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Abstract: Viniferin is a resveratrol derivative. Resveratrol is the most prominent stilbenoid synthesized
by plants as a defense mechanism in response to microbial attack, toxins, infections or UV radiation.
Different forms of viniferin exist, including alpha-viniferin (α-viniferin), beta-viniferin (β-viniferin), delta-
viniferin (δ-viniferin), epsilon-viniferin (ε-viniferin), gamma-viniferin (γ-viniferin), R-viniferin (vitisin
A), and R2-viniferin (vitisin B). All of these forms exhibit a range of important biological activities and,
therefore, have several possible applications in clinical research and future drug development. In this
review, we present a comprehensive literature search on the chemistry and biosynthesis of and the diverse
studies conducted on viniferin, especially with regards to its anti-inflammatory, antipsoriasis, antidiabetic,
antiplasmodic, anticancer, anti-angiogenic, antioxidant, anti-melanogenic, neurodegenerative effects,
antiviral, antimicrobial, antifungal, antidiarrhea, anti-obesity and anthelminthic activities. In addition to
highlighting its important chemical and biological activities, coherent and environmentally acceptable
methods for establishing vinferin on a large scale are highlighted to allow the development of further
research that can help to exploit its properties and develop new phyto-pharmaceuticals. Overall,
viniferin and its derivatives have the potential to be the most effective nutritional supplement and
supplementary medication, especially as a therapeutic approach. More researchers will be aware of
viniferin as a pharmaceutical drug as a consequence of this review, and they will be encouraged to
investigate viniferin and its derivatives as pharmaceutical drugs to prevent future health catastrophes
caused by a variety of serious illnesses.
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1. Introduction

Stilbenoids, also known as phytoalexins, are plant phenolics that are synthesized as
a defense mechanism in response to abiotic and biotic stresses, such as microbial attack,
toxins, infections or UV radiation [1,2]. The best known sources of stilbenoids are from
Vitis vinifera [3]. Based on their structural characteristics, stilbenoids containing C6-C2-
C6 backbone structures are further divided into five categories: stilbenes, oligostilbenes,
bibenzyls, bisbibenzyls and phenanthrenes [1,2]. Among the stilbenoids, resveratrol is
the most prominent and most investigated [1,4], while viniferins are more known as
“resveratrol derivative” [5].

Several different forms of viniferin exist (Figure 1). The α-viniferin form is an oligostil-
bene of trimeric resveratrol [6] and was first found in Caraganachamlagu Lam as a compound
that exhibits anti-inflammatory activities [7]. Furthermore, one of the major products of
resveratrol-derived dehydrodimers is called δ-viniferin [8,9]. The δ-viniferin form is an
isomer of ε-viniferin [10], which is also a dimer of resveratrol, extracted from Vitis vinifera; it
has been extensively investigated for its potential benefits for human health [11–13]. Other
oligomer stilbenoids that can be extracted and are found in the roots of Vitis vinifera are
the resveratrol tetramers, R2-viniferin (Vitisin A) and R-viniferin (Vitisin B), which may
mediate some other important biological activities [14].
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To complete this review, relevant research was collected from several scientific databases,
including Google Scholar, Scopus and PubMed. The literature search was performed using
keywords such as “viniferin” AND “stillbenoid oligomers” OR “Vitis vinifera” AND “in-vitro”
OR “in-vivo” OR “Biological studies” OR “Pharmacological studies” OR “Chemistry” OR
“Toxicity studies” OR “Pharmacokinetics” for studies that had been published up until the date
of the search. Studies that were not written in the English language or did not have abstracts
were excluded. After applying the inclusion and exclusion criteria, as well as eliminating
duplicates between the databases, a total of 73 studies were selected. The studies, classified
into two major categories, phytochemistry and pharmacology, were further categorized based
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on the key findings, with no restriction on the dose, route, duration of administration, or
type of study (animal or human). After a complete screening, the obtained information was
summarized and included.

The studies indicated that viniferin is a potentially active molecule and that structural
modifications to viniferin may lead to new drug development, with improved bioavail-
ability and pharmacological action. The objective of this review is to discuss the chemistry
and pharmacology of viniferin in order to examine how its derivatives might be useful
molecules in the discovery of novel drugs to treat a variety of disorders.

2. Chemistry
2.1. Sources and Distribution of Viniferin

Viniferin is found in many plant species, among which grapes (Vitis vinifera) is a
primary source. Table 1 summarizes details about the sources and distribution of various
types of vinferin from medicinal plants.

Table 1. Source and distribution of Viniferin.

Source of Viniferin Plant Parts Type of Viniferin References

Astilbe grandis Root α-viniferin [15]
Bombax malabarica Root bark ε-viniferin [16]
Caragana chamlagu Not stated α-viniferin [17]

Caragana sinica Root and Stems α-viniferin [18–21]
Carex baccans Not stated α-viniferin [22]
Carex humilis Root α-viniferin [23,24]

Cayratia trifolia Root α- and ε-viniferin [25]
Cyphostemma crotalarioides Root and leaves cis- and trans-ε-viniferin [26]

Dipterocarpus littoralis Stem bark α-viniferin [27]
Dryobalanops lanceolata Stem bark ε-viniferin [28]

Shorea roxburghii Bark and wood parts α-viniferin [29]
Hopea exalata Stem bark α-viniferin [30]

Hopea parviflora Stem bark ε-viniferin [31]
Hopea ponga Stem bark α-viniferin [32]
Iris clarkei Seeds α-viniferin [33]
Iris lactea Seeds ε-, R- and R2-viniferin [34]

Rheum undulatum Not stated ε- and δ-viniferin [35]
Paeonia lactiflora Seeds cis- and trans-ε-viniferin [36]

Paeonia ostii Seeds trans-ε-viniferin [37]
Paeonia suffruticosa Seeds cis- and trans-ε-viniferin [38]

Parthenocissus quinquefolia Not stated ε-viniferin [39]
Rheum lhasaense Roots ε-viniferin [40]

Shorea maxwelliana Stem bark α-viniferin [41]
Shorea ovalis Stem bark α-viniferin [42]

Shorea seminis Tree bark α-viniferin [43]
Gnetum microcapum Not stated ε-viniferin [44]

Vitis amurensis Leaves, petioles, berry, skins and seeds cis- and trans-ε-viniferin [45,46]
Vitis heyneana Not stated α-, trans- and R2-viniferin [47]
Vitis labrusca Not stated trans ε- and trans δ-viniferin [48]

Vitis quinquangularis Not stated α-viniferin [49]
Vitis rotundifolia Hairy root ε-viniferin [50]
Vitis thunbergii Root ε-viniferin [51–53]

Vitis vinifera Root, stems, canes, leaves, buds and internodes α-, ε-,ω-, trans, R- and R2-viniferin [3,54–61]

2.2. Structural Characterization of Viniferin

A large number of resveratrol derivatives of higher structural complexity exist com-
pared to simple substituted resveratrol analogues. The most common compounds found
in nature are a variety of resveratrol dimers, such as ε-viniferin (A), δ-viniferin (B), and
trimers, i.e., α-viniferin (C) (Figure 2).

