Skip to main content

Apocynaceae

Apocynaceae Jussieu, Gen. Pl. 143 (1789) (Apocinae), nom. cons.

Asclepiadaceae Borkh. (1797) (Asclepiadeae), nom. cons.

Periplocaceae Schltr. (1905).

  • Chapter
  • First Online:
Flowering Plants. Eudicots

Part of the book series: The Families and Genera of Vascular Plants ((FAMILIES GENERA,volume 15))

Abstract

Woody climbers, vines, perennial herbs, trees or shrubs, more rarely annuals, sometimes with large water-storing tubers or a xylopod, sometimes succulent, with large grappling hooks and/or tendrils in several lianoid genera of Willughbeieae; latex in non-articulated laticifers present, most commonly white, but in some genera usually translucent and in others yellowish or reddish. Leaves simple and usually entire, very rarely dentate or repand, usually isophyllous, but often anisophyllous in Tabernaemontaneae-Tabernaemontiinae, sometimes with distinctly different juvenile and adult foliage, normally petiolate, sometimes sessile, usually opposite, less frequently alternate or whorled (whorled phyllotaxis characteristic for a number of Rauvolfioid genera); stipules usually absent or small and caducous, sometimes enlarged and fused into dentate interpetiolar collars (a few Periplocoid genera), commonly with interpetiolar lines or ridges, sometimes the petioles of a leaf pair connate at the node, forming a short ocrea, which may be expanded into small intrapetiolar flaps clasping the stem (Tabernaemontaneae), almost always with colleters in the axil of the leaf, sometimes on the petiole, in a cluster adaxially at the juncture of petiole and lamina or along the midrib above, occasionally with abaxial domatia in the axils of the secondary veins (mainly in Apocynoids). Flowers perfect, rarely functionally dioecious, often scented, sessile or more commonly pedicellate, in solitary or more commonly in axillary, extra-axillary or terminal multi-flowered cymes, panicles or thyrses, sometimes appearing as an axillary fascicle. Perianth almost always actinomorphic, very rarely slightly zygomorphic; calyx almost always 5- (rarely 4- or 6–7-)merous, lobes normally quincuncially arranged, synsepalous or aposepalous, commonly with colleters, in Periplocoideae, Secamonoideae and Asclepiadoideae these are usually in the sinuses, but in some Rauvolfioids and several Apocynoids colleters in a continuous ring, in multiple rows in some Tabernaemontaneae and Hunterieae, or a single antesepalous colleter (especially in Echiteae), and in several genera of Rauvolfioids and Apocynoids colleters are absent; corolla sympetalous, rarely apopetalous (a few Ceropegieae), salverform, infundibuliform, tubular, urceolate or rotate, lobes almost always 5 (very rarely 4), usually contorted in bud, either dextrorse or sinistrorse, more rarely valvate; corolline or gynostegial coronas often present; stamens 5 (rarely 4), filaments mostly straight, sometimes geniculate, sometimes connate around the style (some species of Forsteronia, Thoreauea), sometimes coiled around the style (Dewevrella, some species of Parsonsia and Thenardia), inserted on the corolla tube, on prominent staminal feet (broadened filament base fused with corolla tube) or forming a staminal tube, included to exserted; anthers introrse, rarely latrorse, in almost all Apocynoids, Secamonoideae and Asclepiadoideae with highly elaborated and lignified guide rails (lignified guide rails absent in most Rauvolfioids and in Periplocoideae) and often with an apical connective appendage, thecae 4, unequal in most Apocynoids, with dorsal ones smaller through presence of guide rails, reduced to 2 in Asclepiadoideae, dehiscence longitudinal, attached to the style-head forming a gynostegium (gynostegium absent in Rauvolfioids); nectaries in alternistaminal pockets on the staminal tube, on sides of staminal feet or 5 (rarely 2) lobes encircling the base of the ovary, these often fused to varying degrees into an (often deeply lobed) ring (in some Rauvolfioids and early-branching Apocynoids nectaries are adnate to the outer wall of the ovary at the base or are sometimes nonfunctional or absent); gynoecium normally of two carpels (very rarely up to five); ovary mostly apocarpous, sometimes congenitally (Rauvolfioids only) or postgenitally syncarpous (several Apocynoids), in some genera only one carpel developing, superior to subinferior; placentation marginal when the ovary is apocarpous, parietal or axile when syncarpous, when apocarpous upper part of the carpels fusing postgenitally to form a complex style-head that produces adhesive for pollen transport, with a pollen-trapping basal collar and/or pollen-presenting upper crest present in many Rauvolfioids and Apocynoids; stigma mostly on the underside of the style-head, often restricted to five chambers behind the guide rails, but style-head scarcely morphologically differentiated and nearly uniformly receptive in some Rauvolfioids; adhesive a sticky foam or mucilage, or differentiated into five translators with a scoop-like pollen receptacle and sticky base, or as five hard clips (corpuscles) usually accompanied by five pairs of flexible arms (caudicles) forming a pollinarium. Fruit in Rauvolfioids diverse: drupes, berries, follicles or capsules; seeds usually without a coma, naked, arillate, or winged or fimbriate at the margin very rarely with a coma (Haplophyton); in the remainder of the family, fruit almost always a pair of ventrally dehiscent follicles (often only one due to abortion or due to postgenital fusion; rarely a septicidally dehiscent capsule) with small seeds with a micropylar coma, rarely with a chalazal coma, coma at both ends (only in early-branching Apocynoids), or fringed with long trichomes circumferentially (a few Periplocoid and Hoya species), or without a coma.

Rauvolfioids and Apocynoids contributed by David J. Middleton and Mary E. Endress. Periplocoideae, Secamonoideae and Asclepiadoideae contributed by Sigrid Liede-Schumann and Ulrich Meve.

Ulrich Meve and Sigrid Liede-Schumann wish to thank Prof. Dr. Focke Albers, Münster, for his input in the initial planning of the then Asclepiadaceae treatment in this series; he and his students obtained several preliminary results we built on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    see Cynanchinae

Selected Bibliography

  • Abe, F., Yamauchi, T. 1985. Affinosides M and K, cardenolide glycosides from seeds of Anodendron affine (Anodendron V). Chem. Pharm. Bull. 33: 847–852.

    Article  CAS  Google Scholar 

  • Abe, F., Yamauchi, T. 1989. Pregnane and pregnane glycosides from Trachelospermum liukiuense. Chem. Pharm. Bull. 37: 33–35.

    Article  CAS  Google Scholar 

  • Abe, F., Yamauchi, T. 1994. Indole alkaloids from leaves and stems of Leuconotis eugenifolius. Phytochemistry 35: 169–171.

    Article  CAS  Google Scholar 

  • Abisch, E., Reichstein, T. 1962. Orientierende chemische Untersuchungen einiger Asclepiadaceen und Periplocaceen. Helv. Chim. Acta 45: 2090–2116.

    Article  CAS  Google Scholar 

  • Abrahamczyk, S., Kessler, M., 2010. Hummingbird diversity, food niche characters, and assemblage composition along a latitudinal precipitation gradient in the Bolivian lowlands. J. Ornithol. 151: 615–625. doi: https://doi.org/10.1007/s10336-010-0496-x

  • Albers, F., Meve, U. 1997. Taxonomic Groups: Asclepiadaceae. In: Oldfield, S. (ed.) Status Survey and Conservation Action Plan: Cactus and succulent plants. Cambridge: IUCN, pp. 14–17 & 159–163.

    Google Scholar 

  • Albers, F., Meve, U. 2001. A karyological survey of Asclepiadoideae, Periplocoideae and Secamonoideae, and evolutionary considerations within Apocynaceae s.l. Ann. Missouri Bot. Gard. 88: 624–656.

    Article  Google Scholar 

  • Albers, P., van der Maesen, L.J.G. 1994. Pollination of Apocynaceae. Wageningen Agric. Univ. Pap. 94: 61–81.

    Google Scholar 

  • Ali, T., Ali, S.I. 1996. Andromonoecy in Glossonema varians (Stocks) Hook.f. (Asclepiadaceae). Pakistan J. Bot. 28(1): 25–29.

    Google Scholar 

  • Alper, K.R., Lotsof, H.S., Kaplan, C.D. 2008. The ibogaine medical subculture. J. Ethnopharmacol. 115: 9–24.

    Article  CAS  PubMed  Google Scholar 

  • Alvarado-Cárdenas, L.O., Ochoterena, H. 2007. A phylogenetic analysis of the CascabelaThevetia species complex (Plumerieae, Apocynaceae) based on morphology 1. Ann. Missouri Bot. Gard. 94: 298–323. doi: https://doi.org/10.3417/0026-6493(2007)94[298:APAOTC]2.0.CO;2

  • Alvarado-Cárdenas, L.O., Villaseñor, J. L., López-Mata, L., Cadena, J., Ortiz, E. 2017. Systematics, distribution and conservation of Cascabela (Apocynaceae: Rauvolfioideae: Plumerieae) in Mexico. Pl. Syst. Evol. 303: 337–369. doi: https://doi.org/10.1007/s00606-016-1375-6

  • APG IV (Angiosperm Phylogeny Group IV) 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181: 1–20.

    Article  Google Scholar 

  • Aremu, A.O., Cheesman, L., Finnie, J.F., Van Staden, J. 2011. Mondia whitei (Apocynaceae): A review of its biological activities, conservation strategies and economic potential. S. African J. Bot. 77: 960–971. doi: https://doi.org/10.1016/j.sajb.2011.06.010

  • Arenas, P. 1999. Morrenia odorata (Asclepiadaceae), an edible plant of the Gran Chaco. Econ. Bot. 53: 89–97.

    Article  Google Scholar 

  • Astaras, C., Waltert, M. 2010. What does seed handling by the drill tell us about the ecological services of terrestrial cercopithecines in African forests? Animal Conserv. 13: 568–578.

    Article  Google Scholar 

  • Baas, P., Werker, E., Fahn, A. 1983. Some ecological trends in vessel characters. Int. Assoc. Wood Anat. Bull., n.s. 4: 141–159.

    Google Scholar 

  • Backlund, M., Oxelman, B., Bremer, B. 2000. Phylogenetic relationships within the Gentianales based on ndhF and rbcL sequences, with particular reference to the Loganiaceae. Amer. J. Bot. 87: 1029–1043.

    Article  CAS  Google Scholar 

  • Bandara, V., Weinstein, S.A., White, J., Eddleston, M. 2010. A review of the natural history, toxicology, diagnosis and clinical management of Nerium oleander (common oleander) and Thevetia peruviana (yellow oleander) poisoning. Toxicon 56: 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Baranzelli, M.C., Sérsic, A.N., Cocucci, A.A. 2014. The search for Pleiades in trait constellations: functional integration and phenotypic selection in the complex flowers of Morrenia brachystephana (Apocynaceae). J. Evol. Biol. 27: 724–736. doi: https://doi.org/10.1111/jeb.12341

  • Barink, M.M. 1983. A revision of Pleioceras, Stephanostema and Schizozygia. Series of revisions of Apocynaceae, XII. Meded. Landbouwhogeschool Wageningen 83-7: 21–53.

    Google Scholar 

  • Barman, C., Singh, V.K., Das, S., Tandon, R. 2018. Floral contrivances and specialized pollination mechanism confer strong influence to elicit mixed-mating in Wrightia tomentosa (Apocynaceae). Pl. Biol., 2018 Jan. 13. doi: https://doi.org/10.1111/plb.12690

  • Beaune, D., Fruth, B., Bollache, L., Hohmann, G., Bretagnolle, F. 2013. Doom of the elephant-dependent trees in a Congo tropical forest. Forest Ecol. Manag. 295: 109–117.

    Article  Google Scholar 

  • Beentje, H.J. 1982. A monograph on Strophanthus DC. (Apocynaceae). Meded. Landbouwhogeschool Wageningen 82-4: 1–191.

    Google Scholar 

  • Behnke, H.-D. 1981. Sieve-element characters. Nord. J. Bot. 1: 381–400.

