang, N.; Wang, Z.M.; Dai, L.P.; Xu, E.P. Diverse ent-kaurane diterpenoids from Isodon henryi. Tetrahedron Lett. 2022, 108, 154119. [Google Scholar] [CrossRef]
  156. Hwang, B.; Lee, J.; Koo, T.; Kim, H.; Hong, Y.; Ro, J.; Lee, K.; Lee, J. Kaurane diterpenes from Isodon japonicus inhibit nitric oxide and prostaglandin E2 production and NF-κB activation in LPS-stimulated macrophage RAW264.7 cells. Planta Med. 2001, 67, 406–410. [Google Scholar] [CrossRef]
  157. Kim, B.W.; Koppula, S.; Kim, I.S.; Lim, H.W.; Hong, S.M.; Han, S.D.; Hwang, B.Y.; Choi, D.K. Anti-neuroinflammatory activity of kamebakaurin from Isodon japonicus via inhibition of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase pathway in activated microglial cells. J. Pharmacol. Sci. 2011, 116, 296–308. [Google Scholar] [CrossRef]
  158. Kim, J.Y.; Kim, H.S.; Kim, Y.J.; Lee, H.K.; Kim, J.S.; Kang, J.S.; Hong, J.T.; Kim, Y.; Hwang, B.Y.; Han, S.B. Effusanin C inhibits inflammatory responses via blocking NF-κB and MAPK signaling in monocytes. Int. Immunopharmacol. 2013, 15, 84–88. [Google Scholar] [CrossRef]
  159. Ikoma, K.; Takahama, M.; Kimishima, A.; Pan, Y.; Taura, M.; Nakayama, A.; Arai, M.; Takemura, N.; Saitoh, T. Oridonin suppresses particulate-induced NLRP3-independent IL-1α release to prevent crystallopathy in the lung. Int. Immunol. 2022, 34, 493–504. [Google Scholar] [CrossRef]
  160. Yu, Z.-Y.; Liang, Y.-G.; Xiao, H.; Shan, Y.-J.; Dong, B.; Huang, R.; Fu, Y.-L.; Zhao, Z.-H.; Liu, Z.-Y.; Zhao, Q.-S.; et al. Melissoidesin G, a diterpenoid purified from Isodon melissoides, induces leukemic-cell apoptosis through induction of redox imbalance and exhibits synergy with other anticancer agents. Int. J. Cancer 2007, 121, 2084–2094. [Google Scholar] [CrossRef]
  161. Kumar, A.; Singh, S.; Kumar, A.; Umrao Bawankule, D.; Tandon, S.; Kumar, A.; Swaroop Verma, R.; Saikia, D. Chemical composition, bactericidal kinetics, mechanism of action, and anti-inflammatory activity of Isodon melissoides (Benth.) H. Hara essential oil. Nat. Prod. Res. 2021, 35, 690–695. [Google Scholar] [CrossRef]
  162. Zhang, Y.; Liu, J.; Jia, W.; Zhao, A.; Zhang, T.L.; Liu, Y.; Jia, J.; Zhao, W.; Li, A. Distinct immunosuppressive effect by Isodon serra extracts. Int. Immunopharmacol. 2005, 5, 1957–1965. [Google Scholar] [CrossRef]
  163. Li, J.; Du, J.; Sun, L.; Liu, J.; Quan, Z. Anti-Inflammatory function of nodosin via inhibition of IL-2. Am. J. Chinese Med. 2010, 38, 127–142. [Google Scholar] [CrossRef] [PubMed]
  164. Zhou, L.; Sun, L.; Wu, H.; Zhang, L.; Chen, M.; Liu, J.; Zhong, R. Oridonin ameliorates lupus-like symptoms of MRLlpr/lpr mice by inhibition of B-cell activating factor (BAFF). Eur. J. Pharmacol. 2013, 715, 230–237. [Google Scholar] [CrossRef] [PubMed]
  165. Wan, J.; Liu, M.; Jiang, H.Y.; Yang, J.; Du, X.; Li, X.N.; Wang, W.G.; Li, Y.; Pu, J.X.; Sun, H.D. Bioactive ent-kaurane diterpenoids from Isodon serra. Phytochem. 2016, 130, 244–251. [Google Scholar] [CrossRef] [PubMed]
  166. Xing, H.; An, L.; Song, Z.; Li, S.; Wang, H.; Wang, C.; Zhang, J.; Tuerhong, M.; Abudukeremu, M.; Li, D.; et al. Anti-Inflammatory ent-kaurane diterpenoids from Isodon serra. J. Nat. Prod. 2020, 83, 2844–2853. [Google Scholar] [CrossRef] [PubMed]
