Skip to main content

Plant Neoflavonoids: Chemical Structures and Biological Functions

  • Chapter
  • First Online:
Plant-derived Bioactives

Abstract

Neoflavonoids (NFs) constitute a remarkable group of naturally occurring flavonoids with C6-C3-C6 (4-phenylcoumarin) carbon skeleton. NFs are not often found in food and edible plants, but widely distributed in different plant families, including Fabaceae, Clusiaceae, Leguminosae, Rubiaceae, Passifloraceae, Thelypteridaceae, and Polypodiaceae. They are commonly being identified in various plants, belonging to Dalbergia genus. Because of dalbergin and other NFs, Dalbergia species are having medicinal importance, and more than 60 NFs are being isolated and identified so far from this genus. Depending on the pattern of substitution and sources, they are categorized into four groups, namely 4-arylcoumarins (neoflavones), 4-arylchromanes, dalbergiones, and dalbergiquinols. These compounds have been found to display several health beneficial effects. They have wide-ranging therapeutic properties, such as anti-osteoporosis, anti-inflammatory, antimicrobial, antiplasmodial, anti-androgen, anti-allergic, antioxidant, antifungal, antidiabetic, and anticancer activities. Additionally, NFs of various medicinally valued plants are being employed as herbal formulations in the traditional systems of medicine like Ayurveda, Unani, Chinese, etc., around the world. The aim of this chapter is to discuss different structures and biological functions of NFs isolated from different plant species with a particular focus on the recent therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An RB, Jeong GS, Kim YC (2008) Flavonoids from the heartwood of Dalbergia odorifera and their protective effect on glutamate-induced oxidative injury in HT22 cells. Chem Pharm Bull 56:1722–1724

    CAS  PubMed  Google Scholar 

  • Anjaneyulu ASR, Rao VL, Sreedhar K (2005) Chemical examination of the mangrove plant Dalbergia spinosa Roxb. Indian J Chem 44B:209–211

    CAS  Google Scholar 

  • Awale S, Shrestha SP, Tezuka Y, Ueda J, Matsushige K, Kadota S (2005) Neoflavonoids and related constituents from Nepalese propolis and their nitric oxide production inhibitory activity. J Nat Prod 68:858–864

    CAS  PubMed  Google Scholar 

  • Bandara BMR, Dharmaratne HRW, Sotheeswaran S, Balasubramaniam S (1986) Two chemically distinct groups of Calophyllum species from Sri Lanka. Phytochemistry 25:425–428

    CAS  Google Scholar 

  • Bastola T, An RB, Kim YC, Kim J, Seo J (2017) Cearoin induces autophagy, ERK activation and apoptosis via ROS generation in SH-SY5Y neuroblastoma cells. Molecules 22:242

    PubMed Central  Google Scholar 

  • Bekker M, Malan E, Steenkamp JA, Brandt EV (2002) An isoflavanoid–neoflavonoid and an O-methylated isoflavone from the heartwood of Dalbergia nitidula. Phytochemistry 59:415–418

    CAS  PubMed  Google Scholar 

  • Beldjoudi N, Mambu L, Labaïed M, Grellier P, Ramanitrahasimbola D, Rasoanaivo P, Martin MT, Frappier F (2003) Flavonoids from Dalbergia louvelii and their antiplasmodial activity. J Nat Prod 66:1447–1450

    CAS  PubMed  Google Scholar 

  • Braz FR, Leite de Almeida ME, Gottlieb OR (1973) Iso-and neo-flavonoids from Dalbergia riparia. Phytochemistry 12:1187–1188

    Google Scholar 

  • Brenzan MA, Nakamura CV, Prado Dias Filho B, Ueda-Nakamura T, Young MC, Aparício Garcia Cortez D (2007) Antileishmanial activity of crude extract and coumarin from Calophyllum brasiliense leaves against Leishmania amazonensis. Parasitol Res 101:715–722

    PubMed  Google Scholar 

  • Carpenter I, McGarry EJ, Scheinmann F (1970) The neoflavonoids and 4-alkylcoumarins from Mammea africana G. Don. Tetrahedron Lett 11(46):3983–3986

    Google Scholar 

  • Chan SC, Chang YS, Kuo SC (1997) Neoflavonoids from Dalbergia odorifera. Phytochemistry 46:947–949

    CAS  Google Scholar 

  • Chan SC, Chang YS, Wang JP, Chen SC, Kuo SC (1998) Three new flavonoids and antiallergic, anti-inflammatory constituents from the heartwood of Dalbergia odorifera. PlantaMedica 64:153–158

