

Corrigendum: Museomics Unveil the Phylogeny and Biogeography of the Neglected Juan Fernandez Archipelago *Megalachne* and *Podophorus* Endemic Grasses and Their Connection With Relict Pampean-Ventanian Fescues

OPEN ACCESS

Approved by:

Frontiers Editorial Office, Frontiers Media SA, Switzerland

*Correspondence:

Pilar Catalán pcatalan@unizar.es

Specialty section:

This article was submitted to Plant Systematics and Evolution, a section of the journal Frontiers in Plant Science

Received: 17 November 2021 Accepted: 25 November 2021 Published: 16 December 2021

Citation:

Moreno-Aguilar MF, Arnelas I, Sánchez-Rodríguez A, Viruel J and Catalán P (2021) Corrigendum: Museomics Unveil the Phylogeny and Biogeography of the Neglected Juan Fernandez Archipelago Megalachne and Podophorus Endemic Grasses and Their Connection With Relict Pampean-Ventanian Fescues. Front. Plant Sci. 12:817266. doi: 10.3389/fpls.2021.817266 María Fernanda Moreno-Aguilar¹, Itziar Arnelas², Aminael Sánchez-Rodríguez², Juan Viruel³ and Pilar Catalán^{1,4,5*}

¹ Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain, ² Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador, ³ Royal Botanic Gardens, Kew, Richmond, United Kingdom, ⁴ Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain, ⁵ Department of Botany, Institute of Biology, Tomsk State University, Tomsk, Russia

Keywords: ancestral range reconstruction, endemic Loliinae grasses, Fernandezian clade, genome skimming, phylogenomics, taxonomically neglected species

A Corrigendum on

Museomics Unveil the Phylogeny and Biogeography of the Neglected Juan Fernandez Archipelago *Megalachne* and *Podophorus* Endemic Grasses and Their Connection With Relict Pampean-Ventanian Fescues

by Moreno-Aguilar, M. F., Arnelas, I., Sánchez-Rodríguez, A., Viruel, J., and Catalán, P. (2020). Front. Plant Sci. 11:819. doi: 10.3389/fpls.2020.00819

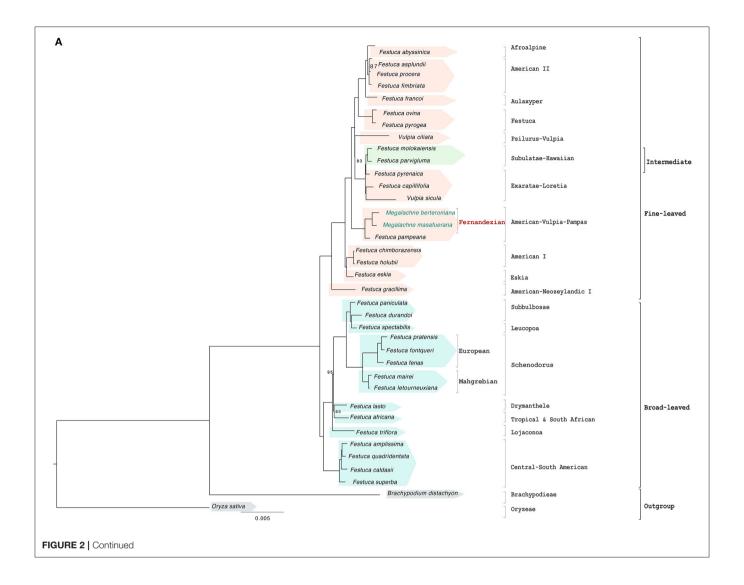
In the original article, there was a mistake in **Table 1**, **Figures 2A**, **2B**, **3A**, **3B** and **5**, Supplementary Figures 1A, 1B, 1C, 1D, 2A, 2B, 2C and 3, and Supplementary Tables 1 and 2A as published. The name and authorship of *Festuca fontqueri* St-Yves were misspelled as *Festuca fontqueriana* (St-Yves) Romo.

In addition, the GenBank accession codes of ITS, trnLF and trnTL DNA sequences of *Avena fatua*, *Oryza sativa*, *Poa alpina*, *Secale cereale* and *Triticum aestivum* were wrong in Supplementary Table 1.