Nevertheless, several important factors relating to stilbenoids’ nomenclature and
structure may complicate its identification and classification. Another potential confusion
lies in the structure and naming of viniferins. For example, although the compound itself
takes the form of simple resveratrol dimers and trimers, there are two stereochemical
centers at positions 7a and 8a on the dihydrofuran ring, allowing the formation of four
potential stereoisomers. The trans- configuration of the two hydrogens in the saturated
ring system provides alpha and beta hydrogen, unlike in the cis configuration, in which
both hydrogens are either on the alpha side or in the beta position. The naming of the cis
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and trans conformations for these hydrogens is an area of confusion when dealing with
viniferins, which also contain a trans (E) or cis (Z) double bond.
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Determining the absolute configuration to differentiate between (+) and (−)-ε-viniferin,
however, is more challenging. For known compounds, their [α] D values can be compared
with those in the literature. Nevertheless, due to the difficulties in assigning absolute
configurations to stilbenoid oligomers, many compounds have been reported with only
their relative configurations assigned. Since (+)-ε-viniferin is considered a major stilbenoid
intermediate for larger oligomers, the structures containing viniferin moieties are normally
presented as containing the same configuration when not otherwise determined. In the
many reports of complex oligomers, only the relative configuration is assigned [62].

trans-ε-Viniferin

The UV spectra in methanol (MeOH) showed λmax (log ε) values at 203 (5.05), 230
(4.87) and 324 nm (4.57), while in MeOH and sodium hydroxide (NaOH), they indicated
λmax (log ε) at 211 (5.52), 244 (5.06) and 347 nm (4.84) [63,64]. The infra-red (IR) spec-
tral data exhibited characteristic bands at 3393 cm−1 (OH), 1606, 1513, 1443 cm−1 (C=C
aromatic) and 832 cm−1 (para-disubstituted benzene). The 1H-NMR spectra [63,64] were
recorded in deuterated acetone with pairs of doublets appearing at δ 7.21 (2H, d, J = 9.0 Hz,
H-2A and H-6A) and δ 6.83 (2H, d, J = 8.0 Hz, H-3A and H-5A), integrating two protons.
They were assigned to the protons present in the aromatic ring A. The strong singlet at
δ6.24 (3H, s, H-2B, 4B, 6B) for three protons was attributed to the protons present on ring B.
The pair of doublets at δ 5.42 (1H, d, J = 5.0 Hz, H-1C) and 4.49 (1H, d, J = 5.0 Hz, H-2C)
were due to the protons on ring C, while the signal at δ 6.32 (1H, d, J = 1.7 Hz, H-4D) was
due to the meta-coupled proton H-4 on ring D. The H-2 proton of ring D appeared at δ 6.71,
along with the protons of H-3E and H-5E of ring E. The signal at δ 7.18 (2H, d, J = 9.0 Hz,
H-2E and H-6E) was attributed to the presence of the H-2E and H-6E protons on ring E.
The alkene protons lying in between the two aromatic rings, D and E, appeared at δ 7.00
(1H, d, J = 15.1 Hz, H-â) and as a partially overlapped signal at δ 6.71.

The structural elucidation of α-viniferin is discussed in greater detail by Kitanaka
et al. [65]. For example, α-viniferin with a molecular formula (C42H30O9) showed a peak
for its pseudomolecular ion at m/z 701 [M + Na]+ and at m/z 678 for [M+] ion in its field-
desorption–mass-spectrometry (FD-MS). In the UV spectra, the λmax peak appeared at
285 nm and in its IR spectra absorption bands at 3400 cm−1 for -OH group and at 1613 cm−1

for C=C, which are characteristic bands for the polyphenols observed.
In its 13C-NMR spectrum [65], α-viniferin exhibited forty-two signals, out of which six

methine aliphatic carbon signals appeared between δ 46.4 and 95.6, twelve aromatic –CH
groups appeared between δ 96.9 and 128.66, and a total of eighteen quaternary aromatic
carbon atoms appeared between δ 118.0 and 161.7, including nine signals assigned to
quaternary aromatic carbons under oxygen functions. The 1H-NMR spectrum exhibited
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three pairs of doublets for vicinally coupled methine protons at δ 3.97 (Ha) and 6.07 (Hg),
4.61 (Hb, J = 6.4 Hz), 4.90 (Hd, J = 6.4 Hz), 4.71 (Hc, J = 9.7 Hz) and 5.95 (He, J = 9.7 Hz). In
addition, it also exhibited signals characteristic of three 1,2,3,5-tetrasubstituted benzene
rings and three 1,4-disubstituted benzene rings.

The 1H-1H-COSY NMR spectrum confirmed the relationship between the three me-
thine signals at δ 3.97 (Ha), 4.71 (Hc), 4.61 (Hb), as well as the six meta-coupled signals at δ
5.99 (Hf), 6.22 (Hh), 6.72 (Hm), 6.25 (Hj), 6.59 (Hk) and 6.23 (Hi). There were cross peaks
between the three signals of methine with the attached oxygen seen at 6.77 (Hg), 5.95 (He),
4.90 Hd) and the six 4-hydroxy phenyl proton signals at δ 7.03 (Hp), 6.72 (Hj), 7.22 (Hr), 6.77
(Hn), 7.08 (Hq) and 6.79 (Ho). The plane structure of the α–viniferin was a ring structure
with three 2-phenyl-2,3-dihydrobenzofuran units (I, II and III). All the proton signals werre
assigned to the three units according to the coupling, beginning with the resonance of Ha
(H-3 in Unit I) (Table 2). The assignments of all the methine and quaternary carbon signals
were performed based on the 13C-1H- heteronuclear shift correlation spectrum.

Table 2. The 13C and 1H-NMR spectral data for α-viniferin.

Carbon No.
H (δ), C(δ), J in Hz

Unit I Unit II Unit III

2 6.07 (br.s) 86.4 5.95 (d, J = 9.7) 90.0 4.90 (d, J = 6.4) 95.6
3 3.97 (br.s) 46.4 4.71 (d, J = 9.8) 52.8 4.61 (d, J = 6.4) 55.6

3a - 118.8 - 120.9 - 119.7
4 - 141.2 - 139.7 - 138.7
5 5.99 (d, J = 1.8) 108.5 6.72 (d, J = 1.8) 106.2 6.59 (d, J = 1.8) 105.8
6 - 159.3 - 159.3 - 160.8
7 6.22 (d, J = 1.8) 98.0 6.25 (d, J = 1.8) 96.6 6.22 (d, J = 1.8) 96.9

7a - 161.6 - 160.6 - 161.7
1′ - 132.0 - 132.3 - 132.5

2′, 6′ 7.03 (d, J = 8.5) 128.2 7.22 (d, J = 8.5) 128.1 7.08 (d, J = 8.5) 128.6
3′, 5′ 6.72 (d, J = 8.5) 115.7 6.77 (d, J = 8.5) 116.1 6.79 (d, J = 8.5) 116.1

4′ - 157.8 - 158.2 - 158.3

The stereochemical configuration of the α–viniferin was determined based on the 2D
nuclear Overhauser effect correlation spectroscopy (NOESY) spectrum. The appearance
of cross peaks due to Ha (δ 3.97), Hp (δ 7.03), Hc (δ 4.71) and Hr (δ 7.22) indicated that the
configurations at H-2 and H-3 n units I and II are trans to each other. The two cross peaks
between Ha (δ 3.97), Hd (δ 4.90), Hc (δ 4.71) and Hb (δ 4.61) indicated that they exist on the
same side in the plane structure. Consequently, the configuration at Hb and Hd is trans.
The signals of Hg (δ 6.07) and He (δ 5.95) appeared at low field and were therefore deemed
to be located at horizontal positions with respect to the aromatic ring A in units I and III,
respectively. The proton signal of Ha (δ 3.97) appeared at a higher field than those of Hc (δ
4.71) and Hb (δ 4.61) because the atom lies above the plane of the aromatic ring in unit III.

The NMR data of δ-viniferin were reported by Teng et al. [66]. The 1H-NMR (500 MHz,
CD3OD) d 7.56 (d, J = 1.6 Hz, 1H), 7.54 (d, J = 8.8 Hz, 2H), 7.52–7.49 (m, 1H), 7.48 (d,
J = 8.5 Hz, 1H), 7.13 (d, J = 16.2 Hz, 1H), 6.95 (d, J = 16.2 Hz, 1H), 6.77 (d, J = 8.7 Hz, 2H),
6.49 (d, J = 2.2 Hz, 2H), 6.43 (d, J = 2.2 Hz, 2H), 6.35 (t, J = 2.2 Hz, 1H), 6.18 (t, J = 2.2 Hz,
1H). 13C-NMR (125 MHz, CD3OD) d 160.3 (2 C), 159.7 (2 C), 159.6, 154.8, 152.9, 141.0, 136.0,
134.1, 132.1, 129.8, 129.7 (2 C), 128.8, 123.9, 123.0, 118.6, 116.8, 116.4 (2 C), 111.8, 109.2 (2 C),
106.0 (2 C), 103.0 (2 C). HRESIMS: m/z 453.1336 [M + H]+ (calculated for C28H21O6, 453.13).