  167. Jiang, H.-Y.; Wang, W.-G.; Zhou, M.; Wu, H.-Y.; Zhan, R.; Du, X.; Pu, J.-X.; Sun, H.-D. 6,7-seco-ent-Kaurane diterpenoids from Isodon sculponeatus and their bioactivity. Chin. Chem. Lett. 2014, 25, 541–544. [Google Scholar] [CrossRef]
  168. Jiang, H.-Y.; Wang, W.-G.; Zhou, M.; Wu, H.-Y.; Zhan, R.; Li, X.-N.; Du, X.; Li, Y.; Pu, J.-X.; Sun, H.-D. Diterpenoids from Isodon sculponeatus. Fitoterapia 2014, 93, 142–149. [Google Scholar] [CrossRef]
  169. Jia, T.; Cai, M.; Ma, X.; Li, M.; Qiao, J.; Chen, T. Oridonin inhibits IL-1β-induced inflammation in human osteoarthritis chondrocytes by activating PPAR-γ. Int. Immunopharmacol. 2019, 69, 382–388. [Google Scholar] [CrossRef]
  170. Wu, H.-Y.; Wang, W.-G.; Du, X.; Yang, J.; Pu, J.-X.; Sun, H.-D. Six new cytotoxic and anti-inflammatory 11,20-epoxy-ent-kaurane diterpenoids from Isodon wikstroemioides. Chin. J. Nat. Med. 2015, 13, 383–389. [Google Scholar]
  171. Wu, H.-Y.; Wang, W.-G.; Jiang, H.-Y.; Du, X.; Li, X.-N.; Pu, J.-X.; Sun, H.-D. Cytotoxic and anti-inflammatory ent-kaurane diterpenoids from Isodon wikstroemioides. Fitoterapia 2014, 98, 192–198. [Google Scholar] [CrossRef]
  172. Bayat, M.; Kalantar, K.; Amirghofran, Z. Inhibition of interferon-γ production and T-bet expression by menthol treatment of human peripheral blood mononuclear cells. Immunopharmacol. Immunotoxicol. 2019, 41, 267–276. [Google Scholar] [CrossRef]
  173. Murad, H.A.S.; Abdallah, H.M.; Ali, S.S. Mentha longifolia protects against acetic-acid induced colitis in rats. J. Ethnopharmacol. 2016, 190, 354–361. [Google Scholar] [CrossRef] [PubMed]
  174. Wang, M.; Wang, Y.; Shi, L.; Lu, Y.; Zhu, H.; Liang, L.; Sun, Z.L. A new phenylpropanoid-substituted flavan-3-ol from aerial part of Mentha longifolia. Chem. Nat. Compd. 2022, 58, 237–239. [Google Scholar] [CrossRef]
  175. Prescott, T.A.K.; Veitch, N.C.; Simmonds, M.S.J. Direct inhibition of calcineurin by caffeoyl phenylethanoid glycosides from Teucrium chamaedrys and Nepeta cataria. J. Ethnopharmacol. 2011, 137, 1306–1310. [Google Scholar] [CrossRef] [PubMed]
  176. de Lima, V.T.; Vieira, M.C.; Kassuya, C.A.L.; Cardoso, C.A.L.; Alves, J.M.; Foglio, M.A.; De Carvalho, J.E.; Formagio, A.S.N. Chemical composition and free radical-scavenging, anticancer and anti-inflammatory activities of the essential oil from Ocimum kilimandscharicum. Phytomedicine 2014, 21, 1298–1302. [Google Scholar] [CrossRef] [PubMed]
  177. Banno, N.; Akihisa, T.; Tokuda, H.; Yasukawa, K.; Higashihara, H.; Ukiya, M.; Watanabe, K.; Kimura, Y.; Hasegawa, J.I.; Nishino, H. Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci. Biotechnol. Biochem. 2004, 68, 85–90. [Google Scholar] [CrossRef]
  178. Huang, B.P.; Lin, C.H.; Chen, Y.C.; Kao, S.H. Anti-inflammatory effects of Perilla frutescens leaf extract on lipopolysaccharide stimulated RAW264.7 cells. Mol. Med. Rep. 2014, 10, 1077–1083. [Google Scholar] [CrossRef]
  179. Ueda, H.; Yamazaki, C.; Yamazaki, M. Luteolin as an anti-inflamamtory and anti-allergic constituent of Perilla frutescens. Biol. Pharm. Bull. 2002, 25, 1197–1202. [Google Scholar] [CrossRef]
