Skip to main content

Abstract

In the genus Asparagus, about 230 taxa are considered to be accepted as species. Among these, A. officinalis is an important vegetable plant that is cultivated throughout of the world. The latest infrageneric classification divided Asparagus into three subgenera: Asparagus, Myrsiphyllum, and Protasparagus. These species are widely distributed in the Old World continents, and the center of species diversity is Africa, especially South Africa and adjacent regions. The genus Asparagus contains dioecious and hermaphrodite species. Hermaphrodite species that belong to the subgenera Myrsiphyllum and Protasparagus have bisexual flowers, which have stamens and pistils in one flower, whereas dioecious species that belong to the subgenus Asparagus have male and female flowers, which have fertile stamens and sterile pistils or sterile stamens and fertile pistils in one flower. A phylogenetic analysis using ITS sequences showed that dioecious species evolved from hermaphrodite species. Although the genetic diversity of this species is relatively low, wild relatives in the genus Asparagus have several agriculturally important traits that A. officinalis does not have, such as salt tolerance, drought tolerance, acid soil tolerance, and disease resistance. To introgress agricultural traits of wild Asparagus into A. officinalis, interspecific hybridization has been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • African Flowering Plants Database (2008) Conservatoire et Jardin botaniques de la Villle de Genève and South African National Biodiversity Institute, Pretoria. http://www.ville-ge.ch/musinfo/bd/cjb/africa/. Accessed 31 Oct 2008

  • Ainsworth C, Crossley S, Buchanan Wollaston V, Thangavelu M, Parker J (1995) Male and female flowers of the dioecious plant sorrel show different patterns of MADS box gene expression. Plant Cell 7:1583–1598

    Article  PubMed  CAS  Google Scholar 

  • Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • Asada Y, Kasai N, Adachi Y, Kanno A, Ito N, Yun PY, Masuda K (2006) A vegetative line of asparagus (Asparagus officinalis) with a homeotic change in flower development is correlated with a functional deficiency in class-B MADS-box genes. J Hortic Sci Biotechnol 81:874–882

    CAS  Google Scholar 

  • Bansal RK, Menzies SA, Broadhurst PG (1986) Screening of Asparagus species for resistance to Stemphylium leaf spot. NZ J Agric Res 29:539–545

    Google Scholar 

  • Benincasa P, Tei F, Rosati A (2007) Plant density and genotype effects on wild asparagus (Asparagus acutifolius L.) spear yield and quality. Hortic Sci 42:1163–1166

    Google Scholar 

  • Bonnet MA, Valles J (2002) Use of non-crop food vascular plants in Montseny biosphere reserve (Catalonia, Iberian Peninsula). Int J Food Sci Nutr 53:225–248

    Article  Google Scholar 

  • Bozzini A (1959) Revisione cito-sistematica del genere Asparagus I: Le specie di Asparagus della flora Italiana e chiave analítica per la loro determinazione. Caryologia 12:199–264

    Google Scholar 

  • Bozzini A (1962a) Interspecific hybridization and experimental mutagenesis in the genetic improvement of asparagus. Genet Agrar 16:212–218

    Google Scholar 

  • Bozzini A (1962b) Genetic affinity between Asparagus spp. (Affinità genetica tra specie di Asparago). Atti Assoc Genet Ital 7:277–278

    Google Scholar 

  • Burrows SM, Burrows JE (2008) Three new species of Asparagus (Asparagaceae) from South Africa, with notes on other taxa. Bothalia 38:23–29

    Google Scholar 

  • Caporali E, Carboni A, Galli MG, Rossi G, Spada A, Marziani Longo GP (1994) Development of male and female flower in Asparagus officinalis Search for point of transition from hermaphroditic to unisexual developmental pathway. Sex Plant Reprod 7:239–249

    Article  Google Scholar 

  • Chase MW, Soltis DE, Soltis PS, Rudall PJ, Fay MF, Hahn WH, Sullivan S, Joseph J, Molvray M, Kores PJ, Givnish TJ, Sytsma KJ, Pires JC (2000a) Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Collingwood, Australia, pp 3–16

    Google Scholar 

  • Chase MW, de Bruijn AY, Cox AV, Reeves G, Rudall PJ, Johnson MAT, Eguiarte LE (2000b) Phylogenetics of Asphodelaceae (Asparagales): an analysis of plastid rbcL and trnL-F DNA sequences. Ann Bot 86:935–951