2.3. Biosynthesis

The biochemical synthesis of reverastrol in plants has been elucidated and occurs via
a series of enzymatic processes, as highlighted in Scheme 1. The synthesis begins with
the amino acid phenylalanine, which is transformed into cinnamic acid and occurs by
deamination; it is catalyzed by the enzyme phenylalanine ammonia lyase. The enzymatic
hydroxylation to p-coumaric acid followed by the conversion of free acid into p-coumaroyl
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CoA occurs with the aid of CoA ligase. The final step in the synthesis involves the conden-
sation of p-coumaroyl CoA (%) with malonyl CoA in the presence of stilbene synthase to
furnish trans-resveratrol. Largely, resveratrol biosynthesis is controlled by stilbene synthase
(STS), which controls the entry point into the stilbene biosynthetic pathway (Scheme 1).
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It was hypothesized that in nature, oligomerization proceeds via the formation of
phenoxyl radical intermediates. Resveratrol oligomerization appears to proceed via the
coupling of oxidatively generated phenoxyl radicals, as originally proposed by Langcake
and Pryce [67]. The dimerization typically occurs (Scheme 2) through two region-isomeric
modes: the 8–10′ coupling (as found in ε-viniferin) and the 3–8′ coupling (δ-viniferin).
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2.4. Bioavailability and Pharmacokinetics of Viniferin

Courtois et al. [68] reported that ε-viniferin is rich in carbons and hydrogens, which
means that a) it is extremely poorly soluble in water, b) it has low bioavailability, and
c) it easily undergoes isomerization under the influence of UV radiation. Nevertheless,
by encapsulating the compound in phospholipid-based multi-lamellar liposomes (MLLs)
called spherulites or onions, the photosensitivity is improved and the water solubility
significantly increased [68]. In humans, ε-viniferin is mostly converted to glucuronides, and
less often, to sulfates, whereas glucuronidation is the main pathway involved in rats [68].
The compound is rapidly glucuronidated by hepatic clearance [69], which explains its low
bioavailability. In a study in 2018, it was reported that ε-viniferin accumulated in white
adipose tissue, suggesting that these tissues may act as a reservoir for the native form,
allowing slow release and long-term presence in the organism. Furthermore, ε-viniferin
and its metabolite were found in higher concentrations in feces than in urine, signifying the
main elimination pathway [70]. In addition, another form of viniferin, δ-viniferin, has a low
bioavailability due to its low absorption and extensive metabolism, especially following
oral administration compared to intravenous injection. The main metabolite found was
glucuronide, followed by sulfates. It was further revealed that unmodified δ-viniferin and
its metabolites were eliminated rapidly after intravenous injection and that δ-viniferin is
primarily excreted unchanged in the feces after oral administration, with most appearing to
be unabsorbed, according to the drug’s concentration in plasma [71]. A resveratrol trimer,
α-viniferin is rapidly absorbed into the circulation and slowly eliminated, with only 4.2%
bioavailability, following oral administration [7].

All the above-mentioned results indicate that viniferin has the potential to become
a drug molecule for enhancing life span by potentially delaying ageing and preventing
chronic illnesses. However, the limited bioavailability of viniferin is a major problem
for converting these findings from fundamental research into clinical utility as a drug.
Viniferin can potentially be made highly bioavailable through consumed with various
foods, combination with other phytochemicals, the use of controlled-release technology,
and the development of formulations using nanotechnology.

2.5. Medicinal Uses of Plants Containing Viniferin

Paeonia suffruticosa is an important traditional Chinese herb used to treat osteoarthritis
(OA); oligostilbenes are the main active ingredients of its seeds [38]. Another plant, vitis
heyneana, which is widely distributed in northern Vietnam, has been used in Vietnamese
traditional medicine as an agent against arthritis, bronchitis, carbuncles, inflammatory
conditions, and menstrual irregularities [35]. The dipterocarpaceae plant, Cotylelobium
melanoxylon, which is widely distributed in Southeast Asia, has been used as an astringent,
antilaxative and blood-coagulation agent in traditional Thai medicine [72]. Dipterocarpus
littoralis, commonly known as Meranti Jawa in Indonesia, is traditionally used to treat
diseases such as diarrhea, diabetes and malaria [27] (Figure 3). Another important plant
is Shorea roxburghii (Dipterocarpaceae), which is widely distributed in Thailand and its
neighboring countries, such as Cambodia, India, Laos, Malaysia, Myanmar and Vietnam.
The bark of Shorea roxburghii (“Phayom” in Thailand) has been used as an astringent or a
preservative in traditional beverages in Thailand [73]. In Indian folk medicine, the plant
has been used in the treatment of dysentery, diarrhea and cholera [46].

The genus Hopea (Dipterocarpaceae), which consists of over 104 species, is distributed
primarily in southern parts of India and China and in Sri Lanka. Hopea ponga (Dennst.)
Mabb is an endemic tree found mainly in the tropical evergreen forests of the South Western
Ghats of India. The plant was reportedly used in traditional medicine in the treatment
of diabetes, piles and snake bites [32]. Another plant, Vitis amurensis Rupr. (Vitaceae) is
a wild-growing grape, widely distributed in Korea, China and Japan. Its fruit has been
used as a raw material for juice and wine in three different countries. The root and stem
have been used to relieve pain from injury, rheumatalgia, stomach ache, neuralgic pain and
abdominal pain [74].
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Caragana sinica (Buchoz) Rehd. (Fabaceae), a deciduous shrub, is widely distributed
in Korea, China and Japan. Its dried roots have been used in the treatment of asthenia
syndrome, vascular hypertension, leukorrhagia, bruises, contusion, rheumatism, neuralgia,
arthritis and migraine as a folk medicine [19]. The underground parts of C. chamlague,
which have been used in Korea and China as folk medicine, are purported to be effective
against neuralgia, rheumatism and arthritis [75].

3. Biological Properties of Viniferin
3.1. Anti-Inflammatory Effects

A study by Vion et al. [76] reported that trans ε-viniferin decreased the amount of
inflammatory mediators, such as TNFα and IL-6. In another study on knee damage as-
sociated with arthritis, it was reported that the active constituents of Vitis thunbergii var.
taiwaniana, including resveratrol, hopeaphenol and (+)-ε-viniferin, significantly scavenged
2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and inhibited prostaglandin E2 (PGE2)
production in lipopolysaccharide (LPS)-induced penehyclidine hydrochloride (PHC)s.
Additionally, there was a significant decrease in serum PGE2 and 2-18F-fluoro-2-deoxy-D-
glucose (18F-FDG) levels in LPS-induced acute inflammatory arthritis in rabbits [53]. In a
recent study, ten oligostilbenes extracted from the seed of Paeonia suffruticosa showed pro-
tective effects at low concentrations on osteoarthritis chondrocytes. One of the compounds
is trans-viniferin, which tends to be most effective in promoting the expressions of Collagen
Type II Alpha 1 Chain (COL2A1) and SRY-Box Transcription Factor 9 (SOX9) [38]. On the
other hand, the oral and IV administration of α-Viniferin at >30 mg/kg and >3 mg/kg,
respectively, showed significant anti-inflammatory effects on carrageenin-induced paw
edema in mice. The compound also showed an inhibitory effect on COX-2 activity and a
very weak inhibitory effect on COX-1 activity [24]. These findings are supported by the
report by Chung et al. [77], who investigated the anti-inflammatory effects of α-viniferin
and established that it inhibits ERK-mediated STAT-1 activation in IFN-γ–stimulated
macrophages, thus downregulating STAT-1-inducible inflammatory genes [77].
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Among the many oligostilbenoids extracted from Vitis heyneana, α-viniferin has the
highest potential inhibitory activities. Overall, LPS-induced COX-2 expression and PGE2
production were suppressed, nitric oxide (NO) release was significantly reduced in a dose-
dependent manner and the activation of the transcription factor of NF-κB was inhibited [47].
A study on Vitis vinifera root extract, including seven stillbenoids (resveratrol, piceatannol,
trans-ε-viniferin, ampelopsin-A, miyabenol C, R-2-viniferin (Vitisin A) and R-viniferin
(Vitisin B)) established that the extract has potent free-radical-scavenging activity in terms
of DPPH, hydroxyl and galvinoxyl, in a dose-dependent manner; the superoxide radi-
cals are also scavenged when the extract is used in high concentrations. Additionally, it
protects against DNA damage caused by hydrogen peroxide while downregulating pro-
inflammatory gene expression, including IL-1β and iNOS in cultured macrophages [59].