  180. Zuo, J.; Zhang, T.H.; Xiong, L.; Huang, L.; Peng, C.; Zhou, Q.M.; Dai, O. Two pairs of 7,7′-Cyclolignan enantiomers with anti-Inflammatory activities from Perilla frutescens. Molecules 2022, 27, 6102. [Google Scholar] [CrossRef]
  181. Liu, D.; Wang, Y.; Lu, Z.; Lv, F.; Bie, X.; Zhao, H. Separation, characterization, and anti-inflammatory activities of galactoglycerolipids from Perilla frutescens (L.) Britton. Nat. Prod. Res. 2022, 37, 3610–3615. [Google Scholar] [CrossRef]
  182. Kangwan, N.; Pintha, K.; Khanaree, C.; Kongkarnka, S.; Chewonarin, T.; Suttajit, M. Anti-inflammatory effect of Perilla frutescens seed oil rich in omega-3 fatty acid on dextran sodium sulfate-induced colitis in mice. Res. Pharm. Sci. 2021, 16, 464–473. [Google Scholar] [CrossRef]
  183. Zhao, J.; Xu, L.; Jin, D.; Xin, Y.; Tian, L.; Wang, T.; Zhao, D.; Wang, Z.; Wang, J. Rosmarinic acid and related dietary supplements: Potential applications in the prevention and treatment of Cancer. Biomolecules 2022, 12, 1410. [Google Scholar] [CrossRef] [PubMed]
  184. Sitarek, P.; Kowalczyk, T.; Synowiec, E.; Merecz-Sadowska, A.; Bangay, G.; Princiotto, S.; Sliwinski, T.; Rijo, P. An evaluation of the novel biological properties of diterpenes isolated from Plectranthus ornatus Codd. In vitro and in silico. Cells 2022, 11, 3243. [Google Scholar] [CrossRef] [PubMed]
  185. Wu, S.J.; Chan, H.H.; Hwang, T.L.; Qian, K.; Morris-Natschke, S.; Lee, K.H.; Tian-Shung Wu, T.S. Salviatalin A and salvitrijudin A, two diterpenes with novel skeletons from roots of Salvia digitaloides and anti-inflammatory evaluation. Tetrahedron Lett. 2010, 51, 4287–4290. [Google Scholar] [CrossRef]
  186. Piccinelli, A.C.; Figueiredo de Santana Aquino, D.; Morato, P.N.; Kuraoka-Oliveira, A.M.; Strapasson, R.L.; Dos Santos, E.P.; Stefanello, M.É.; Oliveira, R.J.; Kassuya, C.A. Anti-inflammatory and antihyperalgesic activities of ethanolic extract and fruticulin A from Salvia lachnostachys leaves in mice. Evid.-Based Complement. Altern. Med. 2014, 2014, 835914. [Google Scholar] [CrossRef]
  187. Zarshenas, M.M.; Krenn, L. Phytochemical and pharmacological aspects of Salvia mirzayanii Rech. f. & Esfand. Evid.-Based Complement. Altern. Med. 2015, 20, 65–72. [Google Scholar] [CrossRef]
  188. Ziaei, A.; Hoppstädter, J.; Kiemer, A.K.; Ramezani, M.; Amirghofran, Z.; Diesel, B. Inhibitory effects of teuclatriol, a sesquiterpene from Salvia mirzayanii, on nuclear factor-κB activation and expression of inflammatory mediators. J. Ethnopharmacol. 2015, 160, 94–100. [Google Scholar] [CrossRef]
  189. Zou, Y.H.; Zhao, L.; Xu, Y.K.; Bao, J.M.; Liu, X.; Zhang, J.S.; Li, W.; Ahmed, A.; Yin, S.; Tang, G.H. Anti-inflammatory sesquiterpenoids from the Traditional Chinese Medicine Salvia plebeia: Regulates pro-inflammatory mediators through inhibition of NF-κB and Erk1/2 signaling pathways in LPS-induced Raw 264.7 cells. J. Ethnopharmacol. 2018, 210, 95–106. [Google Scholar] [CrossRef]
  190. Jeong, H.; Sung, M.; Kim, Y.; Ham, H.; Choi, Y.; Lee, J. Anti-inflammatory activity of Salvia plebeia R. Br. leaf through heme oxygenase-1 induction in LPS-stimulated RAW264.7 macrophages. J. Korean Soc. Food Sci. Nutr. 2012, 41, 888–894. [Google Scholar] [CrossRef]