    CAS  Google Scholar 

  • Chawla HM, Mittal RS (1984) 7,3′-dihydroxy-5-4’dimethoxy-4-phenyl coumarin (seshadrin), a new neoflavonoid from Dalbergia Volubilis. Ind J Chem 23B:375–376

    CAS  Google Scholar 

  • Chen L, Li X, Liu R, Luo Y, Cui Y, Shao F, Wang D (2016) Cardioprotective effect of neoflavonoid latifolin isolated from Dalbergia odorifera on isoproterenol-induced myocardial ischemia in rats. E-Journal of the British Pharmacology Society

    Google Scholar 

  • D’Agostino M, De Simone F, Dini A, Pizza C (1990) Isolation of 8,3′-Dihydroxy-5,7,4′-trimethoxy-4-phenylcoumarin from Coutarea hexandra. J Nat Prod 53:161

    Google Scholar 

  • D’Agostino M, De Feo V, De Simone F, Vincieri FF, Pizza C (1989) Isolation of 8-Hydroxy-5,7,3,4-tetramethoxy-4-phenylcoumarin from Coutarea hexandra. Planta Med 55:578

    PubMed  Google Scholar 

  • DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32:S157–S163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dharmaratne H, Ranjith W, Sotheeswaran S, Balasubramaniam S (1984) Triterpenes and neoflavonoids of Calophyllum lankaensis and Calophyllum thwaitesii. Phytochemistry 23:2601–2603

    CAS  Google Scholar 

  • Donnelly DMX, Boland GM (1995) Isoflavonoids and neoflavonoids: naturally occurring O-heterocycles. Nat Prod Rep 12:321–338

    CAS  Google Scholar 

  • Donnelly BJ, Donnelly DMX, O’Sullivan AM (1968) Dalbergia species-VI. The occurrence of melannein in genus Dalbergia. Tetrahedron 24:2617–2622

    CAS  Google Scholar 

  • Donnelly DMX, Thompson JC, Whalley WB, Ahmad S (1973) Dalbergia species. Part IX Phytochemical examination of Dalbergia stevensonii standl. J Chem Soc Perk T 1:1737–1745

    Google Scholar 

  • Donnelly D, O’Reilly J, Whalley W (1975) Neoflavanoids of Dalbergia melanoxylon. Phytochemistry 14:2287–2290

    CAS  Google Scholar 

  • Donnelly D, Criodain T, O’Sullivan M (1981) New neoflavanoid structural-types from Dalbergia. J Chem Soc Chem Comm (24):1254–1255

    Google Scholar 

  • Eyton WB, Ollis WD, Sutherland IO, Jackman LM, Gottlieb OR, Magalhaes MT (1962) Dalbergiones: a new group of natural products. Proc Chem Soc:301–302

    Google Scholar 

  • Faienza M, Ventura A, Marzano F, Cavallo L (2013) Postmenopausal osteoporosis: the role of immune system cells. Clin Dev Immunol 2013:1–6

    Google Scholar 

  • Feng X, McDonald JM (2011) Disorders of bone remodeling. Annu Rev Pathol 6:121–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira JA, Nel JW, Brandt V, Bezuidenhoudt BCB, Ferreira D (1995) Oligomeric isoflavonoids 3. Daljanelins A-D, the first pterocarpan-neoflavonoid and isoflavonoid-neoflavonoid analogs. Chem Soc Perk T 1(8):1049–1056

    Google Scholar 

  • Fullas F, Kornberg LJ, Wani MC, Wall ME, Farnsworth NR, Chagwedera TE, Kinghorn AD (1996) Two new aromatic constituents from the rootwood of Aeschynomene mimosifolia. J Nat Prod 59:190–192

    CAS  PubMed  Google Scholar 

  • Garazd MM, Garazd YL, Khilya VP (2003) Neoflavones: natural distribution and spectral and biological properties. Chem Nat Compd 39:54–121

    CAS  Google Scholar 

  • Gautam J, Kumar P, Kushwaha P, Khedgikar V, Choudhary D, Singh D, Maurya R, Trivedi R (2015) Neoflavonoid dalbergiphenol from heartwood of Dalbergia sissoo acts as bone savior in an estrogen withdrawal model for osteoporosis. Menopause 22:1246–1255

    PubMed  Google Scholar 

  • Goh SH, Jantan I, Waterman PG (1992) Neoflavonoid and biflavonoid constituents of Calophyllum inophylloide. J Nat Prod 55:1415–1420

    CAS  Google Scholar 

  • Goh SH, Jantan I, Wei C (1993) Structure and stereochemistry of a new neoflavonoid from Calophyllum Inophylloide (Guttiferae). Nat Prod Lett 2:191–195

    CAS  Google Scholar 

  • Gregson M, Ollis WD, Redman BT, Sutherland IO, Dietrichs HH, Gottlieb OR (1978a) Obtusastyrene and obtustyrene, cinnamylphenols from Dalbergia retusa. Phytochemistry 17:1395–1400

    CAS  Google Scholar 

  • Gregson M, Ollis WD, Sutherland IO, Gottlieb OR, Magalhaes MT (1978b) Violastyrene and isoviolastyrene, cinnamylphenols from Dalbergia miscolobium. Phytochemistry 17:1375–1377

    CAS  Google Scholar 

  • IDF Diabetes Atlas (2017) 8th edition. https://diabetesatlas.org/resources/2017-atlas.html. Accessed 28th Aug 2019

  • Iinuma M, Tanaka T, Asai F (1994) Flavonoids in frond exudates of Pityrogramma tartarea. Phytochemistry 36:941–943

    CAS  Google Scholar 

  • Imamura H, Shinpuku H, Inoue H, Ohashi H (1982) A benzoquinone and two isoflavans from the heartwood of Machaerium sp. (Leguminosae). Mokuzai Gakkaishi 28:174–178

    CAS  Google Scholar 

  • Ito A, Chai H, Shin Y, Garcı́a R, Mejı́a M, Gao Q, Fairchild CR, Lane KE, Menendez AT, Farnsworth NR (2000) Cytotoxic constituents of the roots of Exostema acuminatum. Tetrahedron 56:6401–6405

    CAS  Google Scholar 

  • Jurd L, King AD, Jr Mihara K, Stanley WL (1971) Antimicrobial properties of natural phenols and related compounds. Appl Microbiol 21:507–510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karalliedde J, Gnudi L (2014) Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease. Nephrol Dial Transplant 31:206–213

    PubMed  Google Scholar 

  • Khan WN, Lodhi MA, ALI I, Haq AU, Malik A, Bilal S, Gul R, Choudhary MI (2006) New natural urease inhibitors from Ranunculus repens. J Enzy Inhib Med Chem 21:17–19

    CAS  Google Scholar 

  • Kim YJ, Kang KS, Yokozawa T (2008) The anti-melanogenic effect of pycnogenol by its anti-oxidative actions. Food Chem Toxico 46:2466–2471

    CAS  Google Scholar 

  • Kite GC, Green PW, Veitch NC, Groves MC, Gasson PE, Simmonds MS (2010) Dalnigrin, a neoflavonoid marker for the identification of Brazilian rosewood (Dalbergia nigra) in CITES enforcement. Phytochemistry 71:1122–1131

    CAS  PubMed  Google Scholar 

  • Kohler I, Jenett-Siems K, Mockenhaupt FP, Siems K, Jakupovic J, Gonzalez JC, Hernandez MA, Ibarra RA, Berendsohn WG, Bienzle U (2001) In vitro antiplasmodial activity of 4-phenylcoumarins from Exostema mexicanum. Planta Med 67:89–91

    CAS  PubMed  Google Scholar 

  • Korec R, Heinz Sensch K, Zoukas T (2000) Effects of the neoflavonoid coutareagenin, one of the antidiabetic active substances of Hintonia latiflora, on streptozotocin-induced diabetes mellitus in rats. Arzneimittelforschung 50:122–8

    Google Scholar 

  • Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD (2015) Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 9:91

    PubMed  PubMed Central  Google Scholar 

  • Kuete V, Alibert-Franco S, Eyongc KO, Ngameni B, Folefoc GN, Nguemeving JR, Tangmouo JG, Fotso GW, Komguem J, Ouahouo BMW, Bolla JM, Chevalier J, Ngadjui BT, Nkengfack AE, Pagès JM (2011) Antibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotype. Int J Antimicrob Agents 37:156–161

    CAS  PubMed  Google Scholar 

  • Kumar P, Kushwaha P, Khedgikar V, Gautam J, Choudhary D, Singh D, Trivedi R, Maurya R (2014) Neoflavonoids as potential osteogenic agents from Dalbergia sissoo heartwood. Bioorg Med Chem Lett 24(12):2664–2668

    CAS  PubMed  Google Scholar 

  • Kusano A, Nikaido T, Kuge T, Ohmoto T, Delle MG, Botta B, Botta M, Saitoh T (1991) Inhibition of adenosine 3′, 5′-cyclic monophosphate phosphodiesterase by flavonoids from licorice roots and 4-arylcoumarins. Chem Pharm Bull 39:930–933