    Article  Google Scholar 

  • Bell, C.D., Soltis, D.E., Soltis, P.S. 2010. The age and diversification of the angiosperms re-revisited. Amer. J. Bot. 97: 1296–1303.

    Article  Google Scholar 

  • Bentham, G. 1876. Asclepiadaceae. In: Bentham, G., Hooker, J.D. (eds.) Genera Plantarum, Vol. 2(2). London: Williams and Norgate, pp. 739–785.

    Google Scholar 

  • Bester, S.P., Nicholas, A. 2016. Periglossum podoptyches (Apocynaceae-Asclepiadoideae), a new species from KwaZulu-Natal province, South Africa. Phytotaxa 282: 28–36.

    Article  Google Scholar 

  • Bhatnagar, S. 1986. On insect adaptations for pollination in some asclepiads on Central India. In: Kapil, R.P. (ed.) Pollination Biology – an Analysis. New Delhi: Inter-India Publications, pp. 37–57.

    Google Scholar 

  • Bierer, D.E., Dubenko, L.G., Zhang, P., Lu, Q., Imbach, P.A., Garofalo, A.W., Phuan, P.-W., Fort, D.M., Litvak, J., Gerber, R.E., Sloan, B., Luo, J., Cooper, R., Reaven, G.M. 1998. Antihyperglycemic activities of Cryptolepine analogues: An ethnobotanical lead structure isolated from Cryptolepis sanguinolenta. J. Med. Chem. 41: 2754–2764.

    Article  CAS  PubMed  Google Scholar 

  • Birkinshaw, C. 2001. Fruit characteristics of species dispersed by the black lemur (Eulemur macaco) in the Lokobe Forest, Madagascar. Biotropica 33: 478–486.

    Article  Google Scholar 

  • Bisset, N.G. 1958. The occurrence of alkaloids in the Apocynaceae. Ann. Bogoriensis 3: 105–236.

    CAS  Google Scholar 

  • Bisset, N.G. 1961. The occurrence of alkaloids in the Apocynaceae. Part II. A review of recent developments. Ann. Bogoriensis 4: 65–144.

    CAS  Google Scholar 

  • Bisset, N.G. 1987. Phytochemistry of Nerium L. Agric. Univ. Wageningen Pap. 87-2: 27–38.

    Google Scholar 

  • Bisset, N.G. 1989. Arrow and dart poisons. J. Ethnopharmacol. 25: 1–41.

    Article  CAS  PubMed  Google Scholar 

  • Bisset, N.G. 1991. One man’s poison, another man’s medicine? J. Ethnopharmacol. 32: 71–81.

    Article  CAS  PubMed  Google Scholar 

  • Bisset, N.G. 1992. Uses, chemistry and pharmacology of Malouetia (Apocynaceae, subf. Apocynoideae). J. Ethnopharmacol. 36: 43–50. doi: https://doi.org/10.1016/0378-8741(92)90059-Z

  • Boiteau, P., Allorge, L. 1978. Morphologie et biologie florales des Apocynacées: I. différences essentielles entre les Plumérioidées et les Tabernaemontanoidées. Adansonia Sér. 2, 17: 305–216.

    Google Scholar 

  • Bonjean, K., De Pauw-Gillet, M.C., Defresne, M.P., Colson, P., Houssier, C., Dassonneville, L., Bailly, C., Greimers, R., Wright, J., Quétin-Leclerq, J., Tits, M., Angenot, L. 1998. The DNA intercalating alkaloid Cryptolepine interferes with Topoisomerase II and inhibits primarily DNA synthesis in B16 melanoma cells. Biochemistry 37: 5136–5146.

    Article  CAS  PubMed  Google Scholar 

  • Boppré, M. 1990. Lepidoptera and pyrrolizidine alkaloids: exemplification of complexity in chemical ecology. J. Chem. Ecol. 16: 165–185. https://doi.org/10.1007/BF01021277

    Article  PubMed  Google Scholar 

  • Boppré, M. 1995. Pharmakophagie: Drogen, Sex und Schmetterlinge. Biol. Unserer Zeit 25: 8–17. https://doi.org/10.1002/biuz.19950250103

    Article  Google Scholar 

  • Boppré, M., Schneider, D. 1985. Pyrrolizidine alkaloids quantitatively regulate both scent organ morphogenesis and pheromone bio-synthesis in Creatonotos moths (Lep.: Arctiidae). J. Comp. Physiol. 157: 569–577. https://doi.org/10.1007/BF01351351

    Article  Google Scholar 

  • Brand, E., Leon, C., Nesbitt, M., Guo, P., Huang, R.-Q., Chen, H.D., Liang, L., Zhao, Z. 2017. Economic botany collections: A source of material evidence for exploring historical changes in Chinese medicinal materials. J. Ethnopharmacol. 200: 209–227.

    Article  PubMed  Google Scholar 

  • Bremer, B., Jansen, R.K., Oxelman, B., Backlund, M., Lantz, H., Ki-Joong, K. 1999. More characters or more taxa for a robust phylogeny – case study from the coffee family (Rubiaceae). Syst. Biol. 48: 413–435.

    Article  CAS  PubMed  Google Scholar 

  • Britt, A., Iambana, B.R. 2003. Can captive-bred Varecia variegata variegata adapt to a natural diet on release to the wild? Int. J. Primatol. 24: 987–1005.

    Article  Google Scholar 

  • Brown, R. 1810. On the Asclepiadeae, a natural order of plants separated from the Apocinae of Jussieu. Pre-print of: Mem. Wern. Nat. Hist. Soc. 1: 12–78 (1811).

    Google Scholar 

  • Brown, N.E. 1901. Lobostephanus palmatus N.E. Brown. Hook. Icon. Pl. 27: pl. 2692. In: Thiselton-Dyer, W.T. (ed.). London: Dulau & Co.

    Google Scholar 

  • Bruyns, P.V. 1999. The systematic position of Eustegia R.Br. (Apocynaceae - Asclepiadoideae). Bot. Jahrb. Syst. 121: 19–44.

    Google Scholar 

  • Bruyns, P.V. 2002. Monograph of Orbea and Ballyanthus (Apocynaceae-Asclepiadoideae-Ceropegieae). Syst. Bot. Monogr. 63: 1–196.

    Article  Google Scholar 

  • Bruyns, P.V. 2005. Stapeliads of Southern Africa and Madagascar, 1st ed. Hatfield, South Africa: Umdaus Press.

    Google Scholar 

  • Bruyns, P.V. 2010. A new species of Caralluma (Apocynaceae-Asclepiadoideae-Ceropegieae) from the Yemen. S. African J. Bot. 76: 249–251.

    Article  Google Scholar 

  • Bruyns, P.V., Klak, C. 2006. A systematic study of the Old World genus Fockea (Apocynaceae-Asclepiadoideae). Ann. Missouri Bot. Gard. 93: 535–564.

    Article  Google Scholar 

  • Bruyns, P.V., Klak, C. 2009. The rediscovery of Schizostephanus gossweileri and its phylogenetic position. S. African J. Bot. 75: 532–536.

    Article  Google Scholar 

  • Bruyns, P.V., Klak, C., Hanáček, P. 2014. Evolution of the stapeliads (Apocynaceae–Asclepiadoideae) – repeated major radiation across Africa in an Old World group. Mol. Phyl. Evol. 77: 251–263.

    Article  CAS  Google Scholar 

  • Bruyns, P.V., Klak, C., Hanáček, P. 2015. Recent radiation of Brachystelma and Ceropegia (Apocynaceae) across the Old World against a background of climatic change. Mol. Phyl. Evol. 90: 49–66.

    Article  CAS  Google Scholar 

  • Bruyns, P.V., Klak, C., Hanáček, P. 2017. A revised, phylogenetically-based concept of Ceropegia (Apocynaceae). S. African J. Bot. 112 399–2436.

    Article  Google Scholar 

  • Buhner, S.H. 2012. Herbal Antibiotics (2nd ed.). Massachusetts: Storey Publ.

    Google Scholar 

  • Burge, D.O., Mugford, K., Hastings, A.P., Agrawal, A.A. 2013. Phylogeny of the plant genus Pachypodium (Apocynaceae). PeerJ 1: 1–20. doi: https://doi.org/10.7717/peerj.70

  • Burkill, H.M. 1985. Apocynaceae, Asclepiadaceae, The useful plants of West tropical Africa, Vol. 1, 2nd ed. Richmond: Royal Bot. Gard. Kew, pp. 135–193, 217–241.

    Google Scholar 

  • Burrows, G.E., Tyrl, R.J. 2013. Chapter 9, Apocynaceae. Toxic plants of North America, 2nd ed. Ames: Wiley-Blackwell, pp. 81–126.

    Google Scholar 

  • Burzynski, E.A., Minbiole, K.P.C., Livshultz, T. 2015. New sources of lycopsamine-type pyrrolizidine alkaloids and their distribution in Apocynaceae. Biochem. Syst. Ecol. 59: 331–339. https://doi.org/10.1016/j.bse.2015.02.006

    Article  CAS  Google Scholar 

  • Calviño, C.I., Fernandez, M., Ezcurra, C. 2014. Is the southern South American genus Tweedia (Apocynaceae: Asclepiadoideae) monophyletic? Molecular phylogenies, distribution and taxonomy. Taxon 63: 1265–1274.

    Article  Google Scholar 

  • Candolle, A.P. de 1844. Apocynaceae. In: Candolle, A.P. de (ed.) Prodromus systematis naturalis regni vegetabili, Vol. 8. Paris: Treuttel & Wurtz, pp. 317–489.

    Google Scholar 

  • Cant, J.G.H. 1979. Dispersal of Stemmadenia donnell-smithii by birds and monkeys. Biotropica 11: 122.

    Article  Google Scholar 

  • Carlquist, S. 1984.Vessel grouping in dicotyledon wood: Significance and relationships to imperforate tracheary elements. Aliso 10: 505–525.

    Article  Google Scholar 

  • Chang, N., Luo, Z., Li, D., Song, H. 2017. Indigenous uses and pharmacological activity of traditional medicinal plants in Mount Taibai, China. J. Evid. Based Complementary Altern. Med. 2017, 11 pp. doi: https://doi.org/10.1155/2017/8329817

  • Chaturvedi, S.K. 1988. Abiotic Pollination in Tylophora hirsuta Wight (Asclepiadaceae). Asklepios 45: 58–62.

    Google Scholar 

  • Chen, Z.S., Lee, G.H., Kuo, Y.H. 1993. Disformone and Dischidiol from Dischidia formosana. Phytochemistry 34: 783–786.

    Article  CAS  Google Scholar 

  • Chua, L.S.L., Horsten, S.F.A.J. 2001. Tabernaemontana. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 530–538. Leiden: Backhuys.

    Google Scholar 

  • Chuba, D., Goyder, D.J., Chase, J.M., Fishbein, M. 2017. Phylogenetics of the African Asclepias complex (Apocynaceae) based on three plastid DNA regions. Syst. Bot. 42: 148–159. doi: https://doi.org/10.1600/036364417X694539

  • Church, A.H. 1908. Types of floral mechanism, Part 1, Types I-XII. Oxford: Clarendon Press. doi: https://archive.org/details/cu31924000658413

  • Civeyrel, L. 1994. Variation et évolution des types polliniques du genre Secamone (Secamonoideae, Asclepiadaceae). C.R. Acad. Sci. Paris 317: 1159–1165.

    Google Scholar 

  • Civeyrel, L. 1995. Pollen morphology and ultrastructure of the genus Secamone in Africa. 2nd Symposium on African Palynology, Tervuren (Belgium), 1995, Publ. Occas. CIFEG, Orléans, CIFEG: 207–215.

    Google Scholar 

  • Civeyrel, L., Rowe, N. 2001. Phylogenetic relationships of Secamonoideae based on plastid gene matK, morphology and biomechanics. Ann. Missouri Bot. Gard. 88: 583–602.

    Article  Google Scholar 

  • Civeyrel, L., Le Thomas, A., Ferguson, K., Chase, M.W. 1998. Critical reexamination of palynological characters used to delimit Asclepiadaceae in comparison to molecular phylogeny obtained from plastid matK sequences. Mol. Phyl. Evol. 9: 517–527.