  191. Akram, M.; Syed, A.S.; Kim, K.A.; Lee, J.S.; Chang, S.Y.; Kim, C.Y.; Bae, O.N. Heme oxygenase 1-mediated novel anti-inflammatory activities of Salvia plebeia and its active components. J. Ethnopharmacol. 2015, 174, 322–330. [Google Scholar] [CrossRef]
  192. Jang, H.H.; Lee, S.; Lee, S.J.; Lim, H.J.; Jung, K.; Kim, Y.H.; Lee, S.W.; Rho, M.C. Anti-inflammatory activity of eudesmane-type sesquiterpenoids from Salvia plebeia. J. Nat. Prod. 2017, 80, 2666–2676. [Google Scholar] [CrossRef]
  193. Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol. 2019, 229, 29–45. [Google Scholar] [CrossRef] [PubMed]
  194. Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
  195. Albano, S.M.; Miguel, M.G. Biological activities of extracts of plants grown in Portugal. Ind. Crops Prod. 2011, 33, 338–343. [Google Scholar] [CrossRef]
  196. Abbasloo, E.; Dehghan, F.; Khaksari, M.; Najafipour, H.; Vahidi, R.; Dabiri, S.; Sepehri, G.; Asadikaram, G. The anti-inflammatory properties of Satureja khuzistanica Jamzad essential oil attenuate the effects of traumatic brain injuries in rats. Sci. Rep. 2016, 6, 31866. [Google Scholar] [CrossRef]
  197. Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.d.M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother. Res. 2018, 32, 1688–1706. [Google Scholar] [CrossRef]
  198. Mahomoodally, M.F.; Devi Dursun, P.; Venugopala, K.N. Collinsonia canadensis L. In Naturally Occurring Chemicals against Alzheimer’s Disease; Elsevier: Amsterdam, The Netherlands, 2021; pp. 373–377. [Google Scholar] [CrossRef]
  199. Aminian, A.R.; Mohebbati, R.; Boskabady, M.H. The Effect of Ocimum basilicum L. and its main ingredients on respiratory disorders: An experimental, preclinical, and clinical review. Front. Pharmacol 2022, 12, 805391. [Google Scholar] [CrossRef]
  200. Pandur, E.; Micalizzi, G.; Mondello, L.; Horváth, A.; Sipos, K.; Horváth, G. Antioxidant and anti-Inflammatory effects of Thyme (Thymus vulgaris L.) essential oils prepared at different plant phenophases on Pseudomonas aeruginosa LPS-Activated THP-1 macrophages. Antioxidants 2022, 11, 1330. [Google Scholar] [CrossRef]
  201. Sun, Z.; Wang, H.; Wang, J.; Zhou, L.; Yang, P. Chemical composition and anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita grown in China. PLoS ONE 2014, 9, e114767. [Google Scholar] [CrossRef]
  202. Pandur, E.; Balatinácz, A.; Micalizzi, G.; Mondello, L.; Horváth, A.; Sipos, K.; Horváth, G. Anti-inflammatory effect of lavender (Lavandula angustifolia Mill.) essential oil prepared during different plant phenophases on THP-1 macrophages. BMC Complement. Med. 2021, 21, 287. [Google Scholar] [CrossRef]
  203. Kim, K.M.; Kim, S.Y.; Mony, T.J.; Bae, H.J.; Han, S.D.; Lee, E.S.; Choi, S.H.; Hong, S.H.; Lee, S.D.; Park, S.J. Dracocephalum moldavica ethanol extract suppresses LPS-induced inflammatory responses through inhibition of the JNK/ERK/NF-κB signaling pathway and IL-6 production in raw 264.7 macrophages and in endotoxic-treated mice. Nutrients 2021, 13, 12. [Google Scholar] [CrossRef]