    CAS  PubMed  Google Scholar 

  • Lee C, Lee JW, Jin Q, Jang DS, Lee SJ, Lee D, Hong JT, Kim Y, Lee MK, Hwang BY (2013) Inhibitory constituents of the heartwood of Dalbergia odorifera on nitric oxide production in RAW 264.7 macrophages. Bioorg Med Chem Lett 23:4263–4266

    CAS  PubMed  Google Scholar 

  • Lee DS, Kim KS, Ko W, Li B, Keo S, Jeong GS, Oh H, Kim YC (2014) The neoflavonoid latifolin isolated from MeOH extract of Dalbergia odorifera attenuates inflammatory responses by inhibiting NF-κB activation via Nrf2-mediated heme oxygenase-1 expression. Phytother Res 28:1216–1223

    CAS  PubMed  Google Scholar 

  • Leita de Almeida M, Gottlieb OR (1974) Iso- and neo-flavonoids from Dalbergia inundata. Phytochemistry 13:751–752

    CAS  Google Scholar 

  • Li F, Awale S, Tezuka Y, Kadota S (2008) Cytotoxic constituents from Brazilian red propolis and their structure–activity relationship. Bioorg Med Chem 16:5434–5440

    CAS  PubMed  Google Scholar 

  • Luqman S, Meena A, Singh P, Kondratyuk TP, Marler LE, Pezzuto JM, Negi AS (2012) Neoflavonoids and tetrahydroquinolones as possible cancer chemopreventive agents. Chem Biol Drug Des 80(4):616–624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monache G, Botta B, Oguakwa J, Monache F (1987) New vismiones from Psorospermum tenuifolium. Bull Chem Soc Ethiop 1:42–46

    Google Scholar 

  • Monache GD, Botta B, Vinciguerra V, Gács-Baitz E (1989) A new neoflavonoid from Coutarea hexandra. Heterocycles 29:355–357

    Google Scholar 

  • Muhammad N, Saeed M, Khan A, Adhikari A, Wadood A, Khan KM, De Feo V (2014) A new urease inhibitor from Viola betonicifolia. Molecules 19:16770–16778

    PubMed  PubMed Central  Google Scholar 

  • Mukerjee SK, Saroja T, Seshadri TR (1971a) A new neoflavonoid from stem-bark and heartwood of Dalbergia sissoo. Tetrahedron 27:799–803

    CAS  Google Scholar 

  • Mukerjee SK, Saroja T, Seshadri TR (1971b) Dalbergichromene: a new neoflavonoid from stem-bark and heartwood of Dalbergia sissoo. Tetrahedron 27:799–803

    CAS  Google Scholar 

  • Ollis WD, Redman BT, Roberts RJ, Sutherland IO, Gottlieb OR, Magalhaes MT (1978) Neoflavonoids and the cinnamylphenol kuhlmannistyrene from Machaerium kuhlmannii and M. Nictitans. Phytochemistry 17:1383–1388

    CAS  Google Scholar 

  • Oursler MJ, Landers JP, Riggs BL, Spelsberg TC (1993) Oestrogen effects on osteoblasts and osteoclasts. Ann Med 25:361–371

    CAS  PubMed  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng CY, Wu SF, Hung HYWYC (2015) Melanoxoin reduces tumor growth in xenograft animal model and inhibits cell migration in human lung cancer cell lines. Eur J Mol Clin Med 2(69)

    Google Scholar 

  • Perriott LM, Kono T, Whitesell RR, Knobel SM, Piston DW, Granner DK, Powers AC, May JM (2001) Glucose uptake and metabolism by cultured human skeletal muscle cells: rate-limiting steps Am J Physiol Endocrinol Metab 281:72–80

    Google Scholar 

  • Ragab A, Mostafa SMI, El-Shami I, Ibrahim ARS (2006) Phytochemical studies of Dalbergia sissoo growing in Egypt. Mansoura J Pharm Sci 22:176–194

    CAS  Google Scholar 

  • Ramiandrasoa F, Kunesch N, Poisson J, Kunesch G (1983) Le calofloride, intermédiaire d’un type nouveau de la biogenèse des néoflavonoïdes. Tetrahedron 39:3923–3928

    CAS  Google Scholar 

  • Ravelonjato B, Kunesch N, Poisson JE (1987) Neoflavonoids from the stem bark of calophyllum verticillatum. Phytochemistry 26:2973–2976

    CAS  Google Scholar 

  • Reher G, Kraus L (1984) New Neoflavonoids from Coutarea latiflora. J Nat Prod 47:172–174

    CAS  Google Scholar 

  • Reher G, Kraus L, Sinnwell V, Koenig WA (1983) A neoflavonoid from Coutarea hexandra (Rubiaceae). Phytochemistry 22:1524–1525

    CAS  Google Scholar 

  • Saxena VK, Choubey A (1997) A novel neoflavonoid glycoside from Tephrosia purpurea stem. Fitoterapia 68:359–360

    CAS  Google Scholar 

  • Schubert D, Piasecki D (2001) Oxidative glutamate toxicity can be a component of the excitotoxicity Cascade. J Neurosci 21:7455–7462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sekine N, Ashitani T, Murayama T, Ogiyama K, Takahashi K (2009a) The bioactive extracts of heartwood of Dalbergia latifolia. Mokuzai Gakkaishi 55:29–36

    CAS  Google Scholar 

  • Sekine N, Ashitani T, Murayama T, Shibutani S, Hattori S, Takahashi K (2009b) Bioactivity of Latifolin and its derivatives against termites and Fungi. J Agric Food Chem 8:5707–5712

    Google Scholar 

  • Shaheen F, Ahmad M, Khan SN, Hussain SS, Anjum S, Tashkhodjaev B, Turgunov K, Sultankhodzhaev MN, Choudhary MI, Rahman A (2006) New α-glucosidase inhibitors and antibacterial compounds from Myrtus communis L. Eur J Org Chem 2006:2371–2377

    Google Scholar 

  • Shirota O, Pathak V, Sekita S, Satake M, Nagashima Y, Hirayama Y, Hakamata Y, Hayashi T (2003) Phenolic constituents from Dalbergia cochichinensis. J Nat Prod 66:1128–1131

    Google Scholar 

  • Shrestha SP, Amano Y, Narukawa Y, Takeda T (2008) Nitric oxide production inhibitory activity of flavonoids contained in trunk exudates of Dalbergia sissoo. J Nat Prod 71:98–101

    CAS  PubMed  Google Scholar 

  • Silvestre-Roig C, Hidalgo A, Soehnlein O (2016) Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood 127:2173–2181

    CAS  PubMed  Google Scholar 

  • Singh RP, Pandey VB (1990) Nivetin a neoflavonoid from Echinops niveus. Phytochemistry 29:680–681

    CAS  Google Scholar 

  • Sun X, Sneden AT (1999) Neoflavonoids from Polygonum perfoliatum. Planta Med 65:671–673

    CAS  PubMed  Google Scholar 

  • Tago M, Okamoto K, Izumi R, Tago K, Yanagisawa K, Narukawa Y, Tamura H (2015) Anti-inflammatory activity of flavonoids in Nepalese propolis is attributed to inhibition of the IL-33 signaling pathway. Int Immunopharmacol 25:189–198

    PubMed  Google Scholar 

  • Ulubelen A, Kerr RR, Mabry TJ (1982) 2 new neo flavonoids and c glycosyl flavones from Passiflora serratodigitata. Phytochemistry 21:1145–1147

    CAS  Google Scholar 

  • Veselinović JB, Veselinović AM, Ilic-Tomic T, Davis R, O’Connor K, Pavic A, Nikodinovic-Runic J (2017) Potent anti-melanogenic activity and favorable toxicity profile of selected 4-phenyl hydroxycoumarins in the zebrafish model and the computational molecular modeling studies. Bioor Med Chem 25:6286–6296

    Google Scholar 

  • Wu SF, Chang FR, Wang SY, Hwang TL, Lee CL, Chen SL, Wu CC, Wu YC (2011) Anti-inflammatory and cytotoxic neoflavonoids and benzofurans from Pterocarpus santalinus. J Nat Prod 27:989–996

    Google Scholar 

  • Yasunaka K, Abe F, Nagayama A, Okabe H, Lozada-Pérez L, López-Villafranco E, Muñiz EE, Aguilar A, Reyes-Chilpa R (2005) Antibacterial activity of crude extracts from Mexican medicinal plants and purified coumarins and xanthones. J Ethnopharmacol 97:293–299

    CAS  PubMed  Google Scholar 

  • Zhaoa C, Liub Y, Conga D, Zhangc H, Yua J, Jianga Y, Cuia X, Sunc J (2013) Screening and determination for potential α-glucosidase inhibitory constituents from Dalbergia odorifera T. Chen using ultrafiltration-LC/ESI-MS(n). Biomed Chromatogr 27:1621–1629

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P., Ahamad, T., Mishra, D.P., Khan, M.F. (2020). Plant Neoflavonoids: Chemical Structures and Biological Functions. In: Swamy, M. (eds) Plant-derived Bioactives. Springer, Singapore. https://doi.org/10.1007/978-981-15-2361-8_3

Download citation

Publish with us

Policies and ethics