    Article  CAS  Google Scholar 

  • Cocucci, A.A., Marino, S., Baranzelli, M., Wiemer, A.P., Sérsic, A. 2014. The buck in the milkweed: evidence of male–male interference among pollinaria on pollinators. New Phytol. 203: 280–286. doi: https://doi.org/10.1111/nph.12766

  • Colegate, S.M., Gardner, D.R., Betz, J.M., Fischer, O.W., Liede-Schumann, S., Boppré, M. 2016. Pro-toxic 1, 2-dehydropyrrolizidine alkaloid esters, including unprecedented 10-membered macrocyclic diesters, in the medicinally-used Alafia cf. caudata and Amphineurion marginatum (Apocynaceae: Apocynoideae: Nerieae and Apocyneae). Phytochem. Anal. 27: 257–276. doi: https://doi.org/10.1002/pca.2624

  • Collinson, M.E., Manchester, S.R., Wilde, V., Hayes, P. 2010. Fruit and seed floras from exceptionally preserved biotas in the European Paleogene. Bull. Geosci. 85: 155–162.

    Article  Google Scholar 

  • Collinson, M.E., Manchester, S.R., Wilde, V. 2012. Fossil fruits and seeds of the Middle Eocene Messel biota, Germany. Abhandlungen der Senckenberg Gesellschaft für Naturforschung, Band 570. Stuttgart: Schweizerbart, p. 20.

  • Coppen, J.J.W., Cobb, A.I. 1983. The occurrence of iridoids in Plumeria and Allamanda. Phytochemistry 22: 125–128.

    Article  CAS  Google Scholar 

  • Corlett, R.T., Lucas, P.W. 1990. Alternative seed-handling strategies in primates: seed-spitting by long-tailed macaques (Macaca fascicularis). Oecologia 82: 166–171.

    Article  CAS  PubMed  Google Scholar 

  • Corner, E.J.H. 1976. The Seeds of Dicotyledons, Vols.1, 2. Cambridge: Cambridge Univ. Press, 1: pp. 70–73, 2: t. 19–23.

    Google Scholar 

  • Cronquist, A. 1981. An integrated system of classification of flowering plants. New York: Columbia University Press.

    Google Scholar 

  • Cullen, J. 1978. A preliminary survey of ptyxis (vernation) in the Angiosperms. Notes Roy. Bot. Gard. Edinb. 37: 161–214.

    Google Scholar 

  • Darrault, R.O., Schlindwein, C. 2005. Limited fruit production in Hancornia speciosa (Apocynaceae) and pollination by nocturnal and diurnal insects. Biotropica 37: 381–388.

    Article  Google Scholar 

  • Davis, A.R., Gunning, B.E.S. 1992. The modified stomata of the floral nectary of Vicia faba L. 1. Development, anatomy and ultrastructure. Protoplasma 166: 134–152.

    Article  Google Scholar 

  • Decaisne, M.J. 1844. Asclepiadaceae. In: de Candolle, A.P. (ed.) Prodromus Systematis Naturalis Regni Vegetabilis, Vol. 8. Paris: Treuttel & Würtz, pp. 490–684.

    Google Scholar 

  • Defler, T.R., Defler, S.B. 1996. Diet of a group of Lagothrix lagothricha lagothricha in southeastern Colombia. Int. J. Primatol. 17: 161–190.

    Article  Google Scholar 

  • De Kruif, A.P.M. 1983. Series of revisions of Apocynaceae XI. A revision of Motandra A. DC. (Apocynaceae). Meded. Landbouwhogeschool Wageningen 83-7: 1–20.

    Google Scholar 

  • De Kruif, A.P.M. 1985. A revision of Oncinotis Benth. (Apocynaceae). Series of revisions of Apocynaceae XVI. Wageningen Agric. Univ. Pap. 85.2: 1–45.

    Google Scholar 

  • De Luca, V., Salim, V., Atsumi, S.M., Yu, F. 2012. Mining the biodiversity of plants: A revolution in the making. Science 336: 1658–1661.

    Article  PubMed  CAS  Google Scholar 

  • Demeter, K. 1922. Vergleichende Asclepiadeenstudien. Flora 115: 130–176.

    Google Scholar 

  • Denis, M.S., Capuccino, N. 2004. Reproductive biology of Vincetoxicum rossicum (Kleo.) Barb. (Asclepiadaceae), an invasive alien in Ontario. J. Torrey Bot. Soc. 131: 8–15.

    Article  Google Scholar 

  • Domingos-Melo, A., de Lima Nadia, T., Machado, I.C. 2017. Complex flowers and rare pollinators: Does ant pollination in Ditassa show a stable system in Asclepiadoideae (Apocynaceae)? Arthropod Pl. Interact. doi: https://doi.org/10.1007/s11829-017-9499-3

  • Dutt, H.C., Singh, S., Avula, B., Khan, I.A., Bedi, Y.S. 2012. Pharmacological review of Caralluma R.Br. with special reference to appetite suppression and anti-obesity. J. Med. Food 15: 108–119. doi: https://doi.org/10.1089/jmf.2010.1555

  • Dyer, R.A. 1933. Fockea cylindrica R.A. Dyer. Hook. Icon. Pl. 34: pl. 3221. In: Hill, A.W. (ed.) London: Dulau & Co.

    Google Scholar 

  • Edgar, J.A. 1984. Parsonsieae: Ancestral larval food plants of the Danainae and Ithomiinae. In: Vane-Wright, R.I., Ackery, P.R. (eds.) The biology of butterflies. London: Academic Press, pp. 91–93.

    Google Scholar 

  • Eisikowitch, D. 1986. Morpho-ecological aspects on the pollination of Calotropis procera (Asclepiadaceae) in Israel. Pl. Syst. Evol. 152: 185–194.

    Article  Google Scholar 

  • El-Gazzar, A., Hamza, M.K., Badawi, A.A. 1974. Pollen morphology and taxonomy of Asclepiadaceae. Pollen and Spores 16: 227–238.

    Google Scholar 

  • Endlicher, S. 1838. Asclepiadaceae, Genera Plantarum secundum ordines naturales disposita Vindobonae. Vienna: Beck, pp 586–598.

    Google Scholar 

  • Endress, M.E. 2001. Apocynaceae and Asclepiadaceae: United they stand. Haseltonia 8: 2–9.

    Google Scholar 

  • Endress, M.E., Bruyns, P.V. 2000. A revised classification of the Apocynaceae s. l. Bot. Rev. 66: 1–56. doi: https://doi.org/10.1007/BF02857781

  • Endress, M.E., Hesse, M., Nilsson, S., Guggisberg, A., Zhu, J.-P. 1990. The systematic position of the Holarrheninae (Apocynaceae). Pl. Syst. Evol. 171: 157–185. https://doi.org/10.1007/BF00940603

    Article  Google Scholar 

  • Endress, M.E., Sennblad, B., Nilsson, S., Civeyrel, L., Chase, M.W., Huysmans, S., Grafström, E., Bremer, B. 1996. A phylogenetic analysis of Apocynaceae s. str. and some related taxa in the Gentianales: a multidisciplinary approach. Opera Bot. Belg. 7: 59–102. https://doi.org/10.3417/0026-6493(2007)94[1:APAOAA]2.0.co;2

  • Endress, M.E., Lorence, D.H., Endress, P.K. 1997. Structure and development of the gynoecium of Lepinia marquisensis and its systematic position in the Apocynaceae. Allertonia 7: 267–272.

    Google Scholar 

  • Endress, M.E., van der Ham, R.W.J.M., Nilsson, S., Civeyrel, L., Chase, M.W., Sennblad, B., Potgieter, K., Joseph, J., Powell, M., Lorence, D., Zimmerman, Y.-M., Albert, V.A. 2007a. A phylogenetic analysis of Alyxieae (Apocynaceae) based on rbcL, matK, trnL intron, trnL-F spacer sequences, and morphological characters. Ann. Missouri Bot. Gard. 94: 1–35.

    Article  Google Scholar 

  • Endress, M.E., Liede-Schumann, S., Meve, U. 2007b. Advances in Apocynaceae: The enlightenment, an introduction. Ann. Missouri Bot. Gard. 94: 259–267. doi: https://doi.org/10.3417/0026-6493(2007)94[259:AIATEA]2.0.CO;2

  • Endress, M.E., Liede-Schumann, S., Meve, U. 2014. An updated classification for Apocynaceae. Phytotaxa 159: 175–194. https://doi.org/10.11646/phytotaxa.159.3.2

    Article  Google Scholar 

  • Erdtman, G. 1952. Pollen morphology and plant taxonomy. Stockholm: Almqvist and Wiksell.

    Book  Google Scholar 

  • Everist, S.L. 1981. Asclepiadaceae. In: Poisonous Plants of Australia, 2nd ed. Sydney: Angus and Robertson, pp. 94–109.

    Google Scholar 

  • Ezcurra, C., Endress, M.E., Leeuwenberg, A.J.M. 1992. Apocynaceae. In: Spichiger, R., Ramella, L. (eds.) Flora del Paraguay 17. Geneva: Editions de Conservatoire et Jardin Botanique de la Ville de Genève.

    Google Scholar 

  • Fahn, A. 1979. Secretory tissues in plants. New York, NY: Academic Press.

    Google Scholar 

  • Fallen, M.E. 1983. A systematic revision of Anechites (Apocynaceae). Brittonia 35: 222–231. doi: https://doi.org/10.2307/2806018

  • Fallen, M.E. 1985. The gynoecial development and systematic position of Allamanda (Apocynaceae). Amer. J. Bot. 72: 572–579.

    Article  Google Scholar 

  • Fallen, M.E. 1986. Floral structure in the Apocynaceae: morphological, functional, and evolutionary aspects. Bot. Jahrb. Syst. 106: 245–286.

    Google Scholar 

  • Farinaccio, M.A., de Mello-Silva, R. 2006. Oxypetalum gyrophyllum and O. oblanceolatum, new species of Asclepiadoideae (Apocynaceae) from Brazil, and a key for the O. insigne group. Novon 16: 235–239.

    Article  Google Scholar 

  • Farrell, B.D., Mitter, C. 1998. The timing of insect/plant diversification: might Tetraopes (Coleoptera: Cerambycidae) and Asclepias (Asclepiadaceae) have co-evolved? Biol. J. Linn. Soc. 63: 553–577.

    Google Scholar 

  • Feinsinger, P. 1978. Ecological interactions between plants and hummingbirds in a successional tropical community. Ecol. Monogr. 48: 269–287.

    Article  Google Scholar 

  • Fishbein, M. 2001. Evolutionary innovation and diversification in the flowers of Asclepiadaceae. Ann. Missouri Bot. Gard. 88: 603–623.

    Article  Google Scholar 

  • Fishbein, M., Stevens, W.D. 2005. Resurrection of Seutera Reichenbach (Apocynaceae – Asclepiadoideae). Novon 15: 531–533.

    Google Scholar 

  • Fishbein, M., Venable, D.L. 1996. Diversity and temporal change in the effective pollinators of Asclepias tuberosa. Ecology 77: 1061–1073.

    Article  Google Scholar 

  • Fishbein, M., Chuba, D., Ellison, C., Mason-Gamer, R.J., Lynch, S.P. 2011. Phylogenetic relationships of Asclepias (Apocynaceae) estimated from non-coding cpDNA sequences. Syst. Bot. 36: 1008–1023.

    Article  Google Scholar 

  • Flora of China Editorial Committee. 1999. Flora of China Illustrations, Volume (16), Gentianaceae through Boraginaceae. Beijing and St. Louis: Science Press, Missouri Botanical Garden Press, pp. 1–383.

    Google Scholar 

  • Fonseca, L.C.N., Vizentin-Bugoni, J., Rech, A.R., Alves, M.A.A. 2015. Plant-hummingbird interactions and temporal nectar availability in a restinga from Brazil. An. Academica Bras. Ciên. 87: 206–2175.