  204. Wang, Y.Y.; Lin, S.Y.; Chen, W.Y.; Liao, S.L.; Wu, C.C.; Pan, P.H.; Chou, S.T.; Chen, C.J. Glechoma hederacea extracts attenuate cholestatic liver injury in a bile duct-ligated rat model. J. Ethnopharmacol. 2017, 204, 58–66. [Google Scholar] [CrossRef] [PubMed]
  205. Tubon, I.; Bernardini, C.; Antognoni, F.; Mandrioli, R.; Potente, G.; Bertocchi, M.; Vaca, G.; Zannoni, A.; Salaroli, R.; Forni, M. Clinopodium tomentosum (Kunth) govaerts leaf extract influences in vitro cell proliferation and angiogenesis on primary cultures of porcine aortic endothelial cells. Oxid. Med. Cell. Longev. 2020, 2020, 298461. [Google Scholar] [CrossRef] [PubMed]
  206. Sheychenko, O.P.; Sheychenko, V.I.; Goryainov, S.V.; Zvezdina, E.V.; Kurmanova, E.N.; Ferubko, E.V.; Uyutova, E.V.; Potanina, O.G.; Fadi, K. Chemical composition and biological activity of the dry extract “Rosmatin” from the herb of Dracocephalum moldavica L. Khimiya Rastitel’nogo Syr’ya 2021, 3, 253–264. [Google Scholar] [CrossRef]
  207. Zotsenko, L.; Kyslychenko, V.; Kalko, K.; Drogovoz, S. The study of phenolic composition and acute toxicity, anti-inflammatory and analgesic effects of dry extracts of some Elsholtzia genus (Lamiaceae) species. Archives 2021, 2, 637–649. [Google Scholar]
  208. Mićović, T.; Katanić Stanković, J.S.; Bauer, R.; Nöst, X.; Marković, Z.; Milenković, D.; Jakovljević, V.; Tomović, M.; Bradić, J.; Stešević, D.; et al. In vitro, in vivo and in silico evaluation of the anti-inflammatory potential of Hyssopus officinalis L. subsp. aristatus (Godr.) Nyman (Lamiaceae). J. Ethnopharmacol. 2022, 293, 115201. [Google Scholar] [CrossRef]
  209. Deng, Y.; Hua, J.; Wang, W.; Zhan, Z.; Wang, A.; Luo, S. Cytotoxic terpenoids from the roots of Dracocephalum taliense. Molecules 2018, 23, 57. [Google Scholar] [CrossRef]
  210. Feng, X.; Wang, X.; Liu, Y.; Di, X. Linarin inhibits the acetylcholinesterase activity in-vitro and ex-vivo. Iran. J. Pharm. Res. 2015, 14, 949–954. [Google Scholar]
  211. Yang, Z.; Qi, J.; Ping, D.; Sun, X.; Tao, Y.; Liu, C.; Peng, Y. Salvia miltiorrhiza in thorax and abdominal organ fibrosis: A review of its pharmacology. Front. Pharmacol. 2022, 13, 9604. [Google Scholar] [CrossRef]
  212. Vergara-Martínez, V.M.; Estrada-Soto, S.E.; Valencia-Díaz, S.; Garcia-Sosa, K.; Peña-Rodríguez, L.M.; de Jesús Arellano-García, J.; Perea-Arango, I. Methyl jasmonate enhances ursolic, oleanolic and rosmarinic acid production and sucrose induced biomass accumulation, in hairy roots of Lepechinia caulescens. Peer J. 2021, 9, 11279. [Google Scholar] [CrossRef]
  213. Ortiz-Mendoza, N.; Aguirre-Hernández, E.; Fragoso-Martínez, I.; González-Trujano, M.E.; Basurto-Peña, F.A.; Martínez-Gordillo, M.J. A review on the ethnopharmacology and phytochemistry of the neotropical sages (Salvia subgenus Calosphace; Lamiaceae) emphasizing Mexican species. Front. Pharmacol. 2022, 19, 867892. [Google Scholar] [CrossRef]
  214. Schoch, C.L. NCBI Taxonomy: A Comprehensive Update on Curation, Resources, and Tools. Database (Oxford). 2020. Available online: https://www.ncbi.nlm.nih.gov/taxonomy (accessed on 12 December 2022).