    Article  CAS  Google Scholar 

  • Chen XQ, Tamanian KG (2000) Asparagus. In: Wu ZY, Raven PH (eds) Flora of China, vol 24 (Flagellariaceae through Marantaceae). Science and MO Botanical Garden, Beijing, St. Louis, MO, USA, pp 209–216

    Google Scholar 

  • Clifford HT, Conran JG (1987) Asparagaceae. In: George AS (ed) Flora of Australia. Australian Government of Public Service, Canberra, Australia, pp 159–164

    Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorl: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Colombo L, Franken J, Koetje E, van Went J, Dons HJ, Angenent GC, van Tunen AJ (1995) The petunia MADS-box gene FBP11 determines ovule identity. Plant Cell 7:1859–1868

    Article  PubMed  CAS  Google Scholar 

  • Cooney-Sovetts C, Sattler R (1987) Phylloclade development in the Asparagaceae: an example of homeosis. Bot J Linn Soc 94:327–371

    Article  Google Scholar 

  • Della A, Paraskeva-Hadjichambi D, Hadjichambis AC (2006) An ethnobotanical survey of wild edible plants of Paphos and Larnaca countryside of Cyprus. J Ethnobiol Ethnomed 2:34

    Article  PubMed  Google Scholar 

  • Dinan L, Savchenko T, Whiting P (2001) Phytoecdysteroids in the genus Asparagus (Asparagaceae). Phytochemistry 56:569–576

    Article  PubMed  CAS  Google Scholar 

  • Dahlgren RMT, Clifford HT, Yeo PF (1985) The Families of the Monocotyledons. Springer, Berlin

    Google Scholar 

  • Ertug F (2004) Wild edible plants of the Bodrum area (Mugla, Turkey). Turk J Bot 28:161–174

    Google Scholar 

  • Falavigna A, Alberti P, Casali PE, Toppino L, Huaisong W, Mennella G (2008) Interspecific hybridization for asparagus breeding in Italy. Acta Hortic 776:291–297

    CAS  Google Scholar 

  • Fay MF, Rudall PJ, Sullivan S, Stobart KL, de Bruijn AY, Reeves G, Qamaruz-Zaman F, Hong WP, Joseph J, Hahn WJ, Conran JG, Chase MW (2000) Phylogenetic studies of Asparagales based on four plastid DNA regions. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Collingwood, Australia, pp 360–371

    Google Scholar 

  • Forest F, Grenyer R, Rouget M, Jonathan Davies T, Cowling RM, Faith DP, Balmford A, Manning JC, Proches S, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760

    Article  PubMed  CAS  Google Scholar 

  • Fukuda T, Ashizawa H, Suzuki R, Ochiai T, Nakamura T, Kanno A, Kameya T, Yokoyama J (2005) Molecular phylogeny of the genus Asparagus (Asparagaceae) inferred from plastid petB intron and petD-rpoA intergenic spacer sequences. Plant Species Biol 20:121–132

    Article  Google Scholar 

  • Ge CJ, Li YK, Wan P, Li YX, Jiang FH (1988) Observations on the chromosome numbers of medicinal plants from Shandong Province (V). J Shandong Coll Tradition Chin Med 12:55–57

    Google Scholar 

  • Goldblatt P, Savolainen V, Porteous O, Sostaric I, Powell M, Reeves G, Manning JC, Barraclough TG, Chase MW (2002) Radiation in the Cape flora and the phylogeny of peacock irises Moraea (Iridaceae) based on four plastid DNA regions. Mol Phylogenet Evol 25:341–360

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez Castanon ML, Falavigna A (2008) Asparagus germplasm and interspecific hybridization. Acta Hortic 776:319–326

    Google Scholar 

  • Grubb PJ (2003) Interpreting some outstanding features of the flora and vegetation of Madgascar. Perspect Plant Ecol 6:125–146

    Article  Google Scholar 

  • Hardenack S, Ye D, Saedler H, Grant S (1994) Comparison of MADS box gene expression in developing male and female flowers of the dioecious plant white campion. Plant Cell 6:1775–1787

    Article  PubMed  CAS  Google Scholar 

  • Hernandez SL (1995) Taxonomic study of the Mexican genus Hemiphylacus (Hyacinthaceae). Syst Bot 20:546–554

    Article  Google Scholar 

  • Hirai M, Kamimura T, Kanno A (2007) The expression patterns of three class B genes in distinctive two whorls of petaloid tepals in Alstroemeria ligtu. Plant Cell Physiol 48:310–321

    Article  PubMed  CAS  Google Scholar 

  • Ito T (2006) Genetic variation in genus Asparagus: Cross compatibility and flower development. Ph.D thesis, Tohoku University.

    Google Scholar 

  • Ito PJ, Currence TM (1965) Inbreeding and heterosis in asparagus. Am Soc Hortic Sci 86:338–346

    Google Scholar 

  • Ito T, Ochiai T, Ashizawa H, Shimodate T, Sonoda T, Fukuda T, Yokoyama J, Kameya T, Kanno A (2007) Production and analysis of reciprocal hybrids between Asparagus officinalis L. and A. schoberioides Kunth. Genet Resour Crop Evol 54:1063–1071

    Article  Google Scholar 

  • Ito T, Ochiai T, Fukuda T, Ashizawa H, Sonoda T, Kameya T, Kanno A (2008) Potential of interspecific hybrids in Asparagaceae. Acta Hortic 776:279–284

    CAS  Google Scholar 

  • Janssen T, Bremer K (2004) The age of major monocot groups inferred from 800+ rbcL sequences. Bot J Linn Soc 146:385–398

    Article  Google Scholar 

  • Janssen T, Bystriakova N, Rakotondrainibe F, Coomes D, Labat JN, Schneider H (2008) Neoendemism in Madagascan scaly tree ferns results from recent, coincident diversification bursts. Evolution 62:1876–1889

    Article  PubMed  Google Scholar 

  • Kahn RP, Anderson HW, Hepler PR, Linn MB (1952) An investigation of asparagus rust in Illinois. University of Illinois Agricultual Experiment Station, Bull 559, IL, USA

    Google Scholar 

  • Kanno A, Lee YO, Kameya T (1997) The structure of the chloroplast genome in members of the genus Asparagus. Theor Appl Genet 95:1196–1202

    Article  CAS  Google Scholar 

  • Kanno A, Park JH, Yun PY, Choi HM, Yoshida R, Kameya T (2002) Isolation and characterization of floral organ identity genes from Asparagus officinalis L. Acta Hortic 589:267–272

    CAS  Google Scholar 

  • Kanno A, Saeki H, Kameya T, Saedler H, Theissen G (2003) Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol Biol 52:831–841

    Article  PubMed  CAS  Google Scholar 

  • Kanno A, Park JH, Ochiai T, Kameya T (2004) Floral organ identity genes involved in tepal development in asparagus. Flower Newsl 38:10–18

    Google Scholar 

  • Kanno A, Nakada M, Akita Y, Hirai M (2007) Class B gene expression and the modified ABC model in nongrass monocots. TSW Development and Embryology 2:17–28

    Article  CAS  Google Scholar 

  • Kunitake H, Mii M (1998) Somatic embryogenesis and its application for breeding and micropropagation in asparagus (Asparagus officinalis L.). Plant Biotechnol 15:51–61

    CAS  Google Scholar 

  • Kunitake H, Nakashima T, Mori K, Tanaka M, Saito A, Mii M (1996) Production of interspecific somatic hybrid plants between Asparagus officinalis and A. macowanii throuth electrofusion. Plant Sci 116:213–222

    Article  CAS  Google Scholar 

  • Lee YO, Kanno A, Kameya T (1996) The physical map of the chloroplast DNA from Asparagus officinalis L. Theor Appl Genet 92:10–14

    Article  CAS  Google Scholar 

  • Lee YO, Kanno A, Kameya T (1997) Phylogenetic relationships in the genus Asparagus based on the restriction enzyme analysis of the chloroplast DNA. Breed Sci 47:375–378

    CAS  Google Scholar 

  • Lu YQ, Li FZ (1999) A study of chromosomes of Asparagus dauricus. J Shandong Normal Univ Nat Sci Edn 14:67–68

    Google Scholar 

  • McCollum GD (1988a) Asp 8271 and Asp 8284 asparagus germplasm. Hortic Sci 23:641

    Google Scholar 

  • Marcellán ON, Camadro EL (1996) Self- and cross-incompatibility in Asparagus officinalis and Asparagus densiflorus cv. Sprengeri. Can J Bot 74:1621–1625

    Article  Google Scholar 

  • Marcellán ON, Camadro EL (1999) Formation and development of embryo and endosperm in intra- and inter-specific cross of Asparagus officinalis and A. densiflorus cv. Sprengeri. Sci Hort 81:1–11

    Article  Google Scholar 

  • McCollum GD (1988b) Asparagus densiflorus cultivars Sprengeri and Myers cross-pollinations with A. officinalis and other species. Asparagus Newsl 6:1–10

    Google Scholar 

  • Moreno R, Espejo JA, Cabrera A, Gil J (2008) Origin of tetraploid cutivated asparagus landraces inferred from nuclear ribosomal DNA internal transcribed spacers’ polymorphisms. Ann Appl Biol 153:233–241

    CAS  Google Scholar 

  • Nakada M, Komatsu M, Ochiai T, Ohtsu K, Nakazono M, Nishizawa NK, Nitta K, Nishiyama R, Kameya T, Kanno A (2006) Isolation of MaDEF from Muscari armeniacum and analysis of its expression using laser microdissection. Plant Sci 170:143–150

    Article  CAS  Google Scholar 

  • Nakamura T, Fukuda T, Nakano M, Hasebe M, Kameya T, Kanno A (2005) The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers. Plant Mol Biol 58:435–445

    Article  PubMed  CAS  Google Scholar 

  • Norton JB (1913) Methods used in breeding asparagus for rust resistance. USDA, Bureau of Plant Industry, Bull no 263

    Google Scholar 

  • Obermeyer AA (1983) Protasparagus Oberm, nom nov. new combinations. S Afr J Bot 2:243–244

    Google Scholar 

  • Ochiai T, Sonoda T, Kanno A, Kameya T (2002) Interspecific hybrids between Asparagus schoberioides Kunth and A. officinalis L. Acta Hortic 589:225–229

    Google Scholar 

  • Park JH, Ishikawa Y, Yoshida R, Kanno A, Kameya T (2003) Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of dioecious species Asparagus officinalis L. Plant Mol Biol 51:867–875

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Ishikawa Y, Ochiai T, Kanno A, Kameya T (2004) Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant Cell Physiol 45:325–332

    Article  PubMed  Google Scholar 

  • Peters CR, O’Brien EM, Drummond RB (1992) Asparagaceae. In: Edible wild plants of Subsaharan Africa. Royal Botanic Gardens, Kew, UK, p 13

    Google Scholar 

  • Pieroni A, Nebel S, Santoro RF, Heinrich M (2005) Food for two seasons: culinary uses of non-cultivated local vegetables and mushrooms in a south Italian. Int J Food Sci Nutr 56:245–272

    Article  PubMed  Google Scholar 

  • Richardson JE, Weitz FM, Fay MF, Cronk QCB, Peter Linder H, Reeves G, Chase MW (2001) Rapid and recent origin of species richness in the cape flora of South Africa. Nature 412:181–183

    Article  PubMed  CAS  Google Scholar 

  • Rudall PJ, Engleman EM, Hanson L, Chase MW (1998) Embryology, cytology and systematics of Hemiphylacus, Asparagus and Anemarrhena (Asparagales). Plant Syst Evol 211:181–199

    Article  Google Scholar 

  • Sather DN, York A, Pobursky KJ, Golenberg EM (2005) Sequence evolution and sex-specific expression patterns of the C class floral identity gene, SpAGAMOUS, in dioecious Spinacia oleracea L. Planta 222:284–292

    Article  PubMed  CAS  Google Scholar 

  • Shang ZY, Li RJ, Cui TC (1992) Report on karyotypes of 10 species of Liliaceae (s.l.) from Qinling Range. Acta Phytotax Sin 30:438–449

    Google Scholar 

  • Sheidai M, Inamdar AC (1993) B-chromosomes in Asparagus L. Nucleus 36:141–144

    Google Scholar 

  • Sheidai M, Inamdar AC (1997) Cytomorphology of Asparagus taxa using multivariate statistical analysis. Nucleus 40:7–12

    Google Scholar 

  • Sonoda T, Uragami A, Itoh K, Kohmura H, Ohwada M, Kaji K (2001) Evaluation of Asparagus species and comparison between sexes in A. officinalis cultivars for resistance to stem blight. J Jpn Soc Hortic Sci 70:244–250

    Article  Google Scholar 

  • Stajner N, Bohance B, Jakse M (2002a) In vitro propagation of Asparagus maritimus – a rare Mediterranean salt-resistant species. Plant Cell Tiss Org Cult 70:269–274

    Article  CAS  Google Scholar 

  • Stajner N, Bohance B, Javornik B (2002b) Genetic variability of economically important Asparagus species as revealed by genome size analysis and rDNA ITS polymorphisms. Plant Sci 162:931–937

    Article  CAS  Google Scholar 

  • Stephen CT, Elmer WH (1988) An in vitro assay to evaluate sources of resistance in Asparagus spp. to Fusarium crown and root rot. Plant Dis 72:334–337

    Article  Google Scholar 

  • Stephen CT, De Vries RM, Sink KC (1989) Evaluation of Asparagus species for resistance to Fusarium oxysporum f. sp. asparagi and F. moniliforme. Hortic Sci 24:365–368

    Google Scholar 

  • Stevens PF (2008) Angiosperm phylogeny website. Version 9, June 2008 [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb/

  • Tardio J, Padro-de-Santayana M, Morales R (2006) Ethnobotanical review of wild edible plants in Spain. Bot J Linn Soc 152:27–71

    Article  Google Scholar 

  • Thevenin L (1974) Asperge III. Croisements interspecifiques. In: Rapport d’activité 1972–1974. Sta Génét d’Amélior Pl, CNRA, Versailles, France, p H8-9

    Google Scholar 

  • Thompson AE, Hepler AR (1956) A summary of resistance and susceptibility to Puccinia asparagi DC within the genus Asparagus. Plant Dis Rep 40:133–137

    Google Scholar 

  • Tredgold MH, Biegel HM, Mavi S, Ashton H (1986) Asparagus wildemanii. In: Food plants of Zimbabwe. Mambo, Zimbabwe, pp 64–65

    Google Scholar 

  • Tsaftaris AS, Polidoros AN, Pasentsis K, Kalivas A (2006) Tepal formation and expression pattern of Bclass paleoAP3 like MADSbox genes in crocus (Crocus sativus L.). Plant Sci 170: 238–246

    Google Scholar 

  • Tutin TG, Heywood VH, Burges N, Moore DM, Valentine DH, Walter S, Webb DA (1980) Asparagus L. In: Flora Europaea, vol 5. Alismataceae to Orchidaceae (Monocotyledones). Cambridge University Press, Cambridge, UK, pp 71–73

    Google Scholar 

  • van Tunen AJ, Eikeboom W, Angenent GC (1993) Floral organogenesis in Tulipa. Flower Newsl 16:33–38

    Google Scholar 

  • Venezia A, Soressi GP, Falavigna A (1993) Aspects related to utilisation of wild Asparagus species in Italy. Agric Ric 141:41–48

    Google Scholar 

  • Watson S (1883) List of plants from southwestern Texas and northern Mexico, collected chiefly by Dr. E. Palmer in 1879–80. Proc Am Acad Arts Sci 18:164–165

    Google Scholar 

  • Watson L, Dallwitz M (1992) The Families of Flowering Plants: Descriptions, Illustrations, Identification, and Information Retrieval. http://www.biologie.uni-hamburg.de/b-online/delta/angio/. Accessed 31 Oct 2008

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39

    Article  PubMed  CAS  Google Scholar 

  • Yun PY, Ito T, Kim SY, Kanno A, Kameya T (2004a) AVAG1 gene is involved in the development of redproductive organs in ornamental asparagus, Asparagus virgatus. Sex Plant Reprod 17:1–8

    Article  CAS  Google Scholar 

  • Yun PY, Kim SY, Ochiai T, Fukuda T, Ito T, Kanno A, Kameya T (2004b) AVAG2 is a putative D-class gene from an ornamental asparagus. Sex Plant Reprod 17:107–116

    CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. A. Uragami and Dr. T. Sonoda for their useful advices and information. We also thank Mr. I. Konno for the pictures of the Asparagus flowers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kanno .

Editor information

Editors and Affiliations

Appendix: A List of Asparagus Species in the World

Appendix: A List of Asparagus Species in the World

Table 3

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kanno, A., Yokoyama, J. (2011). Asparagus. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20450-0_3

Download citation

Publish with us

Policies and ethics