    Google Scholar 

  • Forster, P.I. 1991a. A possible identification for “Pollinia attached to adult anopheloine mosquitoes from northern Australia”. Entomol. Soc. Queensland News Bull. 18: 113.

    Google Scholar 

  • Forster, P.I. 1991b. Host records (family Asclepiadaceae) for Euploea core corinna (W. S. Macleay) (Lepidoptera: Nymphalidae). Austral. Entomol. Mag. 18: 61–64.

    Google Scholar 

  • Forster, P.I. 1991c. A taxonomic revision of Sarcolobus R.Br. (Asclepiadaceae: Marsdenieae) in Australia and Papuasia. Austrobaileya 3: 335–360.

    Google Scholar 

  • Forster, P.I. 1992a. Pollination of Hoya australis (Asclepiadaceae) by Ocybadistes walkeri sothis (Lepidoptera: Hesperidae). Aust. Ent. Mag. 19: 39–44.

    Google Scholar 

  • Forster, P.I. 1992b. Insects associated with the flowers of Marsdenia cymulosa Benth. (Asclepiadaceae) and their possible role in pollination. Aust. Ent. Mag. 19: 45–58.

    Google Scholar 

  • Forster, P.I. 1992c. A taxonomic revision of Carissa (Apocynaceae) in Australia. Aust. Syst. Bot. 5: 581–591.

    Article  Google Scholar 

  • Forster, P.I. 1993. Conspectus of Cryptolepis R.Br. (Asclepiadaceae: Periplocoideae) in Malesia. Austrobaileya 4: 67–73.

    Google Scholar 

  • Forster, P.I. 1995. New names and combinations in Marsdenia (Asclepiadaceae: Marsdenieae) from Asia and Malesia (excluding Papuasia). Austral. Syst. Bot. 8: 691–701.

    Article  Google Scholar 

  • Frye, T.C. 1901. Development of the pollen in some Asclepiadaceae. Bot. Gaz. 32: 315–331.

    Article  Google Scholar 

  • Fu, Y.H., He, H.P., Di, Y.T., Li, S.L, Zhang, Y., Hao, X.J. 2012. Mekongenines A and B, two new alkaloids from Bousigonia mekongensis. Tetradendron Letters 53: 3642–3646.

    Article  CAS  Google Scholar 

  • Fu, Y.H., Di, Y.T., He, H.P., Li, S.L, Zhang, Y., Hao, X.J. 2014. Angustifonines A and B, cytotoxic bisindole alkaloids from Bousigonia angustifolia. J. Nat. Prod. 7: 57–62. doi: https://doi.org/10.1021/np4005823

  • Gaillard, Y., Krishnamoorthy, A., Bevalot, F. 2004. Cerbera odollam: a ‘suicide tree’ and cause of death in the state of Kerala, India. J. Ethnopharmacol. 95: 123–126.

    Article  PubMed  Google Scholar 

  • Galetto, L. 1997. Flower structure and nectar chemical composition in three Argentine Apocynaceae. Flora 192: 197–207.

    Article  Google Scholar 

  • Galil, J., Zernoni, M. 1965. Nectar system in Asclepias curassavica. Bot. Gaz. 126: 144–148.

    Article  Google Scholar 

  • Gautier-Hion, A., Michaloud, G. 1989. Are figs always keystone resources for tropical frugivorous vertebrates? A test in Gabon. Ecology 70: 1826–1833.

    Article  Google Scholar 

  • Gautier-Hion, A., Duplantier, J.-M., Quris, R., Feer, F., Sourd, C., Decoux, J.-P., Dubost, G., Emmons, L., Erard, C., Hecketsweiler, P., Moungazi, A., Roussilhon, C., Thiollay, J.-M. 1985. Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia (Berlin) 65: 324–337.

    Article  CAS  Google Scholar 

  • Gentry, A.H., Dodson, C.H. 1987. Diversity and biogeography of Neotropical vascular epiphytes. Ann. Missouri Bot. Gard. 74: 205–233.

    Article  Google Scholar 

  • Gilani, S.A., Kikuchi, A., Shinwari, Z.K., Khattak, Z.I., Watanabe, K.N. 2007. Phytochemical, pharmacological and ethnobotanical studies of Rhazya stricta Decne. Phytotherapy Res. 21: 30–307.

    Google Scholar 

  • Goh, S.H., Ali, A.R.M., Wong, W.H. 1989. Alkaloids of Leuconotis griffithii and L. eugenifolia (Apocynaceae). Tetrahedron 45: 7899–7920.

    Article  CAS  Google Scholar 

  • Good, R. 1947. The geography of the flowering plants. London: Longmans, Green & Co.

    Google Scholar 

  • Good, R. 1952. An atlas of the Asclepiadaceae. New Phytol. 51: 198–209.

    Article  Google Scholar 

  • Govindchari, T.R. 1967. Tylophora Alkaloids. In: Manske, R.H.F. (ed.) The Alkaloids. New York: Academic Press, pp. 518–528.

    Google Scholar 

  • Goyder, D.J. 2004. An amplified concept of Philibertia Kunth (Apocynaceae: Asclepiadoideae), with a synopsis of the genus. Kew Bull. 59: 415–451. doi: https://doi.org/10.2307/4110951

  • Goyder, D.J. 2006. An overview of Asclepiad biogeography. In: Ghazanfar, S.A., Beentje, H.J. (eds.) Taxonomy and ecology of African plants, their conservation and sustainable use. Kew: Royal Botanic Gardens, pp 205–214.

    Google Scholar 

  • Goyder, D.J. 2009. A synopsis of Asclepias (Apocynaceae: Asclepiadoideae) in tropical Africa. Kew Bull. 64: 369–399.

    Article  Google Scholar 

  • Goyder, D., Nicholas, A., Liede-Schumann, S. 2007. Phylogenetic relationships in subtribe Asclepiadinae (Apocynaceae: Asclepiadoideae). Ann. Missouri Bot. Gard. 94: 423–434. doi: https://doi.org/10.3417/0026-6493(2007)94[423:prisaa]2.0.co;2

  • Haber, W.A. 1984. Pollination by deceit in a mass-flowering tropical tree Plumeria rubra (Apocynaceae). Biotropica 16: 269–275.

    Article  Google Scholar 

  • Haber, W.A., Frankie, G.W., Baker, H.G., Baker, I., Koptur, S. 1981. Ants like nectar. Biotropica 13: 211–214.

    Article  Google Scholar 

  • Hall, W.T.K. 1964. Plant toxicoses of tropical Australia. Austral. Veterin. J. 40: 176–182.

    Article  Google Scholar 

  • Hechem, V., Acheritobehere, L., Morrone, J.J. 2011a. Patrones de distribución de las especies de Cynanchum, Diplolepis y Tweedia (Apocynaceae: Asclepiadoideae) de América del Sur austral. Revista Geogr. Norte Grande 48: 45–60.

    Article  Google Scholar 

  • Hechem, V., Calviño, C.I., Ezcurra, C. 2011b. Molecular phylogeny of Diplolepis (Apocynaceae-Asclepiadoideae) and allied genera, and taxonomic implications. Taxon 60: 638–648.

    Article  Google Scholar 

  • Hegnauer, R. 1964. Chemotaxonomie der Pflanzen 3. Basel: Birkhäuser, pp. 124–163, 199–223.

    Google Scholar 

  • Hegnauer, R. 1970. Cardenolide und Bufadienolide (= Cardadienolide). Verbreitung und systematische Bedeutung. Pl. Med. 19: 137–153.

    Google Scholar 

  • Hegnauer, R. 1989. Chemotaxonomie der Pflanzen 8. Basel: Birkhäuser, pp. 48–60, 84–95. doi: https://doi.org/10.1007/978-3-0348-9283-4

  • Heiduk, A., Brake, I., von Tschirnhaus, M., Göhl, M., Jürgens, A., Johnson, A.E., Meve, U., Dötterl, S. 2016. Ceropegia sandersonii mimics attacked honeybees to attract kleptoparasitic flies for pollination. Curr. Biol. 26: 2787–2793.

    Article  CAS  PubMed  Google Scholar 

  • Hendrian. 2001a. Strophanthus. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 519–523. Leiden: Backhuys.

    Google Scholar 

  • Hendrian. 2001b. Voacanga. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 582–585. Leiden: Backhuys.

    Google Scholar 

  • Hendrian, Middleton, D.J. 1999. Revision of Rauvolfia (Apocynaceae) in Malesia. Blumea 44: 449–470.

    Google Scholar 

  • Herrera, J. 1991. The reproductive biology of a riparian Mediterranean shrub, Nerium oleander L. (Apocynaceae). Bot. J. Linn. Soc. 106: 147–172.

    Article  Google Scholar 

  • Hong, L., Guo, Z.-H., Huang, K.F., Wei, S., Liu, B., Meng, S., Long, C. 2015. Ethnobotanical study on medicinal plants used by Maonan people in China. J. Ethnobiol. Ethnomed. 11: 32. doi: https://doi.org/10.1186/s13002-015-0019-1

  • Hu, Y.-J., Shen, X.-L., Mu, Q.-Z., Lu, Y., Zheng, Q.-T. 1992. Steroidal constituents from Amalocalyx yunnanensis. Phytochemistry 31: 2099–2102.

    Article  CAS  PubMed  Google Scholar 

  • Hutchings, A.A. 1989. A survey and analysis of traditional medicinal plants as used by the Zulu, Xhosa and Sotho. Bothalia 19: 111–123.

    Google Scholar 

  • Ionta, G.M., Judd, W.S. 2007. Phylogenetic relationships in Periplocoideae (Apocynaceae s.l.) and insights into the origin of pollinia in the subfamily. Ann. Missouri Bot. Gard. 94: 360–375. doi: https://doi.org/10.3417/0026-6493(2007)94[360:pripas]2.0.co;2

  • Ivey, C.T., Lipow, S.R., Wyatt, R. 1999. Mating systems and interfertility of swamp milkweed (Asclepias incarnata ssp. incarnata and ssp. pulchra). Heredity 82: 25–35.

    Article  Google Scholar 

  • Jagtap, A.P., Singh, N.P. 1999. Fascicles of Flora of India: fascicle 24. Asclepiadaceae and Periplocaceae. Calcutta: Botanical Survey of India.

    Google Scholar 

  • Jensen, S.R. 1992. Systematic implications of the distribution of iridoids and other chemical compounds in the Loganiaceae and other families of the Asteridae. Ann. Missouri Bot. Gard. 79: 284–302.

    Article  Google Scholar 

  • Johns, S.R., Lamberton, J.A., Price, J.R., Sioumis, A.A. 1968. Identification of coumarins isolated from Lepiniopsis ternatensis (Apocynaceae), Pterocaulon sphacelatum (Compositae), and Melicope melanophloia (Rutaceae). Aust. J. Chem. 21: 3079–3080.

    Article  CAS  Google Scholar 

  • Johri, B.M., Ambegaokar, K.M., Srivastava, P.S. 1992. Comparative Embryology of Angiosperms, Vol. 2. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Joubert, L., Klak, C., Venter, A.M., Venter, H.J.T., Bruyns, P.V. 2016. A widespread radiation in the Periplocoideae (Apocynaceae): The case of Cryptolepis. Taxon 65: 487–501.

    Article  Google Scholar 

  • Judd, W.S., Sanders, R.W., Donoghue, M.J. 1994. Angiosperm family pairs: Preliminary phylogenetic analysis. Harvard Pap. Bot. 5: 1–51.

    Google Scholar 

  • Jürgens, A., Dötterl, S., Meve, U. 2006. The chemical nature of fetid floral odours in Stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae). New Phytol. 172: 452–468.

    Article  PubMed  CAS  Google Scholar 

  • Jussieu, A.L. de. 1789. Genera Plantarum. Paris: Herissant.

    Google Scholar 

  • Kahn, A.P., Morse, D.H. 1991. Pollination germination and putative ovule penetration in self- and cross-pollinated common milkweed Asclepias syriaca. Amer. Midl. Naturalist 126: 61–67.