Figure 1. Selected species of the subfamily Nepetoideae (Lamiaceae) that have been studied for their anti-inflammatory properties. (A) Agastache mexicana, (B) Hyptis atrorubens, (C) Isodon effusus, (D) Lepechinia caulescens, (E) Mentha spicata, (F) Ocimum carnosum, (G) Plectranthus scutellarioides, (H) Prunella vulgaris, (I) Salvia officinalis. Photo credits: Canek Ledesma (A,D); Jonathan Amith (B,H); Toshihiro Nagata (C); Fred Melgert (E); Miriam Jiménez (F); Francisco Osbel (G); Christian Berg (I).
Figure 1. Selected species of the subfamily Nepetoideae (Lamiaceae) that have been studied for their anti-inflammatory properties. (A) Agastache mexicana, (B) Hyptis atrorubens, (C) Isodon effusus, (D) Lepechinia caulescens, (E) Mentha spicata, (F) Ocimum carnosum, (G) Plectranthus scutellarioides, (H) Prunella vulgaris, (I) Salvia officinalis. Photo credits: Canek Ledesma (A,D); Jonathan Amith (B,H); Toshihiro Nagata (C); Fred Melgert (E); Miriam Jiménez (F); Francisco Osbel (G); Christian Berg (I).
Plants 12 03752 g001
Figure 2. Countries included in reports of traditional uses related to the inflammatory process of species of the subfamily Nepetoideae are shown in green.
Figure 2. Countries included in reports of traditional uses related to the inflammatory process of species of the subfamily Nepetoideae are shown in green.
Plants 12 03752 g002
Figure 3. Number of mentions of some species belonging to the Nepetoideae subfamily for traditional uses associated with inflammatory processes.
Figure 3. Number of mentions of some species belonging to the Nepetoideae subfamily for traditional uses associated with inflammatory processes.
Plants 12 03752 g003
Figure 4. Number of articles related to anti-inflammatory activity indexed in Scopus for the genera of the subfamily Nepetoideae. The number of items for the genera Melissa, Lavandula, Origanum, Mentha, Thymus, Ocimum, and Salvia is shown on the right-hand axis, and on the left-hand axis are all of the remaining genera.
Figure 4. Number of articles related to anti-inflammatory activity indexed in Scopus for the genera of the subfamily Nepetoideae. The number of items for the genera Melissa, Lavandula, Origanum, Mentha, Thymus, Ocimum, and Salvia is shown on the right-hand axis, and on the left-hand axis are all of the remaining genera.
Plants 12 03752 g004
Figure 5. Number of articles related to anti-inflammatory activity indexed in Scopus in relation to the tribes of the subfamily Nepetoideae, including the genus for each tribe.
Figure 5. Number of articles related to anti-inflammatory activity indexed in Scopus in relation to the tribes of the subfamily Nepetoideae, including the genus for each tribe.
Plants 12 03752 g005
Figure 6. Species of the genera Lavandula, Mentha, Origanum, Salvia, and Thymus with the highest number of publications related to anti-inflammatory processes.
Figure 6. Species of the genera Lavandula, Mentha, Origanum, Salvia, and Thymus with the highest number of publications related to anti-inflammatory processes.
Plants 12 03752 g006
Figure 7. Representative non-polar (C1–C5 and C19–C21) and polar (C6–C18) secondary metabolites with anti-inflammatory activity isolated from species of the subfamily Nepetoideae. Thymol (C1), carvacrol (C2), menthol (C3), menthone (C4), eucalyptol (C5), rosmarinic acid (C6), tilianin (C7), dracocephalmoids A to D (C8–C11), orthosiphol A and B (C12–C13), tanshinone IIA (C14), sclareol (C15), adenanthine (C16), eriocalyxin B (C17), oridonine (C18), oleanolic acid (19), ursolic acid (20), and stigmasterol (21).