The corrected **Table 1**, **Figures 2A**, **2B**, **3A**, **3B** and **5** appear below and corrected Supplementary Figures 1A, 1B, 1C, 1D, 2A, 2B, 2C and 3, and Supplementary Tables 1 and 2A are published.

1

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.


Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Moreno-Aguilar, Arnelas, Sánchez-Rodríguez, Viruel and Catalán. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

TABLE 1 | List of taxa included in the phylogenomic study of the Fernandezian and other Loliinae grasses.

Taxon	Source	Ploidy	No. reads	Genbank/Phytozome accession No.	
				Plastome	rDNA cistron
Festuca abyssinica	Tanzania: Kilimanjaro	4x	12041	SAMN14647043	MT145276
Festuca africana	Uganda: Bwindi forest	10x	13549	SAMN14647044	MT145277
estuca amplissima	Mexico: Barranca del Cobre	6x	12058	SAMN14647045	MT145278
estuca arundinacea var. letourneuxiana	Morocco: Atlas Mountains	10x	16839	SAMN14647059	MT145292
estuca asplundii	Ecuador: Saraguro	6x	25088	SAMN14647046	MT145279
estuca caldasii	Ecuador: Las Chinchas -Tambara	?	9863	SAMN14647047	MT145280
estuca capillifolia	España: Cazorla	2x	13430	SAMN14647048	MT145281
estuca chimborazensis	Ecuador: Chimborazo-Cotopaxi	4x	10913	SAMN14647049	MT145282
estuca durandoi	Portugal: Alto do Espinheiro	2x	12688	SAMN14647050	MT145283
estuca eskia	Spain: Picos de Europa	2x	24041	SAMN14647051	MT145284
estuca fenas	Spain: Madrid	4x	16112	SAMN14647052	MT145285
estuca fimbriata	Argentina: Apóstoles	6x	15741	SAMN14647053	MT145286
estuca fontqueri	Morocco: Rif, Outa-El-Kadir	2x	22187	SAMN14647054	MT145287
estuca gracillima	Argentina: Tierra de Fuego	6x	13888	SAMN14647055	MT145288
estuca holubii	Ecuador: Saraguro	?	10264	SAMN14647056	MT145289
estuca francoi	Portugal: Azores	2x	17592	SAMN14647057	MT145290
estuca lasto	Spain: Los Alcornocales	2x	21581	SAMN14647058	MT145291
estuca mairei	Morocco: Atlas Mountains	4x	19134	SAMN14647060	MT145293
estuca molokaiensis	USA: Molokai	?	12188	SAMN14647061	MT145294
estuca ovina	Russia: Gatchinskii Raion	2x	11364	SAMN14647062	MT145295
estuca pampeana	Argentina: Sierra Ventana	6x	14862	SAMN14647063	MT145296
estuca paniculata	Spain: Puerto de los Castaños	2x	35808	SAMN14647064	MT145297
estuca parvigluma	China: Baotianman	4x	15872	SAMN14647065	MT145298
estuca pratensis	England: USDA/283306	2x	30021	SAMN14647066	MT145301
estuca procera	Ecuador: Riobamba	4x	12189	SAMN14647067	MT145299
estuca pyrenaica	Spain: Pyrenees, Tobacor	4x	40669	SAMN14647068	MT145300
estuca pyrogea	Argentina: Tierra de fuego	?	16835	SAMN14647069	MT145302
estuca quadridentata	Ecuador: Chimborazo	?	15091	SAMN14647070	MT145303
estuca spectabilis	Bosnia-Hercegovina: Troglav	6x	12960	SAMN14647071	MT145304
estuca superba	Argentina: Jujuy, Yala	8x	12193	SAMN14647072	MT145305
estuca triflora	Morocco: Rif, Ketama	2x	24472	SAMN14647073	MT145306
legalachne berteroniana	Chile: JuanFernandez, Masatierra	?	5288	SAMN14647074	MT145307
egalachne masafuerana	Chile: JuanFernandez, Masafuera	?	6134	SAMN14647075	MT145308
odophorus bromoides	Chile: JuanFernandez, Masatierra	?	6694	SAMN14668162	
ılpia ciliata	Spain: Mar de Ontígola	4x	11801	SAMN14647076	MT145309
ulpia sicula	Italia: Sicilia, Madone	2x	11327	SAMN14647077	MT145310
utgroups					
rachypodium distachyon	Iraq: near Salakudin	2x	-	NC_011032.1	phytozome.jgi.doe.gov, Bd21
Pryza sativa subsp. japonica	cv. PA64S; cv. Nipponbare	2x	-	AY522331.1	AP008215

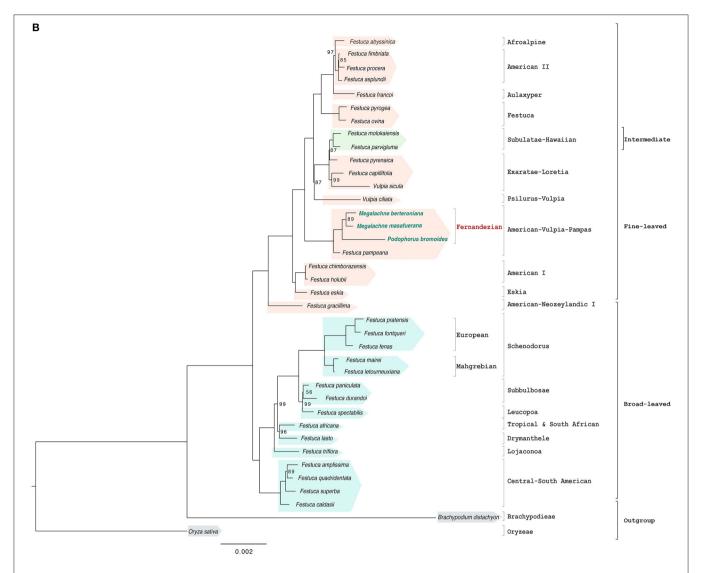
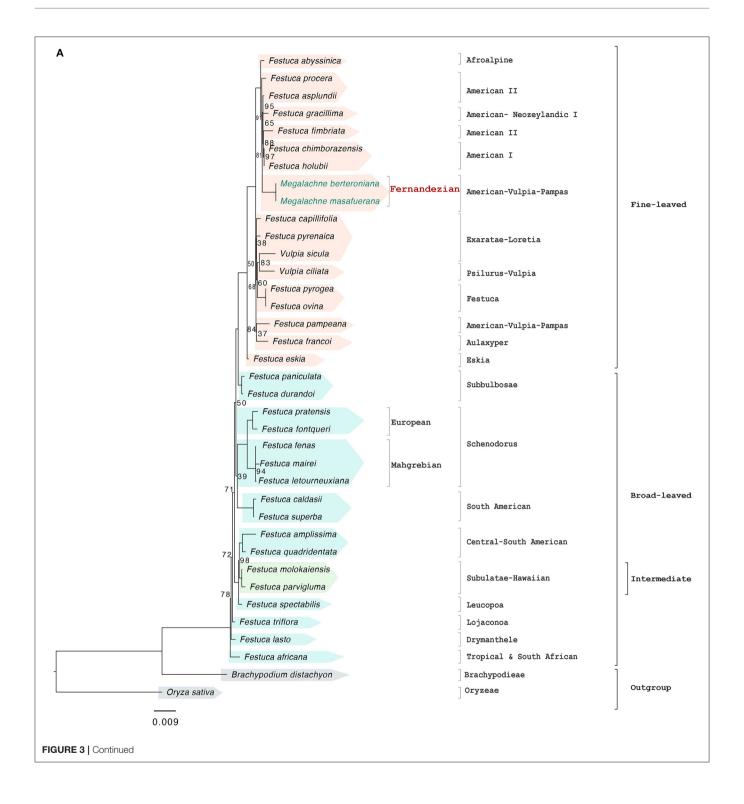



FIGURE 2 | Maximum likelihood full plastome (A) and reduced plastome (B) trees constructed with IQTREE showing the relationships among the studied Fernandezian and Lollinae grasses. Oryza sativa was used to root the trees. Numbers indicate branches with UltraFast Bootstrap supports (BS) <100%; the remaining branches have 100% BS value.

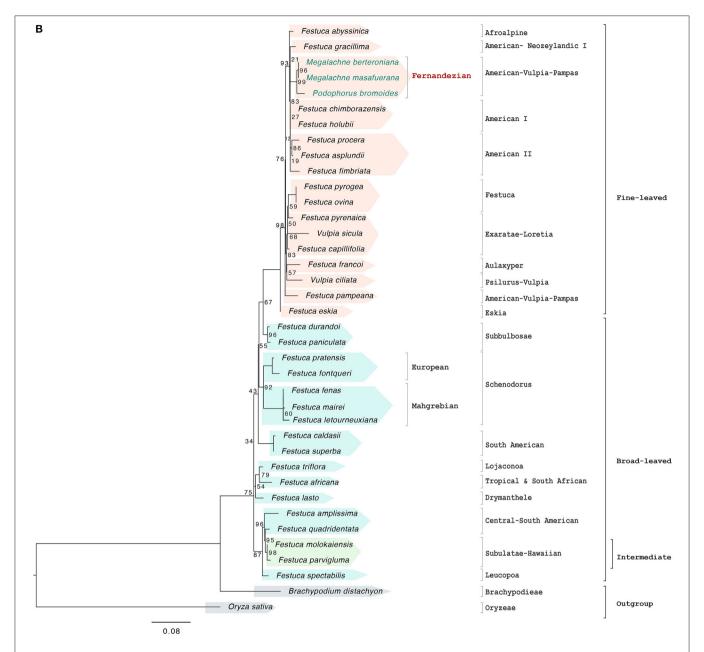


FIGURE 3 | Maximum likelihood nuclear rDNA cistron (A) and ITS (B) trees constructed with IQTREE showing the relationships among the studied Fernandezian and Lollinae grasses. Oryza sativa was used to root the trees. Numbers indicate branches with UltraFast Bootstrap supports (BS) <100%; the remaining branches have 100% BS value.

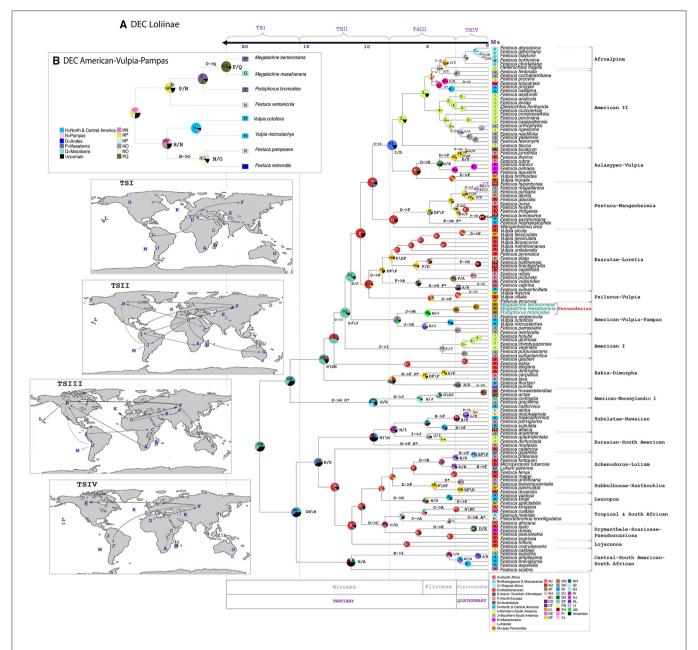


FIGURE 5 | Estimated ancestral ranges and biogeographical events of the Fernandezian and other Lollinae grasses inferred from LAGRANGE under the stratified DEC models mapped on the BEAST2 maximum clade credibility tree with outgroups pruned from it. (A) Lollinae DEC model; (B) American-Vulpia-Pampas DEC model. The vertical dashed lines separate the four time slices (TSI-TSIV) used in the Lagrange analyses. The maps on the left represent the palaeogeographical configuration of the world in these four time periods and the arrows represent the dispersals between areas that reflect change in continental connectivity over time. The pie charts at the nodes indicate the relative probabilities for alternative ancestral ranges (with their color legends indicated at the respective inset charts). The inferred biogeographic events are indicated at the nodes (X/Y vicariance; X/Y peripheral isolation) and branches (X->Y dispersal; X' extinction) of the tree. The Operational Areas assigned to the species are indicated to the right of the trees.