    Article  Google Scholar 

  • Kalimuthu, K., Prabakaran, R. 2013. Preliminary phytochemical screening and GC-MS analysis of methanol extract of Ceropegia pusilla. Int. J. Res. Appl. Nat. Soc. Sci. 1: 49–58.

    Google Scholar 

  • Kephart, S.R. 1981. Breeding systems in Asclepias incarnata L., A. syriaca L., and A. verticillata L. Amer. J. Bot. 68: 226–232.

    Article  Google Scholar 

  • Khanum, R., Surveswaran, S., Meve, U., Liede-Schumann, S. 2016. Cynanchum (Apocynaceae: Asclepiadoideae): A pantropical Asclepiadoid genus revisited. Taxon 65: 467–486. doi: https://doi.org/10.12705/653.3

  • Kiew, R. 1994. The taxonomy and phytochemistry of the Asclepiadaceae in tropical Asia. Malacca: The Herbarium, Department of Biology, Universiti Pertanian Malaysia, 43400 UPM Serdang, Selangor, Malaysia and BOTANY 2000 ASIA.

    Google Scholar 

  • Kiew, R. 2001. Tylophora. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 564–568. Leiden: Backhuys.

    Google Scholar 

  • Kingston, D.G.I., Reichstein, T. 1974. Cytotoxic cardenolides from Acokanthera longiflora Staph and related species. J. Pharm. Sci. 63: 462–464.

    Article  CAS  PubMed  Google Scholar 

  • Kirchheimer, F. 1957. Die Laubgehölze der Braunkohlezeit. Halle (Saale): Wilhelm Knapp.

    Google Scholar 

  • Kisakürek, M.V., Leeuwenberg, A.J.M., Hesse, M. 1983. A chemotaxonomic investigation of the plant families of Apocynaceae, Loganiaceae, and Rubiaceae by their indole alkaloid content. In: Pelletier, W.W. (ed.) Alkaloids: chemical and biological perspectives 1. Wiley: New York, pp. 211–376.

    Google Scholar 

  • Klackenberg, J. 1992. Taxonomy of Secamone s.lat. (Asclepiadaceae) in the Madagascar region. Opera Botanica a Societate Botanica Lundensis 112: 1–126.

    Google Scholar 

  • Klackenberg, J. 1995. Taxonomy and phylogeny of the SE Asian genus Genianthus (Asclepiadaceae). Bot. Jahrb. Syst. 117: 401–467.

    Google Scholar 

  • Klackenberg, J. 1998. Taxonomy and phylogeny of the genus Camptocarpus s.l. (Periplocoideae, Asclepiadaceae). Bot. Jahrb. Syst. 120: 45–85.

    Google Scholar 

  • Klackenberg, J. 1999. Revision of the Malagasy genera Pentopetia and Ischnolepis (Apocynaceae s.l.). Candollea 54: 257–339.

    Google Scholar 

  • Klackenberg, J. 2001. Notes on Secamonoideae in Africa. Bull. Mus. Natl. Hist. Nat., B, Adansonia Sér. 3, 23: 317–335.

    Google Scholar 

  • Klackenberg, J. 2010. New species and combinations of Secamone (Apocynaceae, Secamonoideae) from South East Asia. Blumea 55: 231–241.

    Article  Google Scholar 

  • Kleijn, D., Donkelaar, R. van. 2001. Notes on the taxonomy and ecology of the genus Hoya (Asclepiadaceae) in Central Sulawesi. Blumea 46: 457–483.

    Google Scholar 

  • Koch, I., Bittrich, V., Sumiko Kinoshita, L. 2002. Reproductive biology and functional aspects of the floral morphology of Rauvolfia sellowii Müll. Arg. (Apocynaceae; Rauvolfioideae) – a report of dioecy in Apocynaceae. Bot. Jahrb. Syst. 124: 83–104. doi: https://doi.org/10.3417/1055-3177(2007)17[462:TNIRAR]2.0.CO;2

  • Kress, W.J. 1986. The systematic distribution of vascular epiphytes: an update. Selbyana 9: 2–22.

    Google Scholar 

  • Krings, A., Saville, A.C. 2007. Two new species and three lectotypifications in the Ibatia-Matelea complex (Apocynaceae: Asclepiadoideae) from northern South America. Syst. Bot. 32: 862–871.

    Article  Google Scholar 

  • Kugler, H. 1973. Zur Bestäubung von Cynanchum acutum L. durch Faltenwespen (Vespidae). In: Brantjes, N.B.M., Linsgens, H.F. (eds.) Pollination and Dispersal. Nijmwegen: University Nijmwegen, pp. 61–68.

    Google Scholar 

  • Kumar, P.S., Suresh, E., Kalavathy, S. 2013. Review on a potential herb Calotropis gigantea (L.) R. Br. Sch. Acad. J. Pharm. 2: 135–143.

    Google Scholar 

  • Kunze, H. 1982. Morphogenese und Synorganisation des Bestäubungsapparates einiger Asclepiadaceen. Beitr. Biol. Pflanzen 56: 133–170.

    Google Scholar 

  • Kunze, H. 1990. Morphology and evolution of the corona in Asclepiadaceae and related families. Trop. Subtrop. Pflanzenwelt 76: 1–51.

    Google Scholar 

  • Kunze, H. 1991. Structure and function in asclepiad pollination. Pl. Syst. Evol. 176: 227–253.

    Article  Google Scholar 

  • Kunze, H. 1993. Evolution of the translator in Periplocaceae and Asclepiadaceae. Pl. Syst. Evol. 185: 99–122.

    Article  Google Scholar 

  • Kunze, H. 1994. Ontogeny of the translator in Asclepiadaceae s.str. Pl. Syst. Evol. 193: 223–242.

    Article  Google Scholar 

  • Kunze, H. 1995. Floral morphology of some Gonolobeae (Asclepiadeae). Bot. Jahrb. Syst. 117: 211–238.

    Google Scholar 

  • Kunze, H. 1996. Morphology of the stamen in the Asclepiadaceae and its systematic relevance. Bot. Jahrb. Syst. 118: 547–579.

    Google Scholar 

  • Kunze, H. 1997. Corona and nectar system in Asclepiadinae (Asclepiadaceae). Flora 192: 175–183.

    Article  Google Scholar 

  • Kunze, H. 2005. Morphology and evolution of the corolla and corona in the Apocynaceae s.l. Bot. Jahrb. Syst. 126: 347–383.

    Article  Google Scholar 

  • Kunze, H., Meve, U., Liede, S. 1994. Cibirhiza albersiana, a new species of Asclepiadaceae, and establishment of the tribe Fockeeae. Taxon 43: 367–376.

    Article  Google Scholar 

  • Lahaye, R., Civeyrel, L., Speck, T., Rowe, N.P. 2005. Evolution of shrub-like growth forms in the lianoid subfamily Secamonoideae (Apocynaceae s.l.) of Madagascar: Phylogeny, biomechanics, and development. Amer. J. Bot. 92: 1381–1396.

    Article  CAS  Google Scholar 

  • Lahaye, R., Klackenberg, J., Källersjö, M., Van Campo, E., Civeyrel, L. 2007. Phylogenetic relationships between derived Apocynaceae s.l. and within Secamonoideae based on four chloroplast sequences. Ann. Missouri Bot. Gard. 94: 376–391. doi: https://doi.org/10.3417/0026-6493(2007)94[376:prbdas]2.0.co;2

  • Landolt, P.J. 1994. Fruit of Morrenia odorata (Asclepiadaceae) as a host for the papaya fruit fly, Toxotrypana curvicauda (Diptera: Tephritidae). Florida Entomol. 77(2): 287–288.

    Article  Google Scholar 

  • Lee, D.U., Kang, S.I., Yoon, S.H., Budesinsky, M., Kasal, A., Mayer, K.K., Wiegrebe, W. 2000. A new steroidal alkaloid from the roots of Cynanchum caudatum. Planta Medica 66: 480–482.

    Article  CAS  PubMed  Google Scholar 

  • Leeuwenberg, A.J.M. 1985. Voacanga Thou. Series of revisions of Apocynaceae, XV. Wageningen Agric. Univ. Pap. 85.3: 1–80.

    Google Scholar 

  • Leeuwenberg, A.J.M. 1991. A revision of Tabernaemontana, Vol. 1, The Old World species. Kew: Royal Botanic Gardens Press.

    Google Scholar 

  • Leeuwenberg, A.J.M. 1994a. Taxa of the Apocynaceae above the genus level. Series of revisions of Apocynaceae, XXXVIII. Wageningen Agric. Univ. Pap. 94(3): 45–60.

    Google Scholar 

  • Leeuwenberg, A.J.M. 1994b. A revision of Tabernaemontana, Vol. 2, The New World species. Kew: Royal Botanic Gardens Press.

    Google Scholar 

  • Leeuwenberg, A.J.M. 1999. The genus Cerbera L. Series of revisions of Apocynaceae, XLVII. Wageningen Agric. Univ. Pap. 98.3: 1–64.

    Google Scholar 

  • Leeuwenberg, A.J.M., van Dilst, F.J.H. 2001. Carissa L. Series of revisions of Apocynaceae, XLIX. Wageningen Agric. Univ. Pap. 2001.1: 1–64.

    Google Scholar 

  • Leighton, M. 1993. Modeling dietary selectivity by Bornean orangutans: Evidence for integration of multiple criteria in fruit selection. Int. J. Primatol. 14: 257–313.

    Article  Google Scholar 

  • Leimu, R. 2004. Variation in the mating system of Vincetoxicum hirundinaria (Asclepiadaceae) in peripheral island populations. Ann. Bot. 93: 107–113.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lens, F., Endress, M.E., Baas, P., Jansen, S., Smets, E. 2008. Wood anatomy of Rauvolfioideae (Apocynaceae): A search for meaningful non-DNA characters at the tribal level. Amer. J. Bot. 95: 1199–1215. doi: https://doi.org/10.3732/ajb.0800159

  • Lens, F., Endress, M.E., Baas, P., Jansen, S., Smets, E. 2009. Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae. Amer. J. Bot. 96: 2168–2183. doi: https://doi.org/10.3732/ajb.0900116

  • Li, P.T., Gilbert, M.G., Stevens, W.D. 1995a. Asclepiadaceae. In: Wu, Z.Y., Raven, P.H. (eds.) Flora of China, Vol. 16. Beijing, St. Louis: Science Press & Missouri Botanical Garden, pp. 189–270.

    Google Scholar 

  • Li, P.T., Leeuwenberg, A.J.M., Middleton, D.J. 1995b. Apocynaceae. In: Wu, Z.Y., Raven, P.H. (eds.) Flora of China, Vol. 16. Beijing, St. Louis: Science Press & Missouri Botanical Garden, pp. 143–188.

    Google Scholar 

  • Liede, S. 1996a. Anther differentiation in the Asclepiadaceae: Form and Function. In: D’Arcy, W.G., Keating, R.C. (eds.) The Anther: Form, Function and Phylogeny. Cambridge: Cambridge University Press, pp. 221–235.

    Google Scholar 

  • Liede, S. 1996b. CynanchumRhodostegiellaVincetoxicumTylophora: new considerations on an old problem. Taxon 45: 193–211.

    Article  Google Scholar 

  • Liede, S. 1997. Subtribes and genera of the tribe Asclepiadeae (Apocynaceae – Asclepiadoideae) – a synopsis. Taxon 46: 233–247.

    Article  Google Scholar 

  • Liede, S. 2001. Molecular considerations on the subtribe Astephaninae Endl. ex Meisn. (Apocynaceae – Asclepiadoideae). Ann. Missouri Bot. Gard. 88: 657–668. doi: https://doi.org/10.2307/3298638

  • Liede, S., Kunze, H. 1993. A descriptive system for corona analysis in Asclepiadaceae and Periplocaceae. Pl. Syst. Evol. 185: 275–284.

    Article  Google Scholar 

  • Liede, S., Meve, U. 1994. A new species of Tylophoropsis (Asclepiadaceae) and notes on the genus. Kew Bulletin 49(4): 749–756.