Figure 7. Representative non-polar (C1–C5 and C19–C21) and polar (C6–C18) secondary metabolites with anti-inflammatory activity isolated from species of the subfamily Nepetoideae. Thymol (C1), carvacrol (C2), menthol (C3), menthone (C4), eucalyptol (C5), rosmarinic acid (C6), tilianin (C7), dracocephalmoids A to D (C8–C11), orthosiphol A and B (C12–C13), tanshinone IIA (C14), sclareol (C15), adenanthine (C16), eriocalyxin B (C17), oridonine (C18), oleanolic acid (19), ursolic acid (20), and stigmasterol (21).
Plants 12 03752 g007
Table 1. Bioactive metabolites with anti-inflammatory properties isolated from species of the Nepetoideae (Lamiaceae) subfamily.
Table 1. Bioactive metabolites with anti-inflammatory properties isolated from species of the Nepetoideae (Lamiaceae) subfamily.
SpeciesSecondary Metabolites with Anti-Inflammatory ActivityReferences
Agastache mexicana Linton and EplingUrsolic acid and limonene[134,135]
Clinopodium polycephalum (Vaniot) C.Y. Wu and S.J. HsuanSaturol I; 3β-22, 25-dihydroxy-tirucalla-7, 23-dieno; maslinic acid; 2α, 3α-dihydroxyolean-12-en-28-oic acid; hederagenin; 2α, 3α-dihydroxyursolic acid; alphitolic acid; rosmarinic acid; and hesperidin[136]
Coleus scutellarioides (L.) Benth.Quercetin[137,138]
Dracocephalum heterophyllum Benth.Rosmarinate, luteolin, and diosmetin[139,140]
Dracocephalum kotschyi Boiss.Apigenin[141]
Dracocephalum moldavica L.Tilianin, dracocephalumoid A, uncinatone, trichotomone F, and caryopterisoid C[107,108]
Dracocephalum palmatum Stephan ex Willd.Cosmosiin, cymaroside, and eriodictyol[142,143,144]
Dracocephalum rupestre HanceEriodictyol[145]
Elsholtzia ciliata (Thunb.) Hyl.Luteolin, caffeic acid, vitexin, pedalin, luteolin-7-O-β-d-glucopyranoside, apigenin-5-O-β-d-glucopyranoside, apigenin-7-O-β-d-glucopyranoside, chrysoeriol-7-O-β-d-glucopyranoside, 7,3′-methoxy luteolin-6-O-β-d-glucopyranoside, 5,6,4′-trihydroxy-7,3′-dimethoxyflavone, 5-hydroxy-6,7-dimethoxyflavone, 4-(E)-caffeoyl-L-threonic acid, 4-O-(E)-p-coumaroyl-L-threonic acid, and α-linolenic acid[146,147,148,149,150]
Elsholtzia rugulosa Hemsl.Rugulolide A, nepetoidin B, methyl rosmarinate, and syringaresinol[151]
Glechoma longituba (Nakai) Kuprian.Apigenin-7-diglucoronide[105]
Isodon adenanthus (Diels) KudôAdenantin[117]
Isodon amethystoides (Benth.) H. HaraGlaucocalyxin A[152]
Isodon excisus (Maxim.) KudôInflexinol and inflexin[153,154]
Isodon henryi (Hemsl.) KudôRabdoternin A and lasiodonin[155]
Isodon japonicus (Burm. f.) H. HaraKamebanin, kamebakaurin, oridonin, kamebakaurin, effusanin C, and isodojaponin D[156,157,158,159]
Isodon melissoides (Benth.) H.W. LiMelissoidesin[160,161]
Isodon scoparius C.Y. Wu and H.W. Li) H. HaraScopariusol L[115]
Isodon serra (Maxim.) KudôOridonin, serrin F, 14β-hydroxyrabdocoestin A, serrins H-I, enanderianin N, megathyrin B, enmein, isoserrin A- I, and nodosin[162,163,164,165,166]
Isodon sculponeatus (Vaniot) KudôSculponeatin J, sculponin T, sculponeatin C, and sculponins Y[167,168]