3.2. Antidiabetic Effects

An earlier study established that the methanolic extracts from the wood and bark of
Cotylelobium melanoxylon could inhibit elevations in plasma glucose following sucrose load-
ing in rats and ameliorates triglyceride elevation following olive-oil loading in mice. In the
study, cis- (+)-ε-viniferin was isolated from the bark extract, while (+)-ε-viniferin was iso-
lated from both wood and bark extracts [72]. The ε-viniferin caused a significant reduction
in the concentrations of fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG)
and low-density-lipoprotein cholesterol (LDL-C). Additionally, Liu et al. [78] found that the
glucose-tolerance and liver- and kidney-damage indices, such as alanine aminotransferase
(ALT), aspartate aminotransaminase (AST), creatinine (CR) and blood urea nitrogen (BUN)
of diabetic rats also improved. Furthermore, the activation of AMP-activated protein kinase
(AMPK) was also increased and the histopathological changes were attenuated in the livers
of diabetic rats by binding to the hinge region between the α- and β-units of AMPK, as well
as interacting with the active site of AMPK [78].

The progression of diabetes mellitus (DM) can be ameliorated by inhibiting α-glucosidase,
which delays glucose absorption and lowers postprandial blood-glucose levels. Lulan
et al. [27], who extracted α-viniferin from Dipterocarpus littoralis, established its antidiabetic
potential, which acts by inhibiting the activities of the α-glucosidase and α-amylase of rats in
the intestine. The study compared the extract’s activity with that of acarbose as a standard.
The finding was also supported by an earlier study by Morikawa et al. [46], who reported
that oral (+)-α-viniferin showed an inhibitory activity against plasma glucose elevation in
sucrose-loaded rats at 100–200 mg/kg through the inhibition of intestinal α-glucosidase and
aldose reductase activities [46].

In another study, for the first time, acetone and ethanol extracts from the stem bark of
Hopea ponga (Dennst.) Mabb were tested for their antidiabetic activity. Both (−)-ε-viniferin
and (−)-α-viniferin, which were among the ten compounds isolated, showed inhibition
towards the activities of α-glucosidase and α-amylase, with prominent antiglycation activity
seen. It was also observed that α-viniferin can increase glucose uptake, mainly due to
AMPK upregulation, which eventually leads to the translocation of the glucose transporter
(GLUT-4) into the cell membrane [32]. A recent study by Oranje et al. [79] investigated
sodium-glucose co-transporter 1 (SLGT 1) and 2 (SLGT 2), which are targets for glycemic
control in type 2 diabetes mellitus. They established that the isomers of the resveratrol
dimers (+)-ε-viniferin and (−)-ε-viniferin inhibit the sodium-glucose co-transporter, while
(+)-ε-viniferin inhibits SLGT 1 by 44%, with little inhibition shown towards SLGT2. Never-
theless, by contrast, (−)-ε-viniferin did not inhibit SGLT1, but did show a 35% inhibition
of SGLT2. Another study on racemic forms of trans-δ-viniferin and trans-ε-viniferin also
found that both had higher efficacy in inhibiting pancreatic alpha-amylase compared to
pure enantiomers [9].

3.3. Anticancer Effects

Most studies on resveratrol oligomers, including viniferin, are focused on its anticancer
activity. It has been reported that a combination of a first-generation platinum complex,
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the anti-cancer drug cisplatin (CDDP), and ε-viniferin, a natural antioxidant, has strong
apoptotic effects on the glioma cell lines (C6) when used in low concentrations, compared
to using the compound alone [80]. Previously, researchers have reported that the apoptosis
of hepatocellular carcinoma (HepG2) cells may be induced by using a combination of
vincristine and ε-viniferine [81]. Their finding was supported by another study, which
investigated the anticancer activity of the combination of vincristine and ε-viniferine
loaded with PLGA-b-PEG nanoparticles and also established that the combination induces
apoptosis in HepG2 cells [80].

Another study was conducted on the anticancer activity in human hepatocellular car-
cinoma (HCC) cell lines p53 wild-type HepG2 and p53-null Hep3B. R2-viniferin inhibited
HepG2 but not Hep3B, arrested the cell cycle at G2/M and increased the intracellular reac-
tive oxygen species (ROS), caspase 3 activity and the ratio of Bax/Bcl-2 proteins, indicative
of apoptosis [82] (Figure 4). R2-viniferin was also tested on the canine glioblastoma cell line
D-GBM and the canine histiocytic sarcoma cell line DH82. The author used Vineatrol®30,
which contains resveratrol and its oligomers (R2-viniferin and hopeaphenol) which were
confirmed to exert a potent anti-proliferative effect on the two canine tumor-cell lines.
The effect, at least in D-GBM cells, is due to the induction of apoptosis via the activation
of caspase 9 and 3/7 [83]. Subsequently, the researchers performed a comparison of the
anticancer activity of R-viniferin and resveratrol against the prostate cancer cell line lymph
node carcinoma of the prostate (LNCaP). They established that both compounds can inhibit
cell growth and arrest the G1 phase cell cycle, although R-viniferin was more potent and
tended to increase the apoptotic cellular fraction, along with increasing the activity of
apoptosis-associated enzymes [14].

Additionally, α-viniferin was also reported to be effective against colon cancer cell
lines (HCT-116, HT-29, Caco-2) by blocking the S-phase of the cell cycle. Nevertheless, no
apoptotic effect was induced [84]. Additionally, α-viniferin has antiproliferative effects
against chronic myelogenous leukemia (CML). In vitro, the said compound, along with
resveratrol, significantly inhibited the proliferation of K562 cells in both dose- and time-
dependent manners by reducing the expression of the BCR-ABL protein. A high dose
of α-viniferin caused serious cell death, cell fragmentation, and nuclei lysis, indicating
apoptosis [85].

A study on the anticancer activity of α-viniferin against human prostate cancer (PCa)
cells reported that it has antiproliferative effects on LNCaP, DU145 and PC-3 cancer cells,
depending on the dose and timing of treatment, while conferring strong cytotoxicity in non-
androgen-dependent PCa cells. The compound inhibited AR downstream expression in
LNCaP cells and inhibited the activation of the GR signaling pathway in the DU145 and PC-
3 cell lines. Additionally, it also induced cancer cell apoptosis through the AMPK-mediated
activation of autophagy and inhibited the expression of the glucocorticoid receptor (GR) in
castration-resistant prostate cancer (CRPC) [86]. In terms of testing the anticancer activity
on human melanoma cells, ε-viniferin blocks the cell cycle of melanoma cells in the S-phase
by modulating the key regulators of the cell cycle, i.e., cyclins A, E, D1 and their cyclin–
dependent kinases 1 and 2, which are associated with the induction of cell death, including
apoptosis and necrosis [87].

On the other hand, a study [29] discovered that (+)-α-viniferin and resveratrol pos-
sessed antiproliferative action against SK-MEL-28 melanoma cells, where (+)-α-viniferin
was reported to be more potent. The compound arrests the G1 cell cycle, as well as induc-
ing DNA damage followed by the induction of apoptosis in SK-MEL-28 cells, which was
confirmed by an increased expression of γ-H2AX and cleaved caspase-3. Additionally,
(+)-α-viniferin and resveratrol significantly decreased the expression of cyclin B1, which is
important for G2/M phase transition in the cell cycle.
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an increase in intracellular reactive oxygen species (ROS), thereby inhibiting the p38/ERK MAPK
signaling pathway, arrests the cell cycle in G2/M and elevates the ratio of Bax/Bcl-2 proteins,
predictive of apoptosis. Furthermore, the bioactive compound can also aid in lowering the level of
pro-inflammatory cytokines, such as TNFα and IL-6. Abbreviations: ROS, Reactive oxygen species;
MAPK, Mitogen-activated protein kinase; ERK, Extracellular signal-regulated kinase; JNK, Jun
N-terminal Kinase; GSH, Glutathione; LPO, Lipid peroxides; GPx, Glutathione Peroxidase; SOD,
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lymphoma-2; Cyt-c, Cytochrome complex; Bax, Bcl-2-associated X Protein.

3.4. Anti-Angiogenic Effects

Atherosclerosis can be prevented by protecting the vascular endothelial cells (VECs).
In fact, low concentrations of ε- and δ-viniferin significantly stimulate wound repair via
nitric oxide (NO) production, the activation of endothelial NO synthase and the induction of
sirtuin 1 (SIRT1) and HO-1 expression [88]. These findings were supported by another study,
which confirmed the inhibition of vascular arginase activity involved in the production of
NO by ε-viniferin [89]. The anti-angiogenic effects of α-viniferin were observed when it
inhibited mitogen-induced human-umbilical-vein endothelial cell (HUVEC) proliferation
through the hypophosphorylation of retinoblastoma protein. It also suppressed mitogen-
induced HUVEC adhesion, migration, invasion, and microvessel outgrowth, as mediated
by the downregulation of cell-cycle-related proteins, vascular endothelial growth factor
receptor-2 (VEGFR-2), and matrix metalloproteinase-2. The inactivation of the VEGFR-
2/p70 ribosomal S6 kinase signaling pathway was involved in the α-viniferin-mediated
modulation of endothelial cell responses [20].

In addition, (+)-vitisin A can effectively reduce 24-hour systolic and diastolic blood
pressures following a single oral dose administered at spontaneously hypertensive rats
(SHRs). It also exhibits anti-angiotensin-converting enzyme (ACE-I) and vasodilating
effects against phenylephrine-induced tensions in an endothelium-intact aortic ring of
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the SHRs [90]. In addition to (+)-vitisin A, it was confirmed that ε-viniferin possessed
similar activity. The compound induces the proliferation and wound repair in VECs via
NO production and is involved in the protection of VECs from oxidative-stress-induced
cell death. It also inhibited tACE activity in vitro and eventually reduced blood pressure to
improve the cardiac mass in SHRs [91].

3.5. Anti-Melanogenic Effects

Facial hyperpigmentation was reported to be improved following the skin application
of topical products containing α-viniferin on the skin. It has been reported that α-viniferin
inhibited melanin production in α-melanocyte-stimulating hormone (α-MSH)-, histamine-
or cell-permeable cAMP-activated melanocyte cultures. It also decreased the melanin
index on facial melasma and freckles in humans. The α-viniferin accelerated protein kinase
A (PKA) inactivation via the reassociation between catalytic and regulatory subunits in
cAMP-elevated melanocytes, a feedback loop in the melanogenic process. Consequently,
the cAMP/PKA-signaled phosphorylation of cAMP-responsive element-binding protein
(CREB) coupled with the dephosphorylation of cAMP-regulated transcriptional co-activator
1 (CRTC1), which was inhibited; hence, the expression of the MITF-M or Tyro gene was
downregulated with decreased melanin pigmentation [92].

3.6. Anti-Obesity Effects

A study compared both the in vitro and the in vivo anti-obesity effect of ε-viniferin
and t-resveratrol. The ε-viniferin was confirmed to have a higher anti-adipogenesis activity
in 3T3-L1 cells. It significantly suppressed lipid accumulation and the expression of the
adipogenesis marker gene, PPAR gamma. When compared with a high-fat-diet control
mice group, there was reduced body weight, as well as liver triglyceride levels following
ε-viniferin treatment. In the meantime, the levels of plasma insulin and leptin were
significantly improved [93]. The (+)-ε-viniferin extracted from the roots of Vitis thunbergii
var. taiwaniana 1 (VTT-R) significantly reduces the lipid deposits in 3T3-L1 adipocytes and
inhibits 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (Figure 5). The compound
is believed to lower the body weights of mice, the weight ratio of mesenteric fat, blood
glucose, total cholesterol, and low-density lipoprotein in high-fat-diet-induced obesity
groups [52].

3.7. Antidiarrheal Effects

Yu et al. [93] reported that trans-ε-viniferin and R2-viniferin possess antisecretory
effects and are useful in the treatment of diarrhea. Additionally, the compound inhibited
the activation of intestinal calcium-activated chloride channel (CaCC) when tested on a
neonatal mouse model of rotaviral diarrhea. It suppressed diarrhea without affecting the
rotaviral infection. Furthermore, the trans-ε-viniferin inhibited the physiologically relevant,
long-term CaCC current following agonist stimulation, without affecting cytoplasmic Ca2+

signaling, with both compounds believed to inhibit short-circuit currents in the mouse
colon [93]. Subsequently, the author investigated the role of trans-δ-viniferin in rotavirus-
infected diarrhea and inflammatory-bowel-syndrome diarrhea IBS-D. They found that the
resveratrol dimer could inhibit TMEM16A activity in TMEM16A-expressed Fischer rat
thyroid (FRT) cells, as well as preventing Ca2+-activated Cl− current in HT-29 cells and
in the colonic mucosa. Moreover, the compound prevents diarrhea caused by rotaviral
infection and reduces the pellet number in IBS-D mice [94].
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3.8. Neuroprotective Effects

Alzheimer’s disease (AD) affects many cellular and molecular targets; therefore, its
therapy requires multi-target molecules. Caillaud et al. [95] evaluated the effects of trans-
ε-viniferin as a neuroprotective agent on transgenic APPswePS1dE9 mice. They reported
that the compound can cross the blood–brain barrier and reduce the size, as well as the
density, of amyloid deposits to ameliorate astrocyte and microglial reactivity. The effect was
shown only after 3-to-6-month-old mice were intraperitoneally injected (10 mg/kg) every
week [96]. Additionally, a study found that AD may be caused by the accumulation and
aggregation of abnormal b-amyloid peptide and suggested that the inhibition of b-amyloid
(Ab) fibril formation is helpful in treating AD. The researchers reported that ε-viniferin
glucoside inhibits Ab (25–35) fibril formation in vitro. Additionally, the effects of ε-viniferin
on the aggregation of the full-length peptides Ab (1–40) and Ab (1–42)] and on b-amyloid-
induced toxicity was investigated in PC12 cells; ε-viniferin was confirmed to inhibit Ab
cytotoxicity [96].

Furthermore, (+)-α-viniferin was also confirmed to be one of the most important
natural constituents to exhibit anti-acetylcholinesterase (AChE) activity, being a significantly
specific, reversible and non-competitive AChE inhibitor. Overall, AChE inhibitors increase
the efficiency of cholinergic transmission by preventing the hydrolysis of released ACh,
allowing more ACh to become available at the cholinergic synapse [75]. In addition, α-
viniferin can prevent and treat AD by enhancing alpha-secretase ADAM10 gene expression.
Consequently, it prevents the formation of toxic amyloid beta peptides, but also provides
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a neuroprotective fragment of the amyloid precursor protein (sAPPalpha). However, a
challenge remains due to its limitation in crossing the blood–brain barrier [21], making the
design of new formulations a necessity in the future.

In addition to AD, there is also an inherited neurodegenerative disorder known as
the Huntington disease (HD). HD is an incurable disease occurring due to an abnormal
polyglutamine expansion in the protein named Huntingtin. A study demonstrated that
trans-(−)-ε-viniferin can increase the levels of mitochondrial Sirtuin 3 (SIRT3), activates
AMPK and protects cells in models of HD [97]. Moreover, ε-viniferin can upregulate
SIRT3 expression, which promotes FOXO3 deacetylation and nuclear localization as well as
increasing ATP production and decreasing ROS production. The compound also maintains
mitochondrial homeostasis, thus inhibiting rotenone-induced cell apoptosis, making ε-
viniferin a potential treatment for neurodegenerative disorders [98].

3.9. Antioxidant Effects

A recent study demonstrated that scratched vascular endothelial cells (VECs) treated
with resveratrol (10 µM), ε-viniferin (10 µM) and δ-viniferin (5 µM) significantly reversed
decreased cell viability after the addition of hydrogen peroxide to the cells, indicating
that these compounds are resistant to oxidative stress by increasing the catalase pro-
tein level [88]. In addition, ε-viniferin is a potent antioxidant when tested on musca-
dine grape (Vitis rotundifolia) hairy root cultures, acting via its radical scavenging capac-
ity [50]. Furthermore, α-viniferin exhibited antioxidant activity in cupric ion-reducing
antioxidant-capacity, ferric-reducing antioxidant-power, DPPH scavenging, and 2-phenyl-
4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical-scavenging assays. The author con-
cluded that this involved redox-mediated mechanisms, especially electron and H+-transfer,
as well as non-redox-mediated mechanisms, including Fe2+-chelation or radical adduct
formation [99].

The dimer of resveratrol, trans-δ-viniferin, exhibited moderate antioxidant activity
when tested using in vitro model systems, including hydroxy radical scavenging, DPPH
and lipid peroxidation. Among the oxygen radicals, the hydroxyl radical is the most
reactive and causes great damage to living cells due to its ability to react with various
molecules, such as phospholipids, DNA and organic acids. The effects of this compound on
human erythrocytes have also been confirmed to protect red blood cells from hemoglobin
oxidation [100,101].

trans- and cis-ε-viniferins were among the stilbene derivatives isolated from the seeds
of Paeonia lactiflora. The compounds were evaluated against the 2-deoxyribose degradation
and rat-liver microsomal lipid peroxidation induced by the hydroxyl radical generated
via a Fenton-type reaction. It was found that trans-ε-viniferin significantly inhibited the
degradation of 2-deoxyribose and rat-liver microsomal lipid peroxidation, whereas cis-ε-
viniferin exerted only moderate antioxidant activity [102].

3.10. Antiplasmodic Effects

Malaria is a life-threatening disease caused by parasite species that can infect humans.
Among these, Plasmodium falciparum and Plasmodium vivax are the most dangerous. It has
been reported that in 2020, nearly 50% of the world’s population was at risk of malaria [103].
To date, many attempts have been made to both prevent and treat malaria, one of which
involved the use of medicinal herbs in traditional remedies. The World Health Organi-
zation (WHO) has recommended preventive strategies to combat the disease by using
antimalarial drugs. Many studies are conducted to determine suitable compounds in plants
as health interventions. It has been reported [27] that the bioactive compounds isolated
from Dipterocarpus littoralis, especially α-viniferin, has good antiplasmodiac activity. Based
on their comprehensive spectrum analyses, including IR, 1D, and 2D NMR, as well as
comparisons with research data, the structure of α-viniferin (referred to as “Compound
1”) was determined. It showed alpha-glucosidase and alpha-amylase inhibitory activities
with 50% inhibitory concentration (IC50) values of 256.17 and 212.79 µg/mL respectively.
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The antiplasmodial activity was tested in vitro against the plasmodium falciparum strain
3D7 at 100 g/mL and demonstrated substantial antiplasmodial inhibitory activity (IC50
value of 2.76 g/mL). Based on the findings, the isolated extract from Dipterocarpus lit-
toralis, α-viniferin, is a potential source to be developed into an antiplasmodial agent [27]
(Figure 6).
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Figure 6. The bite of a female Anopheles mosquito carrying the plasmodium parasite transmits
malaria to humans. When Sporozoites are injected into the bloodstream, they travel to the hepatocytes
of the liver, where they mature into schizonts that rupture and release merozoites. Merozoites invade
erythrocytes in order to multiply asexually. It was found that α-viniferin inhibited plasmodium
in vitro; consequently, it has the potential to be exploited and enhanced for the control of plasmodium.

3.11. Antimicrobial Effects

According to the WHO, antimicrobial resistance (AMR) is one of the most significant
threats to global public health. Antimicrobial resistance (AMR) develops when bacteria,
viruses, fungi and parasites evolve over time and lose their ability to respond to antibiotics,
making infections more difficult to treat, as well as raising the risk of disease transmission,
severe illness, and death [104].

According to Schnee et al. [105], crude extracts of Vitis vinifera canes have considerable
antifungal activities. The six identified compounds (ampelopsin A, hopeaphenol, trans-
resveratrol, ampelopsin H, ε-viniferin, and E-vitisin B) are active against Plasmopara viticola,
the pathogen considered the most damaging, affecting grapevines. Moreover, ε-viniferin
exhibited low antifungal activity against Botrytis cinerea. Nevertheless, none of the identified
compounds has been reported to inhibit the germination of E. necator [105].

The study conducted by Yadav et al. [106] indicated that viniferin compounds re-
strained S. pneumoniae growth and destroyed bacteria in biofilms. Viniferin treatment
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impairs the membrane integrity of biofilm bacteria, according to scanning electron mi-
croscopy (SEM) examination and live/dead biofilm staining of pre-established biofilms.
Viniferin affects bacterial cell permeability and eventually kills bacteria, according to crystal
violet absorption, total protein, and DNA and RNA release. Therefore, viniferin’s fatal
action is purported to cause a change in cell-membrane permeability. Although viniferin is
commonly reported to have anti-cancer and anti-obesity effects, the investigators focused
on its unique antibacterial and antibiofilm against S. pneumonia, which make viniferin and
its derivatives good candidates for the development of novel pneumococcal antimicrobial
drugs [106].

Another study reported that the resveratrol dimer (dehydro-δ-viniferin), a natural
stilbenoid with a benzofuran core, is a potential antimicrobial agent against Gram-positive
bacteria, especially the foodborne pathogen, Listeria monocytogenes [107]. Listeria monocyto-
genes can infect both humans and animals, although it is difficult to control the pathogen
due to its ability to build biofilms. The virus has been isolated from a wide range of
foods, including raw milk, cheese, raw meat products and salads, making it extremely
common in food production and distribution. This bactere can cause several diseases,
mainly gastroenteritis, endocarditis, rhombencephalitis, invasive listeriosis, septicemia,
meningitis and neonatal infections; it can also lead to abortion [108]. Mattio et al. [107]
utilized various protocols to derive stilbenoid-derived 2,3-diaryl-5-substituted benzofurans
and found that key stages, such as the demethylation of phenolic groups, are required.
Staphylococcus aureus (S. aureus) ATCC29213 was used to test antibacterial activity and the
results showed that 5,5′-(2-(4-hydroxyphenyl)benzofuran-3,5-diyl)bis(benzene-1,3-diol)
analogue is an important potential compound for further investigation.

In addition, Rahim et al. [109] tested another form of viniferin, α-viniferin, as a
potential antibacterial agent against S. aureus, a multidrug-resistant bacterium that is
prone to serious healthcare-associated and community-acquired infections globally. The
nasal-colonization bacterium can result in a variety of diseases, ranging from mild to
life-threatening, including pneumonia, chronic osteomyelitis, and bacteremia. The aim
of the study was to use culture-based procedures to explore the antibacterial efficiency of
α-viniferin against the normal nares microflora, S. aureus and methicillin resistance staphy-
lococcus aureus (MRSA). The experiment involved a ten-day clinical trial and indicated
that α-viniferin demonstrated 50% minimum inhibitory concentrations (MIC50 values) of
7.8 g/mL in culture broth medium throughout the ten-day clinical experiment. A sterile
cotton swab stick was used to deliver α-viniferin three times a day for ten days in the nares.
The nasal-swab samples were collected at baseline and after 10 days and evaluated. The
number of S. aureus was greatly reduced in the cultures, as further confirmed by the reverse
transcriptase polymerase chain reaction (RT PCR)-based analysis (0.01). Furthermore, the
16S ribosomal RNA-based amplicon-sequencing study revealed a reduction from 23.99
to 51.03% in the S. aureus at the genus level. The findings showed that α-viniferin is an
effective antibacterial agent against the Staphylococcus group, especially against S. aureus
and MRSA, but showed no activity against other nasal microflora. Furthermore, α-viniferin
enhanced skin moisture content to maintain skin plasticity and barrier integrity in the
absence of toxicity. In conclusion, the research used a clinical trial to demonstrate the
clinical effectiveness of viniferin as a possible candidate against S. aureus [109].

According to Mattivi et al. [110], viniferins are a small group of trans-resveratrol
oligomers, detected in the Vitaceae family, with antifungal characteristics, thus allowing
plants to resist attacks from pathogens. The study was performed by isolating and char-
acterizing the entire class of viniferins accumulated in the leaves of hybrid Vitis vinifera
genotypes infected by Plasmopara viticola. Six days after infection, the infected leaves of
resistant plants were collected, extracted with methanol and pre-purified using ENV+ and
Toyopearl HW 40S resins by flash chromatography.

Seven dimers (six stilbenes and one stilbenoid) were detected in infected leaves.
Ampelopsin D, quadrangularin A, E-ε-viniferin and Z-viniferin were four compounds new
to the grapevine. Next, four trimers (three stilbenes and one stilbenoid), two of which
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(Z-miyabenol C and E-cis-miyabenol C) were found that were new to the grapevine, as well
as three tetramer stilbenoids, isohopeaphenol, ampelopsin H, all new to the grapevine, as
well as a vaticanol C-like isomer. Other preformed phenolics are structurally changed in
tissues infected with P. viticola, as evidenced by the isolation of a dimer derived from the
condensation of (+)-catechin with trans-caffeic acid [110].

Ultra-high-performance liquid-chromatography–mass -spectrometry (UHPLC-MS)
was used to evaluate stilbene-enriched extracts from the waste of Vitis vinifera (cane, wood,
and root). Eleven stilbenes were identified (ampelopsin A, (E)-piceatannol, pallidol, (E)-
resveratrol, hopeaphenol, isohopeaphenol, (E)-ε-viniferin, (E)-miyabenol C, (E)-ω-viniferin,
R2-viniferin and r-viniferin) and quantified. The IC50 for Plasmopara viticola sporulation
growth was calculated. The R-viniferin had the lowest IC50 (highest efficacy) against
Plasmopara viticola, followed by hopeaphenol and R2-viniferin. The antifungal activity
of the stilbene extracts was highest in the wood extract, followed by the root extract.
Overall, the findings indicate that the four most active chemicals (R-viniferin, R2-viniferin,
hopeaphenol, and isohopeaphenol) of the stilbene complex combinations derived from the
Vitis vinifera waste found in both wood and roots can be exploited for the development of
natural fungicides as a low-cost source of bioactive stilbenes [111].

3.12. Antihelmintic Effects

Viniferin has been investigated for its potential antihelminthic effects. Roy and Giri [22]
reported that α-viniferin is an active compound found in Carex baccans (C. baccans) L., a
plant known to have anti-diabetic, anti-inflammatory and anticancer activities. Different
tribes in Northeast India have traditionally consumed C. baccans to treat intestinal worm
infections. In in vitro tests, helminths were exposed to different amounts of α-viniferin
(50, 100, and 200 M/mL in physiological buffered saline), followed by measurements of
motility and mortality.

The activity of vital tegumental enzymes, such as acid phosphatase, alkaline phos-
phatase and adenosine triphosphatase, was reduced in parasites exposed to α-viniferin in
histochemical and biochemical studies. The extensive structural and functional alterations
observed in the treated parasites are indicative of the compound’s cestocidal activity. The
deformation and destruction of suckers seen in resveratrol-exposed Raillientina echinoboth-
rida (R. echinobothrida) add to the phytochemical’s anthelmintic potential. The NOS and
AChE activities change in R. echinobothrida following exposure to resveratrol and α-viniferin
imply that both phytochemicals have anthelmintic potential [112].

4. Industrial Application of Viniferin

Stilbenoids are a group of organic compounds with C6-C2-C6 as the structural formula.
They are found in a range of plant species, including Vitis vinifera; as with those in grapes,
they are naturally occurring. Resveratrol is the most prominent and frequently investigated
stilbenoid [4], while viniferins are also known as resveratrol derivatives [5]. Some resvera-
trol derivatives, such as piceatannol, pterostilbene and ε-viniferin have recently piqued
the interest of industries [113]. Stilbenes are a family of phenolic secondary metabolites
known for their important roles in plant protection and human health [114]. The poten-
tial applications of viniferins in medical technology and pharmaceutical industries are
essential to health, since resveratrol derivatives have a wide range of positive health effects
(anti-inflammatory, antidiabetic, anticancer, antiangiogenic, antimelanogenic, anti-obesity,
anti-diarrheal and antioxidant). For example, a substantial number of traditional Chinese
medications (TCM) have been shown to contain stilbene α-viniferin and confer some effects
on leukemic cells. According to the National Cancer Institute Developmental Therapeu-
tics Program records (NSC 655524), leukemia and central-nervous-system cell lines are
responsive to α-viniferin treatments in vitro.

In the agricultural industry, numerous studies have shown that vine shoots, one of
the most abundant winery wastes, are useful sources of bioactive compounds, such as
stilbenes. The predominant stilbenoids in vine shoots are trans-resveratrol and ε-viniferin,
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whose content varies depending on numerous intrinsic and extrinsic factors [114]. Since
other sources of stilbenoids, such as peanuts, pistachios, peanut butter and chocolates, can
also offer health benefits, consuming them in ideal quantities is recommended [58]. Given
the potential and influence of stilbenoids, particularly on plant physiology, the agriculture
sector is the most affected in terms of their usage. Overall, when contemplating the
industrial applications of stilbenoids, for example, the antifungal properties of resveratrol
in various leaves and berries are critical [115].

Viniferin is used for both its nutraceutical and its cosmeceutical effects. According to
Malinowska et al. [116], grape canes are viticulture-waste biomasses that contain bioactive
polyphenols that are useful in cosmetics. Although various studies have examined the cos-
metic properties of E-resveratrol, only a few have investigated the potential of ε-viniferin,
the second most abundant ingredient in grape cane extracts (GCE). GCE from polyphenol-
rich grape types can be used as a multifunctional cosmetic component. The skin-whitening
potential of GCE was compared to those of pure ε-resveratrol and ε-viniferin using a
tyrosinase-inhibition assay and the activation capability of the cell-longevity SIRT1 protein
of GCE. Overall, the current findings allowed the GCE from polyphenol-rich types to be
considered as multifunctional cosmetic components, in compliance with green chemistry
principles. For example, the Vitis vinifera-derived ingredients included in the safety assess-
ment are reported to have many possible functions in cosmetic formulations. Vitis Vinifera
(grape) seed extract is reported to function as an anti-caries, anti-dandruff, anti-fungal,
anti-microbial, antioxidant, flavoring, light stabilizer, oral care, oral-hygiene and sunscreen
agent. A panel that reviewed the safety of Vitis vinifera-derived components (n = 24) de-
termined that their application is safe in current cosmetics use and concentrations. The
chemicals are most commonly applied as skin conditioners in cosmetics. Antioxidants,
flavoring agents, and/or colorants are confirmed to be present in some of these components.
Additionally, certain grape compounds have been evaluated for safety as cosmetic additives
in the past; others have not [117].

5. Structurally-Related Viniferin Molecules for New Drug Discovery and Development

Various nomenclature and structures exist in the literature, which complicate the iden-
tification and classification of stilbenoids, particularly viniferins. Viniferins are oligomers
of resveratrol; however, there are two stereochemical centers on the dihydrofuran ring,
allowing the formation of four potential stereoisomers. The naming of cis and trans-
conformations for hydrogen is an area of confusion and is further complicated when
stilbenoids also contain a trans- (E) or cis- (Z) double bond. Determining the absolute con-
figuration (the difference between (+) and (−) viniferins) is more challenging. Due to the
challenges in assigning absolute configurations to stilbenoid oligomers, many compounds
have been reported, with only their relative configurations assigned thus far [62].

E-δ-viniferin (1) (E-resveratrol dehydrodimer) has been reported to be present in
V. vinifera cell-suspension cultures, leaves and wine [115]. Its glycosides, E-δ–viniferin-
11-O-β-D glucopyranoside (1a) (resveratrol dehydrodimer 11-O-β-D-glucopyranoside)
and E-δ-Viniferin 11′-O-β-D-glucopyranoside (E-resveratrol dehydrodimer 11′-O-β-D-
glucopyranoside) (1b), are reported from V. vinifera cell-suspension cultures [118]. Z-
δ-viniferin (4) and Z-ε-viniferin (5) are reported from V. vinifera leaves following UV
irradiation, while (+)-E-ε-viniferin (6) has been reported in V. heyneana stems and V. vinifera
stems, as well as leaves [110].
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biological activities, some methylated viniferins (14–16) were synthesized and character-
ized by spectral data [122]. 

Furthermore, the presence of ε-viniferin diol (Betulifol B) (12) was reported in V.
betulifolia stems [120] and Viniferifuran (13) (Amurensin H) was reported in V. amurensis
roots [121].

Several research groups have focused on the synthesis of new resveratrol-derived
chemical scaffolds with improved pharmacodynamics and pharmacokinetics with respect
to the natural precursors. To develop synthetic procedures in order to investigate their
biological activities, some methylated viniferins (14–16) were synthesized and characterized
by spectral data [122].
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Recently, a collection of dehydro-viniferin analogues were synthesized and evaluated
for their antimicrobial activities [107].
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A chemical-structure analysis indicated that resveratrol was a polyphenol biphenyl,
and that multiple hydroxyl groups affected its biological activities as well as cis- or trans-
structures [123–125]. Resveratrol oligomers are characterized by the polymerization of two
to eight resveratrol units and are the largest group of oligomeric stilbenes [126]. Resveratrol
oligomer polyphenols were mainly isolated from five plant families, namely Vitaceae,
Leguminosae, Gnetaceae, Dipterocarpaceae and Cyperaceae [126–129]. Nevertheless, al-
though several studies showed various biochemical and pharmacological properties of
resveratrol oligomers, so far, no systematic review has been conducted on these compounds.
Their intricate structures and diverse biological activities are of significant interest for drug
research and development and may provide promising prospects as cancer-preventive and
therapeutic agents [84].

Resveratrol dimers: ε-viniferin (A) δ-viniferin (B), Heimiol A (23), Pallidol (24), Bal-
anocarpol α-H (25), Ampelopsin β-H (26), Malibatol A (27) and Malibatol B (28). The
phenol ε-viniferin, first isolated from Vitis vinifera (Vitaceae), is classified as a model for
its biosynthesis from resveratrol [127]. Similar to resveratrol, ε-viniferin also attracted
attention as a phytoalexin and was reported to have antifungal, antibacterial and antiviral
activities. Furthermore, δ-viniferin, an isomer of ε-viniferin, only exists in plants in low
concentrations.
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Resveratrol trimers: 𝛼-viniferin (C), miyabenol C (29), suffruticosol A 𝛼-H (30), suf-

fruticosol B 𝛽-H (31) and gnetin H (32). Resveratrol trimers are formed by three resveratrol 
monomers through head-to-ligation or circular structure. The 𝛼-viniferin is a stilbene tri-
mer isolated from Caragana snice, Caragana chamlagu and the stem bark of Dryobalanops 
aromatica [130]. 
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Resveratrol trimers: α-viniferin (C), miyabenol C (29), suffruticosol A α-H (30), suffru-
ticosol B β-H (31) and gnetin H (32). Resveratrol trimers are formed by three resveratrol
monomers through head-to-ligation or circular structure. The α-viniferin is a stilbene
trimer isolated from Caragana snice, Caragana chamlagu and the stem bark of Dryobalanops
aromatica [130].
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from Vitis vinifera, a dimer, trans-ε-viniferin (33), as well as two tetramers, R2-viniferin
(34) and r-viniferin (35) were obtained and evaluated for their cytotoxic activity to human
hepatocellular carcinoma (HCC) cell lines p53 wild-type HepG2 and p53-null Hep3B. The
distinctive toxicity of R2-viniferin on HepG2 was reported [82]. R-viniferin, also known as
vitisin B [131] was found in a variety of grapevine-plant species [62].
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Overall, the focus of this review is on the chemistry and biological action of viniferin,
as well as the development of consistent and ecologically friendly ways of commercializing
the natural molecule on a large scale, since resveratrol has significant market potential.
According to a survey in the Global Resveratrol Market Research Report (2020), the value
of the global resveratrol market will reach USD 99.4 million by the end of 2026, as cited in
Noviello et al. [114]. Only a small number of the viniferin-derived compounds mentioned
above underwent pre-clinical research, which includes very few pharmacological studies.
Researchers could forecast a few potential compounds in the near future, at least using
in-silico studies; subsequently, they could work on them to develop molecules for clinical
studies of various disorders. Future views should therefore emphasize the development
of new therapeutics in relation to resveratrol-derived molecules, i.e., viniferins, which are
capable of treating various diseases, as crucial sources of pharmaceuticals, as well as in
other industries that can benefit humans. Therefore, further research may help to exploit
its properties and its potential development into phyto-pharmaceuticals. This research will
also have a significant impact on our understanding and provide the tools for novel and
successful drug-discovery strategies.
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6. Conclusions

The current review presents an all-inclusive literature search on various of viniferin
studies through the years, especially on its anti-inflammatory, antipsoriasis, antidiabetic,
antiplasmodic, anticancer, antiangiogenic, antioxidant, antimelanogenic, neurodegenera-
tive effects, antiviral, antimicrobial, antifungal, antidiarrhea, anti-obesity and anthelminthic
activities. The review shows the diverse collection of biological activities and possible
applications in clinical research of all of the different forms of viniferin, such as α-viniferin,
β-viniferin, δ-viniferin, ε-viniferin, γ-viniferin, vitisin A and B. Viniferins are resveratrol
derivatives, one of the stilbenoids produced by plants as a defense mechanism in response
to microbial attack, poisons, diseases, or UV-radiation. To mitigate the research, the con-
firmation of viniferin concentrations’ therapeutic efficacy in humans is still required. The
pharmaceutical industry faces a significant challenge in applying this molecule clinically; it
needs to be studied in greater depth to understand its bioavailability, metabolic pathways
and human toxicity and, thus, the need to improve the field of clinical medicine is a chal-
lenge in producing commercially viable medicine. It may be quite cheap to produce large
quantities while also being relatively safe, non-toxic, cost-effective and widely available. In
the context of this review, viniferin has the potential to be used as a treatment for a wide
range of human illnesses. Overall, viniferins are useful in medical technology and in the
pharmaceutical, agricultural, nutraceutical and cosmeceutical sectors. We are confident
that the information in this review will be more beneficial to researchers and industrial
stakeholders working on the development of vinferin-based therapeutic medications.
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