    Article  Google Scholar 

  • Liede, S., Meve, U. 2002 (publ. 2004). Dissolution of Cynanchum sect. Macbridea (Apocynaceae-Asclepiadoideae). Nord. J. Bot. 22: 579–591.

    Google Scholar 

  • Liede, S., Täuber, A. 2000. Sarcostemma R. Br. (Apocynaceae – Asclepiadoideae) – a controversial generic circumscription reconsidered: Evidence from trnL-F Spacers. Pl. Syst. Evol. 225: 133–140. doi: https://doi.org/10.1007/bf00985463

  • Liede, S., Täuber, A. 2002. Circumscription of the genus Cynanchum (Apocynaceae – Asclepiadoideae). Syst. Bot. 27: 789–800. doi: https://doi.org/10.2307/2419462

  • Liede, S., Weberling, F. 1995. On the inflorescence structure of Asclepiadaceae. Pl. Syst. Evol. 197: 99–109.

    Article  Google Scholar 

  • Liede-Schumann, S., Meve, U. 2015. Synonymy of three South American genera in Apocynaceae, and new combinations in Oxypetalum and Tassadia. Phytotaxa 202: 35–44. doi: https://doi.org/10.11646/phytotaxa.202.1.4

  • Liede-Schumann, S., Rapini, A., Goyder, D.J., Chase, M.W. 2005. Phylogenetics of the New World subtribes of Asclepiadeae (Apocynaceae-Asclepiadoideae): Metastelmatinae, Oxypetalinae, and Gonolobinae. Syst. Bot. 30: 184–200. doi: https://doi.org/10.1600/0363644053661832

  • Liede-Schumann, S., Kong, H.-H., Meve, U., Thiv, M. 2012. Vincetoxicum and Tylophora (Apocynaceae: Asclepiadoideae: Asclepiadeae)–two sides of the same medal: Independent shifts from tropical to temperate habitats. Taxon 61: 803–825.

    Article  Google Scholar 

  • Liede-Schumann, S., Nikolaus, M., Soares e Silva, U.C., Rapini, A., Mangelsdorff, R.D., Meve, U. 2014. Phylogenetics and biogeography of the genus Metastelma (Apocynaceae-Asclepiadoideae-Asclepiadeae: Metastelmatinae). Syst. Bot. 39: 594–612.

    Article  Google Scholar 

  • Liede-Schumann, S., Khanum, R., Mumtaz, A.S., Gherghel, I., Pahlevani, A. 2016. Going west – A subtropical lineage (Vincetoxicum, Apocynaceae: Asclepiadoideae) expanding into Europe. Mol. Phyl. Evol. 94: 436–446.

    Article  Google Scholar 

  • Lienau, K., Straka, H., Friedrich, B. 1986. Palynologia Madagassica et Mascarenica, Fam. 167–181. Trop. Subtrop. Pflanzenwelt 55: 1–158.

    Google Scholar 

  • Lin, S., Bernardello, G. 1999. Flower structure and reproductive biology in Aspidosperma quebracho-blanco (Apocynaceae), a tree pollinated by deceit. Int. J. Pl. Sci. 160: 869–878.

    Article  CAS  Google Scholar 

  • Linhart, Y.B., Feinsinger, P. 1980. Plant-hummingbird interactions: Effects of island size and degree of specialization on pollination. J. Ecol. 68: 745–760.

    Article  Google Scholar 

  • Lipow, S.R., Wyatt, R. 1998. Reproductive biology and breeding system of Gonolobus suberosus (Asclepiadaceae). J. Torrey Bot. Soc. 125: 183–193.

    Article  Google Scholar 

  • Lipow, S.R., Wyatt, R. 1999. Floral morphology and late-acting self-incompatibility in Apocynum cannabinum (Apocynaceae). Pl. Syst. Evol. 219: 99–109.

    Article  Google Scholar 

  • Livshultz, T. 2010. The phylogenetic position of milkweeds (Apocynaceae subfamilies Secamonoideae and Asclepiadoideae): Evidence from the nucleus and chloroplast. Taxon 59: 1016–1030.

    Article  Google Scholar 

  • Livshultz, T., Middleton, D.J., Endress, M.E., Williams, J.K. 2007. Phylogeny of Apocynoideae and the APSA clade (Apocynaceae). Ann. Missouri Bot. Gard. 94: 324–359. doi: https://doi.org/10.3417/0026-6493(2007)94[324:poaata]2.0.co;2

  • Lodder, S., Rutten, E.M.J., Van der Ham, R.W.J.M. 2007. Pollen morphology. In: Middleton, D.J. 2007. Apocynaceae (subfamilies Rauvolfioideae and Apocynoideae), Vol. 18. In: Nooteboom, H.P. (ed.) Flora Malesiana, Series I – Seed Plants. Leiden: Foundation Flora Malesiana.

    Google Scholar 

  • Lopes, A.V., Machado, I.C. 1999. Pollination and reproductive biology of Rauvolfia grandiflora (Apocynaceae): Secondary pollen presentation, herkogamy and self-incompatibility. Pl. Biol. 1: 547–553.

    Article  Google Scholar 

  • Lorence, D.H., Butaud, J.-F. 2011. A reassessment of Marquesan Ochrosia and Rauvolfia (Apocynaceae) with two new combinations. PhytoKeys 4: 95–107. doi: https://doi.org/10.3897/phytokeys.4.1599

  • Lorence, D.H., Wagner, W.L. 1997. A revision of Lepinia (Apocynaceae), with description of a new species from the Marquesas Islands. Allertonia 7: 254–266.

    Google Scholar 

  • Ludwig, F. 1880. Über die Bestäubungsvorrichtungen und die Fliegenfalle des Hundskohles, Apocynum androsaemifolium L. Kosmos 8: 182–185.

    Google Scholar 

  • Lumer, C., Yost, S.E. 1995. The reproductive biology of Vincetoxicum nigrum (L.) Moench (Asclepiadaceae), a Mediterranean weed in New York State. Bull. Torrey Bot. Club 122: 12–23.

    Article  Google Scholar 

  • Machado, C.G. 2009. Beija-flores (Aves: Trochilidae) e seus recursos florais em uma área de caatinga da Chapada Diamantina, Bahia, Brasil. Zoologia 26: 255–265.

    Article  Google Scholar 

  • Maheswari Devi, H. 1964. Embryological studies in Asclepiadaceae. Proc. Indian Acad. Sci., Pl. Sci. 60B: 52–65.

    Google Scholar 

  • Mahlberg, P. 1980. The latex cells of asclepiads. Asklepios 23: 30–32.

    Google Scholar 

  • Markgraf, F. 1971. Florae Malesianae Praecursores LI. Apocynaceae I. 1. Carissa, 2. Catharanthus, 3. Melodinus, 4. Leuconotis, 5. Chilocarpus. Blumea 19: 156–165.

    Google Scholar 

  • Markgraf, F. 1976. Apocynaceae. In: Leroy, J.-F. (ed.) Flore de Madagascar et des Comores. Fam. 169. Paris: Muséum National d’Histoire Naturelle, Paris.

    Google Scholar 

  • Martínez-Millán, M. 2010. Fossil Record and Age of the Asteridae. Bot. Rev. 76: 83–135.

    Article  Google Scholar 

  • Masinde, P.S., Meve, U. 2002. Ceropegia zambesiaca (Apocynaceae: Asclepiadoideae-Ceropegieae), a new species from Zambia. Kew Bull. 57: 205–209.

    Article  Google Scholar 

  • McDiarmid, R.W. 1977. Dispersal of Stemmadenia donnell-smithii (Apocynaceae) by birds. Biotropica 9: 9–25.

    Article  Google Scholar 

  • McFadyen, R.E., Harvey G.J. 1990. Distribution and control of rubber vine, Cryptostegia grandiflora, a major weed in northern Queensland. Pl. Protection Quarterly 5: 152–155.

    Google Scholar 

  • McNeill, J., Barrie, F.R., Buck, W.R., Demoulin, V., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Marhold, K., Prado, J., Prud’homme van Reine, W.F., Smith, G.F., Wiersema, J.H., Turland, N.J. (eds.) 2012. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code): Adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Regnun Vegetabile 154, Königstein: Koeltz Scientific Books. http://www.iapt-taxon.org/nomen/main.php

  • Metcalfe, C.R., Chalk, L. 1972. Anatomy of the Dicotyledons, Vol. 2 [Apocynaceae, Asclepiadaceae]. Oxford: University Press, pp. 905–925.

    Google Scholar 

  • Metcalfe, C.R., Chalk, L. 1979. Anatomy of the Dicotyledons, 2nd ed, Vol. 1. Oxford: Clarendon Press.

    Google Scholar 

  • Metzner, R. 1998. Hallucinogenic drugs and plants in psychotherapy and shamanism. J. Psychoactive Drugs 30: 333–341. doi: https://doi.org/10.1080/02791072.1998.10399709

  • Meve, U. 1994. The genus Piaranthus R. Br. (Asclepiadaceae). Bradleya 12: 57–102.

    Article  Google Scholar 

  • Meve, U. 1995. A review of phytophagous insects on Stapeliads (Asclepiadaceae). Cimbebasia 14: 103–106.

    Google Scholar 

  • Meve, U. 1997. The genus Duvalia (Stapelieae): stem-succulents between the Cape and Arabia. Pl. Syst. Evol. Suppl. 10. Wien: Springer, 132 pp.

    Google Scholar 

  • Meve, U., Liede, S. 1994. Floral biology and pollination in Stapeliads – new results and a literature review. Pl. Syst. Evol. 192: 99–116.

    Article  Google Scholar 

  • Meve, U., Liede, S. 2002a. A molecular phylogeny and generic rearrangement of the stapelioid Ceropegieae (Apocynaceae-Asclepiadoideae). Pl. Syst. Evol. 234: 171–209.

    Article  Google Scholar 

  • Meve, U., Liede, S. 2002b. Floristic exchange between mainland Africa and Madagascar: A case study of Apocynaceae-Asclepiadoideae. J. Biogeogr. 29: 865–873.

    Article  Google Scholar 

  • Meve, U., Liede, S. 2004a. Generic delimitations in tuberous Periplocoideae (Apocynaceae) from Africa and Madagascar. Ann. Bot. 93: 407–414. doi: https://doi.org/10.1093/aob/mch057

  • Meve, U., Liede, S. 2004b. Subtribal division of Ceropegieae (Apocynaceae-Asclepiadoideae). Taxon 53: 61–72. doi: https://doi.org/10.2307/4135489

  • Meve, U., Liede-Schumann, S. 2007. Ceropegia (Apocynaceae, Ceropegieae, Stapeliinae): Paraphyletic but still taxonomically sound. Ann. Missouri Bot. Gard. 94: 392–406.

    Article  Google Scholar 

  • Meve, U., Liede-Schumann, S. 2015. Taxonomy of the Andean genus Pentacyphus (Apocynaceae: Asclepiadeae–Pentacyphinae). Pl. Syst. Evol. 301: 997–1004.

    Article  Google Scholar 

  • Meve, U., Liede-Schumann, S. 2017. Was ist Cynanchum L. (Apocynaceae-Asclepiadoideae)? Schritt für Schritt zu einem erweiterten Gattungskonzept. Avonia 35: 77–85.

    Google Scholar 

  • Meve, U., Wolf, F. 2001. Echidnopsis bentii N.E. Brown (Ceropegieae) auf Sokotra gefunden. Kakt. and. Sukk. 52(5): 113–118.

    Google Scholar 

  • Meve, U., Jahnke, G., Liede, S., Albers, F. 2004. Isolation mechanisms in the Stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae). Schumannia 4 / Biodivers. Ecol. 2: 107–126.

    Google Scholar 

  • Meve, U., Heiduk, A., Liede-Schumann, S. 2017. Origin and early evolution of Ceropegieae (Apocynaceae-Asclepiadoideae). Syst. Biodivers. 15: 143–155.

    Article  Google Scholar 

  • Meyer, J.-Y. 1996. Espèces et Espaces Menacés de la Sociéte et des Marquises. Contribution à l’Environnement. Délégation à la Recherche, Papeete.