Isodon ternifolius (D.Don) KudôTernifoliuslignane A–D and 3-carboxy-6,7-dihydroxy-1-(3′,4′-dihydroxyphenyl)-naftalene[121]
Isodon rubescens (Hemsl.) H. HaraOridonin[169]
Isodon wikstroemioides (Hand.-Mazz.) H. HaraIsowikstroemins A–D, G, H, J, K, and macrocalyxin B[170,171]
Mentha cordifolia Opiz ex Fresen.Menthol[172]
Mentha longifolia (L.) Huds.Longifolin A and eucalyptol[173,174]
Nepeta cataria Benth.Lamiuside A and verbascoside[175]
Ocimum kilimandscharicum Baker ex GürkeCamphor and mixture of 1,8 cineole/limonene 1:1[176]
Perilla frutescens (L.) BrittonUrsolic acid, corosolic acid, 3-epicorosolic acid, pomolic acid, tormentic acid, hiptadienic acid, oleanolic acid, augustic acid, 3-epimaslinic acid, luteolin, monogalactosildiacilgliceroles, and rosmarinic acid[177,178,179,180,181,182,183]
Plectranthus ecklonii Benth.Parvifloron D, mixture of β-sitosterol, and stigmasterol (1:1)[112]
Plectranthus ornatus Codd.(11R,13E)-11-acetoxyhalima-5,13-dien-15-oic acid; 1α,6β-diacetoxy-8α,13R-epoxy-14-labden-11-one; 1,6-di-O-acetylforskolin; 1,6-di-O-acetyl-9-deoxyforskolin, 1,6-di-O-acetylforskolin, and forskolin[184]
Prunella vulgaris L.2α, 3α, 23-trihydroxyursa-12,20(30)-dien-28-oic acid; β-amyrin, eusapic acid, 2α, 3α-dihydroxyursolic acid, prunelanate A, and pruneladiterpenol A[96,97,99,100]
Salvia digitaloides DielsSalviatalin A[185]
Salvia lachnostachys Benth.Fruticulin A[186]
Salvia miltiorrhiza BungeTanshinona IIA[61]
Salvia mirzayanii Rech. f. and Esfand.Teuclatriol[187,188]
Salvia petrophilla G. X. Hu, E. D. Liu and Yan LiuPetrofins A-E[70]
Salvia plebeia R. Br.8-epi-eudebeiolida C, salviplenoide A, luteoloside, nepitrin, homoplantagenin, luteolin, nepetin, hispidulin, and eupatorin[189,190,191,192]
Salvia rosmarinus (L.) J.B. Walker, B.T. Drew and J.G. González (Syn.)Carnosic acid[193]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ortiz-Mendoza, N.; Martínez-Gordillo, M.J.; Martínez-Ambriz, E.; Basurto-Peña, F.A.; González-Trujano, M.E.; Aguirre-Hernández, E. Ethnobotanical, Phytochemical, and Pharmacological Properties of the Subfamily Nepetoideae (Lamiaceae) in Inflammatory Diseases. Plants 2023, 12, 3752. https://doi.org/10.3390/plants12213752

AMA Style

Ortiz-Mendoza N, Martínez-Gordillo MJ, Martínez-Ambriz E, Basurto-Peña FA, González-Trujano ME, Aguirre-Hernández E. Ethnobotanical, Phytochemical, and Pharmacological Properties of the Subfamily Nepetoideae (Lamiaceae) in Inflammatory Diseases. Plants. 2023; 12(21):3752. https://doi.org/10.3390/plants12213752

Chicago/Turabian Style

Ortiz-Mendoza, Nancy, Martha Juana Martínez-Gordillo, Emmanuel Martínez-Ambriz, Francisco Alberto Basurto-Peña, María Eva González-Trujano, and Eva Aguirre-Hernández. 2023. "Ethnobotanical, Phytochemical, and Pharmacological Properties of the Subfamily Nepetoideae (Lamiaceae) in Inflammatory Diseases" Plants 12, no. 21: 3752. https://doi.org/10.3390/plants12213752

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop