Academia.eduAcademia.edu
Cladistics Cladistics (2015) 1–30 10.1111/cla.12136 A large-scale phylogeny of the lycophyte genus Selaginella (Selaginellaceae: Lycopodiopsida) based on plastid and nuclear loci Xin-Mao Zhoua,b, Carl J. Rothfelsc,d, Liang Zhanga, Zhao-Rong Hee, Timothee Le Pechona,f, Hai Heg, Ngan Thi Luh, Ralf Knappi, David Lorencej, Xing-Jin Heb, Xin-Fen Gaoa,* and Li-Bing Zhangk,* a Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu, Sichuan 610041, China; bSchool of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China; cDepartment of Zoology, University of British Columbia, #4200-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada; dUniversity Herbarium and Department of Integrative Biology, University of California, Berkeley, CA 94720-2465, USA; e School of Life Science, Yunnan University, Kunming, Yunnan 650091, China; fSchool of Life Sciences, University of KwaZulu-Natal, Private Bag X01 Scottsville, Pietermaritzburg 3209, South Africa; gDepartment of Biology, Chongqing Normal University, Shapingba, Chongqing 400047, China; hDepartment of Botany, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18th Hoang Quoc Viet Road, eum national d’Histoire naturelle (MNHN, Paris, France), Steigestrasse 78, 69412 Cau Giay, Ha Noi, Viet Nam; iCorrespondent of the Mus Eberbach, Germany; jNational Tropical Botanical Garden, 3530 Papalina Road, Kalaheo, HI 96741, USA; kMissouri Botanical Garden, PO Box 299, St Louis, MO 63166-0299, USA Accepted 28 June 2015 Abstract The lycophyte genus Selaginella alone constitutes the family Selaginellaceae, the largest of the lycophyte families. The genus is estimated to contain 700–800 species distributed on all continents except Antarctica, with highest species diversity in tropical and subtropical regions. The monophyly of Selaginella in this broad sense has rarely been doubted, whereas its intrageneric classification has been notoriously contentious. Previous molecular studies were based on very sparse sampling of Selaginella (up to 62 species) and often used DNA sequence data from one genome. In the present study, DNA sequences of one plastid (rbcL) and one nuclear (ITS) locus from 394 accessions representing approximately 200 species of Selaginella worldwide were used to infer a phylogeny using maximum likelihood, Bayesian inference and maximum parsimony methods. The study identifies strongly supported major clades and well resolves relationships among them. Major results include: (i) six deep-level clades are discovered representing the deep splits of Selaginella; and (ii) 20 major clades representing 20 major evolutionary lineages are identified, which differ from one another in molecular, macro-morphological, ecological and spore features, and/or geographical distribution. © The Willi Hennig Society 2015. The lycophyte family Selaginellaceae contains only one genus, Selaginella P. Beauv. The largest lycophyte genus, Selaginella is cosmopolitan and is estimated to contain 700 (Tryon and Lugardon, 1991), 750 (Jermy, 1990) or ca. 800 species (X.-M. Zhou and L.-B. Zhang, unpublished data), which inhabit an impressive range of habitats, including desert, tropical rain forest, and alpine and arctic habitats. Members of the genus also have highly diverse growth forms, including erect, *Corresponding authors: E-mail addresses: xfgao@cib.ac.cn; libing.zhang@mobot.org © The Willi Hennig Society 2015 climbing, creeping, prostrate and special rosetting forms. Many species of Selaginella are medicinally important and are reported as sources of bioactive compounds (Banks, 2009; Setyawan, 2011; da Silva Almeida et al., 2013). Recently, the nuclear genome of one species of the genus, Selaginella moellendorffii Hieron., has been sequenced. This makes the genus enormously important in studying the evolution of vascular plants, as the species is the only seed-free vascular plant whose nuclear genome is known so far (Banks et al., 2011; Sessa et al., 2014). 2 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 Selaginella was established by Palisot-Beauvois (1804) based on S. selaginoides (L.) P. Beauv. ex Mart. & Schrank. The genus was characterized by usually having distinct-sized and dorsiventral leaves in four rows, presenting a ligule at the base of each leaf and sporophyll, and having heterospores (microspores and megaspores) and rhizophores (Thomas, 1997). Before Spring’s (1850) major monograph of the genus, Selaginella was usually treated as a synonym of another lycophyte genus, Lycopodium L. (Lycopodiaceae) (e.g. Greville and Hooker, 1831). Although the delimitation of Selaginella has rarely been controversial [but see Rothmaler’s (1944), Soj ak’s (1993), Kung’s (1988) and Tzvelev’s (2004) classifications below], the intrageneric classification within Selaginella has been notoriously contentious (Spring, 1850; Braun, 1857; Hieronymus and Sadebeck, 1901; Walton and Alston, 1938; Rothmaler, 1944; Tryon and Tryon, 1982; Jermy, 1986, 1990; Kung, 1988), with taxonomic treatments differing dramatically in the number of subgenera/sections recognized. In general, previous authors tended to divide Selaginella into two primary subdivisions, including the isophyllous versus anisophyllous species, respectively. For example, Spring (1840) divided the genus into three sections: S. sect. Selaginella (autonym, implied), S. sect. Homoeophyllae Spring and S. sect. Heterophyllae Spring and similarly Braun (1857) also recognized three sections but named them S. sect. Selaginella, S. sect. Dichotropae A. Braun and S. sect. Homotropae A. Braun, while Moore (1857) instead used S. sect. Diplostachyum (P. Beauv.) T. Moore and S. sect. Stachygynandrum (P. Beauv. ex Mirb.) T. Moore for the latter two. Hieronymus and Sadebeck (1901) also recognized two groups, but at the rank of subgenus: S. subg. Homoeophyllum Hieron. & Sadeb. and S. subg. Heterophyllum Hieron. & Sadeb. Based on morphology (especially that of strobili) and habit forms, Warburg (1900), Walton and Alston (1938) and Jermy (1986, 1990) subdivided the genus further. Warburg (1900) recognized five subgenera in the genus: S. subg. Boreoselaginella Warb., “S. subg. Euselaginella” (nom. inval., = S. subg. Selaginella), S. subg. Heterostachys Baker, S. subg. Homostachys Baker and S. subg. Stachygynandrum (P. Beauv. ex Mirb.) Baker. Walton and Alston (1938) accepted Warburg’s (1900) subgenera except S. subg. Boreoselaginella. Jermy (1986) divided the genus into five subgenera: S. subg. Selaginella, S. subg. Ericetorum Jermy, S. subg. Heterostachys, S. subg. Tetragonostachya (Hook. & Grev.) Jermy and S. subg. Stachygynandrum. In addition to the different number of intrageneric subdivisions recognized by different authors, the delimitations of these subdivisions have been controversial and morphological synapomorphies of most subgenera have remained ambiguous. While most authors agreed that Selaginellaceae contain only one genus, a few authors recognized addi- tional genera in the family. Rothmaler (1944) divided Selaginella into three genera: Didiclis P. Beauv., Lycopodioides Boehm. and Selaginella sensu stricto (s.s.). The last two were accepted by some later authors (e.g. Kung, 1988; Sojak, 1993; Tzvelev, 2004). Sojak (1993) and Weakley (2012) instead recognized Selaginella, Lycopodiodes and Bryodesma Sojak in the family. Based on plastid rbcL sequences of 18 species of Selaginella, Korall et al. (1999) conducted the first molecular analysis of the family, and recovered the monophyly of the genus and S. subg. Selaginella, and resolved the latter as sister to the rest of species sampled. Later Korall and Kenrick (2002) increased the taxon sampling to 62 species and found support for the monophyly of “S. subg. Tetragonostachys” too, and identified a so-called “dorsal rhizophoric” clade that included all species having a distinctive and unique root-like structure (the rhizophore) emerging from dorsal surfaces. This later study further discovered the polyphyly of S. subg. Stachygynandrum and S. subg. Heterostachys, but their analysis was uncertain about the monophyly of S. subg. Ericetorum. Using nuclear 26S and rbcL data of 23 species, Korall and Kenrick (2004) resolved the dorsal rhizophoric clade into two major subclades, although neither of which is characterized by a clear morphological synapomorphy. Most recently, based on nuclear ITS (internal transcribed spacer) and rbcL data of 40 mainly North American species, Arrigo et al. (2013) confirmed the monophyly of “S. subg. Tetragonostachys” and resolved it as sister to S. lepidophylla (Hook. & Grev.) Spring, a species native to the Chihuahuan Desert of the USA and Mexico and known for its ability to survive almost complete desiccation. Arrigo et al. (2013) showed that the “dorsal rhizophoric’’ clade defined by Korall and Kenrick (2002) is paraphyletic or polyphyletic. Notably, previous molecular studies focused mainly on the two species-poor subgenera only, Selaginella subg. Selaginella (2 spp.) and “S. subg. Tetragonostachys” (ca. 50 spp.), while S. subg. Heterostachys and S. subg. Stachygynandrum, which contain a total of ca. 660 species (Tryon and Lugardon, 1991), were weakly sampled yet nonetheless were resolved as polyphyletic (Korall et al., 1999; Korall and Kenrick, 2002, 2004; Arrigo et al., 2013), and S. subg. Ericetorum (ca. 8 spp., see below) remains poorly known. In addition, very few Asian species were included in previous molecular studies, and these studies mainly tested the five-subgenus classification of Jermy (1986, 1990). Alternative morphological hypotheses of relationship, e.g. the monophyly of S. subg. Homostachys by Baker (1883, 1887), Warburg (1900), and Walton and Alston (1938), have rarely been tested. Previous authors nicely associated various macro-morphological, ecological, physiological and spore features with Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 the monophyletic clades found in their molecular studies (Korall et al., 1999; Korall and Kenrick, 2002, 2004; Arrigo et al., 2013). Still, a large number of monophyletic clades were supported by molecular synapomorphies only, mainly because non-molecular features, e.g. spore morphology, are missing for most species of Selaginella in spite of tremendous efforts so far (e.g. Hellwig, 1969; Tryon and Lugardon, 1991; Korall and Taylor, 2006; Zhou et al., 2015b). The objectives of this study included: (i) to test the monophyly of Selaginella using the largest taxon sampling so far and both plastid and nuclear data; (ii) to resolve the deep-level relationships within Selaginella; (iii) to identify major evolutionary lineages within Selaginella by including more Asian species; (iv) to evaluate the monophyly of S. subg. Heterostachys, S. subg. Homostachys, S. ser. Rosulatae (A. Braun) Baker and S. subg. Stachygynandrum and other previous morphology-based hypotheses of relationship within Selaginella; and (v) to understand morphological synapomorphies for the major lineages resolved by incorporating newly obtained data, especially those from spore morphology. Materials and methods Taxon sampling To test the morphological hypotheses about the subgenera, sections, series, subseries and groups previously recognized by various authors (Spring, 1850; Braun, 1857; Baker, 1883, 1887; Warburg, 1900; Hieronymus and Sadebeck, 1901; Walton and Alston, 1938; Tryon and Tryon, 1982; Jermy, 1986, 1990; Kung, 1988; Soj ak, 1993; Tzvelev, 2004), two or more species of each of these intrageneric taxa were sampled. We included as many data as possible from GenBank to maximize our taxon sampling and additionally to draw attention to potential problems (misidentifications) in the GenBank data, and to invite further investigations on shallow-level relationships, cryptic speciation and potential hybridization. We think this sampling strategy is justified because our major interest was to identify major evolutionary lineages in the genus and resolve the deep-level relationships among these lineages. All newly included accessions for which the vouchers were examined by us or determined by another authority (e.g. Chinese material by Wei-Ming Chu or Pei-Shan Wang, American material by Michael Windham and/or Alan R. Smith) are indicated in red and those from GenBank are indicated in black in our figures. Information on the geographical provenances of the GenBank accessions are given in the Appendix as much as possible. Multiple accessions of ca. 130 species were included to 3 represent geographical ranges and intraspecific variations and to test the monophyly of individual species. In total, 394 accessions representing ca. 200 species (ca. 30% of the extant diversity of the genus) constituted our ingroup. The following species were excluded from current sampling: Selaginella australiensis Baker, S. chuweimingii Xin M. Zhou, Z. R. He, Liang Zhang & Li Bing Zhang (Zhou et al., 2015a) S. fruticulosa (Bory ex Willd.) Spring, S. obtusa Spring, S. sinensis (Desv.) Spring and S. viridula Spring. These species formed a well-supported clade with long branches in the preliminary analysis but there are no clear morphological synapomorphies supporting this clade. Korall and Kenrick (2004) already found this clade but with only S. australiensis and S. sinensis included. Korall and Kenrick (2002) postulated possible existence of a pseudogene of rbcL in this clade. More study on these species are needed. Five species of Iso€ etes (Iso€etaceae), I. kersii Wanntorp, I. kirkii A. Braun, I. nuttallii A. Braun ex Engelm., I. sinensis Palmer and I. taiwanensis De Vol, were chosen as outgroups based on the previous findings that Iso€etaceae are sister to Selaginellaceae (Wikom and Kenrick, 1997; Korall et al., 1999) and the str€ observations that this sister relationship is supported by the heterospory and ligules in both families (Zhang and Taylor, 2013; Zhang et al., 2013). Voucher information and GenBank accession numbers for each sampled taxon are provided in the Appendix. Morphology Morphological data were obtained from field observations, herbarium investigations and literature study. Field observations were mainly conducted by the first author in China and other co-authors in various parts of the world (C.J.R. in the New World, by L.Z., L.-B.Z. and N.T.L. in Vietnam, T.L.P. in La Reunion, D.L. in the Pacific islands, etc.). Herbarium investigations were carried out at herbaria CDBI, KUN, MO, PYU and SZ (herbarium acronyms follow Index Herbariorum by Holmgren and Holmgren, 1998). Spore morphology The microspore and megaspore morphology of ca. 65 Asian species of Selaginella was observed using a QUANTA 200 scanning electron microscope (FEI Co., USA), and the gold–palladium plating was performed using a BAL-TEC SCD 005 cool sputter coater (BAL-TEC AG., Liechtenstein) at Yunnan University, Kunming, China. Additional spore morphology data were taken from the literature (see references below). Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 1.0890 0.3310 0.5230 0.2980 0.0000 0.1480 – – – 1.0000 1.0000 1.0000 2.2570 4.8722 3.2664 0.5300 0.7545 0.6157 0.5020 2.0448 0.6373 4.6936 3.6505 4.7193 0.5475 1.0251 0.7070 0.2405 0.2596 0.2486 0.2405 0.2702 0.2565 0.2533 0.2889 0.2417 GTR+I+G GTR+G GTR+I+G rbcL gene ITS Simultaneous 0.2657 0.1813 0.2532 I Ti/Tv G–T C–T C–G A–T A–G T A–C Substitution model (rate matrix) G C A AIC selected model Region Sequencher 4.1 (Gene Codes Corp., Ann Arbor, MI, USA) was used to assemble and edit complementary strands. Sequences obtained for each locus were aligned using Clustal X 1.81 (Thompson et al., 1997) followed by manual adjustments using BioEdit (Hall, 1999). The full length of the ITS region was sequenced in our study. However, as previous studies have demonstrated (Arrigo et al., 2013; Gu et al., 2013), ITS1 and ITS2 have a large number of insertions and deletions that could not be aligned with confidence. Therefore only 5.8S and part of the unambiguously aligned ITS2 region were used; the ambiguous regions were excluded prior to analysis. Equally weighted maximum parsimony (MP) analyses were conducted for each locus using 1000 treebisection-reconnection (TBR) searches in PAUP* ver. 4.0b10 (Swofford, 2002) with MAXTREES set to increase without limit. Insertions and deletions were coded as missing data. Parsimony jackknife (JK) analyses (Farris et al., 1996) were conducted using PAUP* with the removal probability set to approximately 37%, and “jac” resampling emulated. Two hundred replicates were performed with 100 TBR searches per replicate and a maximum of 300 trees held per TBR search. Base frequencies Sequence alignment and phylogenetic analysis Table 1 Best-fitting models and parameter values for separate (rbcL and ITS) and simultaneous plastid and nuclear datasets in this study Total genomic DNA was extracted from silica-dried material or sometimes from herbarium specimens using a TIANGEN plant genomic DNA extraction kit (TIANGEN Biotech., Beijing, China) or DNeasy Plant Mini Kits (Qiagen, Germany) following the manufacturers’ protocols. One plastid region (the rbcL gene) and one nuclear region [the internal transcribed spacer (ITS)] were selected based on their use in earlier studies of Selaginella and allies (Korall et al., 1999; Korall and Kenrick, 2002, 2004; Arrigo et al., 2013; Gu et al., 2013; Saha et al., 2013). Most rbcL sequences were amplified with primers F1 (Fay et al., 1997) and 1379R originally designed by Zurawski et al. (1984) and modified by Wolf et al. (1999). Internal primers rbcL-406F, rbcL-770R (Korall et al., 1999) and newly designed primer rbcL-449F (50 TTGGATACCRTGAG GYGGRCC30 ) were used when amplification was not successful. The PCR conditions of rbcL regions followed Zhang et al. (2001) and those of the ITS region followed Arrigo et al. (2013). Sometimes the reverse primer ITS-S3R (Gu et al., 2013) was used in ITS amplification. Amplified fragments were purified with TIANquick Mini Purification kits (TIANGEN). Purified PCR products were sequenced by Invitrogen (Shanghai, China). G DNA extraction, amplification and sequencing “G” = gamma distribution shape parameter (Yang, 1994); “GTR” = general-time-reversible model (Tavare, 1986); “I” = proportion of invariable sites; “Ti/Tv” = transition/ transversion ratio. 4 5 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 Table 2 Data matrices and tree statistics for each of the analyses Matrix No. of accessions No. of characters No. of PI characters (%)* MPT length No. of MP JK/ML BS clades Average MP JK/ML BS support (%) CI RI rbcL gene ITS Simultaneous 399 278 399 1279 217 1496 666 91 757 4016 980 5611 228/262 90/126 228/265 81/81 76/79 82/83 0.2903 0.2051 0.2436 0.9277 0.8597 0.9056 PI, parsimony-informative; MPT, most parsimonious trees; MP, maximum parsimony; ML, maximum likelihood; JK, jackknife; BS, bootstrap; CI, consistency index; RI, retention index. *Inclusive of outgroups. jModelTest 0.1.1 (Guindon and Gascuel, 2003; Posada, 2008) was used to select the best-fitting likelihood model for maximum likelihood (ML; Felsenstein, 1973) and Bayesian analyses. The Akaike information criterion (Akaike, 1974) was used to select among models instead of the hierarchical likelihood ratio test, following Pol (2004) and Posada and Buckley (2004). The best-fitting models and parameter values are provided in Table 1. For each locus and the combined analysis or the simultaneous analysis (Kluge, 1989; Nixon and Carpenter, 1996) of all nucleotide characters, ML tree searches and ML bootstrapping were conducted using the web server RAxML-HPC2 on TG ver. 7.2.8 (Stamatakis et al., 2008; Miller et al., 2010) with 5000 rapid bootstrap analyses followed by a search for the best-scoring tree in a single run (Stamatakis et al., 2008). Bayesian inference (BI) was conducted using MrBayes 3.1.2 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003) on Cipres (Miller et al., 2010). Four Markov chain Monte Carlo chains were run, each beginning with a random tree and sampling one tree every 1000 generations of 10 000 000 generations. Convergence among generations was checked using Tracer (Rambaut and Drummond, 2007) and the first 25% of samples were discarded as burnin. The remaining trees were used to calculate a 50% majority-rule consensus topology and posterior probability (PP) values. Results This study generated 506 new sequences (Appendix). The dataset characteristics and tree statistics for the analyses are presented in Table 2. Comparisons of tree topologies from the MP JK analyses of the individual markers did not identify any well-supported conflicts (JK ≥ 70%; Mason-Gamer and Kellogg, 1996; Zhang and Simmons, 2006; Zhang et al., 2012b, 2015). Thus, the two datasets were concatenated using MS Excel 2010 (Microsoft, Seattle, WA, USA). The topology of the ML tree based on the concatenated dataset (Fig. 1) is mostly identical to those based on each individual marker, but with generally increased support values. Based on our reconstructed phylogeny (Figs 1 and 2a–e) and in consideration of macro-morphological, ecological, and spore features and distribution information, 17 major evolutionary lineages of Selaginella were identified (Fig. 1). Fourteen of the 17 clades were well supported (ML BS ≥ 91%, MP JK ≥ 96%, PP ≥ 0.99, except for clade XV with MP JK = 88% and PP = 0.89), while one was weakly supported (clade XIV: ML BS = 45%, MP JK < 50%, PP = 0.74), and two were monospecific (clades IV and V). The relationships among the 17 clades except those among clades III–VI and those among XIV–XVII were well resolved and strongly supported. Three additional strongly supported monophyletic superclades within the genus were identified for descriptive convenience and for future consideration of taxonomy of the genus. Superclade A (BS = 100%, JK = 98%, PP = 1.00) contains clades III–VIII, superclade B (BS = 97%, JK = 97%, PP = 0.99) comprises clades X–XIII and superclade C (BS = 94%, JK = 97%, PP = 1.00) is composed of clades XIV–XVII. The ML and BI analyses based on the concatenated dataset resolved the Selaginella sanguinolenta clade (II) as the second earliest diverging lineage and is strongly supported as sister to the rest of the genus except the S. selaginoides clade (I) (ML BS = 99%, PP = 0.99). However, in our MP analysis based on the concatenated dataset, the S. sanguinolenta clade (II) was weakly supported (MP JK = 66%) as sister to the Rosulatae clade and superclades B+C. Examples of spore morphology are illustrated in Fig. 3. Discussion The monophyly of Selaginellaceae As the largest lycophyte family, Selaginellaceae have long been recognized as sister to Iso€etaceae 6 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 99/100/1.00 XX. S. doederleinii clade (Asia+Australia) 100/100/1.00 XVI. S. oaxacana clade (America) XVII. S. pallescens clade (America) 45/*/0.74 */78/1.00 XVIII. S. hartwegiana clade (South America) Superclade C 100/100/1.00 62/61/* XIX. S. anceps clade (America) */53/0.99 94/97/1.00 OPHA clade 55/61/0.99 60/55/* Stachygynandrum superclade XV. S. involvens clade (Asia) 91/88/0.89 XIV. S. biformis clade (Asia) 91/96/0.99 80/73/0.99 79/69/0.97 S. heterostachys subclade 100/100/0.99 XIII. Heterostachys clade Pacific 69/82/0.99 Asia s. ciliaris subclade 81/85/1.00 95/87/1.00 97/97/0.99 99/99/0.99 XII. Homostachys clade 82/74/0.97 Superclade B XI. S. douglasii clade 100/100/1.00 Heterostachys superclade 94/96/1.00 S. braunii subclade 100/99/0.99 100/91/0.99 X. Oligomacrosporangiatae clade 90/93/0.95 S. willdenowii subclade 100/100/1.00 73/51/0.78 S. delicatula subclade S. siamensis subclade 0.05 S. pervillei subclade S. pennata subclade 100/100/1.00 89/*/0.99 81/82/1.00 S. imbricata subclade IX. Rosulatae clade 100/100/1.00 90/97/1.00 S. stauntoniana subclade 100/100/1.00 VIII. S. lepidophylla clade 98/99/0.99 VII. Homoeophyllae clade 100/100/0.99 99/98/1.00 S. kraussiana subclade 100/100/1.00 100/100/100 Superclade A S. fragilis subclade 55/81/0.94 VI. Articulatae clade 100/98/1.00 99/*/0.99 Ericetorum superclade V. S. exaltata clade IV. S. myosurus clade 100/100/1.00 100/100/1.00 III. Lyallia clade 100/100/1.00 II. S. sanguinolenta clade 100/100/1.00 I. S. selaginoides clade Outgroup Fig. 1. Simplified maximum likelihood phylogeny of Selaginella based on plastid rbcL and nuclear ITS sequences. The sizes of black triangles are in proportion to the sampled sizes of individual clades. Support values (maximum likelihood bootstrap support, maximum parsimony jackknife support and posterior probability) are shown along the branches. The 17 major clades and three superclades of Selaginella resolved in this study are indicated. Green vertical bars indicate superclades or deep-level clades. Blue vertical bars indicate major clades. Black vertical bars indicate subclades. Red bar indicates outgroups. Purple bar indicates the major clade from America. 7 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 (a) Figure 2e Superclade C Stachygynandrum superclade Figure 2d Superc Figure 2c Heterostachys superclade Megaspore surfaces reticulate; Sporophylls usually monomorphic Megaspore surfaces tuberculate or verrucose; sporophylls usually dimorphic Dhofar, Oman S. imbricata 1 Unknown S. imbricata 2 S. pilifera Unknown S. helioclada d'Andohahela, Madagascar d'Andohahela, Madagascar S. digitata Unknown S. stauntoniana 1 S. stauntoniana 2 Henan, China Beijing, China S. stauntoniana 3 Okinawa, Japan S. tamariscina 1 S. tamariscina 2 Unknown Unknown S. tamariscina 3 S. pulvinata 1 Sichuan, China Xizang, China S. pulvinata 2 lade B Figure 2b Homoeophyllae clade S. imbricata subclade S. stauntoniana subclade IX. Rosulatae clade Plants xerophytic, rosette, tufted or erect; branches curled up during drought, megaspore surfaces coarse, sometimes covered irregularly sized and spaced verrucae S. lepidophylla clade + S. kraussiana subclade S. kraussiana 1 Cult. S. kraussiana 2 Cult. Cult. S. kraussiana 3 S. remotifolia 1 Unknown Shizuoka, Japan S. remotifolia 2 S. remotifolia 3 Sichuan, China Yunnan, China S. remotifolia 4 Unknown S. fragilis Unknown S. articulata Stems articulate or with Unknown S. sericea 1 swollen joints; only one Pichincha, Ecuador S. sericea 2 megasporangium per Unknown S. suavis strobilus on the base; Unknown S. sulcata megaspore surfaces Heredia, Costa Rica S. eurynota reticulate and microspore Jalisco, Mexico S. sertata surfaces spiny Unknown S. lingulata S. arthritica 1 Heredia, Costa Rica S. arthritica 2 Heredia, Costa Rica Plants erect and large-sized; S. silvestris Heredia, Costa Rica stems action-plectostely Puntarenas, Costa Rica S. kunzeana Puntarenas, Costa Rica S. diffusa 1 Cult. S. diffusa 2 V. S. exaltata clade Unknown S. exaltata S. myosurus Unknown IV. S. myosurus clade Unknown S. pygmaea Fianarantsoa, Madagascar S. lyallii S. moratii Fianarantsoa, Madagascar d'Antsiranana, Madagascar S. polymorpha S. gracillima Tasmania, Australia Tasmania, Australia S. uliginosa Dorsal rhizophoric (except Ericetorum clade uncertain) S. fragilis subclade VI. Articulatae clade Superclade A Ericetorum superclade III. Lyallia clade S. sanguinolenta 1 S. sanguinolenta 2 S. sanguinolenta 3 S. sanguinolenta 4 Isoëtes nuttallii Isoëtes kersii Isoëtes sinensis Isoëtes taiwanensis Isoëtes kirkii Yunnan, China Sichuan, China Sichuan, China Sichuan, China S. sanguinolenta 5 Unknown Xizang, China S. numularifolia S. deflexa Hawaii Nagano, Japan S. selaginoides 1 S. selaginoides 2 Ontario, Canada S. selaginoides 3 Unknown II. S. sanguinolenta clade Plants xerophytic, creeping; sterile leaves nearly monomorphic I. S. selaginoides clade Plants creeping; megaspore surfaces reticulate and with wide and high muri Megaspore surfaces reticulate; laesurae of megaspores wing-like and highly convoluted close to the pole forming a complex mass 0.05 Plants erect; uniform sterile leaves and sporophylls spirally arranged Outgroups Fig. 2. Maximum likelihood phylogeny of Selaginella based on plastid rbcL and nuclear ITS sequences. Thick lines indicate strong support (maximum parsimony jackknife support ≥ 75%, maximum likelihood bootstrap support ≥ 75% and posterior probability ≥ 95%), and thin lines indicate moderate or weak support (either ML BS < 75% or MP JK < 75%). Major diagnostic features are shown in dark blue. Geographical provenances of newly included samples of Selaginella are indicated in red and those from GenBank are indicated in black. Green vertical bars indicate superclades or deep-level clades. Blue vertical bars indicate major clades. Black vertical bars indicate subclades. Red vertical bar indicates outgroups. Brown vertical bars in (d) indicate groupings under a subclade. Asterisks in (e) indicate New World species with dimorphic sporophylls. using molecular data but based on small taxon sampling (e.g. Wikstr€ om and Kenrick, 1997; Korall et al., 1999; Pryer et al., 2001). The sister relationship between these two families is further corroborated by the shared features of heterospory and the presence of ligules (Zhang and Taylor, 2013; Zhang et al., 2013). The monophyly of Selaginellaceae is supported by morphology. In comparison with Iso€etaceae, Selaginellaceae species usually have distinctly sized and dorsiventral leaves in four rows and rhizophores (Thomas, 1997; Zhang et al., 2013). Based on our relatively large sampling and combined analysis of plastid and nuclear data Selaginellaceae are strongly supported as monophyletic (100% ML bootstrap support (BS), 84% MP JK) (Figs 1 and 2a). The monophyly of species, hybridization and cryptic speciation in Selaginella Within several clades resolved in our study, such as the Homoeophyllae clade (VII), the Homostachys clade (XII) and the S. pallescens clade (XVI), some species appeared in multiple clades, such as S. densa R. Sim, S. vardei H. Lev., S. wallacei Hieron. and S. wrightii Hieron (Fig. 2b). These patterns could be due to misidentifications, laboratory errors or contamination, and/or misunderstood species boundaries. As Tryon (1955) pointed out, there is plasticity in several of the morphological characters (including those of vegetative parts, strobili, sporophylls and spores) present in some sections. Another reason for these seemingly nonmonophyletic species could be the occurrence of 8 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 VIII. S. lepidophylla clade S. lepidophylla Unknown S. lepidophylla Texas, USA (b) With similiar dorsal and ventral leaves; megaspore surfaces ridged and reticulate Spirally arranged monomorphic sterile leaves; decussate sporophylls; megaspore surfaces with interwoven reticulation S. landii 1 Jalisco, Mexico California, USA S. asprella California, USA S. leucobryoides 1 Arizona, USA S. leucobryoides 2 Utah, USA S. utahensis Idnho, USA S. watsonii 1 S. densa 1 British Columbia, Canada Washington, USA S. scopulorum 1 S. scopulorum 2 British Columbia, Canada North Carolina, USA S. acanthonota North Carolina, USA S. rupestris 1 Ontario, Canada S. rupestris 2 Hokkaido,Japan S. sibirica 1 Alaska, USA S. sibirica 2 Utah to Arizona, USA S. watsonii 2 Illinois, USA S. rupestris 3 Texas, USA S. wrightii 1 Hidalgo, Mexico S. arsenei 1 S. sheldonii Texas, USA Oaxaca, Mexico S. peruviana1 Colorado, USA S. mutica Isiolo District, Kenya S. dregei S. echinata Fianarantsoa, Madagascar S. grisea Unknown Tulear, Madagascar S. nivea San Luis Potosi, Mexico S. arsenei 2 Carchi, Ecuador S. sellowii 1 S. sellowii 2 Florída, Bolivia Unknown S. sellowii 3 Boyocá Dept., Colombia S. sartorii 1 California, USA S. cinerascens 1 S. cinerascens 2 California, USA Louisiana, USA. S. arenicola Jalisco, Mexico S. extensa Colorado, USA S. weatherbiana Washington, USA S. oregana Tamegdoult, Morocco S. balansae S. tortipila 1 South carolina, USA S. tortipila 2 North Carolina, USA S. caffrorum Pretoria, South Africa Hassan District, India S. indica 1 S. indica 2 Cult. Yunnan, China S. indica 3 S. vardei 1 Sichuan, China S. vardei 2 Yunnan, China S. vardei 3 Yunnan, China Yunnan, China S. vardei 4 Quezaltenango, Guatemala S. steyermarkii California, USA S. hansenii California, USA S. wallacei 1 S. wallacei 2 Oregon, USA British Columbia, Canada S. wallacei 3 Oregon, USA S. wallacei 4 S. bigelovii 1 California, USA California, USA S. bigelovii 2 California, USA S. bigelovii 3 California, USA S. bigelovii 4 New Mexico, USA S. mutica var. limitanea 1 Texas, USA S. mutica var. limitanea 2 New Mexico, USA S. × neomexicana 1 New Mexico, USA S. × neomexicana 2 San Luis PotosÌ, Mexico S. sartorii 2 New Mexico, USA S. rupincola 1 S. rupincola 2 Arizona, USA Unknown S. rupincola 3 Colorado, USA S. underwoodii Kwale District, Kenya S. njamnjamensis Yunnan, China S. vardei 5 Nagano, Japan S. shakotanensis 1 Nagano, Japan S. shakotanensis 2 Colorado, USA S. densa 2 S. wallacei 5 Idaho, USA Washington, USA S. wallacei 6 Idaho, USA S. wallacei 7 Texas, USA S. peruviana 2 Moreles, Mexico S. landii 2 Texas, USA S. wrightii 2 Arizona, USA S. arizonica 1 Unknown S. arizonica 2 Arizona, USA. S. arizonica 3 California, USA S. eremophila 1 S. eremophila 2 California, USA California, USA S. eremophila 3 VII. Homoeophyllae clade Fig. 2. Continued. S. phillipsiana Isiolo District, Kenya S. wightii Matale District, Sri-Lanka 9 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 S. tama-montana 1 S. helvetica 1 Mie, Japan Unknown S. prostrata 1 Sichuan, China S. prostrata 2 Sichuan, China Yunnan, China S. jugorum S. pallidissima Sichuan, China S. laxistrobila 1 Yunnan, China S. laxistrobila 2 Yunnan, China S. laxistrobila 3 Yunnan, China S. helvetica 2 Sichuan, China S. helvetica 3 Akita, Japan Unknown S. denticulata S. tama-montana 2 Taiwan, China S. pseudonipponica 1 Taiwan, China S. pseudonipponica 3 Taiwan, China S. pseudonipponica 4 S. pseudonipponica 5 Taiwan, China Taiwan, China Taiwan, China S. sp_A S. nipponica 1 Sichuan, China S. nipponica 2 Sichuan, China S. nipponica 3 Sichuan, China S. nipponica 4 Taiwan, China Sichuan, China Taiwan, China S. matsuensis S. nipponica 6 Tokyo, Japan S. pseudonipponica 7 Taiwan, China Taiwan, China S. douglasii 1 XI. S. douglasii clade Native to west of USA; plant creeping; strobili uniform and megaspore surfaces verrucate Unknown Oregon, USA S. mairei 1 Yunnan, China S. mairei 2 Yunnan, China S. mairei 3 Yunnan, China Sichuan, China S. braunii 1 Cult. S. braunii 2 Yunnan, China S. braunii 3 Hainan, China S. braunii 4 Hubei, China Hoa Binh, Vietnam S. pseudopaleifera Kagoshima, Japan S. limbata S. helferi 1 Yunnan, China S. helferi 2 Ha Giang, Vietnam S. helferi 3 Yunnan, China S. willdenowii 1 Cult. S. willdenowii 2 Guizhou, China S. willdenowii 3 Guangxi, China S. uncinata 1 Peninsula Malaysia S. uncinata cf. Puntarenas, Costa Rica S. uncinata 2 Tokyo, Japan S. uncinata 3 Sichuan, China S. mayeri Peninsula Malaysia S. plana 1 Cult. S. plana 2 Cult. S. hoffmannii 1 S. hoffmannii 2 Puntarenas, Costa Rica Puntarenas, Costa Rica Bac Kan, Vietnam S. wallichii S. delicatula 1 S. delicatula 2 S. picta 1 S. picta 2 S. picta 3 S. siamensis S. pennata 2 S.bisulcata 1 S. bisulcata 2 S. bisulcata 3 S. bisulcata 4 S. bisulcata 5 Sichuan, China Sichuan, China Phu Tho, Vietnam Yunnan, China Yunnan, China Yunnan, China S. pervillei S. pennata 1 Fig. 2. Continued. Plants xerophytic, erect; stems with 2 steles, leaves involute when dry S. willdenowii subclade S. mairei 4 Fianarantsoa, Madagascar Yunnan, China Yunnan, China Yunnan, China Plants scandent and large; megaspore surfaces tuberculatereticulate; microspore distal surfaces twisted lamellate or with widely blunt spine S. delicatula subclade S. douglasii 2 Plants erect; megaspore surfaces tuberculate; microspore surfaces usually blunt-spiny Plants xerophytic; megaspore surfaces regularly verrucose; microspore surfaces regular and twisted lamellate S. siamensis subclade S. pervillei subclade Plants erect; leaves on stem monomorphic, megaspore surfaces sparsely papillate or tuberculate Yunnan, China S. pennata subclade Yunnan, China Sporophylls dimorphic; megaspore exospores smooth Yunnan, China Yunnan, China X. Oligomacrosporangiatae clade S. pseudonipponica 8 Plants erect, scandent or creeping; sporophylls monomorphic, except S. bisulcata and S. pennata Plants creeping; fertile branches erect; sporophylls dimorphic and loose; strobili non-resupinate Taiwan, China S. pseudonipponica 6 S. nipponica 5 XII. Homostachys clade Taiwan, China S. pseudonipponica 2 S. braunii subclade (c) 10 Fig. 2. Continued. S. heterostachys subclade Native to Asia; megaspore surfaces tuberculate or verrucose Pacific Sporophylls dimorphic; strobili resupinate S. drepanophylla 1 Guizhou, China S. drepanophylla 2 Guizhou, China S. chrysocaulos Sichuan, China S. labordei 1 Sichuan, China S. labordei 2 Sichuan, China S. labordei 3 Sichuan, China S. labordei 4 Sichuan, China Sichuan, China S. sichuanica 1 S. sichuanica 2 Sichuan, China S. sichuanica cf. Sichuan, China S. daozhenensis Guizhou, China S. megaphylla 1 Hoa Binh, Vietnam S. megaphylla 2 Ha Giang, Vietnam S. megaphylla 3 Guizhou, China S. megaphylla 4 Guizhou, China S. megaphylla 5 Guizhou, China S. megaphylla 6 Yunnan, China S. chaetoloma 1 Yunnan, China S. chaetoloma 2 Yunnan, China S. chaetoloma 3 Yunnan, China S. bodinieri 1 Sichuan, China S. bodinieri 2 Sichuan, China S. bodinieri 3 Sichuan, China S. bodinieri 4 Guizhou, China S. bodinieri 5 Guizhou, China Guizhou, China S. bodinieri 6 S. xichouensis Yunnan, China S. kurzii 1 Yunnan, China S. kurzii 2 Yunnan, China S. boninensis 1 Tokyo, Japan S. boninensis 2 Lang Son, Vietnam S. boninensis 3 Lang Son, Vietnam S.heterostachys 1 Hainan, China S.heterostachys 2 Hainan, China S. heterostachys 3 Guizhou, China Thai Nguyen, Vietnam S.heterostachys 4 Lang Son, Vietnam S.heterostachys 5 Guizhou, China S.heterostachys 6 Lang Son, Vietnam S.heterostachys 7 S. heterostachys 8 Guizhou, China S. heterostachys 9 Mie, Japan S.heterostachys 10 Sichuan, China Sichuan, China S. heterostachys 11 S. heterostachys 12 Hoa Binh, Vietnam S. sp_B 1 Phu Tho, Vietnam S. sp_B 2 Ha Giang, Vietnam S. leptophylla 1 Yunnan, China S.leptophylla 2 Sichuan, China S. leptophylla 3 Sichuan, China S. leptophylla 4 Guizhou, China S. leptophylla 5 Guizhou, China S. monospora cf. Yunnan, China S. tenuifolia Bac Kan, Vietnam S. effusa var. dulongjiangensis Yunnan, China S. trichophylla 1 Yunnan, China S. trichophylla 2 Yunnan, China S. trichophylla 3 Cao Bang, Vietnam S. trichophylla 4 Hainan, China S. amblyphylla 1 Guizhou, China S. amblyphylla 2 Sichuan, China S. amblyphylla 3 Sichuan, China S. decipiens 1 Bac Kan, Vietnam S. decipens 2 Bac Kan, Vietnam Vinh Phuc, Vietnam S. monospora 1 S. monospora 2 Yunnan, China S. monospora 3 Yunnan, China S. effusa 1 Guizhou, China S. effusa 2 Guangdong, China S. effusa 3 Guizhou, China S. effusa 4 Guizhou, China S. sp_ C 1 Guizhou, China S. sp_ C 2 Guizhou, China S. sp_C 3 Guizhou, China S. sp_D Huahine, Society Is. S. sp_E Caroline Is., Kosrae, F.S.M. S. sp_F Caroline Is., Kosrae, F.S.M. S. arbuscula 1 Maui, Hawaiian Is. S. arbuscula 2 Kauai, Hawaiian Is. S. kanehirae 1 Caroline Is., Pohnpei, F.S.M. S. kanehirae 2 Caroline Is., Pohnpei, F.S.M. S. repanda 1 Yunnan, China S. repanda 2 Yunnan, China S. repanda 3 Yunnan, China S. repanda 4 Yunnan, China S. albociliata Guizhou, China S. lutchuensis Okinawa, Japan S. ciliaris 1 Hainan, China S. ciliaris 2 Peninsular Malaysia S. xipholepis 1 Guangdong, China S. xipholepis 2 Bac Kan, Vietnam S. compta 1 Sichuan, China S. compta 2 Sichuan, China S. compta 3 Guizhou, China S. compta 4 Guizhou, China S. compta 5 Sichuan, China S. ciliaris subclade Asia (d) Megaspores surfaces usually fine-reticulate XIII. Heterostachys clade Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 (e) Plants erect, suberect or creeping; sterile leaves dimorphic; megaspore surfaces typically reticulate, microspore surfaces usually baculate OPHA clade Native to America; plants suberect or creeping; megaspore surfaces reticulate Fig. 2. Continued. 11 S. biformis 1 Ha Giang, Vietnam S. biformis 2 Bac Kan, Vietnam Hainan, China S. biformis 3 XIV. S. biformis clade (Asia) Hainan, China S. biformis 4 Plants flagelliform and erect; Bac Kan,Vietnam S. biformis 5 S. biformis 6 Hainan, China erect plants pubescent S. biformis 7 Bac Kan,Vietnam Okinawa, Japan S. biformis 8 Cult. S. involvens 1 Phu Tho, Vietnam S. involvens 2 Yunnan, China S. involvens 3 Sichuan, China S. involvens 4 Kagoshima, Japan S. involvens 5 Yunnan, China S. involvens 6 S. moellendorffii 1 Sichuan, China S. moellendorffii 2 XV. S. involvens clade (Asia) Sichuan, China S. moellendorffii 3 Sichuan, China Plants erect or creeping; Introduced to Costa Rica S. moellendorffii 4 on veins of ventral leaves Cult. S. moellendorffii 5 Beijing, China S. davidii with two light color bands Guizhou, China S. gebaueriana 1 Yunnan, China S. gebaueriana 2 Guizhou, China S. gebaueriana 3 Yunnan, China S. gebaueriana 4 S. gebaueriana 5 Guizhou, China S. gebaueriana 6 Yunnan, China Venezuela S. novae-hollandiae 1 * Oaxaca, Mexico S. oaxacana 1 XVI. S. oaxacana clade Oaxaca, Mexico S. oaxacana 2 Heredia, Costa Rica S. oaxacana 3 (America) Cult. S. martensii 1 S. martensii 2 Oaxaca, Mexico San Luis Potosi, Mexico S. reflexa Unknown S. apoda 1 S. apoda 2 Virginia, USA Tennessee, USA S. apoda 3 Unknown S. acanthostachys San Luis PotosÌ, Mexico S. harrisii 1 Cult. S. pallescens 1 XVII. S. pallescens clade Hidalgo, Mexico S. harrisii 2 Cult. S. pulcherrima (America) Unknown S. pallescens 2 Unknown S. pallescens 3 S. pallescens 4 San Jose, Costa Rica Guanacaste, Costa Rica S. pallescens 5 Hidalgo, Mexico S. pallescens 6 S. pallescens 7 Guanacaste, Costa Rica Jalisco, Mexico S. pallescens 8 Heredia, Costa Rica S. pallescens 9 San Luis PotosÌ, Mexico S. nothohybrida Loja, Ecuador S. hartwegiana * XVIII. S. hartwegiana clade S. novae-hollandiae 2 * Ecuador (South America) S. flexuosa Zamora-Chinchipe, Ecuador Guanacaste, Costa Rica S. anceps 1 Heredia, Costa Rica S. anceps 2 Carchi, Ecuador S. microphylla Unknown S. haematodes Cult. S. erythropus S. bombycina 1 Heredia, Costa Rica S.bombycina 2 Unknown XIX. S. anceps clade S. radiata * French guiana S. attirense cf. 1 Guanacaste, Costa Rica (America) S. umbrosa 1 Heredia, Costa Rica S. umbrosa 2 Cult. S. flabellata Lesser Antilles, Grenada S. flagellata 1 * Heredia, Costa Rica S. flagellata 2 * Unknown S. simplex * Unknown S. moritziana * Unknown S. attirense cf. 2 San José, Costa Rica S. porphyrospora * San José, Costa Rica S. alopecuroides Borneo S. intermedia Peninsular Malaysia S. firmuloides Unknown Unknown S. longipinna S. kerstingii Cult. S. doederleinii 1 Hainan, China S. doederleinii 2 Kagoshima, Japan XX. S. doederleinii clade S. doederleinii 3 Yunnan, China S. commutata Guangxi, China (Asia+Australia) S. scabrifolia Hainan, China S. trachyphylla Yunnan, China Plants suberect; megaspore S. frondosa 1 Unknown proximal surfaces with a pronounced S. frondosa 2 Yunnan, China zona at the equator S. superba Yunnan, China S. roxburghii Peninsular Malaysia S. brooksii Borneo S. longiaristata Unknown 12 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r) (s) (t) (u) (v) (w) (x) Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 hybridization (and possibly allopolyploidy), which has been reported and postulated earlier in Selaginellaceae (e.g. Graustein, 1930; Somers and Buck, 1975). Further examples of suspected hybrids in Selaginella include S. 9 neomexicana Maxon—a possible sterile hybrid between S. rupincola Underw. and S. mutica D.C. Eaton (Tryon, 1955; Valdespino, 1993)—and an unnamed hybrid between S. arizonica Maxon and S. eremophila (Yatskievych and Windham, 2009). More studies are needed to better understand the species-level relationships within these clades with non-monophyletic species. Deep-level relationships in Selaginella Our combined plastid and nuclear data resolve the deep-level relationships in Selaginella with strong support (Figs 1, 2a and 4). We recognize here six major deep-level clades (ML BS ≥ 94%, MP JK ≥ 97%, PP ≥ 0.99): clades I and II, superclades A–C and clade IX. Clade I (the S. selaginoides clade, see below), containing only two species, was resolved as sister to the rest of the genus (ML BS = 100%, MP JK = 100%, PP = 1.00). Clade II (the S. sanguinolenta clade, see below) is the second earliest diverging lineage (ML BS = 99%, PP = 0.99), and is a novel deep-level lineage not found in previous molecular studies. Clade IX (the Rosulatae clade, see below) was found to be sister to superclades B+C (ML BS = 100%, MP JK = 91%, PP = 0.99), and was not previously recognized as a deep-level lineage by studies based on either morphology or molecular data. Below is our detailed discussion of superclades A–C. Superclade A—the Ericetorum superclade The Ericetorum superclade contains clades III–VIII in our study (Figs 1, 2a and 4). Based on rbcL data alone Korall and Kenrick (2002) identified a weakly supported so-called “dorsal rhizophoric clade’’ including S. myosurus Alston, and members of S. ser. Articulatae (Spring) Hieronymus and Sadebeck (1901) and “S. subg. Tetragonostachys” sensu Jermy (1986, 1990). They excluded members of S. subg. Ericetorum sensu 13 Jermy (1986) and three other Malagasy species [S. lyallii (Hook. & Grev.) Spring, S. moratii Rauh & W. Hagemann, S. polymorpha Badre] from their “dorsal rhizophoric clade”, although these species together were resolved as sister to that clade. Our analysis, with ca. 88 species included, shows that the “dorsal rhizophoric clade’’ defined by Korall and Kenrick (2002) is paraphyletic in relation to S. subg. Ericetorum sensu Jermy (1986) and several other species (Figs 1 and 2b). Our results are consistent with those of Arrigo et al. (2013) who sampled 51 species of this clade. We discover a strongly supported clade (superclade A) containing S. exaltata, S. lepidophylla, S. myosurus, S. subg. Ericetorum sensu Jermy (1986), S. ser. Articulatae sensu Hieronymus and Sadebeck (1901), “S. subg. Tetragonostachys” sensu Jermy (1986), and three Malagasy species (S. lyalii, S. moratii, S. polymorpha). The most parsimonious interpretation would be that dorsal rhizophores evolved once in the most recent common ancestor of superclade A and this character state was lost in the Lyallia clade (III). Here we advocate recognition of this expanded “S. subg. Tetragonostachys” as a subgenus of Selaginella (Fig. 4). Based on our estimate superclade A contains ca. 200 species, while “S. subg. Tetragonostachys” sensu Jermy (1986) contains ca. 50 species only. Such an expanded “S. subg. Tetragonostachys” differs from the rest of the genus by the dorsal rhizophoric (except clade III), and includes the xeromorphic isophyllous species, the articulate species, the species with monomorphic and decussately arranged leaves, and a rosette-forming species [S. lepidophylla (Hook. & Grev.) Spring]. Within superclade A, the S. lepidophylla clade (VIII) is resolved as sister to the Homoeophyllae clade (VII), and they together are sister to a clade containing clades III–VI. Our study resolves superclade A as sister to a clade containing clade IX (the Rosulatae clade) and superclades B and C with strong support (ML BS = 89%, PP = 1.00). Superclade B—the Heterostachys superclade The Heterostachys superclade contains clades X–XIII in our study (Figs 1 and 2c,d). In the previous Fig. 3. Scanning electron micrographs of megaspores and microspores of selected species of Selaginella (see Zhou et al., 2015b for more details). (a–q) megaspore morphology of the major clades and subclades; (r–x) microspore morphology of clade XIII, the Heterostachys clade. (a) S. sanguinolenta (L.) Spring (clade II), Chu & Wu 68 (PYU). (b) S. remotifolia Spring (clade VI), Chu & Zhang 20188 (PYU). (c) S. vardei H. Lev. (clade VII), Jin & Cao s.n. (PYU). (d) S. stauntoniana Spring (clade IX), PYU 870080 (PYU). (e) S. nipponica Franch. & Sav. (clade XII), Chu 4753 (PYU). (f) R, S. braunii Baker (clade X: the S. braunii subclade), Chu & Wu 3043 (PYU). (g) S, S. willdenowii (Desv. ex Poir.) Baker (clade X: the S. willdenowii subclade), Chu et al. 18474 (PYU). (h) T, S. picta A. Braun ex Baker (clade X: the S. delicatula subclade), Lu & Zou 18748 (PYU). (i) U, S. siamensis Hieron. (clade X: the S. siamensis subclade), Chu et al. 15741 (PYU). (j) V. S. pennata (D. Don) Spring (clade X: the S. pennata subclade), Chu & Zhang 24587 (PYU). (k) W, S. kurzii Baker (clade XIII: the S. heterostachys subclade), Chu 3833 (PYU). (l) X, S. ciliaris (Retz.) Spring (clade XIII: the S. ciliaris subclade), Chu et al. 15426 (PYU). (m) S. biformis A. Braun ex Kuhn (clade XIV), Chu et al. 23504 (PYU). (n) S. involvens (Sw.) Spring (clade XV), Chu & Feng 51 (PYU). (o) S. gebaueriana Hand.-Mazz. (clade XV), Chu & Feng 89 (PYU). (p,q) S. commutata Alderw. (clade XVII), Zhou 2441 (PYU). (A) The obviously disconnected laesurae at the pole in the Homostachys clade. (B) The extremely smooth exospore in the S. pennata subclade. (C) The equatorial flange in S. involvens. (D) The zona at equator in the S. doederleinii clade. 14 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 Stachygynandrum Heterostachys Lycopodiodes ventral rhizophores Stachygynandrum Sta S Sta Er Sta Tetragonostachys S Lycopodiodes Bryodesma dorsal rhizophores nr vr ? I II III IV V VI VII A: Ericetorum VIII IX He X XI XII B: Heterostachys XIII XIV XIX XVIII XVII XVI XX XV C: Stachygynandrum (a)(b) (c) (d)(e) classifications of Selaginella, S. subg. Heterostachys comprised the species with dimorphic, resupinate sporophylls (Baker, 1884, 1887; Warburg, 1900; Walton and Alston, 1938; Jermy, 1986, 1990). Previous molecular studies (e.g. Korall and Kenrick, 2002) sampled only a few species (all from the Americas), but S. subg. Heterostachys sensu Baker contains ca. 60 species (Jermy, 1990) and is distributed globally in the tropics (Tryon and Lugardon, 1991). Asia is the major distribution area with more than 28 species in China (Zhang et al., 2013) and more than 25 species in India (Alston, 1945). In our study, 167 accessions respresenting ca. 80 species form the strongly supported monophyletic superclade B (which we advocate recognizing as the expanded S. subg. Heterostachys), which contains members of S. subg. Heterostachys sensu Baker (1883, 1887), S. subg. Homostachys sensu Baker (1883, 1887), Warburg (1900), and Walton and Alston (1938), S. ser. Suberosae (Baker) Warb., the tropical and subtropical species with uniform sporophylls, and S. douglasii (Hook. & Grev.) Spring. In other words, superclade B contains all species with dimorphic sporophylls from Asia and the Pacific islands and some species with uniform sporophylls from tropical and subtropical regions (e.g. S. braunii, S. delicatula, S. hoffmannii, S. pervillei, S. siamensis, S. uncinata) and temperate S. douglasii. Species of the Heterostachys superclade appear highly variable in morphology and geographical distribution. They can have various habits (erect, scandent, creeping or prostrate) and strobili (with uniform sporophylls, or dimorphic non-resupinate or resupinate sporophylls) and grow in various habitats. However, species of this superclade share some megaspore features. Their megaspore surfaces are tuberculate, sometimes papillate, verrucate and rugulate. In some cases, these megaspore ornamentations combine with each other and even form irregular reticulate ornamentations although completely different from the reticulate ornamentations in S. subg. Stachygynandrum (Fig. 3e–l vs. m–q). Our study resolves superclade B as sister to superclade C with relatively strong support (ML BS = 80%, Fig. 4. Simplified maximum likelihood phylogeny of Selaginella based on plastid rbcL and nuclear ITS sequences. (a) 20 major lineages. (b) three superclades. (c) five-subgenus classification of Jermy (1986). Clade III, marked as Er (= S. subg. Ericetorum = the Lyallia clade), contains three species (S. lyallii, S. moratii, S. polymorpha) classified in Stachygynandrum. Clade XVI, marked as Stachygynandrum, contains some species classified in Heterostachys as well. s = S. subg. Selaginella; Sta = S. subg. Stachygynandrum; He = S. subg. Heterostachys. (d) the three-genus classification of Sojak (1993). (e) rhizophores. vr = ventral rhizophores. nr = no rhizophores. ? = the Lyallia clade, where rhizophore position is difficult to determine. Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 MP JK = 75%, PP = 0.99). Within superclade B, the S. douglasii clade (XI) is resolved as sister to the Homostachys clade (XII), together they are sister to the Oligomacrosporangiatae clade (X) and the three together are sister to the Heterostachys clade (XIII). Superclade C—the Stachygynandrum superclade The Stachygynandrum superclade contains clades XIV–XX (Fig. 2e). Traditionally all species of Selaginella with dimorphic leaves and uniform strobili were included in S. subg. Stachygynandrum (P. Beauv.) Baker (e.g. Baker, 1887; Warburg, 1900; Walton and Alston, 1938; Jermy, 1986, 1990). However, a molecular phylogenetic study has demonstrated that S. subg. Stachygynandrum is not monophyletic (Korall and Kenrick, 2002), a result confirmed in our study (Fig. 4). We find a narrowly defined S. subg. Stachygynandrum s.s. that is supported as monophyletic (ML BS = 94%, MP JK = 97%, PP = 1.00), and which corresponds to our superclade C. This subgenus in our definition includes the members of S. subg. Stachygynandrum sensu (P. Beauv.) Baker (1883) excluding the species of S. ser. Articulatae (Spring) Hieron. & Sadeb., S. ser. Rosulatae sensu (A. Braun) Baker and S. ser. Suberosae sensu (Baker) Warb. This newly circumscribed subgenus may contain 200 species and is characterized by plants that are erect, suberect or creeping, megaspore surfaces that are reticulate (Fig. 3m–q), and microspore surfaces usually baculate (Liu et al., 1989; Korall and Taylor, 2006; Xia et al., 2013; Singh et al., 2014; our own observations). Within Selaginella subg. Stachygynandrum s.s., 88 accessions representing ca. 50 species in our analysis are resolved into four clades (clades XIV–XVII; Fig. 2e), three of which are well supported. The S. biformis clade (XIV) is sister to the remaining three, followed by the S. involvens clade (XV) which is sister to a clade containing the OPHA clade (clades XVI–XIX) and the S. doederleinii clade (XX) (see discussion below). Major evolutionary lineages in Selaginella The ca. 200 species of the genus sampled in our study are resolved into the following 20 well-supported (except one weakly supported) major clades including two currently monospecific clades (Fig. 1). All of these major clades are also supported by macro-morphological, ecological, and/or spore features and/or distribution information. Clade I—the Selaginella selaginoides clade Clade I corresponds to Selaginella subg. Selaginella and contains only two species: the circumboreal 15 S. selaginoides (L.) P. Beauv. ex Schrank & Mart. (Jermy, 1990) and the Hawaiian endemic S. deflexa Brack. (Jermy, 1986). The former is also the type of the genus. In earlier classifications, although the close relationship between the two species had long been recognized, the subgenus was often lumped with other isophyllous species, e.g. in S. sect. Homoeophyllae Spring by Spring (1850), in S. sect. Homotropae by Braun (1857), in S. sect. Cylindrostachyae by Hieronymus and Sadebeck (1901) and in “S. subg. Euselaginella” (nom. inval.) by Walton and Alston (1938). Conversely, Baker (1883, 1887) accepted S. subg. Selaginella, but his concept of the subgenus included all isophyllous species. Also, S. subg. Selaginella sensu Tryon and Tryon (1982) contains about 50 species but our study shows that it contains only two species. We sampled both species in our analysis, which shows that S. subg. Selaginella is strongly supported as monophyletic (ML BS = 100%, MP JK = 100%, PP = 1.00). For the first time multiple samples of S. selaginoides are included, which supports the monophyly of this species. Selaginella subg. Selaginella is robustly supported as sister to the rest of the genus (ML BS = 100%, MP JK = 100%, PP = 1.00), which is consistent with the findings of Korall and Kenrick (2002) and Arrigo et al. (2013). This subgenus is characterized by plants erect, uniform leaves and sporophylls spirally arranged, and the chromosome number (of S. selaginoides) of 2n = 18 (Heidel and Handley, 2006). Two characteristics of S. subg. Selaginella (determinate growth and rootstock) have been interpreted as support for a closer relationship to Iso€etales than to other species of Selaginellaceae (Bateman, 1992; see alternative interpretation in Kenrick and Crane, 1997, pp. 212–213). Clade II—the Selaginella sanguinolenta clade The Selaginella sanguinolenta clade (II) contains Selaginella sanguinolenta (L.) Spring and its allies (an additional three or four species based on our estimate). Because of the nearly monomorphic sterile leaves, the relationships of this subgenus had been controversial. Spring (1850) placed it in S. sect. Homoeophyllae with the other isophyllous species. Baker (1883, 1887) and Warburg (1900) also placed it together with isophyllous species in S. subg. Selaginella. Hieronymus and Sadebeck (1901) placed in it S. subg. Heterophyllum sect. Pleiomacrosporangiatae ser. Monostelicae with dimorphic sterile leaves and thought that the nearly monomorphic sterile leaves may be intermediate between S. subg. Heterophyllum and S. subg. Homoeophyllum. Walton and Alston (1938) placed in it S. subg. Stachygynandrum ser. Decumbentes with dimorphic sterile leaves and hypothesized that it is an 16 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 intermediate stage between S. subg. Stachygynandrum ser. Decumbents and “S. subg. Euselaginella”. In addition to the nearly monomorphic sterile leaves, members of this clade have megaspore surfaces with densely contiguous tubercles (Fig. 3a) and microspore surfaces rugulate and tuberculate (for spore morphology of S. sanguinolenta also see Minaki, 1984; Liu et al., 1989; for that of S. nummularifolia see Liu and Yan, 2005). Members of the Selaginella sanguinolenta clade were not previously included in a phylogenetic study. We included two species in our analysis, S. sanguinolenta (L.) Spring with a broad Asian distribution and S. nummularifolia Ching endemic to Xizang, China. The monophyly of this clade is strongly supported (ML BS = 100%, MP JK = 100%, PP = 1.00). Based on our ML and BI analyses, the Selaginella sanguinolenta clade (II) is the second earliest diverging lineage and is strongly supported as sister to the rest of the genus except the S. selaginoides clade (I) (ML BS = 99%, PP = 0.99). However, in our MP analysis, the S. sanguinolenta clade (II) was weakly supported (MP JK = 66%) as sister to the Rosulatae clade and superclades B+C. This conflict was first found by Korall and Kenrick (2004) in Selaginella. Potentially, this could be caused by GC-rich plastid DNA in Selaginella (Smith, 2009). As Eyre-Walker (1998) showed, parsimony analyses may encounter problems when resolving the phylogenies which contain biased base composition. In other words, MP may be extremely sensitive to nucleotide composition (Smith, 2009). Based on spore morphology (Liu et al., 2002) and habit, Selaginella kashminiana Dixit from Pakistan may be a member of this clade. Clade III—the Lyallia clade The Lyallia clade (III) contains six species. In our analysis, two Australian species [Selaginella gracillima (Kuntze) Alston and S. uliginosa (Labill.) Spring] and four Afro-Madagascar species (S. lyallii, S. moratii, S. polymorpha and S. pygmaea Alston) form a strongly supported monophyletic clade (ML BS = 100%, MP JK = 100%, PP = 1.00), and the Australian species together are sister to the Afro-Madagascar species, consistent with the results of Korall and Kenrick (2002) that. Selaginella subg. Ericetorum sensu Jermy (1986) containing S. gracillima, S. pygmaea and S. uliginosa is paraphyletic in relation to the four Afro-Madagascar species (Fig. 2a). Although the three species of Selaginella subg. Ericetorum sensu Jermy (1986, 1990) are different from the three Malagasy species (S. lyallii, S. moratii, S. polymorpha) in morphology and habit (Korall and Kenrick, 2002), these six species share some morphological and spore features: (i) the megaspore surfaces are reticulate and have wing-like and highly convoluted laesurae forming a complex mass at the pole (Stefanovic et al., 1997; Korall and Taylor, 2006; Schulz et al., 2013); (ii) microspores are globose-triangular, and their proximal surfaces are coarse, sometimes covered with fine spines and the distal surfaces are usually regulate (for microspore morphology of S. pygmaea, see Schulz et al., 2013; for that of S. moratii and S. polymorpha, see Stefanovic et al., 1997); (iii) although the Malagasy species have dimorphic sterile branch leaves, their monomorphic and decussately arranged sterile stem leaves are consistent with members of S. subg. Ericetorum sensu Jermy (1986); (iv) rhizophores are strictly restricted to the base of erect stems within all members of the Lyallia clade; and (v) these species have the same chromosome number 2n = 18 as far as known [(S. uliginosa and S. lyallii were examined by Jermy et al. (1967)]. Note that Schulz et al. (2013) segregated Selaginella pygmaea into two species, S. aboriginalis C. Schulz & Homberg (from Australia) and S. pygmaea (from South Africa), and added S. royenii Alston from southern New Guinea, Indonesia, to this clade (S. subg. Ericetorum). So, the Lyallia clade probably includes eight species: four Australasian ones (S. aboriginalis, S. gracillima, S. uliginosa, S. royenii) and four Afro-Madagascar ones (S. lyallii, S. moratii, S. polymorpha, S. pygmaea). Korall and Kenrick (2002) excluded members of Selaginella subg. Ericetorum sensu Jermy (1986) from their “dorsal rhizophoric clade”. However, because these three species have erect stems and the rhizophores are strictly at the base, it is not easy to assess accurately if these three species have dorsal rhizophores (Fig. 4). Clade IV—the Selaginella myosurus clade The Selaginella myosurus clade (IV) contains only the western African S. myosurus in our sampling. Judging from morphology, S. scandens (P. Beauv.) Spring from Gabon might belong to this clade. In our analysis, S. myosurus is resolved as sister to the Lyallia clade but with weak support. Hieronymus and Sadebeck (1901) placed S. scandens and S. puberula Klotzsch from Guiana together in the S. scandens group, so S. puberula may also be in this clade. Based on its creeping habit, a single large megasporangium on the base of strobili, dorsal rhizophores (our observations), megaspore surfaces reticulate, and wide and high muri (Korall and Taylor, 2006), S. myosurus should be close to the Articulatae clade, but our study resolves this species outside of that clade, but without support. Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 Clade V—the Selaginella exaltata clade The Selaginella exaltata clade (V) contains only Central and South American species in our sampling. Hieronymus and Sadebeck (1901) established the monospecific S. exaltata group, one of the four groups under their S. subser. Monostelicae. This subseries also included S. kraussiana (Kunze) A. Braun, S. remotifolia Spring, etc. Our study resolves S. exaltata (clade V) away from S. kraussiana and S. remotifolia, etc. (clade VI), but without support (Fig. 2a); it is possible that additional data will demonstrate that S. exaltata is sister to S. kraussiana and its allies. Morphologically and anatomically, S. exaltata has large erect plants (up to 1 m) and has several steles in a special actino-plectostele (a sort of three-lobed plectostele) and extremely large megaspores (ca. 1.5 mm) (Mickel and Hellwig, 1969), which are different from members of the Articulatae clade. With denser future samples, possibly more members of the S. exaltata clade will be identified. Clade VI—the Articulatae clade The Articulatae clade (VI) approximates Selaginella ser. Articulatae (Spring) Hieronymus and Sadebeck (1901). Morphologically, members of the series share the following features: (i) below bifurcation of the stem there are articulations or swollen joints; (ii) rhizophores are borne on the dorsal side of the stems; (iii) a single large megasporangium is located at the base of a strobilus; (iv) megaspore surfaces have irregular or regular (Fig. 3b) and coarse reticulum usually with high and wide muri (e.g. Minaki, 1984; Liu et al., 1989, 2006; Giorgi et al., 1997; Korall and Taylor, 2006; Xia et al., 2013); (v) megaspores are extremely large; and (vi) microspore surfaces usually have spines (e.g. Hellwig, 1969; Tryon and Lugardon, 1991; Giorgi et al., 1997; Xia et al., 2013). In our study, the 22 accessions included in the Articulatae clade are strongly supported as monophyletic. Previous classifications placed members of this clade among other anisophyllous groups. Our study shows, instead, that they have closer relationships with isophyllous taxa. Within the clade the S. kraussiana subclade is strongly supported as sister to the S. fragilis subclade. Members of the first subclade occur in Asia and Africa, while those of the second subclade occur in the Americas. These two subclades have no significant differences in morphology, habit or number of chromosomes. Although the number of vascular bundles is mainly one in Selaginella, it also shows great variation in some groups (such as the Oligomacrosporangiatae clade, see below) (Chu, 2006). In the Articulatae clade, the number of vascular bundles ranges from one to five, and usually two (Walton and Alston, 1938; Korall and Kenrick, 2002). Within the S. kraussiana subclade, 17 S. kraussiana has one vascular bundle while S. remotifolia has two (Zhang, 2004; Chu, 2006; our own observations). The members of the S. fragilis subclade have from one to more vascular bundles. Clade VII—the Homoeophyllae clade The Homoeophyllae clade (VII) approximates “Selaginella subg. Tetragonostachys” sensu Jermy (1986), which contains ca. 45–60 species distributed across the Old and New Worlds except Australia (Tryon and Lugardon, 1991), and most species occupy xeric habits (Tryon, 1955; Arrigo et al., 2013). Previous studies (Korall and Kenrick, 2002, 2004; Arrigo et al., 2013) pointed out that there is little doubt about the monophyly of “S. subg. Tetragonostachys” sensu Jermy, and its sister relationship with the resurrection plant S. lepidophylla has been strongly supported. Our study further corroborates these results. Morphologically, members of “S. subg. Tetragonostachys” share spirally arranged monomorphic leaves and decussate sporophylls (Jermy, 1986; Sojak, 1993). Megaspore surfaces of members of this clade have an interwoven, closed, irregular and fine reticulum (Fig. 3c), and sometimes the muri are not obvious (e.g. Tryon, 1949; Minaki, 1984; Liu et al., 1989; Chu, 2006; Korall and Taylor, 2006; Zhu et al., 2006; Xia et al., 2013). The megaspore morphology is stable and unique to the Homoeophyllae clade. The microspore proximal surfaces have rough and irregular rugulate ornamentation and distal surfaces are verrucate and rugulate (Liu et al., 1989; Chu, 2006; Zhu et al., 2006; Xia et al., 2013). Within the Homoeophyllae clade the relationships are poorly resolved. Clade VIII—the Selaginella lepidophylla clade The Selaginella lepidophylla clade (VIII) contains ca. four species including the American species S. lepidophylla (Hook. & Grev.) Spring. The clade is resolved as sister to the Homoeophyllae clade with strong support. This sister relationship of the two clades is supported by their shared xerophytic ecologies. Based on the rosulate and xerophytic habit, S. lepidophylla was usually placed in the resurrection group, the Rosulatae clade (see below), but our study shows that the S. lepidophylla clade and the Rosulatae clade are not closely related (Fig. 2b). Morphologically, the S. lepidophylla clade also has some particular features, such as plants having similar dorsal leaves and ventral leaves (Mickel and Smith, 2004), distal surfaces of the megaspores having high ridges and proximal surfaces being reticulate forming connected ridges (Korall and Taylor, 2006), and microspores scattering in tetrads surrounded and ornamented by several ridges (Hellwig, 1969; Giorgi et al., 18 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 1997; Mickel and Smith, 2004). Therefore, the S. lepidophylla clade is morphologically distinct from both the Rosulatae clade (IX) and the Homoeophyllae clade (VII). Mickel and Smith (2004) also thought that S. lepidophylla was different from the Rosulatae clade. Based on their judgment two species (S. novoleonensis Hieron. and S. ribae Valdespino) from Mexico might belong to the S. lepidophylla clade. Morphologically, their plants all have similar dorsal and ventral leaves and share the rosette-forming habit. Clade IX—the Rosulatae clade The Rosulatae clade (IX) approximates Selaginella ser. Rosulatae (A. Braun) Baker (1883), and contains at least 12 species. Members of this clade occur in seasonally dry areas and are rosette, tufted or erect plants. Their branches curl up during drought (“resurrection plants”) and the ventral leaves usually have a membranous and lacerate margin. Their megaspores have a coarse surface and irregularly sized and spaced verrucae (Fig. 3d) (e.g. Minaki, 1984; Liu et al., 1989; Korall and Taylor, 2006; our own observations) and their microspores are globose (Liu et al., 1989; our own observations). Although the rosette form is also present in other species, such as S. lepidophylla (see above) and S. pallescens (C. Presl) Spring, the megaspore surfaces of these species are entirely different from those of the Rosulatae clade. The megaspores of S. pallescens have very fine reticulate ornamentation, while the proximal surfaces of the megaspores of S. lepidophylla are reticulate and the distal surfaces have coarse, sparse, hamulate, and high and wide ridges (Korall and Taylor, 2006). The rosette form appears to have independently evolved at least three times, once in the S. lepidophylla clade, in S. pallescens and in the Rosulatae clade. Our study, with eight Old World species and one New World species included, shows that Selaginella subg. Rosulatae is strongly supported as monophyletic, consistent with the result of Korall and Kenrick (2002). This clade is strongly supported as sister to superclades A+B, which also have dimorphic leaves. Within the Rosulatae clade, the Asian species (the S. stauntoniana subclade) are resolved as sister to those from the Arabian Peninsula, Africa/Madagascar, and North America (the S. imbricata subclade) (ML BS = 100%, MP JK = 100%, PP = 1.00). Baker (1884) included Selaginella convoluta (Arn.) Spring (America), S. bryopteris (L.) Baker (India), S. pringlei Baker (Mexico), etc., in this clade. Further data will be necessary to test these hypotheses. Clade X—the Oligomacrosporangiatae clade The Oligomacrosporangiatae clade (X) presents a complex group. Members of this clade show numerous variations [chromosome number, habit, habitat, number of stele, sporophylls, and megaspore (Fig. 3f–j) and microspore (Fig. 3r–v) morphology]; understanding relationships within this clade is difficult because of the complexity of features exhibited and the poorly resolved phylogeny we obtained (Fig. 2c). Within the Oligomacrosporangiatae clade, the 41 accessions representing ca. 30 species in our sampling are resolved into six subclades: the S. braunii subclade, the S. delicatula subclade, the S. pennata subclade, the S. pervillei subclade, the S. siamensis subclade and the S. willdenowii subclade. All of these subclades are strongly supported as monophyletic except the S. delicatula subclade whose monophyly is moderately supported, and the S. siamensis subclade and the S. pervillei subclade, which are monospecific in our sampling. The Selaginella braunii subclade This subclade contains two xerophytic species, S. braunii Baker and S. mairei H. Lev. The first species was assigned to S. ser. Caulescentes Baker (1887) and both were assigned to the same series by Walton and Alston (1938). Morphologically, the two species are erect plants with monomorphic sterile leaves on the main stem and dimorphic leaves on branches, involute leaves when dry, and two-banded steles (although the stem has only one “X”- or “V”-shaped vascular bundle in S. mairei, its rhizome clearly has two vascular bundles) (Chu, 2006). These morphological features are not present in other subclades in the Oligomacrosporangiatae clade. Megaspore surfaces are tuberculate, papillate and verrrucate, and these elements are usually combined (Fig. 3f), and microspores have broadly blunt spines, sometimes lamellate (Fig. 3r) (e.g. Liu et al., 1989, 2006; Zhou et al., 2012; Xia et al., 2013). Walton and Alston (1938) thought that those species (such as S. biformis A. Braun ex Kuhn, S. moellendorffii) with monomorphic sterile stem leaves were closely related, a hypothesis rejected by our study that shows that these species are scattered in different major clades. The Selaginella delicatula subclade This subclade contains six Asian species and a Central American species (S. hoffmannii Hieron.) in our current sampling. The subclade is divided into two strongly supported clades—the S. plana grouping [including S. hoffmannii Hieron., S. mayeri Hieron., S. plana (Desv. ex Poir.) Hieron.] and the S. delicatula grouping [including S. delicatula, S. picta A. Braun ex Baker and S. wallichii (Hook. & Grev.) Spring] (Fig. 2c). Having three vascular bundles (the number Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 of vascular bundles in S. hoffmannii and S. mayeri is unknown) and entire or subentire leaves, this subclade is similar to the S. willdenowii subclade (see below). The members of this subclade are erect or suberect (except S. mayeri), with megaspore surfaces typically tuberculate (Fig. 3h), sometimes combined (e.g. Minaki, 1984; Chang et al., 2002a; Korall and Taylor, 2006; Xia et al., 2013; Singh et al., 2014), and microspore surfaces usually bluntly spiny (Fig. 3t) (e.g. Hellwig, 1969; Chang et al., 2002b; Xia et al., 2013), different from the members of the S. willdenowii subclade. Note that three of the members of the S. delicatula subclade, S. delicatula, S. plana and S. wallichii, have the chromosome number 2n = 20 (Kuriachan, 1963; Jermy et al., 1967), while the S. willdenowii subclade has 2n = 18 (see below). These features all corroborate our result that the two subclades are not closely related. Within the Selaginella delicatula subclade, S. hoffmannii is unique in terms of morphology and geography: it is distributed in the Americas and its leaves have ciliate margins. The Selaginella pennata subclade This subclade is strongly supported as monophyletic (ML BS = 100%, MP JK = 100%, PP = 1.00) and contains two species [S. bisulcata Spring and S. pennata (D. Don) Spring] in our sampling. These two species are very similar to each other morphologically, but their megaspore ornamentations differ. These two species are the only ones with dimorphic sporophylls in the Oligomacrosporangiatae clade, and all the remaining Asian/Pacific islands species of the genus with dimorphic sporophylls are resolved as members of the Heterostachys clade (XIII). Morphologically, the distinguishing features of the S. pennata subclade include dimorphic sporophylls, obovate dorsal leaves and a swelling vein apex of ventral leaves. Additionally, the exospores of the megaspores of this subclade are smooth (Fig. 3j, ‘B’), which is characteristic of this subclade (Chang et al., 2002a; Liu et al., 2003). Our study shows that the dimorphic sporophylls in Selaginella evolved at least twice independently, in the S. pennata subclade and in the Heterostachys clade. The Selaginella pervillei subclade This subclade contains only Selaginella pervillei Spring in our sampling. Plants of this species are erect and have monomorphic stem leaves, and pubescent stems and branches. These morphological features are similar to those of members of the S. brunii subclade, especially those of S. braunii. Our study shows, however, that they are not closely related, although they are in the same larger clade (Fig. 2c). Hieronymus and 19 Sadebeck (1901) also placed S. braunii with the S. pervillei group under their S. sect. Pleiomacrosporangiatae ser. Monostelicae. This group in their definition also includes three other species [S. eublepharis AI. Br., S. fulcrata (Ham.) Spring and S. vogelii Spring], which are probably part of this clade. Megaspore surfaces of S. pervillei are sparsely papillate or tuberculate (Stefanovic et al., 1997; Korall and Taylor, 2006) and microspore surfaces are tuberculate (Stefanovic et al., 1997). It is similar to the S. delicatula subclade. The Selaginella siamensis subclade This subclade contains only Selaginella siamensis Hieron. from Southeast Asia in our sampling. This species is similar to the members of the S. willdenowii subclade. However, this species occurs in drier habitats than members of the S. willdenowii subclade. Walton and Alston (1938) placed S. siamensis in a xerophytic series and thought this species may be an intermediate stage between taxa inhabiting xeromorphic versus other habitats. This species has only one stele, its megaspore surfaces are regularly verrucose (Fig. 3i), and microspores have regular and twisted lamellate ornamentation (Fig. 3u) (Liu et al., 2003). These morphological features are different from other members of the Heterostachys clade. The Selaginella willdenowii subclade This subclade contains ca. six tropical Asian species in our sampling. These species share the following features: (i) stems have three-banded vascular bundles [except that of S. uncinata]; (ii) plants are scandent and usually 1 m long or longer; (iii) megaspore surfaces have tuberculate–reticulate composite ornamentation (Fig. 3g) (e.g. Minaki, 1984; Liu et al., 2003; Chu, 2006; Zhu et al., 2006; Korall and Taylor, 2006; Singh et al., 2014; our own observations) and microspore distal surfaces have long and twisted lamellate or widely blunt–spiny ornamentation (Fig. 3s) (e.g. Liu et al., 1989, 2003; Li et al., 2003); (iv) all leaves (dorsal leaves, ventral leaves, axillary leaves and sporophylls) are entire; and (v) the chromosome number is 2n = 18 [three species, S. uncinata, S. willdenowii (Desv. ex Poir.) Baker and S. limbata Alston, have been examined] (Jermy et al., 1967; Takamiya, 1993). In addition, the leaves of some species (such as S. uncinata and S. willdenowii) have iridescent schemochromic tydall-blue colour (Setyawan, 2005). Two species of this subclade, S. uncinata and S. willdenowii, have been widely introduced to the Americas. Based on the long stems, entire leaves, and similar megaspores and microspores to those of the S. willdenowii subclade (Zhang et al., 2005), the Hainan 20 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 endemic S. hainanensis X. C. Zhang & Noot. is probably a member of this subclade. Clade XI—the Selaginella douglasii clade This clade contains only the North American species Selaginella douglasii (Hook. & Grev.) Spring in our sampling. This species has a restricted geographical distribution and is found only in California, Idaho, Oregon, Washington and British Columbia (Jones, 1964; Valdespino, 1993). Hieronymus and Sadebeck (1901) placed it in their S. douglasii group, one of their 28 groups under their S. sect. Pleiomacrosporangiatae ser. Monostelicae, with three other species: S. delicatissima Linden ex A. Braun, S. saccharata A. Braun and S. reflexa Underw. The last species is a member of clade I, but the other two may not be members of this clade. The S. douglasii clade was resolved as sister to the Homostachys clade in our study (ML BS = 82%, MP JK = 74%, PP = 0.97). This sister relationship is supported by the short and creeping habit and verrucate ornamentation on megaspore surface (Tryon, 1949). However, this species has uniform strobili and auriculate leaf bases, distinguishing it from members of the Homostachys clade, but similar to members of the Oligomacrosporangiatae clade. Clade XII—the Homostachys clade This clade approximates Selaginella subg. Homostachys Baker (1883), which was recognized by Baker (1887), Warburg (1900) and Walton and Alston (1938), but its members were included in either S. subg. Homoeophyllae (Spring, 1850), S. sect. Dichotropae (Braun, 1857), S. subg. Heterophyllum (Hieronymus and Sadebeck, 1901) or S. subg. Stachygynandrum (Jermy, 1986, 1990). Previous molecular analyses based on sparse sampling included them in S. subg. Stachygynandrum (Korall et al., 1999; Korall and Kenrick, 2002). In our study, 29 accessions representing ca. 14 Asian and one Mediterranean species (S. denticulata Spring) were sampled. The monophyly of this clade was well established. Morphologically, species of this clade share dimorphic leaves, creeping stems and strobili non-resupinate (i.e. with dorsal sporophylls smaller than ventral ones), except for S. denticulata Spring and S. helvetica (L.) Link, which have nearly isomorphic strobili. Based on the morphology of the strobili, the Homostachys clade can be divided into two groups: (1) those with dimorphic strobili that are loose and non-resupinate; and (2) those with strobili that are approximately monomorphic and loose (S. denticulata and S. helvetica). Although species of the Homostachys clade have dimorphic sporophylls, they are obviously different from other species with dimorphic sporophylls (e.g. S. ciliaris and S. heterostachys from the Old World, and S. flagellata and S. hartwegiana from the New World) on the basis of their non-resupinate sporophylls and loose strobili. Minaki (1984) studied the megaspore morphology of four species of this clade (S. denticulata, S. nipponica Franch. & Sav., S. helvetica, S. tamamontana Seriz.) and showed that they had similar tuberculate and/or vermiculate megaspore surfaces (Fig. 3e) and wall structures. This sort of megaspore morphology is not otherwise known in Selaginella. In fact members of the Homostachys clade have obviously disconnected laesurae at the pole of the megaspore (Fig. 3e, ‘A’), which have long been ignored but earlier established by several studies (e.g. Minaki, 1984; Liu et al., 1989, 2003; Korall and Taylor, 2006). Although Selaginella longistrobilina P.S. Wang, X.Y. Wang & Li Bing Zhang (endemic to China) (Zhang et al., 2012a) was not sampled in our analysis, it is probably a member of this clade based on its morphology. Clade XIII—the Heterostachys clade This clade contains species occurring mainly in Asia and a small number of species in the Pacific islands, and includes nearly all Asian species with resupinate strobili (except S. bisulcata and S. pennata; see above). Morphologically, members of this clade have dimorphic sporophylls and resupinate strobili. However, none of the American species with dimorphic sporophylls belongs in the Heterostachys clade, which shows that dimorphic sporophylls evolved independently in Asian and American species. In our study, species of the Heterostachys clade were resolved into two moderately supported subclades: the S. heterostachys subclade (from Asia) and the S. ciliaris subclade (from Asia and the Pacific islands). The S. heterostachys subclade contains most Asian species with tuberculate and verrucose megaspore surfaces (Fig. 3k) (e.g. Liu et al., 1989, 2003, 2006; Zhou et al., 2012; Xia et al., 2013) including the newly described S. daozhenensis Li Bing Zhang, Q.W. Sun & Jun H. Zhao (Sun et al., 2015), while the S. ciliaris subclade contains species of Asia and the Pacific islands with megaspore surfaces that are mainly finely reticulate (Fig. 3l). In the S. ciliaris subclade, the Asian species were resolved as sister to the Pacific island species (moderately supported: ML BS = 69%, MP JK = 82%, PP = 0.99). The megaspores of the six Asian species [S. albociliata P.S. Wang, S. ciliaris (Retz.) Spring, S. lutchensis Koidz., S. repanda (Desv. ex Poir.) Spring, S. compta Spring, S. xipholepis Baker] and Hawaiian species (S. arbuscula Spring) share an obviously open and fine reticulation (Fig. 3l) (except S. compta) (e.g. Minaki, 1984; Liu et al., 2003; Liu and Yan, 2004; Zhu et al., 2006; Singh et al., 2014). This megaspore feature occurs only in this subclade. Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 Based on the features of the megaspore morphology (Singh et al., 2014) two Indian species, S. panchghaniana Dixit and S. proniflora (L.) Baker, are probably members of the S. ciliaris subclade. Also, most other Asian species with resupinate strobili probably fall here. Clade XIV—the Selaginella biformis clade This clade contains only one Asian species, Selaginella biformis A. Braun ex Kuhn, in our sampling. This species has two forms of habit: creeping flagelliform plants and erect plants. Its flagelliform plants are glabrous and have no strobili, while its erect plants are pubescent and often have strobili (Zhang et al., 2013; our own observations). The flagelliform habit is also present in some species of the S. pallescens clade (XVI), such as S. porphyrospora A. Braun and S. flagellata Spring, and the Articulatae clade (VI), such as S. sertata Spring, and these species all develop a flagelliform structure from the apex of the stem or branch (Mickel and Smith, 2004). In contrast, the flagelliform structure of S. biformis is developed from the base of erect plants. Selaginella biformis is similar to two species of the S. involvens clade (XV), S. involvens (Sw.) Spring and S. moellendorffii Hieron., in megaspore morphology (Fig. 3m,o) and the morphology of leaves on the erect stems. These species also share the chromosome number of 2n = 20 (Takamiya, 1993). Meanwhile, the separate ITS analysis resolved the clade XIV and clade XV as sister clades, with moderate support (ML BS = 80%, MP JK = 84%) (tree not shown). The megaspores of S. biformis are reticulate (Fig. 3m) (Minaki, 1984; Liu et al., 1989) and the microspores are usually sterile (our own observations). Clade XV—the Selaginella involvens clade This clade contains ca. four Asian species (Selaginella davidii Franch., S. gebaueriana Hand.-Mazz., S. involvens (Sw.) Spring and S. moellendorffii Hieron.). Ventral leaves of the four species usually have two light-coloured bands on the sides of veins (Chu, 2006) and their megaspore surfaces are reticulate (Fig. 3n,o) (e.g. Minaki, 1984; Liu et al., 1989; Sun et al., 2002; Xia et al., 2013). Selaginella involvens has a unique equatorial flange (Fig. 3n, ‘C’) (Minaki, 1984; Liu et al., 1989; Xia et al., 2013). Their microspores are baculate (S. davidii, S. gebaueriana and S. moellendorffii) or tuberculate and blunt– spiny (S. involvens) (our own observations). This clade was further resolved into two subclades: a weakly supported S. involvens/S. moellendorffii subclade and a strongly supported S. davidii/S. gebaueriana subclade. 21 The Selaginella davidii subclade This subclade contains two species in our sampling: S. davidii and S. gebaueriana. Plants of this subclade are creeping and their chromosome numbers are unknown. The two species are difficult to distinguish from each other and were treated as one species (e.g. Alston, 1934; Zhang et al., 2013), two subspecies (Zhang, 2004) or two species (Kung, 1988; Wang, 1990; Chu, 2006). In our phylogenetic analysis S. davidii was resolved as sister to S. gebaueriana with strong support. The Selaginella involvens subclade This subclade contains two species in our sampling: S. involvens and S. moellendorffii. Plants of this subclade are erect and have a chromosome number of 2n = 20 (Takamiya, 1993), and S. involvens also has a varied number of 2n = 18–20 (Jermy et al., 1967). In addition, S. involvens often grows on rocks and trees, while S. moellendorffii can usually be found on the ground. Because of their similar morphology, S. involvens and S. moellendorffii are often confused (Gu et al., 2013), but the former has an equatorial flange on its megaspore surfaces (Fig. 3n, ‘C’). An equatorial flange similar to that of S. involvens is also present in S. anceps A. Braun (Giorgi et al., 1997), a member of our S. pallescens clade (XVI). These two species also share erect plant habit and microspore morphology, but the two were resolved in different clades in the Stachygynandrum superclade, suggesting that the equatorial flange may have evolved twice independently. Clades XVI–XIX—the OPHA clade (the S. oaxacana clade, S. pallescens clade, S. hartwegiana clade and S. anceps clade). These four clades together (the OPHA clade) were weakly supported (ML BS = 45%, MP JK < 50%, PP = 0.74), and are composed of only New World species. Also these species share consistent megaspore morphology, which are typically reticulate (Tryon, 1949; Hellwig, 1969; Korall and Taylor, 2006). They are suberect, rarely creeping or erect, and have dimorphic leaves. These clades present various chromosome numbers: 2n = 18 [S. apoda (L.) Fernald and S. simplex Baker] (Graustein, 1930; Marcon et al., 2005), 2n = 20 [S. erythropus Spring, S. flabellata (L.) Spring and S. pulcherrima Liebm.] (Jermy et al., 1967). Meanwhile 2n = 20 (Jermy et al., 1967) and 22 (TschermakWoess and Dolezal-Janish, 1959) both occur in S. pallescens (C. Presl) Spring. Species of these clades with monomorphic or dimorphic sporophylls were assigned to S. subg. Heterostachys and S. subg. Stachygynandrum, respectively. The treatment was 22 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 adopted by Walton and Alston (1938) and Jermy (1986). Our results, consistent with those of Korall and Kenrick (2002), show that neither S. subg. Heterostachys nor S. subg. Stachygynandrum is monophyletic. In addition to the species with dimorphic sporophylls sampled by Korall and Kenrick (2002), we sampled three species with dimorphic sporophylls: S. flagellata, S. hartwegiana Spring and S. porphyrospora. Morphologically, these species are usually small and creeping in habit and have resupinate strobili and dorsal sporophylls with sporophyll-pteryx (Quansah and Thomas, 1985). The New World species with dimorphic sporophylls are similar to the Asian species in the Heterostachys clade (XIII), but they have very different megaspore morphologies. Megaspore surfaces of the species of clade XIII are tuberculate, verrucose or papillate. According to Quansah and Thomas (1985), about 14 species with dimorphic sporophylls are distributed in West Africa and about 20 species in the Americas. Up to now, only seven American species with dimorphic sporophylls have been sampled in molecular studies, but no African species have been sampled. To understand the evolution of dimorphic sporophylls well, more American and African species need to be included in the phylogenetic framework of Selaginella. The relationships among 45 accessions representing ca. 28 species in our sampling within the OPHA clade are poorly resolved, but four strongly/weakly supported monophyletic clades are identified in our study: the S. oaxacana clade (XVI), the S. pallescens clade (XVII), the S. hartwegiana clade (XVIII) and the S. anceps clade (XIX). Clade XVI—the Selaginella oaxacana clade This clade contains ca. three species in our sampling. All species have reticulate megaspore surfaces [S. martensii Spring: Giorgi et al., 1997; Korall and Taylor, 2006; S. novae-hollandiae (Sw.) Spring: Korall and Taylor, 2006; S. oaxacana Spring: Hellwig, 1969]. Although S. novae-hollandiae has dimorphic sporophylls, the megaspore morphology and our molecular data all show that the three species in this clade are closely related with one another. However, another accession of S. novae-hollandiae from Ecuador has verrucate and spiny megaspore surfaces (Korall and Taylor, 2006). The two accessions were resolved as being far away on our tree (Fig. 2e) and apparently represent different species (see below). Clade XVII—the Selaginella pallescens clade This clade contains ca. nine species in our sampling. Morphologically, all species of the clade have monomorphic sporophylls and reticulate megaspore surfaces (Reeve, 1935; Tryon and Lugardon, 1991; Korall and Taylor, 2006). However, members of this clade present variable numbers of chromosomes (S. apoda: 2n = 18; S. pallescens: 2n = 20, 22). Within the clade, S. pallescens presents great variation in habit (rosette to erect) and number of chromosomes (2n = 20, 22). In our study, we added seven samples of S. pallescens to the existing data, revealing a series of complicated phylogenetic relationships. More morphological observations and cytological study are necessary to understand the species delimitations in this complex. Clade XVIII—the Selaginella hartwegiana clade This clade contains species occurring in Central to South America including Selaginella hartwegiana and S. novae-hollandiae. They have stem nearly erect, different from those species with dimorphic sporophylls from America that often have creeping stems. They have dimorphic sterile leaves on the stem, different from those species with erect stems and monomorphic sporophyll species from America that have monomorphic sterile leaves on the stem (Valdespino, 1993). Clade XIX—the Selaginella anceps clade This clade was weakly supported as monophyletic (Fig. 2e) and is composed of only New World (South & Central America) species. These species share typically reticulate megaspore surfaces (Tryon, 1949; Hellwig, 1969; Korall and Taylor, 2006). They are suberect, rarely creeping or erect (if plants are erect, main stems have monomorphic leaves), and have dimorphic leaves and various chromosome numbers: 2n = 18 (S. simplex Baker) (Graustein, 1930; Marcon et al., 2005), 2n = 20 [S. erythropus Spring and S. flabellata (L.) Spring] (Jermy et al., 1967). Clade XX—the Selaginella doederleinii clade This clade was first found by Korall and Taylor (2006). They observed megaspore morphology of five species from Asia and Australia and found that their megaspores have a surface with reticulum (Fig. 3p,q) and a unique zona at the equator (Fig. 3p, ‘D’). In our analysis, 18 accessions representing ca. 13 species across China, Japan, Vietnam and Australia are sampled. Our study further supports this clade as monophyletic. The megaspore and microspore morphology of more species have been observed, such as that of S. doederleinii (Liu et al., 1989), S. frondosa Warb. (Liu et al., 2001), S. commutata Alderw. (Zhao et al., 2006b; Fig. 3p,q), and S. trichophylla K.H. Shing and S. scabrifolia Ching Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 & Chu H. Wang (our own observations). These results all support the monophyly of this clade. Also, consistent baculate microspores support the monophyly of the clade (Zhao et al., 2006a; our own observations). Based on the megaspore and microspore morphology (Liu et al., 2001; our own observations), S. rolandi-principis Alston, a species distributed Asia and with extremely large ventral leaves (~7 mm), appears to be a member of this clade. Conclusions Our study, based on combined plastid and nuclear data from 394 accessions representing approximately 30% of the extant species of Selaginella, discovered six deep-level clades and further identified 20 major evolutionary lineages within Selaginella. These clades/ lineages differ from one another in molecular, macromorphological, ecological and spore features, and/or geographical distribution and deserve circumscription as supraspecific entities within Selaginella (X.-M. Zhou and L.-B. Zhang, unpublished data). Acknowledgements We thank Wei-Ming Chu and Alan R. Smith for identification assistance, Pei-Shan Wang, and anonymous reviewers for helpful comments. References Akaike, H., 1974. A new look at the statistical model identification. Autom. Cont. IEEE Transact. 19, 716–723. Alston, A.H.G., 1934. An enumeration of the Chinese species of Selaginella. Bull. Fan. Mem. Inst. 5, 261–304. Alston, A.H.G., 1945. An enumeration of the Indian species of Selaginella. Proc. Natl. Inst. Sci. India 11, 211–235. Arrigo, N., Therrien, J., Anderson, C.L., Windham, M.D., Haufler, C.H., Barker, M.S., 2013. A total evidence approach to understanding phylogenetic relationships and ecological diversity in Selaginella subg. Tetragonostachys. Am. J. Bot. 100, 1672– 1682. Baker, J.G., 1883. A synopsis of the genus Selaginella. J. Bot. 21, 1–5, 42–46, 80–84, 97–100, 141–145, 210–213, 240–244. Baker, J.G., 1884. A synopsis of the genus Selaginella. J. Bot. 22, 23–26, 86–90, 110–113, 243–247, 275–278, 295–300, 373–377. Baker, J.G., 1887. Handbook of the Fern-allies: A Synopsis of the Genera and Species of the Natural Orders Equisetaceae, Lycopodiaceae, Selaginellaceae, Rhizocarpeae. Bell, London, pp. 31–134. Banks, J.A., 2009. Selaginella and 400 million years of separation. Annu. Rev. Plant Biol. 60, 223–238. Banks, J.A., Nishiyama, T., Hasebe, M., Bowman, J.L., Gribskov, M., dePamphilis, C., Albert, V.A., Aono, N., Aoyama, T., Ambrose, B.A., Ashton, N.W., Axtell, M.J., Barker, E., Barker, M.S., Bennetzen, J.L., Bonawitz, N.D., Chapple, C., Cheng, C., Correa, L.G., Dacre, M., DeBarry, J., Dreyer, I., Elias, M., Engstrom, E.M., Estelle, M., Feng, L., Finet, C., Floyd, S.K., Frommer, W.B., Fujita, T., Gramzow, L., Gutensohn, M., 23 Harholt, J., Hattori, M., Heyl, A., Hirai, T., Hiwatashi, Y., Ishikawa, M., Iwata, M., Karol, K.G., Koehler, B., Kolukisaoglu, U., Kubo, M., Kurata, T., Lalonde, S., Li, K., Li, Y., Litt, A., Lyons, E., Manning, G., Maruyama, T., Michael, T.P., Mikami, K., Miyazaki, S., Morinaga, S., Murata, T., Mueller–Roeber, B., Nelson, D.R., Obara, M., Oguri, Y., Olmstead, R.G., Onodera, N., Petersen, B.L., Pils, B., Prigge, M., Rensing, S.A., Riano–Pachon, D.M., Roberts, A.W., Sato, Y., Scheller, H.V., Schulz, B., Schulz, C., Shakirov, E.V., Shibagaki, N., Shinohara, N., Shippen, D.E., Sorensen, I., Sotooka, R., Sugimoto, N., Sugita, M., Sumikawa, N., Tanurdzic, M., Theissen, G., Ulvskov, P., Wakazuki, S., Weng, J.K., Willats, W.W., Wipf, D., Wolf, P.G., Yang, L., Zimmer, A.D., Zhu, Q., Mitros, T., Hellsten, U., Loque, D., Otillar, R., Salamov, A., Schmutz, J., Shapiro, H., Lindquist, E.,Lucas, S., Rokhsar, D., Grigoriev, I.V., 2011. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332, 960–963. Bateman, R.M., 1992. Morphometric reconstruction, palaeobiology and phylogeny of Oxroadia gracilis Alvin Emend. and O. conferta sp. nov.: anatomically preserved rhizomorphic lycopsids from the Dinantian of Oxroad Bay, SE Scotland. Palaeontogr. B. 228, 29–103. Braun, A., 1857. Selaginellae hortenses in: Appendix plantarum novarum et minus cognitarum. Horto regio botanico Berolinensi coluntur, pp. 11–23. Chang, C.Y., Liu, Q.R., Chen, X.D., 2002a. Megaspore morphology of eight species of Selaginella. J. Chin. Electr. Microsc. Soc. 21, 566–567. Chang, C.Y., Liu, Q.R., Chen, X.D., 2002b. Microspore morphology of nine species of Selaginella. J. Chin. Electr. Microsc. Soc. 21, 568–569. Chu, W.M., 2006. Selaginellaceae. In: Wu, C.Y. (Ed.), Flora Yunnanica. Science Press, Beijing, Vol. 20, pp. 35–93. Ebihara, A., Nitta, J.H., Ito, M., 2010. Molecular species identification with rich floristic sampling: DNA barcoding the pteridophyte flora of Japan. PLoS One 5, e15136. Eyre-Walker, A., 1998. Problems with parsimony in sequences of biased base composition. J. Mol. Evol. 47, 686–690. Farris, J.S., Albert, V.A., K€allersj€ o, M., Lipscomb, D., Kluge, A.G., 1996. Parsimony jackknifing outperforms neighbor-joining. Cladistics 12, 99–124. Fay, M.F., Swensen, S.M., Chase, M.W., 1997. Taxonomic affinities of Medusagyne oppositifolia (Medusagynaceae). Kew. Bull. 52, 111–120. Felsenstein, J., 1973. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst. Biol. 22, 240–249. Giorgi, A.F.D., Holderegger, R., Schneller, J.J., 1997. Aspects of spore dispersal in Selaginella. Am. Fern J. 87, 93–103. Graustein, J.E., 1930. Evidences of hybridism in Selaginella. Bot. Gaz. 90, 46–74. Greville, R.K., Hooker, W.J., 1831. Enumeratio filicum. Bot. Misc. 2, 360–400. Gu, W., Song, J.Y., Cao, Y., Sun, Q.W., Yao, H., Wu, Q.N., Chao, J.G., Zhou, J.J., Xue, W.D., Duan, J.A., 2013. Application of the ITS2 region for barcoding medicinal plants of Selaginellaceae in Pteridophyta. PLoS ONE 8, e67818. Guindon, S., Gascuel, O., 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704. Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98. Heidel, B., Handley, J., 2006. Selaginella selaginoides (L.) Beauv. ex Mart. & Schrank (club spikemoss): a Technical Conservation Assessment. USDA Forest Service, Rocky Mountain Region, pp. 1–35. Hellwig, R.L., 1969. Spores of the heterophyllous Selaginellae of Mexico and Central America. Ann. Mo. Bot. Gard. 56, 444– 464. 24 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 Herrmann, F., Romero, M.R., Blazquez, A.G., Kaufmann, D., Ashour, M.L., Kahl, S., Marin, J.J.G., Efferth, T., Wink, M., 2011. Diversity of pharmacological properties in Chinese and European medicinal plants: cytotoxicity, antiviral and antitrypanosomal screening of 82 herbal drugs. Diversity 3, 547– 580. Hieronymus, G., Sadebeck, R., 1901. Selaginellaceae. In: Engler, A., Prantl, K. (Eds.), Die nat€ urlichen Pflanzenfamilien. Engelmann, Leipzig, Vol. 1, pt 4, pp. 621–716. Holmgren, P.K., Holmgren, N.H., 1998 (continuously updated). Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden, New York. Huelsenbeck, J.P., Ronquist, F., 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755. Jermy, A.C., 1986. Subgeneric names in Selaginella. Fern Gaz. 13, 117–118. Jermy, A.C., 1990. Selaginellaceae. In: Kubitzki, K., Kramer, K.U., Green, P.S. (Eds.), The Families and Genera of Vascular Plants, Pteridophytes and Gymnosperms. Springer, Berlin, 1st edn, Vol. 1, pp. 39–45. Jermy, A.C., Jones, K., Colden, C., 1967. Cytomorphological variation in Selaginella. J. Linn. Soc. Lond. 60, 147–158. Jones, G.N., 1964. Phytogeography of Selaginella douglasii. Am. Fern J. 54, 82–87. Kenrick, P., Crane, P., 1997. The Origin and Early Diversification of Land Plants: A Cladistic Study. Smithsonian Institution Press, Washington, DC, pp.1–441. Kluge, A.G., 1989. A concern for evidence and a phylogenetic hypothesis for relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38, 7–25. Korall, P., Kenrick, P., 2002. Phylogenetic relationships in Selaginellaceae based on rbcL sequences. Am. J. Bot. 89, 506– 517. Korall, P., Kenrick, P., 2004. The phylogenetic history of Selaginellaceae based on DNA sequences from the plastid and nucleus: extreme substitution rates and rate heterogeneity. Mol. Phylogenet. Evol. 31, 852–864. Korall, P., Taylor, W.A., 2006. Megaspore morphology in the Selaginellaceae in a phylogenetic context: a study of the megaspore surface and wall structure using scanning electron microscopy. Grana 45, 22–60. Korall, P., Kenrick, P., Therrien, J.P., 1999. Phylogeny of Selaginellaceae: evaluation of generic/subgeneric relationships based on rbcL gene sequences. Int. J. Plant Sci. 160, 585–594. Kung, H.S., 1988. Flora Sichuanica, Vol. 6. Science & Technology Press, Chengdu, Sichuan. Kuriachan, P.I., 1963. Cytology of the genus Selaginella. Cytologia 28, 376–380. Liu, B.D., Bao, W.M., Aur, C.W., 1989. Studies on the spores of morphology of the family Selaginellaceae from China. Bull. Bot. Res. 9, 113–131. Li, Q., Sun, X.H., Liu, J.X., 2003. Microspore morphology of four species of Selaginella. J. Cap. Norm. Univ. Nat. Sci. 24, 53–56, 61. Liu, J.X., Yan, X.F., 2004. Observations on spore morphology of four species of Selaginellaceae from China. Chin. Bull. Bot. 21, 84–90. Liu, J.X., Yan, X.F., 2005. Observations on spore morphology of four species of Selaginellaceae from Xizang (Tibet). Chin. Bull. Bot. 22, 44–49. Liu, J.X., Zhang, X.C., Sun, X.H., Jiang, Y., 2001. New information about the palynology of Selaginellaceae from China. J. Chin. Electr. Microsc. Soc. 20, 511–512. Liu, J.X., Sun, X.H., Dong, K., Zhang, J.M., Li, Q., Zhang, X.C., 2002. Observations of the spores of some species of the Selaginellaceae from Nepal and Pakistan. J. Chin. Electr. Microsc. Soc. 21, 395–401. Liu, J.X., Sun, X.H., Jin, Y., Lv, L., Yu, X.X., Zhang, X.C., 2003. Spore morphology of eight species of Selaginellaceae from Yunnan. Acta Bot. Yunnan. 25, 303–312. Liu, X.R., Wang, G.Z., Zhang, Q.Y., Zhu, Y.Q., Sun, X.H., Zhao, Y.Y., 2006. Observations on spores of five species of Selagnellaceae from China. J. Jishou Univ. Nat. Sci. 27, 84–90. Marcon, A.B., Barros, I.C.L., Guerra, M., 2005. Variation in chromosome numbers, CMA bands and 45S rDNA sites in species of Selaginella (Pteridophyta). Ann. Bot. 95, 271–276. Mason-Gamer, R.J., Kellogg, E.A., 1996. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst. Biol. 45, 524–545. Mickel, J.T., Hellwig, R.L., 1969. Actino–plectostely, a complex new stelar pattern in Selaginella. Am. Fern J. 59, 123–134. Mickel, J.T., Smith, A.R., 2004. The pteridophytes of Mexico. Mem. New York Bot. Gard. 88, 1–1055. Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, LA, pp. 1–8. Minaki, M., 1984. Macrospore morphology and taxonomy of Selaginella (Selaginellaceae). Pollen Spores 26, 421–479. Moore, T., 1857. Index Filicum: A Synopsis, with Characters, of the Genera, and an Enumeration of the Species of Ferns, with Synonymes, References. W. Pamplin, London. Nixon, K.C., Carpenter, J.M., 1996. On simultaneous analysis. Cladistics 12, 221–242. Palisot-Beauvois, A.M.F.J., 1804. Suite de l’Aetheogamie. Mag. Encycl. 9, 472–483. Pol, D., 2004. Empirical problems of the hierarchical likelihood ratio test for model selection. Syst. Biol. 53, 949–962. Posada, D., 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256. Posada, D., Buckley, T.R., 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793–808. Pryer, K.M., Schneider, H., Smith, A.R., Cranfill, R., Wolf, P.G., Hunt, J.S., Sipes, S.D., 2001. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409, 618–622. Quansah, N., Thomas, B., 1985. Sporophyll-pteryx in African and American Selaginella. Fern Gaz. 13, 49–52. Rambaut, A., Drummond, A.J., 2007. Tracer 1.4. Available at: http://beast.bio.ed.ac.uk/Tracer. Reeve, R.M., 1935. The spores of the genus Selaginella in north central and north eastern United States. Rhodora 37, 342–345. Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. Rothmaler, W., 1944. Pteridophyten-Studien I. Feddes Repert. Spec. Nov. Regni Veg. 54, 55–82. Rydin, C., Wikstr€ om, N., 2002. Phylogeny of Iso€ etes (Lycopsida): resolving basal relationships using rbcL sequences. Taxon 51, 83– 89. Saha, J., Gupta, K., Gupta, B., 2013. A new insight into the phylogeny of vascular cryptogams with special reference to Selaginella and Isoetes inferred from nuclear ITS/5.8 S rDNA sequences. J. Plant Biochem. Biotechnol. 23, 167–174. Schuettpelz, E., Hoot, S.B., 2006. Inferring the root of Iso€ etes: exploring alternatives in the absence of an acceptable outgroup. Syst. Bot. 31, 258–270. Schulz, C., Homberg, J., St€ utzel, T., 2013. Taxonomic revision of Selaginella subg. Ericetorum. Syst. Bot. 38, 5–14. Sessa, E.B., Banks, J.A., Barker, M.S., Der, J.P., Duffy, A.M., Graham, S.W., Hasebe, M., Langdale, J., Li, F.-W., Marchant, D.B., Pryer, K.M., Rothfels, C.J., Roux, S.J., Salmi, M.L., 2014. Between two fern genomes. GigaScience, 3, 1–7. Setyawan, A.D., 2005. Review: recent status of Selaginella (Selaginellaceae) research in Nusantara. Biodiversitas 12, 112– 124. Setyawan, A.D., 2011. Review: natural products from genus Selaginella (Selaginellaceae). Nusantara Biosci. 3, 44–58. Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 da Silva Almeida, J.R.G., de Sa, P.G.S., de Oliveira Macedo, L.A.R., de Siqueira Filho, J.A., de Oliveira, V.R., Filho, J.M.B., 2013. Phytochemistry of the genus Selaginella (Selaginellaceae). J. Med. Plants Res. 7, 1858–1868. Singh, S.K., Yadav, B.B., Srivastava, M., Shukla, P.K., Srivastava, G.K., 2014. Micro-morphology of Selaginella megaspores from India. Grana 53, 197–220. Smith, D.R., 2009. Unparalleled GC content in the plastid DNA of Selaginella. Plant Mol. Biol. 71, 627–639. Soj ak, J., 1993. Generische problematik der Selaginellaceae. Preslia 64, 151–158. Somers, P., Buck, W.R., 1975. Selaginella ludoviciana, S. apoda and their hybrids in the southeastern United States. Am. Fern J. 7, 6–82. Spring, A.F., 1840. Lycopodineae. In: von Martius, C.F.P. (Ed.), Flora Brasiliensis. R. Oldenbourg, Monachii et Lipsiae [Munich & Leipzig], Vol. 1, pp. 96–136. Spring, A.F., 1850. Monographie de la famille des Lycopodiacees. Mem. Acad. Sci. Belg. 24, 1–358. Stamatakis, A., Hoover, P., Rougemont, J., 2008. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 57, 758–771. Stefanovic, S., Rakotondrainibe, F., Badre, F., 1997. Selaginellacees. In: Humbert, H., Leroy, J.-F. (Eds.), Flore de Madagascar et des Comores, Fam. 14. Museum national d’Histoire naturelle, Paris, pp. 1–68. Sun, X.H., Zhang, J.M., Jiang, Y., Liu, J.X., Zhang, X.C., 2002. Studies on the Chinese Selaginellaceae (III): observation of the microspores of three species of Selaginella. J. Cap. Norm. Univ. Nat. Sci. 23, 48–51. Sun, Q.-W, Zhao, J.-H., Zhang, L.-B. 2015. Selaginella daozhenensis (Selaginellaceae), a new lycophyte from a limestone cave in northern Guizhou, China. Phytotaxa 207, 187–192. Swofford, D., 2002. PAUP 4.0 b10: Phylogenetic Analysis Using Parsimony. Sinauer Associates, Sunderland, MA. Takamiya, M., 1993. Comparative karyomorphology and interrelationships of Selaginella in Japan. J. Plant. Res. 106, 149– 166. Tavare, S., 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures Math. Life Sci. 17, 57–86. Thomas, B.A., 1997. Upper Carboniferous herbaceous lycopsids. Rev. Palaeobot. Palynol. 95, 129–153. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882. Tryon, A.F., 1949. Spores of the genus Selaginella in North America north of Mexico. Ann. Mo. Bot. Gard. 36, 413–431. Tryon, R.M., 1955. Selaginella rupestris and its allies. Ann. Missouri. Bot. Gard. 42, 1–99. Tryon, A.F., Lugardon, B., 1991. Spores of the Pteridophyta: Surface, Wall Structure, and Diversity Based on Electron Microscope Studies. Springer, New York, pp. 606–621. Tryon, R.M., Tryon, A.F., 1982. Ferns and Allied Plants: with Special Reference to Tropical America. Springer, New York, pp. 1–857. € Tschermak-Woess, E., Dolezal-Janish, R., 1959. Uber die karyologische Anatomie einiger Pteridophyten sowie auffallende € Unterschiede im Kernvolumen bei Cyrtomium falcatum. Osterr. Bot. Zeitsch., 106, 315–324. Tzvelev, N., 2004. De genere Selaginella P. Beauv. (Selaginellaceae) in Rossia. Novosti Sist. Vyssh. Rast. 36, 22–27. Valdespino, I.A., 1993. Selaginellaceae. In: Flora of North America Editorial Committee (Ed.), Flora of North America. Pteridophytes and gymnosperms. Oxford University Press, New York, Vol. 2, pp. 38–63. Walton, J., Alston, A.H.G., 1938. Lycopodiinae. In: Verdoorn, F. (Ed.), Manual of Pteridology. Nijhoff, The Hague, pp. 500–506. Wang, P.S., 1990. Notes on the species of Selaginella from Guizhou, China. J. Arnold. Arbor. 71, 265–270. 25 Warburg, O., 1900. Selaginellaceae. Munsonia 1, 100–112. Weakley, A.S., 2012, Flora of the Southern and Mid-Atlantic States. The University of North Carolina Herbarium, Chapel Hill, NC, pp. 64–66. Wikstr€ om, N., Kenrick, P., 1997. Phylogeny of Lycopodiaceae (Lycopsida) and the relationships of Phylloglossum drummondii Kunze based on rbcL sequences. Int. J. Pl. Sci. 158, 862–871. Wolf, P.G., Sipes, S.D., White, M.R., Martines, M.L., Pryer, K.M., Smith, A.R., Ueda, K., 1999. Phylogenetic relationships of the enigmatic fern families Hymenophyllopsidaceae and Lophosoriaceae: evidence from rbcL nucleotide sequences. Plant Syst. Evol. 219, 263–270. Xia, Y., Dai, X.L., Yan, Y.H., Cao, J.G., Wang, Q.X., 2013. Spore morphology of pteridophytes from China XIV. Selaginellaceae. Acta. Bot. Boreali -Occident. Sin. 33, 1595–1604. Yang, Z., 1994. Maximum likelihood estimation of phylogeny from DNA sequences when substitute rates differ over sites: approximate methods. J. Mol. Evol. 39, 306–314. Yatskievych, G., Windham, M.D., 2009. Vascular plants of Arizona: Iso€etaceae, Marsileaceae, Polypodiaceae, Selaginellaceae, Thelypteridaceae. Canotia 5, 39–48. Zhang, L., Rothfels, C.J., Ebihara, A., Schuettpelz, E., Le Pechon, T., Kamau, P., He, H., Zhou, X.M., Prado, J., Field, A., Yatskievych, G., Gao, X.F., Zhang, L.-B., 2015. A global plastid phylogeny of the brake fern genus Pteris (Pteridaceae) and related genera in the Pteridoideae. Cladistics 31, 406–423. Zhang, L.-B., Simmons, M.P., 2006. Phylogeny and delimitation of the Celastrales inferred from nuclear and chloroplast genes. Syst. Bot. 31, 107–121. Zhang, L.-B., Taylor, W.C., 2013. Iso€etaceae. In: Wu, Z.Y., Raven, P.H., Hong, D.Y. (Eds.), Flora of China. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, Vol. 2–3. pp. 35–36. Zhang, L.-B., Comes, H.P., Kadereit, J.W., 2001. Phylogeny and Quaternary history of the European montane/alpine endemic Soldanella (Primulaceae) based on ITS and AFLP variation. Amer. J. Bot. 88, 2331–2345. Zhang, L.-B., Wang, P.S., Wang, X.Y., 2012a. Selaginella longistrobilina (Selaginellaceae), a new species from Guizhou, China, and Selaginella prostrata, a new combination and its lectotypification. Novon 22, 260–263. Zhang, L.-B., Zhang, L., Dong, S.Y., Sessa, E.B., Gao, X.F., Ebihara, A., 2012b. Molecular circumscription and major evolutionary lineages of the fern genus Dryopteris (Dryopteridaceae). BMC Evol. Biol. 12, 180. Zhang, X.C., 2004. Selaginellaceae. In: Wu, Z.Y. (Ed.), Flora Reipublicae Popularis Sinicae. Science Press, Beijing, Vol. 6, pp. 86–219. Zhang, X.C., Xiang, Q.P., Nooteboom, H.P., 2005. A new species of Selaginella from Hainan Island, China, with a key to the Hainan species. Bot. J. Linn. Soc. 148, 323–327. Zhang, X.C., Nooteboom, H.P., Kato, M., 2013. Selaginellaceae. In: Wu, Z.Y., Raven, P.H., Hong, D.Y. (Eds.), Flora of China. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, Vol. 2–3, pp. 37–66. Zhao, Y.Y., Liu, X.R., Zhu, Y.Q., Sun, X.H., Liu, J.X., 2006a. Spore morphology of two species of Selaginella from Hainan. J. Chin. Electr. Microsc. Soc. 25, 251–252. Zhao, Y.Y., Zhang, Q.Y., Jin, Y., Sun, X.H., Liu, J.X., 2006b. Spore morphology of five species of Selaginellaceae from Guangxi. Biotech. Bull. 18, 504–509. Zhou, X.M., Zhang, Y.J., Li, Z.L., He, Z.R., Liu, Y.J., 2012. Spores morphology of 4 species of Selaginella from Yunnan. J. Chin. Electr. Microsc. Soc. 31, 357–361. Zhou, X.-M., He, Z.-R., Zhang, L., Zhang, L.-B. 2015a. Selaginella chuweimingii (Selaginellaceae) sp. nov. from Yunnan, China. Phytotaxa (in press). Zhou, X.-M., Jiang, L.-J., Zhang, L., Gao, X.-F., He, Z.-R., Zhang, L.-B. 2015b. Spore morphology of Selaginella (Selaginellaceae) from China and its systematic significance. Phytotaxa (in press). 26 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 Zhu, Y.Q., Wang, G.Z., Liu, X.R., Zhang, Q.Y., Sun, X.H., Liu, J.X., 2006. Spore morphology of Selaginellaceae from torrid and subtorrid zone. J. Jishou Univ. Nat. Sci. 27, 89–94, 12, 8. Zurawski, G., Clegg, M.T., Brown, A.H.D., 1984. The nature of nucleotide sequence divergence between barley and maize chloroplast DNA. Genetics 106, 735–749. Appendix List of taxa sampled with information related to taxonomy, GenBank accession numbers, references and voucher information. Herbarium acronyms follow Index Herbariorum (Holmgren and Holmgren, 1998). Iso€ etes kersii Wanntorp, Kers 3130 (S), South Africa: rbcL AF404498 (Rydin & Wikstr€ om, 2002); Iso€ etes kirkii A. Braun, Chinnock 447 (BM), New Zealand: rbcL AF404499 (Rydin & Wikstr€ om, 2002); Iso€ etes nuttallii A. Braun ex Engelm., Unknown, rbcL DQ294246 (Schuettpelz & Hoot, 2006); Iso€ etes sinensis Palmer, Unknown, rbcL GU564272 (X.Z. Kan, Z.C. Guo, and J. Wu, unpublished); Iso€ etes taiwanensis De Vol., Unknown, rbcL DQ294250 (Schuettpelz & Hoot, 2006). Selaginella acanthonota Underw., Rothfels & Rushworth 4132 (DUKE), USA (North Carolina): rbcL KT161378, ITS KT161647; Selaginella acanthostachys Baker, Korall 14a (S), Unknown: rbcL AJ295884 (Korall and Kenrick, 2002); Selaginella albociliata P.S. Wang, Zhang 5302 (CDBI), China (Guizhou): rbcL KT161379, ITS KT161648; Selaginella alopecuroides Baker, Wikstr€ om & Wanntorp nr146 (S), Borneo: rbcL AJ295875 (Korall and Kenrick, 2002); Selaginella amblyphylla Alston, (1) Zhang 5572 (CDBI), China (Guizhou): rbcL KT161380, ITS KT161651; (2) Gao & al. DJY04053 (CDBI), China (Sichuan): rbcL KT161381, ITS KT161649; (3) Gao & al. DJY06425 (CDBI), China (Sichuan): rbcL KT161382, ITS KT161650; Selaginella anceps (C. Presl) C. Presl, (1) Rothfels & al. 08-095 (DUKE), Costa Rica (Guanacaste): rbcL KT161383, ITS KT161652; (2) Rothfels & al. 08-156 (DUKE), Costa Rica (Heredia): rbcL KT161384, ITS KT161653; Selaginella apoda (L.) C. Morren, (1) Murrell 6484 (S), Unknown: rbcL AJ010854 (Korall et al., 1999); (2) Rothfels & al. 2884 (DUKE), USA (Virginia): rbcL KT161386, ITS KT161655; (3) Rothfels & al. 2795 (DUKE), USA (Tennessee): rbcL KT161385, ITS KT161654; Selaginella arbuscula Spring, (1) Wood 13746 (PTBG), Hawaii (Maui, Kipahulu): rbcL KT161388, ITS KT161657; (2) Wood 13447 (PTBG), Hawaii (Kauai, Wainiha): rbcL KT161387, ITS KT161656; Selaginella arenicola Underw., Terrel 19 (MO), USA (Louisiana): rbcL AF419084 (Arrigo et al., 2013), ITS AF419008 (Arrigo et al., 2013); Selaginella arizonica Maxon, (1) Rothfels & al. 2539 (DUKE), USA (Arizona): rbcL KT161389, ITS KT161658; (2) Eriksson 10/13 (S) Unknown: rbcL AJ010851 (Korall et al., 1999); (3) Therrien and Windham s.n. (KANU), USA (Arizona): rbcL AF419078 (Arrigo et al., 2013), ITS AF419009 (Arrigo et al., 2013); Selaginella arsenei Weath., (1) Rothfels & al. 2991 (DUKE), Mexico (Hidalgo): rbcL KT161390, ITS KT161659; (2) Ferguson 14 (MO), Mexico (San Luis Potosı): rbcL AF419056 (Arrigo et al., 2013), ITS AF419029 (Arrigo et al., 2013); Selaginella arthritica Alston (1) Rothfels & al. 2669 (DUKE), Costa Rica (Heredia): rbcL KT161391, ITS KT161661; (2) Rothfels & al. 08-185 (DUKE), Costa Rica (Heredia): rbcL KT161392, ITS KT161660; Selaginella articulata (Kunze) Spring, Eriksson s.n. (S), Unknown: rbcL AJ295894 (Korall and Kenrick, 2002); Selaginella asprella Maxon, Therrien s.n. (KANU), USA (California): rbcL AF419064 (Arrigo et al., 2013), ITS AF419022 (Arrigo et al., 2013); Selaginella cf. attirense, (1) Rothfels & al. 2657 (DUKE), Costa Rica (Guanacaste): rbcL KT161393; (2) Rothfels & al. 2611 (DUKE), Costa Rica (San Jose): rbcL KT161422, ITS KT161662. Selaginella balansae (A. Br.) Hieron., Gattefoss e s.n. (S), Morocco (Tamegdoult): rbcL AF419080 (Arrigo et al., 2013), ITS AF419005 (Arrigo et al., 2013); Selaginella biformis A. Braun ex Kuhn, (1) Zhang & al. 6923 (CDBI, MO, VNMN, PYU), Vietnam (Ha Giang): rbcL KT161398, ITS KT161668; (2) Zhang & al. 6729 (CDBI, MO, VNMN, PYU), Vietnam (Bac Kan): rbcL KT161399, ITS KT161667; (3) Jiang 316 (PYU, CDBI), China (Hainan): rbcL KT161394, ITS KT161665; (4) He & Zhou 112 (PYU, CDBI), China (Hainan): rbcL KT161395, ITS KT161663; (5) Zhang & al. 6687 (CDBI, MO, VNMN, PYU), Vietnam (Bac Kan): rbcL KT161400; (6) Jiang 309 (PYU, CDBI), China (Hainan): rbcL KT161396, ITS KT161664; (7) Zhang & al. 6685 (CDBI, MO, VNMN, PYU), Vietnam (Bac Kan): rbcL KT161397, ITS KT161666; (8) TNS777848 (TNS), Japan (Okinawa): rbcL AB574641 (Ebihara et al., 2010); Selaginella bigelovii Underw., (1) Therrien s.n. (KANU), USA (California): rbcL AF419082 (Arrigo et al., 2013), ITS AF419004 (Arrigo et al., 2013); (2) Rothfels & al. 2555 (DUKE), USA (California): rbcL KT161401, ITS KT161669; (3) Rothfels & al. 2556 (DUKE), USA (California): rbcL KT161402, ITS KT161670; (4) Rothfels & al. 2559 (DUKE), USA (California): rbcL KT161403, ITS KT161671; Selaginella bisulcata Spring, (1) Chu & al. 31292 (PYU), China (Yunnan): rbcL KT161404, ITS KT161673; (2) Chu & al. 29311 (PYU), China (Yunnan): rbcL KT161405, ITS KT161672; (3) Chu & al. 21737 (PYU), China (Yunnan): rbcL KT161408; (4) He & al. 71201 (PYU), China (Yunnan): rbcL KT161406, ITS KT161675; (5) He & Zhou 122 (PYU, CDBI), China (Yunnan): rbcL KT161407, ITS KT161674; Selaginella bodinieri Hieron., (1) Zhou & al. HGX11073 (CDBI), China (Sichuan): rbcL KT161412, ITS KT161676; (2) Ju & Deng HGX13005 (CDBI), China (Sichuan): rbcL KT161413, ITS KT161678; (3) Ju & Deng HGX12828 (CDBI), China (Sichuan): rbcL KT161414, ITS KT161677; (4) Zhang 5193 (CDBI), China (Guizhou): rbcL KT161410, ITS KT161681; (5) Zhang 5913 (CDBI), China (Guizhou): rbcL KT161409, ITS KT161680; (6) Zhang 5177 (CDBI), China (Guizhou): rbcL KT161411, ITS KT161679; Selaginella bombycina Spring, (1) Rothfels & al. 08-204 (DUKE), Costa Rica (Heredia): rbcL KT161415, ITS KT161682; (2) Korall 31 (S), Unknown: rbcL AJ010848 (Korall et al., 1999); Selaginella boninensis Baker., (1) TNS766618 (TNS), Japan (Tokyo): rbcL AB574642 (Ebihara et al., 2010); (2) Zhang & al. 6594 (CDBI, MO, VNMN, PYU), Vietnam (Lang Son): rbcL KT161416, ITS KT161868; (3) Zhang & al. 6587 (CDBI, MO, VNMN, PYU), Vietnam (Lang Son): rbcL KT161417, ITS KT161683; Selaginella braunii Baker, (1) Tiew 12 (CDBI), cult.: rbcL KT161421, ITS KT161869; (2) Chu & al. s.n. (PYU), China (Yunnan): rbcL KT161419, ITS KT161684; (3) Zhang 1332 (PYU, CDBI), China (Hainan): rbcL KT161420, ITS KT161686; (4) Zhao 272 (CDBI), China (Hubei): rbcL KT161418, ITS KT161685; Selaginella brooksii Hieron., Wikstr€ om & Wanntorp nr141 (S), Borneo: rbcL AJ295876 (Korall and Kenrick, 2002). Selaginella caffrorum (Milde) Hieron., Ventor and Vorster s.n. (US), South Africa (Pretoria): rbcL AF419070 (Arrigo et al., 2013), ITS AF419017 (Arrigo et al., 2013); Selaginella chaetoloma Alston, (1) He & al. 29625 (PYU), China (Yunnan): rbcL KT161424, ITS KT161689; (2) Chu & al. 29610 (PYU), China (Yunnan): rbcL KT161425, ITS KT161688; (3) Chu & al. 24404 (PYU), China (Yunnan): rbcL KT161426, ITS KT161687; Selaginella chrysocaulos (Hook. & Grev.) Spring, Xu & al. 2014-156 (CDBI), China (Sichuan): rbcL KT161427, ITS KT161690; Selaginella ciliaris (Retz.) Spring, (1) Jiang 310 (PYU, CDBI), China (Hainan): rbcL KT161428, ITS KT161691; (2) Unknown, Peninsula Malaysia: rbcL EU126658 (Y. Yi, Y. He, and B. Tan, unpublished); Selaginella cinerascens A.A. Eaton, (1) Rothfels & al. 2557 (DUKE), USA (California): rbcL KT161429, ITS KT161692; (2) Palmer 2651 (KANU), USA (California): rbcL AF419063 (Arrigo et al., 2013), Therrien s.n. (KANU), USA (California):ITS AF419027 (Arrigo et al., 2013); Selaginella commutata Alderw., Zhou 2441 (PYU), China (Guangxi): rbcL KT161430, ITS KT161693. Selaginella compta Hand-Mazz. (1) Zhou & al. DJY07488 (CDBI), China (Sichuan): rbcL KT161432, ITS KT161694; (2) Zhou 012 (CDBI), China (Sichuan): rbcL KT161434; (3) Luo 1378 (CDBI), China (Guizhou): rbcL KT161431, Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 ITS KT161695; (4) Sun 2001 (CDBI), China (Guizhou): rbcL KT161433; (5) He H3384 (CTC) China (Sichuan): rbcL KT161435. Selaginella daozhenensis Li Bing Zhang, Q.W. Sun & Jun H. Zhao, Sun, Zhao & Pan 201435 (CDBI, GZTM), China (Guizhou): rbcL KT161436; Selaginella davidii Franch., Chu & al. 23308 (PYU), China (Beijing): rbcL KT161437, ITS KT161696; Selaginella decipiens Warb., (1) Zhang & al. 6764 (CDBI, MO, VNMN, PYU), Vietnam (Bac Kan): rbcL KT161438, ITS KT161698; (2) Zhang & al. 6761 (CDBI, MO, VNMN, PYU), Vietnam (Bac Kan): rbcL KT161439, ITS KT161697; Selaginella deflexa Brack., Palmer 2651 (KANU), Hawaii (Honolulu): rbcL AF093253 (Arrigo et al., 2013), ITS AF418999 (Arrigo et al., 2013); Selaginella delicatula (Desv. ex Poir.) Alston, (1) Ju & Deng HGX12938 (CDBI), China (Sichuan): rbcL KT161440, ITS KT161700; (2) Gao & al. HGX10734 (CDBI), China (Sichuan): rbcL KT161441, ITS KT161699; Selaginella densa Rydb., (1) Bj€ ork 25055 (UBC), Canada (British Columbia): rbcL KT161442, ITS KT161701; (2) Therrien s.n. (KANU), USA (Colorado): rbcL AF419069 (Arrigo et al., 2013), ITS AF419036 (Arrigo et al., 2013); Selaginella denticulata Spring, Korall & Eriksson 715 (S), Unknown: rbcL AJ010853 (Korall et al., 1999); Selaginella diffusa (C. Presl) Spring, (1) Rothfels & al. 08-087 (DUKE), Costa Rica (Puntarenas): rbcL KT161443, ITS KT161702; (2) Korall 33 (S), cult.: rbcL AJ010852 (Korall et al., 1999); Selaginella digitata Spring, Rakotondrainibe 3255 (P), Madagascar (d’Andohahela): rbcL AJ295895 (Korall and Kenrick, 2002); Selaginella doederleinii Hieron., (1) Jiang 313 (PYU, CDBI), China (Hainan): rbcL KT161444; (2) TNS763070 (TNS), Japan (Kagoshima): rbcL AB574643 (Ebihara et al., 2010); (3) Zhang & al. 6447 (CDBI, MO, VNMN, PYU), Vietnam (Vinh Phuc): rbcL KT161445; Selaginella douglasii (Hook. & Grev.) Spring, (1) Unknown, rbcL AF419049 (J.P. Therrien and C.H. Haufler, unpublished); (2) Rothfels & al. 3863 (DUKE), USA (Oregon): rbcL KT161446, ITS KT161870; Selaginella dregei (C. Presl) Hieron., Faden 9-85 (US), Kenya (Isiolo): rbcL AF419055 (Arrigo et al., 2013), ITS AF419015 (Arrigo et al., 2013); Selaginella drepanophylla Alston, (1) Zhang 5117 (CDBI), China (Guizhou): rbcL KT161447, ITS KT161703; (2) Zhang 5862 (CDBI), China (Guizhou): rbcL KT161448. Selaginella echinata Baker, Fosberg 52393 (US), Madagascar (Fianarantsoa): rbcL AF419071 (Arrigo et al., 2013), ITS AF419021 (Arrigo et al., 2013); Selaginella effusa var. dulongjiangensis W. M. Chu, Chu & al. 31299 (PYU), China (Yunnan): rbcL KT161449, ITS KT161704; Selaginella effusa Alston, (1) Zhang 5438 (CDBI), China (Guizhou): rbcL KT161450, ITS KT161706; (2) Dong 2470 (PYU), China (Guangdong): rbcL KT161453, ITS KT161705; (3) Zhang 5442 (CDBI), China (Guizhou): rbcL KT161451, ITS KT161707; (4) Wang 20051 (CDBI), China (Guizhou): rbcL KT161452, ITS KT161708; Selaginella eremophila Maxon, (1) Therrien s.n. (KANU), USA (California): rbcL AF419079 (Arrigo et al., 2013), ITS AF419010 (Arrigo et al., 2013); (2) Rothfels & al. 2549 (DUKE), USA (California): rbcL KT161454, ITS KT161710; (3) Rothfels & al. 2561 (DUKE), USA (California): rbcL KT161455, ITS KT161709; Selaginella erythropus (Mart.) Spring, Korall 1998:2 (S), cult.: rbcL AJ295877 (Korall and Kenrick, 2002); Selaginella eurynota A. Braun, Rothfels & al. 08-183 (DUKE), Costa Rica (Heredia): rbcL KT161456; Selaginella exaltata (Kunze) Spring, Korall 1996:1 (S), Unknown: rbcL AJ010849 (Korall et al., 1999); Selaginella extensa Underw., McVaugh 11829 (US), Mexico (Jalisco): rbcL AF419085 (Arrigo et al., 2013), ITS AF419026 (Arrigo et al., 2013). Selaginella firmuloides Warb., Wikstr€ om 233 (S), New Caledonia: rbcL AJ295870 (Korall and Kenrick, 2002); Selaginella flabellata (L.) Spring, Webster & al. 9553 (S), Grenada (Lesser Antilles): rbcL AJ295885 (Korall and Kenrick, 2002); Selaginella flagellata Spring, (1) Rothfels & al. 08-157 (DUKE), Costa Rica (Heredia): rbcL KT161457, ITS KT161711; (2) Ortega & al. 3090 (BM), Unknown: rbcL AJ295866 (Korall and Kenrick, 2002); Selaginella flexuosa Spring, Rothfels & Sigel 3627 (DUKE), Ecuador (Zamora-Chinchipe): rbcL KT161458, ITS KT161712; Selaginella fragilis A. Braun, 27 Korall 1996:3 (S), Unknown: rbcL AJ295872 (Korall and Kenrick, 2002); Selaginella frondosa Warb., (1) Wikstr€ om & Wanntorp nr126 (S), Unknown: rbcL AJ295874 (Korall and Kenrick, 2002); (2) Chu & al. 29274A (PYU), China (Yunnan): rbcL KT161459, ITS KT161713. Selaginella gebaueriana Hand.-Mazz., (1) Deng 102 (CDBI), China (Guizhou): rbcL KT161460, ITS KT161716; (2) Chu & al.089 (PYU), China (Yunnan): rbcL KT161463, ITS KT161715; (3) Zhang 5804 (CDBI), China (Guizhou): rbcL KT161461, ITS KT161718; (4) Shui 40568 (PYU), China (Yunnan): rbcL KT161464, ITS KT161719; (5) Zhang 5735 (CDBI), China (Guizhou): rbcL KT161462, ITS KT161717; (6) Chu & He 29611 (PYU), China (Yunnan): rbcL KT161465, ITS KT161714; Selaginella gracillima (Kuntze) Alston, Nordenstam & Anderberg 1124 (S), Australia (Tasmania): rbcL AJ010844 (Korall et al., 1999); Selaginella grisea Alston, Unknown, rbcL AF419072 (Arrigo et al., 2013). Selaginella haematodes (Kunze) Spring, Korall 1996:15b (S), Unknown: rbcL AJ010846 (Korall et al., 1999); Selaginella hansenii Hieron., Weber 15108 (COLO), USA (California): rbcL AF419057 (Arrigo et al., 2013), ITS AF419033 (Arrigo et al., 2013); Selaginella harrisii Underw. & Hieron., (1) Beck 1124 (DUKE), Mexico (San Luis Potosı): rbcL KT161466, ITS KT161720; (2) Beck 1112 (DUKE), Mexico (Hidalgo): rbcL KT161467; Selaginella hartwegiana Spring, Rothfels & al. 3605 (DUKE), Ecuador (Loja): rbcL KT161468, ITS KT161721; Selaginella helferi Warb., (1) He & Jiang 302 (PYU, CDBI), China (Yunnan): rbcL KT161469, ITS KT161722; (2) Zhang & al. 6919 (CDBI, MO, VNMN, PYU), Vietnam (Ha Giang): rbcL KT161471, ITS KT161724; (3) He & Jiang 406 (PYU, CDBI), China (Yunnan): rbcL KT161470, ITS KT161723; Selaginella helioclada Alston ex Alston, Rakotondrainibe 3262 (P), Madagascar (d’Andohahela): rbcL AJ295896 (Korall and Kenrick, 2002); Selaginella helvetica (L.) Link, (1) Klackenberg 820617-12 (S), Unknown: rbcL AJ295891 (Korall and Kenrick, 2002); (2) Zhou 093 (CDBI), China (Sichuan): rbcL KT161472, ITS KT161871; (3) TNS765114 (TNS), Japan (Akita): rbcL AB574644 (Ebihara et al., 2010); Selaginella heterostachys Baker, (1) Jiang 317 (PYU, CDBI), China (Hainan): rbcL KT161478, ITS KT161732; (2) Jiang 315 (PYU, CDBI), China (Hainan): rbcL KT161479; (3) Zhang 5455 (CDBI), China (Guizhou): rbcL KT161473, ITS KT161733; (4) Zhang & al. 6641 (CDBI, MO, VNMN, PYU), Vietnam (Thai Nguyen to Kim Hy): rbcL KT161483, ITS KT161731; (5) Zhang & al. 6608 (CDBI, MO, VNMN, PYU), Vietnam (Lang Son): rbcL KT161481, ITS KT161729; (6) Zhang 5550 (CDBI), China (Guizhou): rbcL KT161474, ITS KT161727; (7) Zhang & al. 6617 (CDBI, MO, VNMN, PYU), Vietnam (Lang Son): rbcL KT161482, ITS KT161730; (8) Zhang 5655 (CDBI), China (Guizhou): rbcL KT161475, ITS KT161728; (9) TNS769193 (TNS), Japan (Mie): rbcL AB574645 (Ebihara et al., 2010); (10) Gao & al. DJY05340 (CDBI), China (Sichuan): rbcL KT161477, ITS KT161725; (11) Zhang 5180 (CDBI), China (Guizhou): rbcL KT161476, ITS KT161726; (12) Zhang & al. 6390 (CDBI, MO, VNMN, PYU), Vietnam (Hoa Binh): rbcL KT161480, ITS KT161734; Selaginella hoffmannii Hieron., (1) Rothfels & al. 08-088 (DUKE), Costa Rica (Puntarenas): rbcL KT161485, ITS KT161735; (2) Rothfels & al. 08138 (DUKE), Costa Rica (Puntarenas): rbcL KT161484, ITS KT161736. Selaginella imbricata (Forssk.) Spring ex Decne., (1) Rothfels & al. 4275 (DUKE), Oman (Dhofar, Governorate) rbcL KT161486, ITS KT161737; (2) Parris & Croxall 83/19 (P), Unknown: rbcL AJ295897 (Korall and Kenrick, 2002); Selaginella indica (Milde) R.M. Tryon, (1) Saldanha 15198 (US), India (Hassan): rbcL AF419052 (Arrigo et al., 2013), ITS AF419020 (Arrigo et al., 2013); (2) Tiew 01 (CDBI), cult.: rbcL KT161488, ITS KT161739; (3) He & al. 29779 (PYU), China (Yunnan): rbcL KT161487, ITS KT161738; Selaginella intermedia Spring Unknown, Peninsula Malaysia: rbcL EU086853 (Y. Yi, Y. He, and B. Tan, unpublished); Selaginella involvens (Sw.) Spring (1) Tiew 13 (CDBI), cult.: rbcL KT161492, ITS KT161743; (2) Zhang & al. 28 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 6576 (CDBI, MO, VNMN, PYU), Vietnam (Phu Tho): rbcL KT161493, ITS KT161742; (3) He & Zhou 103 (PYU, CDBI), China (Yunnan): rbcL KT161491; (4) Zhou & al. DJY03558 (CDBI), China (Sichuan): rbcL KT161489, ITS KT161740; (5) TNS762549 (TNS), Japan (Kagoshima): rbcL AB574646 (Ebihara et al., 2010); (6) He & Zhou 114 (PYU, CDBI), China (Yunnan): rbcL KT161490, ITS KT161741.Selaginella jugorum Hand.-Mazz., Meili Exped. 25060 (PYU), China (Yunnan): rbcL KT161494. Selaginella kanehirae Alston, (1) Wood 13568 (PTBG), F.S.M. (Caroline Is., Pohnpei): rbcL KT161495, ITS KT161745; (2) Wood 13567 (PTBG), F.S.M. (Caroline Is., Pohnpei): rbcL KT161496, ITS KT161744; Selaginella kerstingii Hieron., Korall 1998:8 (S), cult.: rbcL AJ295881 (Korall and Kenrick, 2002); Selaginella kraussiana (Kunze) A. Braun, (1) Chu & al. s.n. (PYU), cult.,: rbcL KT161497; (2) Zhou 062 (CDBI), cult.,: rbcL KT161498, ITS KT161746; (3) Korall 1997:30 (S), cult.: rbcL AJ010845 (Korall et al., 1999); Selaginella kunzeana A. Braun, Rothfels & al. 08-096 (DUKE), Costa Rica (Puntarenas): rbcL KT161499, ITS KT161747; Selaginella kurzii Baker, (1) He & Jiang 405 (PYU, CDBI), China (Yunnan): rbcL KT161500, ITS KT161749; (2) He & Zhou 117 (PYU, CDBI), China (Yunnan): rbcL KT161501, ITS KT161748. Selaginella labordei Hieron. ex Christ, (1) Zhou & al. DJY03560 (CDBI), China (Sichuan): rbcL KT161504; (2) Gao & al. DJY03894 (CDBI), China (Sichuan): rbcL KT161502, ITS KT161750; (3) Gao & al. DJY04311 (CDBI), China (Sichuan): rbcL KT161503, ITS KT161751; (4) Zhou 008 (CDBI), China (Sichuan): rbcL KT161505; Selaginella landii Greenm. & N. Pfeiff., (1) Rothfels & al. 3111 (DUKE), Mexico (Jalisco): rbcL KT161506, ITS KT161752; (2) Matuda 8-52 (US), Mexico (Moreles): rbcL AF419086 (Arrigo et al., 2013), ITS AF419012 (Arrigo et al., 2013); Selaginella laxistrobila K.H. Shing, (1) He & al. 29624 (PYU), China (Yunnan): rbcL KT161507, ITS KT161754; (2) He & al. 81841 (PYU), China (Yunnan): rbcL KT161508, ITS KT161755; (3) Chu & al. 24449 (PYU), China (Yunnan): rbcL KT161509, ITS KT161753; Selaginella lepidophylla (Hook. & Grev.) Spring, (1) Therrien 1996:s.n. (KANU), Unknown: rbcL AF093254 (Arrigo et al., 2013); (2) Worthington s.n. (US), USA (Texas): rbcL AF419051 (Arrigo et al., 2013); Selaginella leptophylla Baker, (1) He & Zhou 101 (PYU, CDBI), China (Yunnan): rbcL KT161514, ITS KT161757; (2) Zhou 011 (CDBI), China (Sichuan): rbcL KT161512, ITS KT161760; (3) Zhou & al. DJY05380 (CDBI), China (Sichuan): rbcL KT161513, ITS KT161756; (4) Zhang 5853 (CDBI), China (Guizhou): rbcL KT161510, ITS KT161759; (5) Zhang 5199 (CDBI), China (Guizhou): rbcL KT161511, ITS KT161758; Selaginella leucobryoides Maxon, (1) Rothfels & al. 2565 (DUKE), USA (California): rbcL KT161515, ITS KT161761; (2) Windham 97-055 (DUKE), USA (Arizona): rbcL AF419068 (Arrigo et al., 2013), ITS AF419023 (Arrigo et al., 2013); Selaginella limbata Alston, TNS764147 (TNS), Japan (Kagoshima): rbcL AB574647 (Ebihara et al., 2010); Selaginella lingulata Spring, Korall 1996:4 (S), Unknown: rbcL AJ295882 (Korall and Kenrick, 2002); Selaginella longiaristata Hieron., Wikstr€ om & Wanntorp nr139(S), Unknown: rbcL AJ295873 (Korall and Kenrick, 2002); Selaginella longipinna Warb., Lundberg s.n. (S), Unknown: rbcL AJ295860 (Korall and Kenrick, 2002); Selaginella lutchuensis Koidz., TNS759343 (TNS), Japan (Okinawa): rbcL AB574648 (Ebihara et al., 2010); Selaginella lyallii (Hook. & Grev.) Spring, Malcomber & al. 1383 (P), Madagascar (Fianarantsoa): rbcL AJ295898 (Korall and Kenrick, 2002). Selaginella mairei H. Lev., (1) He & al. 81906 (PYU), China (Yunnan): rbcL KT161517, ITS KT161765; (2) He & Zhou 118 (PYU, CDBI), China (Yunnan): rbcL KT161519, ITS KT161764; (3) Chu & He s.n. (PYU), China (Yunnan): rbcL KT161518, ITS KT161762; (4) He & Zhao 3348 (CTC) China (Sichuan): rbcL KT161516, ITS KT161763; Selaginella martensii Spring, (1) Korall 1998:3 (S), cult.: rbcL AJ295878 (Korall and Kenrick, 2002); (2) Beck 1222 (DUKE), Mexico (Oaxaca): rbcL KT161520; Selaginella matsuensis C. M. Kuo, Knapp 2642 (HAST), China (Taiwan): rbcL KT161521, ITS KT161766; Selaginella mayeri Hieron., Unknown, Peninsula Malaysia: rbcL EU197125 (Y. Yi, Y. He, and B. Tan, unpublished); Selaginella megaphylla Baker, (1) Zhang & al. 6330 (CDBI, MO, VNMN, PYU), Vietnam (Hoa Binh): rbcL KT161527, ITS KT161771; (2) Zhang & al. 6935 (CDBI, MO, VNMN, PYU), Vietnam (Ha Giang): rbcL KT161526, ITS KT161772; (3) Zhang 4958 (CDBI), China (Guizhou): rbcL KT161522, ITS KT161768; (4) Zhang 5185 (CDBI), China (Guizhou): rbcL KT161523, ITS KT161769; (5) Zhang 5200 (CDBI), China (Guizhou): rbcL KT161524, ITS KT161770; (6) Chu & al. 8226 (PYU), China (Yunnan): rbcL KT161525, ITS KT161767; Selaginella microphylla (Kunth) Spring, Rothfels & al. 3586 (DUKE), Ecuador (Carchi): rbcL KT161528, ITS KT161773; Selaginella moellendorffii Hieron., (1) Ju & Deng HGX12307 (CDBI), China (Sichuan): rbcL KT161529, ITS KT161775; (2) Ju & Deng HGX12475 (CDBI), China (Sichuan): rbcL KT161530, ITS KT161776; (3) Ju & Deng HGX12295 (CDBI), China (Sichuan): rbcL KT161531, ITS KT161774; (4) Rothfels & al. 08-090 (DUKE), introduced to Costa Rica (Puntarenas): rbcL KT161533, ITS KT161777; (5) Tiew 14 (CDBI), cult.: rbcL KT161532, ITS KT161778; Selaginella monospora Spring, (1) Zhang & al. 6430 (CDBI, MO, VNMN, PYU), Vietnam (Vinh Phuc): rbcL KT161537, ITS KT161782; (2) Chu & al. 31293 (PYU), China (Yunnan): rbcL KT161535, ITS KT161780; (3) Jiao s.n. (PYU), China (Yunnan): rbcL KT161536, ITS KT161781; Selaginella cf. monospora, Chu & al. 14863 (PYU), China (Yunnan): rbcL KT161534, ITS KT161779; Selaginella moratii Rauh & W. Hagemann, Mabberley 913 (P), Madagascar (Fianarantsoa): rbcL AJ295899 (Korall and Kenrick, 2002); Selaginella moritziana Spring ex Klotzsch, Korall 1996:12 (S), Unknown: rbcL AJ010856 (Korall et al., 1999); Selaginella mutica D.C.Eaton, Therrien s.n. (KANU), USA (Colorado): rbcL AF419058 (Arrigo et al., 2013), ITS AF419025 (Arrigo et al., 2013); Selaginella mutica var. limitanea Weath., (1) Rothfels & al. 2505 (DUKE), USA (New Mexico): rbcL KT161538, ITS KT161872; (2) Rothfels & al. 2495 (DUKE), USA (Texas): rbcL KT161539; Selaginella myosurus (Sw.) Alston, G€ osta Lindeberg s.n. (S), Unknown: rbcL AJ295863 (Korall and Kenrick, 2002). Selaginella 9neomexicana Maxon, (1) Rothfels & al. 2506 (DUKE), USA (New Mexico): rbcL KT161642, ITS KT161883; (2) Beck & al. 1055 (DUKE), USA (New Mexico): rbcL KT161643, ITS KT161882; Selaginella nipponica Franch. & Sav., (1) Zhou & al. DJY05391 (CDBI), China (Sichuan): rbcL KT161540, ITS KT161873; (2) Zhou & al. DJY05495 (CDBI), China (Sichuan): rbcL KT161541, ITS KT161783; (3) Zhou & al. DJY07479 (CDBI), China (Sichuan): rbcL KT161542, ITS KT161784; (4) Knapp 2650 (HAST), China (Taiwan): rbcL KT161544, ITS KT161785; (5) Zhou 098 (CDBI), China (Sichuan): rbcL KT161543, ITS KT161786; (6) TNS738139 (TNS), Japan (Tokyo): rbcL AB574649 (Ebihara et al., 2010); Selaginella nivea Alston, Fosberg 52583 (US), Madagascar (Tulear): rbcL AF419073 (Arrigo et al., 2013), ITS AF419014 (Arrigo et al., 2013); Selaginella njamnjamensis Hieron., Faden 34485 (MO), Kenya (Kwale): rbcL AF419074 (Arrigo et al., 2013), ITS AF419016 (Arrigo et al., 2013); Selaginella nothohybrida Valdespino, Rothfels & al. 3069 (DUKE), Mexico (San Luis Potosı): rbcL KT161545; Selaginella novae-hollandiae (Sw.) Spring, (1) Ortega & Smith 3136 (BM), Venezuela: rbcL AJ295865 (Korall and Kenrick, 2002); (2) Korall 1996:8 (S), Ecuador: rbcL AJ295883 (Korall and Kenrick, 2002); Selaginella nummularifolia Ching, Ludlow & al. 4233 (PE), China (Xizang): rbcL KT161546, ITS KT161787. Selaginella oaxacana Spring, (1) Rothfels & al. 3345 (DUKE), Mexico (Oaxaca): rbcL KT161548, ITS KT161789; (2) Rothfels & al. 3344 (DUKE), Mexico (Oaxaca): rbcL KT161549, ITS KT161788; (3) Rothfels & al. 08-186 (DUKE), Costa Rica (Heredia): rbcL KT161547; Selaginella oregana D.C. Eaton, Therrien and Bostwick s.n. (KANU), USA (Washington): rbcL AF419066 (Arrigo et al., 2013), ITS AF419030 (Arrigo et al., 2013). Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 Selaginella pallescens (C. Presl) Spring, (1) Korall 1998:7 (S), cult.: rbcL AJ295858 (Korall and Kenrick, 2002); (2) Unknown: rbcL AJ295859 (Korall and Kenrick, 2002); (3) Unknown, rbcL AF419050 (J.P. Therrien and C.H. Haufler, unpublished); (4) Rothfels & al. 2701 (DUKE), Costa Rica (San Jose): rbcL KT161553, ITS KT161794; (5) Rothfels & al. 2644 (DUKE), Costa Rica (Guanacaste): rbcL KT161550, ITS KT161792; (6) Beck 1120 (DUKE), Mexico (Hidalgo): rbcL KT161555, ITS KT161790; (7) Rothfels & al. 2656 (DUKE), Costa Rica (Guanacaste): rbcL KT161551, ITS KT161793; (8) Rothfels & al. 3279 (DUKE), Mexico (Oaxaca): rbcL KT161554, ITS KT161795; (9) Grusz & al. 08-002 (DUKE), Costa Rica (Heredia): rbcL KT161552, ITS KT161791; Selaginella pallidissima Spring, He & Zhao 3386 (CTC) China (Sichuan): rbcL KT161556, ITS KT161796; Selaginella pennata (D. Don) Spring (1) He & Jiang 404 (PYU, CDBI), China (Yunnan): rbcL KT161558, ITS KT161798; (2) Chu & al. 24587 (PYU), China (Yunnan): rbcL KT161557, ITS KT161797; Selaginella peruviana (Milde) Hieron., (1) Rothfels & al. 3280 (MEXU) Mexico (Oaxaca): rbcL KT161559, ITS KT161799; (2) Therrien and Bostwick s.n. (KANU), USA (Texas): rbcL AF419087 (Arrigo et al., 2013), ITS AF419013 (Arrigo et al., 2013); Selaginella pervillei Spring, Rakotondrainibe 3355 (P), Madagascar (d’Antsiranana): rbcL AJ295901 (Korall and Kenrick, 2002); Selaginella phillipsiana (Hieron.) Alston, Faden 74-935 (F), Kenya (Isiolo): rbcL AF419061 (Arrigo et al., 2013), ITS AF419019 (Arrigo et al., 2013); Selaginella picta A. Braun ex Baker, (1) Zhang & al. 6525 (CDBI, MO, VNMN, PYU), Vietnam (Phu Tho): rbcL KT161562, ITS KT161802; (2) Chu & al. 21911 (PYU), China (Yunnan): rbcL KT161560, ITS KT161800; (3) He & Zhou 110 (PYU, CDBI), China (Yunnan): rbcL KT161561, ITS KT161801; Selaginella pilifera A. Braun, Pringle 13959 (S), Unknown: rbcL AJ295862 (Korall and Kenrick, 2002); Selaginella plana (Desv. ex Poir.) Hieron., (1) Korall 1998:5 (S), cult.: rbcL AJ295880 (Korall and Kenrick, 2002); (2) Tiew 08 (CDBI), cult.:rbcL KT161563, ITS KT161803; Selaginella polymorpha Badre, Rakotondrainibe 3533 (P), Madagascar (d’Antsiranana): rbcL AJ295900 (Korall and Kenrick, 2002); Selaginella porphyrospora A. Braun, Rothfels & al. 08-001 (DUKE), Costa Rica (Heredia): rbcL KT161564, ITS KT161804; Selaginella prostrata (H.S. Kung) Li Bing Zhang, (1) Gao & al. DJY03769 (CDBI), China (Sichuan): rbcL KT161566; (2) Zhu & Zhou DJY03956 (CDBI), China (Sichuan): rbcL KT161565, ITS KT161874; Selaginella pseudonipponica Tagawa, (1) Knapp 3375, Knapp’s private herbarium, China (Taiwan): rbcL KT161567, ITS KT161806; (2) Knapp 3381 (P), China (Taiwan): rbcL KT161569, ITS KT161808; (3) Knapp 3291 (P), China (Taiwan): rbcL KT161570, ITS KT161805; (4) Moore 17161 (PYU), China (Taiwan): rbcL KT161574; (5) Knapp 3378 (P), China (Taiwan): rbcL KT161571, ITS KT161876; (6) Knapp 3377, Knapp’s private herbarium, China (Taiwan): rbcL KT161568, ITS KT161875; (7) Knapp 3379 (P), China (Taiwan): rbcL KT161572, ITS KT161807; (8) Knapp 3380 (P), China (Taiwan): rbcL KT161573; Selaginella pseudopaleifera Hand.-Mazz., Zhang & al. 6324 (CDBI, MO, VNMN, PYU), Vietnam (Hoa Binh): rbcL KT161575, ITS KT161809; Selaginella pulcherrima Liebm., Korall 1997:32 (S), cult.: rbcL AJ010847 (Korall et al., 1999); Selaginella pulvinata (Hook. & Grev.) Maxim., (1) Zhou 066 (CDBI), China (Sichuan): rbcL KT161576, ITS KT161810; (2) Zhou 501 (PYU, CDBI), China (Xizang): rbcL KT161577, ITS KT161811; Selaginella pygmaea Alston, Esterhuysen 34078a (BOL) Unknown: rbcL AJ295892 (Korall and Kenrick, 2002). Selaginella radiata Baker, Cremers 10068 (BM), French guiana: rbcL AJ295867 (Korall and Kenrick, 2002); Selaginella reflexa Underw., Beck 1126 (DUKE), Mexico (San Luis Potosı): rbcL KT161578, ITS KT161812; Selaginella remotifolia Spring, (1) Hsu 5194 (S), Unknown: rbcL AJ295864 (Korall and Kenrick, 2002); (2) TNS765133 (TNS), Japan (Shizuoka): rbcL AB574650 (Ebihara et al., 2010); (3) Ju & Deng HGX13191 (CDBI), China (Sichuan): rbcL KT161579, ITS KT161813; (4) Zhou 005 (PYU, CDBI), China 29 (Yunnan): rbcL KT161580, ITS KT161814; Selaginella repanda (Desv. ex Poir.) Spring, (1) He & Jiang 405-1 (CDBI), China (Yunnan): rbcL KT161584; (2) He & Zhou 115 (PYU, CDBI), China (Yunnan): rbcL KT161582, ITS KT161815; (3) He & al. s.n. (PYU), China (Yunnan): rbcL KT161581, ITS KT161817; (4) He & Zhou 119 (PYU, CDBI), China (Yunnan): rbcL KT161583, ITS KT161816; Selaginella roxburghii (Hook. & Grev.) Spring, Unknown, Peninsula Malaysia: rbcL EU140945 (Y. Yi, Y. He, and B. Tan, unpublished); Selaginella rupestris (L.) Spring, (1) Rothfels & Rushworth 4172 (DUKE), USA (North Carolina): rbcL KT161586, ITS KT161819; (2) Rothfels & al. 4493 (UBC), Canada (Ontario): rbcL KT161585, ITS KT161818; (3) Therrien 1996:356 (KANU), USA (Illinois): rbcL AF093255 (Korall et al., 1999), ITS AF419038 (Arrigo et al., 2013); Selaginella rupincola Underw., (1) Rothfels & al. 2508 (DUKE), USA (New Mexico): rbcL KT161587, ITS KT161820; (2) Therrien and Windham s.n. (KANU), USA (Arizona): rbcL AF419083 (Arrigo et al., 2013), ITS AF419003 (Arrigo et al., 2013); (3) s.n. (S), S. USA: rbcL AJ010850 (Korall et al., 1999). Selaginella sanguinolenta (L.) Spring, (1) Zhou 003 (PYU, CDBI), China (Yunnan): rbcL KT161591; (2) He & Zhao 3514 (CTC) China (Sichuan): rbcL KT161589, ITS KT161821; (3) He & Zhao 3399 (CTC) China (Sichuan): rbcL KT161590, ITS KT161822; (4) Zhou 092 (CDBI), China (Sichuan): rbcL KT161588, ITS KT161823; (5) Unknown, rbcL EU197124 (Y. Yi, Y. He, and B. Tan, unpublished); Selaginella sartorii Hieron., (1) Fosberg 22205 (US), Colombia (Boyoca): rbcL AF419054 (Arrigo et al., 2013), ITS AF419039 (Arrigo et al., 2013); (2) Rothfels & al. 3067 (DUKE), Mexico (San Luis Potosı): rbcL KT161592, ITS KT161877; Selaginella scabrifolia Ching & Chu H. Wang, He & Zhou 109 (PYU, CDBI), China (Hainan): rbcL KT161593, ITS KT161824; Selaginella scopulorum Maxon, (1) Rothfels & al. 4507 (UBC), USA (Washington): rbcL KT161595, ITS KT161825; (2) Rothfels & al. 4473 (UBC), Canada (British Columbia): rbcL KT161594, ITS KT161826; Selaginella selaginoides (L.) P. Beauv. ex Mart. & Schrank, (1) TNS766485 (TNS), Japan (Nagano): rbcL AB574651 (Ebihara et al., 2010); (2) Therrien s.n. (KANU), Canada (Ontario): rbcL AF419048 (Arrigo et al., 2013), ITS AF419000; (3) Eriksson s.n. (S), Unknown: rbcL Y07940 (Wikstr€ om and Kenrick, 1997); Selaginella sellowii Hieron., (1) Rothfels & al. 3604 (DUKE), Ecuador (Carchi): rbcL KT161596, ITS KT161827; (2) Acevedo 4571 (US), Bolivia (Florıda): rbcL AF419053 (Arrigo et al., 2013), ITS AF419028 (Arrigo et al., 2013); (3) Wanntorp & Holmgren 557 (S), Unknown: rbcL AJ295889 (Korall and Kenrick, 2002); Selaginella sericea A. Braun, (1) Korall 1996:13 (S), Unknown: rbcL AJ295871 (Korall and Kenrick, 2002); (2) Rothfels & al. 3747 (DUKE), Ecuador (Pichincha): rbcL KT161597, ITS KT161828; Selaginella sertata Spring, Rothfels & al. 3192 (DUKE), Mexico (Jalisco): rbcL KT161598, ITS KT161829; Selaginella shakotanensis (Franch. ex Takeda) Miyabe & Kud^ o (1) Iwatsuki 53 (US), Japan (Nagano): rbcL AF419059 (Arrigo et al., 2013), ITS AF419040 (Arrigo et al., 2013); (2) TNS776371 (TNS), Japan (Nagano): rbcL AB574652 (Ebihara et al., 2010); Selaginella sheldonii Maxon, Rothfels & al. 2487 (DUKE), USA (Texas): rbcL KT161599, ITS KT161830; Selaginella siamensis Hieron., He & Zhou 102 (PYU, CDBI), China (Yunnan): rbcL KT161600, ITS KT161831; Selaginella sibirica (Milde) Hieron., (1) TNS743691 (TNS), Japan (Hokkaido): rbcL AB574653 (Ebihara et al., 2010); (2) Kelso 83-222. (COLO), USA (Alaska): rbcL AF419076 (Arrigo et al., 2013), ITS AF419032 (Arrigo et al., 2013); Selaginella sichuanica H.S. Kung (1) Chu & al. 7385 (PYU), China (Sichuan): rbcL KT161602; (2) Luo 1349 (CDBI), China (Guizhou): rbcL KT161601; Selaginella cf. sichuanica, Zhang & al. DJY04930 (CDBI), China (Sichuan): rbcL KT161603, ITS KT161832; Selaginella silvestris Aspl. Rothfels & al. 08-202 (DUKE), Costa Rica (Heredia): rbcL KT161604, ITS KT161833; Selaginella simplex Baker, Tehler 8038 (S), Unknown: rbcL AJ295888 (Korall and Kenrick, 2002); Selaginella sp_A, Knapp 3260 (P), China (Taiwan): rbcL KT161605, ITS KT161834; Selaginella sp_B, (1) Zhang & al. 6570 (CDBI, MO, 30 Xin-Mao Zhou et al. / Cladistics 0 (2015) 1–30 VNMN, PYU), Vietnam (Phu Tho): rbcL KT161607, ITS KT161835; (2) Zhang & al. 6925 (CDBI, MO, VNMN, PYU), Vietnam (Ha Giang): rbcL KT161606, ITS KT161878; Selaginella sp_C (1) Zhang 5888 (CDBI), China (Guizhou): rbcL KT161608, ITS KT161879; (2) Zhang 5909 (CDBI), China (Guizhou): rbcL KT161609, ITS KT161836; (3) Zhang 6055 (CDBI), China (Guizhou): rbcL KT161610, ITS KT161837; Selaginella sp_D, Wood 11034 (PTBG), Society Islands (Huahine): rbcL KT161611, ITS KT161838; Selaginella sp_E,Wood 13942 (PTBG), F.S.M. (Caroline_Is., Kosrae): rbcL KT161612, ITS KT161839; Selaginella sp_F, Wood 13673 (PTBG), F.S.M. (Caroline_Is., Kosrae): rbcL KT161613, ITS KT161840; Selaginella stauntoniana Spring, (1) Kenrick s.n. (S), Unknown: rbcL AJ295869 (Korall and Kenrick, 2002); (2) Quan 1 (PYU), China (Henan): rbcL KT161615, ITS KT161880; (3) Zhao 169 (CDBI), China (Beijing): rbcL KT161614, ITS KT161841; Selaginella steyermarkii Alston, Williams 23005 (US), Guatemala (Quezaltenango): rbcL AF419088 (Arrigo et al., 2013), ITS AF419034 (Arrigo et al., 2013); Selaginella suavis Klotzsch, Tehler 7929 (S), Unknown: rbcL AJ295886 (Korall and Kenrick, 2002); Selaginella sulcata (Desv. ex Poir.) Spring ex Mart., Tehler 7939 (S), Unknown: rbcL AJ295887 (Korall and Kenrick, 2002); Selaginella superba Alston, Chu & al. 19425 (PYU), China (Yunnan): rbcL KT161616, ITS KT161842. Selaginella tama-montana Seriz., (1) TNS769195 (TNS), Japan (Mie): rbcL AB574654 (Ebihara et al., 2010); (2) Knapp 3257 (P), China (Taiwan): rbcL KT161617, ITS KT161843; Selaginella tamariscina (P. Beauv.) Spring, (1) TNS759348 (TNS), Japan (Okinawa): rbcL AB574655 (Ebihara et al., 2010); (2) Shurba 5157 (S), Unknown: rbcL AJ295861 (Korall and Kenrick, 2002); (3) Unknown Peninsula Malaysia: rbcL JF950018 (Herrmann et al., 2011); Selaginella tenuifolia spring, Zhang & al. 6780 (CDBI, MO, VNMN, PYU), Vietnam (Bac Kan): rbcL KT161618, ITS KT161844; Selaginella tortipila A. Braun, (1) Hill 20496 (KANU), USA (South carolina): rbcL AF419081 (Arrigo et al., 2013), ITS AF419007 (Arrigo et al., 2013); (2) Rothfels & al. 2718 (DUKE), USA (North Carolina): rbcL KT161619, ITS KT161845; Selaginella trachyphylla A. Braun ex Hieron., Chu & al. 5841 (PYU, CDBI), China (Yunnan): rbcL KT161620; Selaginella trichophylla K.H. Shing, (1) Chu & al. 31925 (PYU), China (Yunnan): rbcL KT161621, ITS KT161847; (2) Chu & al. 29310 (PYU), China (Yunnan): rbcL KT161622, ITS KT161846; (3) Zhang & al. 6784 (CDBI, MO, VNMN, PYU), Vietnam (Cao Bang): rbcL KT161624, ITS KT161849; (4) Jiang 318 (PYU, CDBI), China (Hainan): rbcL KT161623, ITS KT161848. Selaginella uliginosa (Labill.) Spring, Gray & al. 523 (S), Australia (Tasmania): rbcL AJ010843 (Korall et al., 1999); Selaginella umbrosa Lem. ex Hieron., (1) Rothfels & al. 08-155 (DUKE), Costa Rica (Heredia): rbcL KT161625, ITS KT161850; (2) Korall 1998:4 (S), cult.: rbcL AJ295879 (Korall and Kenrick, 2002); Selaginella uncinata (Desv. ex Poir.) Spring (1) Unknown Peninsula Malaysia: rbcL EU197126 (Y. Yi, Y. He, and B. Tan, unpublished); (2) TNS9508552 (TNS), Japan (Tokyo): rbcL AB574656 (Ebihara et al., 2010); (3) Zhang & Zhou DJY04101 (CDBI), China (Sichuan): rbcL KT161626, ITS KT161852; Selaginella cf. uncinata, Rothfels & al. 08-137 (DUKE), introduced to Costa Rica (Puntarenas): rbcL KT161423, ITS KT161851; Selaginella underwoodii Hieron., Therrien s.n. (KANU), USA (Colorado): rbcL AF419077 (Arrigo et al., 2013), ITS AF419031 (Arrigo et al., 2013); Selaginella utahensis Flowers, Windham 96-052 (UT), USA (Utah): rbcL AF419067 (Arrigo et al., 2013), ITS AF419024 (Arrigo et al., 2013). Selaginella vardei H. Lev., (1) Zhou 091 (CDBI), China (Sichuan): rbcL KT161627, ITS KT161856; (2) Chu & al. 29607 (PYU), China (Yunnan): rbcL KT161628, ITS KT161853; (3) He & al. 81904 (PYU), China (Yunnan): rbcL KT161629, ITS KT161855; (4) Jin s.n. (PYU), China (Yunnan): rbcL KT161630, ITS KT161854; (5) Wu s.n. (MO), China (Yunnan): rbcL AF419060 (Arrigo et al., 2013), ITS AF419041 (Arrigo et al., 2013). Selaginella wallacei Hieron., (1) Rothfels & al. 2933 (DUKE), USA (California): rbcL KT161631, ITS KT161858; (2) Rothfels & al. 3852 (DUKE), USA (Oregon): rbcL KT161635, ITS KT161859; (3) Rothfels & Zylinski 4061 (DUKE), Canada (British Columbia): rbcL KT161632, ITS KT161860; (4) Therrien s.n. (KANU), USA (Oregon): rbcL AF419065 (Arrigo et al., 2013), ITS AF419035 (Arrigo et al., 2013); (5) Rothfels & Park 4191 (DUKE), USA (Idaho): rbcL KT161633, ITS KT161861; (6) Rothfels & al. 4514 (UBC), USA (Washington): rbcL KT161636, ITS KT161857; (7) Rothfels & Rushworth 4196 (DUKE), USA (Idaho): rbcL KT161634, ITS KT161862; Selaginella wallichii (Hook. & Grev.) Spring, Zhang & al. 6744 (CDBI, MO, VNMN, PYU), Vietnam (Bac Kan): rbcL KT161637; Selaginella watsonii Underw., (1) Li 1601 (DUKE), USA (Idnho): rbcL KT161638, ITS KT161863; (2) Windham 91-137 (UT), USA (Utah & Arizona): rbcL AF419090 (Arrigo et al., 2013), ITS AF419037 (Arrigo et al., 2013); Selaginella weatherbiana R.M. Tryon Therrien s.n. (KANU), USA (Colorado): rbcL AF419075 (Arrigo et al., 2013), ITS AF419006 (Arrigo et al., 2013); Selaginella wightii Hieron., Faden 76-537 (US), Sri-Lanka (Matale): rbcL AF419062 (Arrigo et al., 2013), ITS AF419018 (Arrigo et al., 2013); Selaginella willdenowii (Desv. ex Poir.) Baker (1) Korall 1998:11 (S), cult.: rbcL AJ295893 (Korall and Kenrick, 2002), (2) Wang 90408 (PYU), China (Guizhou): rbcL KT161639, ITS KT161881; (3) Chu & al. 18474 (PYU), China (Guangxi): rbcL KT161640, ITS KT161864; Selaginella wrightii Hieron., (1) Rothfels & al. 2480 (DUKE), USA (Texas): rbcL KT161641, ITS KT161865; (2) Worthington 21748 (KANU), USA (Texas): rbcL AF419089 (Arrigo et al., 2013), ITS AF419011 (Arrigo et al., 2013). Selaginella xichouensis W.M. Chu, Chu & al. 13149 (PYU, CDBI), China (Yunnan): rbcL KT161644, ITS KT161866; Selaginella xipholepis Baker, (1) Dong 2377 (PYU), China (Guangdong): rbcL KT161645; (2) Zhang & al. 6668 (CDBI, MO, VNMN, PYU), Vietnam (Bac Kan): rbcL KT161646, ITS KT161867.