    Google Scholar 

  • Meyer, J.-Y., Butaud, J.-F. 2009. The impacts of rats on the endangered native flora of French Polynesia (Pacific Islands): Drivers of plant extinction or coup de grâce species? Biol. Invasions 11: 1569–1585.

    Article  Google Scholar 

  • Meyer, J.-Y., Picot, F. 2001. Achatines attack! The impact of giant African land snails on rare endemic plants in La Réunion Island (Mascarene Islands, Indian Ocean). Aliens. (Bull. Invasive Species Spec. Group IUCN Spec. Surv. Comm.) 14: 13–14.

    Google Scholar 

  • Meyer, B.N., McLaughlin, J.L., Keller, W.J. 1981. Candicine from Stapelia gigantea. Pl. Med. 43: 304–306.

    Article  CAS  Google Scholar 

  • Middleton, D.J. 2000. Revision of Alyxia, Part 1: Asia and Malesia. Blumea 45: 1–146.

    Google Scholar 

  • Middleton, D.J. 2002. Revision of Alyxia (Apocynaceae). Part 2: Australia and Pacific Islands. Blumea 47: 1–93.

    Google Scholar 

  • Middleton, D.J. 2007. Apocynaceae (subfamilies Rauvolfioideae and Apocynoideae), Vol. 18. In: Nooteboom, H.P. (ed.) Flora Malesiana, Series I – Seed Plants. Leiden: Foundation Flora Malesiana.

    Google Scholar 

  • Middleton, D.J. 2010. Three new species of Wrightia (Apocynaceae: Apocynoideae) from Thailand. Gard. Bull. Singapore 61: 129–138.

    Google Scholar 

  • Middleton, D.J. 2014. Apocynaceae, subfamilies Rauvolfioideae and Apocynoideae. Flora of Cambodia, Laos and Vietnam 33. Paris and Edinburgh: Muséum National d’Histoire Naturelle, Royal Botanic Garden Edinburgh, pp 1–276.

    Google Scholar 

  • Middleton, D.J., Livshultz, T. 2012. Streptoechites gen. nov., a new genus of Asian Apocynaceae. Adansonia Sér. 3, 34: 365–375. doi: https://doi.org/10.5252/a2012n2a10

  • Middleton, D.J., Lindsay, S., Suddee, S. 2006 (‘2005’). A new species of Kamettia (Apocynaceae: Rauvolfioideae), a genus new to Thailand. Thai Forest Bull. 33: 75–80.

    Google Scholar 

  • Morales, J.F. 1998. A synopsis of the genus Mandevilla (Apocynaceae) in Mexico and Central America. Brittonia 50: 214–232.

    Article  Google Scholar 

  • Morales, J.F., Zamora, N.A. 2017. A synopsis of Aspidosperma (Apocynaceae) in Mexico and Central America with a taxonomic clarification of Aspidosperma cruentum and a new cryptic species. Phytoneuron 68: 1–13.

    Google Scholar 

  • Morales, J.F., Endress M.E., Liede-Schumann, S. 2017a. Sex, drugs and pupusas: Disentangling relationships in Echiteae (Apocynaceae). Taxon 66: 623–644.

    Article  Google Scholar 

  • Morales, J.F., Endress, M.E., Liede-Schumann, S. 2017b. Systematics of Prestonia (Apocynaceae: Apocynoids: Echiteae) eighty years after Woodson. Ann. Missouri Bot. Gard. 102: 520–541.

    Article  Google Scholar 

  • Moré, M., Sérsic, A.N., Cocucci, A.A. 2007. Restriction of pollinator assemblage through flower length and width in three long-tongued hawkmoth-pollinated species of Mandevilla (Apocynaceae, Apocynoideae). Ann. Missouri Bot. Gard. 94: 485–504.

    Article  Google Scholar 

  • Morillo, G. 2012. Aportes al conocimiento de las Gonolobinae (Apocynaceae- Asclepiadoideae). Pittieria 36: 13–57.

    Google Scholar 

  • Morillo, G. 2013. Aportes al conocimiento de las Gonolobinae II (Apocynaceae, Asclepiadoideae). Pittieria 37: 101–140.

    Google Scholar 

  • Morillo, G. 2015. Aportes al conocimiento de las Gonolobinae III (Apocynaceae, Asclepiadoideae). Pittieria 39: 191–258.

    Google Scholar 

  • Morokawa, R., Mayer, J.L.S., Simões, A.O., Kinoshita, L.S. 2015. Floral development of Condylocarpon isthmicum (Apocynaceae). Botany 93: 679–781. https://doi.org/10.1139/cjb-2015-0081

    Article  Google Scholar 

  • Morse, D.H. 1985. Milkweeds and their visitors. Sci. Amer. 253: 112–119.

    Article  Google Scholar 

  • Morton, J.F., Alvarez, E., Quinonez, C. 1990. Loroco, Fernaldia pandurata (Apocynaceae) – a popular edible flower of Central America. Econ. Bot. 44: 301–310.

    Article  Google Scholar 

  • Moura, T.N.D., Webber, A.C., Torres, L.N.M. 2011. Floral biology and a pollinator effectiveness test of the diurnal floral visitors of Tabernaemontana undulata Vahl. (Apocynaceae) in the understory of Amazon Rainforest, Brazil. Acta Bot. Bras. 25: 380–386.

    Article  Google Scholar 

  • Mu, Q.Z., Lu, R.J., Zhou, Q.L. 1986. Two new antiepilepsy compounds – otophylloside A and otophylloside B. Sci. Sin. (B) 24: 295–301.

    Google Scholar 

  • Muller, J. 1968. Palynology of the Pedawan and Plateau Sandstone Formations (Cretaceous-Eocene) in Sarawak, Malaysia. Micropaleontology 14: 1–37.

    Article  Google Scholar 

  • Muller, J. 1981. Fossil pollen records of extant angiosperms. Bot. Rev. 47: 1–146.

    Article  Google Scholar 

  • Naumova, T.N. 1992. Apomixis in Angiosperms. Boca Raton: CRC Press.

    Google Scholar 

  • Nel, M. 1995. Rare and interesting plants of the Namib Desert. Part 2. Three desert plants. Veld Fl. 81: 14–16.

    Google Scholar 

  • Neuwinger, H.D. 1994a. Asclepiadaceae. In: Afrikanische Arzneipflanzen und Jagdgifte, Vol. 59. Stuttgart: Wissenschaftliche Verlagsgesellschaft, pp. 208–232.

    Google Scholar 

  • Neuwinger, H.D. 1994b. Fish poisoning plants in Africa. Bot. Acta 107: 263–270.

    Article  Google Scholar 

  • Nevo, O., Garri, R.O., Hernandez Salazar, L., Schulz, S., Heymann, E.W., Ayasse, M., Laska, M. 2015. Chemical recognition of fruit ripeness in spider monkeys (Ateles geoffroyi). Sci. Rep. Oct. 2015. doi: http://dx.doi.org/10.038/srep14895

    Google Scholar 

  • Nicholas, A., Baijnath, H. 1994. A consensus classification of the order Gentianales with additional details on the suborder Apocynineae. Bot. Rev. 60: 440–482.

    Article  Google Scholar 

  • Nilsson, S. 1986. The significance of pollen morphology in the Apocynaceae. In: Blackmore, S., Ferguson, I.K. (eds.) Pollen and Spores: Form and Function. J. Linn. Soc. Symp. Ser. 12. London: Academic Press, pp. 359–374.

    Google Scholar 

  • Nilsson, S. 1990. Taxonomic and evolutionary significance of pollen morphology in the Apocynaceae. Pl. Syst. Evol., Suppl. 5: 91–102.

    Google Scholar 

  • Nilsson, S., Endress, M.E., Grafström, E. 1993. On the relationship of the Apocynaceae and Periplocaceae. Grana 1993, Suppl. 2: 3–20.

    Google Scholar 

  • Nishino, E. 1982. Corolla tube formation in six species of Apocynaceae. Bot. Mag. Tokyo 95: 1–17.

    Article  Google Scholar 

  • Nishino, E. 1983. Corolla tube formation in the Tubiflorae and Gentianales. Bot. Mag. Tokyo 96: 223–243.

    Article  Google Scholar 

  • Ollerton, J., Liede, S. 1997. Pollination systems in the Asclepiadaceae: a survey and preliminary analysis. Biol. J. Linn. Soc. 62: 593–610.

    Article  Google Scholar 

  • Ollerton, J., Johnson, S.D., Cranmer, L., Kellie, S. 2003. The pollination ecology of an assemblage of grassland asclepiads in South Africa. Ann. Bot. 92: 807–834.

    Article  PubMed  PubMed Central  Google Scholar 

  • Omino, E. 1996. A monograph of the subtribe Pleiocarpinae (Apocynaceae-Plumerioideae-Carisseae). Series of revisions of Apocynaceae, XLI. Wageningen Agric. Univ. Pap. 96-1: 81–178.

    Google Scholar 

  • Omlor, R. 1998. Generische Revision der Marsdenieae (Asclepiadaceae). Kaiserslautern: Shaker Verlag.

    Google Scholar 

  • Pant, D.D., Nautiyal, D.D., Chaturvedi, S.K. 1982. Pollination ecology of some Indian asclepiads. Phytomorphology 32: 302–313.

    Google Scholar 

  • Pathania, S., Randhawa, V., Bagler, G. 2013. Prospecting for novel plant-derived molecules of Rauvolfia serpentina as inhibitors of aldose reductase, a potent drug target for diabetes and its complications. PloS ONE 8(4): e61327. doi: https://doi.org/10.1371/journal.pone.0061327

  • Pathania, S., Ramakrishnan, S.M., Randhawa, V., Bagler, G. 2015. SerpentinaDB: A database of plant-derived molecules of Rauvolfia sepentina. BMC Complement. Alt. Med. 15: 262. doi: https://doi.org/10.1186/s12906-015-0683-7

  • Paulo, A., Jimeno, M.L., Gomes, E.T., Houghton, P.J. 2000. Steroidal alkaloids from Cryptolepis obtusa. Phytochemistry 53: 417–422.

    Article  CAS  PubMed  Google Scholar 

  • Pauw, A. 1998. Pollen transfer on birds’ tongues. Nature 394: 731–732.

    Article  CAS  Google Scholar 

  • Peeters, C., Wiwatwitaya, D. 2014. Philidris ants living inside Dischidia epiphytes from Thailand. Asian Myrmecology 6: 49–61.

    Google Scholar 

  • Pereira, A.S.S., Simões, A.O., Santos, J.U.M. 2016. Taxonomy of Aspidosperma Mart. (Apocynaceae, Rauvolfioideae) in the state of Pará, northern Brazil. Biota Neotropica 16(2): e20150080. doi: https://doi.org/10.1590/1676-011öBN-2015-0080

  • Pereira, A.S.S., Castello, A.C.D., Scudeler, A.L., Simões, A.O., Koch, I. 2017. Aspidosperma brasiliense (Apocynaceae), a new and widely distributed species. Phytotaxa 326: 235–244.

    Article  Google Scholar 

  • Periasamy, K. 1963. Studies on seeds with ruminate endosperm. III. Development of rumination in certain members of the Apocynaceae. Proc. Indian Acad. Sci. 58, sect. B, 1: 325–332, t. 29, 30.

    Google Scholar 

  • Perry, L.M. 1980. Medicinal Plants of East and Southeast Asia: attributed properties and uses. Cambridge, MA: MIT Press.

    Google Scholar 

  • Persoon, J., Dilst, F.J.H., Kuijpers, R.P., Leeuwenberg, A.J.M., Vonk, G.J.A. 1992. The African species of Landolphia. Series of revisions of Apocynaceae, XXXIV. Wageningen Agric. Univ. Pap. 92.2: 1–232.

    Google Scholar 

  • Pichon, M. 1948a. Classification des Apocynacées. I. Carissées et Ambelaniées. Mém. Mus. Natl. Hist. Nat., Sér. B, Bot. 24: 111–181.

    Google Scholar 

  • Pichon, M. 1948b. Classification des Apocynacées. V. Cerbéroïdées. Not. Syst. Paris 13: 212–229.

    Google Scholar 

  • Pichon, M. 1948c. Classification des Apocynacées. XIX. Le rétinacle de Echitoïdées. Bull. Soc. Bot. France 95: 211–216.

    Article  Google Scholar 

  • Pichon, M. 1949. Classification des Apocynacées. IX. Rauvolfiées, Alstoniées, Allamandées et Tabernaémontanoidées. Mém. Mus. Natl. Hist. Nat. 27: 153–251.

    Google Scholar 

  • Pichon, M. 1950a. Classification des Apocynacées XXV, Echitoïdées. Mém. Mus. Natl. Hist. Nat., Sér. B, Bot.1: 1–142.

    Google Scholar 

  • Pichon, M. 1950b. Classification des Apocynacées: XXVIII, Supplément aux Plumerioïdées, Mém. Mus. Natl. Hist. Nat., Sér. B, Bot. 1: 145–166.

    Google Scholar 

  • Pienaar, M. 2013. Phylogeny of the genus Raphionacme (Apocynaceae). M.Sc. Thesis, Dept. Plant Sciences, Univ. Free State, Bloemfontein, Bloemfontein, South Africa.

    Google Scholar 

  • Plumel, M.M. 1991. Le genre Himatanthus (Apocynaceae). Révision taxonomique. Bradea 5 (suppl.): 1–118.

    Google Scholar 

  • Poinar, G.O. 2017. Ancient termite pollinator of milkweed flowers in Dominican amber. Amer. Entomol. 63: 52–56.

    Article  Google Scholar 

  • Potgieter, K., Albert, A.A. 2001. Phylogenetic relationships within Apocynaceae s. l. based on trnL intron and trnL-F spacer sequences and propagule characters. Ann. Missouri Bot. Gard. 88: 523–549. doi: https://doi.org/10.2307/3298632

  • Pynee, K., Dubuisson, J.-Y., Hennequin, S. 2013. Flora diversity of Mount Bar Le Duc Volcanic Crater (Ripailles Hill), Nouvelle Découverte, Mauritius. Cahiers Sci. Ocean Ind. Occid. 4: 15–20.

    Google Scholar 

  • Queiroz, J.A., 2009. Esfingofilia e polinização por engano em Aspidosperma pyrifolium Mart., uma Apocynaceae arbórea endêmica de caatinga. Ph.D. Thesis, Universidade Federal de Pernambuco, Recife.

    Google Scholar 

  • Rahayu, S.S.B. 2001. Allamanda. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 49–52. Leiden: Backhuys.

    Google Scholar 

  • Ramakrishna, T.M., Arekal, G.D. 1979. Pollination biology of Calotropus gigantea (L.). R. Br. Curr. Sci. 48: 212–213.

    Google Scholar 

  • Rapini, A., Chase, M.W., Goyder, D.J., Griffiths, J. 2003. Asclepiadeae classification: evaluating the phylogenetic relationships of New World Asclepiadoideae (Apocynaceae). Taxon 52: 33–50. doi: https://doi.org/10.2307/3647300

  • Rapini, A., van den Berg, C., Liede-Schumann, L. 2007. Diversification of Asclepiadoideae (Apocynaceae) in the New World. Ann. Missouri Bot. Gard. 94: 407–422. https://doi.org/10.3417/0026-6493(2007)94[407:DOAAIT]2.0.CO;2

    Article  Google Scholar 

  • Rapini, A., Fontella Pereira, J., Goyder, D.J. 2011. Towards a stable generic circumscription in Oxypetalinae (Apocynaceae). Phytotaxa 26: 9–16.

    Article  Google Scholar 

  • Razafindratsima, O.H., Jones, T.A., Dunham, A.E. 2014. Patterns of movement and seed dispersal by three lemur species. Amer. J. Primatology 76: 84–96.

    Article  Google Scholar 

  • Reid, E.M., Chandler, M.E.J. 1926. The Bembridge Flora (Apocynaceae, Asclepiadaceae). London: Order of the Trustees.

    Google Scholar 

  • Ribeiro, P.L., Rapini, A., Damascena, L.S., van den Berg, C. 2014. Plant diversification in the Espinhaço Range: Insights from the biogeography of Minaria (Apocynaceae). Taxon 63: 1253–1264.

    Article  Google Scholar 

  • Rintz, R.E. 1980. A revision of the genus Sarcolobus (Asclepiadaceae). Blumea 26: 65–79.

    Google Scholar 

  • Rodda, M. 2015. Two new species of Hoya R.Br. (Apocynaceae, Asclepiadoideae) from Borneo. PhytoKeys 53: 83–93.

    Article  Google Scholar 

  • Rodda, M., Omlor, R. 2013. The taxonomy of Oreosparte (Apocynaceae: Asclepiadoideae). Webbia 68: 91–95.

    Article  Google Scholar 

  • Rodríguez-Estrella, R., Navarro, J.J.P., Granados, B., Rivera, L. 2010. The distribution of an invasive plant in a fragile ecosystem: The rubber vine (Cryptostegia grandiflora) in oases of the Baja California peninsula. Biol. Invas. 12: 3389–3393.

    Article  Google Scholar 

  • Rosatti, T.J. 1989. The genera of suborder Apocynineae (Apocynaceae and Asclepiadaceae) – Asclepiadaceae. J. Arnold Arb. 70: 443–514.

    Article  Google Scholar 

  • Rudjiman. 1982. A revision of Vallaris Burm. f. (Apocyneae). Series of revisions of Apocynaceae, IX. Meded. Landbouwhogeschool Wageningen 82-11: 1–17.

    Google Scholar 

  • Rudjiman. 2001. Kibatalia. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 322–324. Leiden: Backhuys.

    Google Scholar 

  • Sabir, J.S.M., Jansen, R.K., Arasappan, D., Calderon, V., Noutahi, E., Zheng, C., Park, S., Sabir, M.J., Baeshen, M.N. Hajrah, N.H., Khiyami, M.A., Baeshen, N.A., Obaid, A.Y., Al-Malki, A.L., Sankoff, D., El-Mabrouk, N., Ruhlman, T.A. 2016. The nuclear genome of Rhazya stricta and the evolution of alkaloid diversity in a medically relevant clade of Apocynaceae. Sci. Rep. 6, 33782. doi: https://doi.org/10.1038/srep33782

  • Safwat, F.M. 1962. The floral morphology of Secamone and the evolution of the pollinating apparatus in Asclepiadaceae. Ann. Missouri Bot. Gard. 49: 95–129.

    Article  Google Scholar 

  • Sage, T.L., Williams, E.G. 1993. Self-incompatibility in Asclepias. Pl. Cell Incompatibility Newsl. 23: 55–57.

    Google Scholar 

  • Sage, T.L., Williams, E.G. 1995. Structure, ultrastructure, and histochemistry of the pollen tube pathway in the milkweed Asclepias exaltata. L. Sex. Pl. Repro. 8: 257–265.

    Google Scholar 

  • Sage, T.L., Broyles, S.G., Wyatt, R. 1990. The relationship between the five stigmatic chambers and two ovaries of milkweed flowers: a three-dimensional assessment. Israel J. Bot. 39: 187–196.

    Google Scholar 

  • Sangat-Roemantyo, H.M., Middleton, D.J. 2001. Alyxia. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 69–72. Leiden: Backhuys.

    Google Scholar 

  • Schick, B. 1980. Untersuchungen über die Biotechnik der Apocynaceenblüte.I. Morphlogie und Funktion des Narbenkopfes. Flora 170: 394–432.

    Article  CAS  Google Scholar 

  • Schick, B. 1982a. Untersuchungen über die Biotechnik der Apocynaceenblüte. II. Bau und Funktion des Bestäubungsapparates. Flora 172: 347–371.

    Google Scholar 

  • Schick, B. 1982b. Zur Morphologie, Entwicklung, Feinstruktur und Funktion des Translators von Periploca L. (Asclepiadaceae). Trop. Subtrop. Pflanzenwelt 40: 513–553.

    Google Scholar 

  • Schill, R., Jäkel, U. 1978. Beitrag zur Kenntnis der Asclepiadaceen-Pollinarien. Trop. Subtrop. Pflanzenwelt 22: 53–170.

    Google Scholar 

  • Schlechter, F.R.R. 1905. Periplocaceae and Asclepiadaceae. In: Schumann, K., Lauterbach, K. (eds.) Nachträge zur Flora des Deutschen Südseegebiets. Leipzig: Borntraeger, pp. 351–369.

    Google Scholar 

  • Schlindwein, C., Darrault, R.O., Grisi, T., 2004. Reproductive strategies in two sphingophilous apocynaceous trees attracting pollinators through nectar or deceit. In: Breckle, S.-W., Schweizer, B., Fangmeier, A. (eds.) Proceedings of the 2nd Symposium of the AFW Schimper-Foundation. Stuttgart: Verlag Günter Heimbach, pp. 215–227.

    Google Scholar 

  • Schnepf, E., Witzig, F., Schill, R. 1979. Über Bildung und Feinstruktur des Translators der Pollinarien von Asclepias curassavica und Gomphocarpus fruticosus (Asclepiadaceae). Trop. Subtrop. Pflanzenwelt 25: 1–39.

    Google Scholar 

  • Schroeder, C.A. 1951. Heterostyly and sterility in Carissa grandiflora. Proc. Amer. Soc. Hort. Sci. 57: 419–422.

    Google Scholar 

  • Schultes, R.E. 1979. De plantis toxicariis e mundo novo tropicale commentationes XIX. Biodynamic apocynaceous plants of the northwestern Amazon. J. Ethnopharmacol. 1: 165–192.

    Article  CAS  PubMed  Google Scholar 

  • Schultes, R.E., Raffauf, R.F. 1990. Historical, ethno-and economic botany series. In: Dudley, T.R. (ed.) The Healing Forest, Vol. 2. Portland: Dioscorides Press, pp. 98–99.

    Google Scholar 

  • Schumann, K. 1895. Apocynaceae and Asclepiadaceae. In: Engler, A., Prantl, K. (eds.) Die Nat. Pflanzenfam. 4(2). Leipzig: W. Engelmann, pp. 189–305. doi: https://doi.org/10.5962/bhl.title.4635

  • Sennblad, B., Bremer, B. 1996. The familial and subfamilial relationships of Apocynaceae and Asclepiadaceae evaluated with rbcL data. Pl. Syst. Evol. 202: 153–175. doi: https://doi.org/10.1007/BF00983380

  • Sennblad, B., Bremer, B. 2000. Is there a justification for differential a priori weighting in coding sequences? A case study from rbcL and Apocynaceae s. l. Syst. Biol. 49: 101–113. doi: https://doi.org/10.1080/10635150050207410

  • Sennblad, B., Endress, M.E., Bremer, B. 1998. Morphology and molecular data in phylogenetic fraternity: The tribe Wrightieae (Apocynaceae) revisited. Amer. J. Bot. 85: 1143–1158. doi: https://doi.org/10.2307/2446347

  • Sharaf, M.H.M., Schiff, P.L., Tackie, A.N., Phoebe, C.H., Martin, G.E. 1996. Two new indoloquinoline alkaloids from Cryptolepis sanguinolenta: cryptosanguinolentine and cryptotackieine. J. Heterocyclic Chem. 33: 239–243.

    Article  CAS  Google Scholar 

  • Sharma, S., Shahzad, A. 2014. An overview on Decalepis: A genus of woody medicinal climbers. J. Plant Sci. Res. 1: 104.

    Google Scholar 

  • Sheeley, S.E., Raynal, D.J. 1996. The distribution and status of species of Vincetoxicum in eastern North America. Bull. Torrey Bot. Club 123: 148–156.

    Article  Google Scholar 

  • Shuttleworth, A., Johnson, S.D. 2006. Specialized pollination by large spider-hunting wasps and self-incompatibility in the African milkweed Pachycarpus asperifolius. Int. J. Pl. Sci. 167: 1177–1186.

    Article  Google Scholar 

  • Shuttleworth, A., Johnson, S.D. 2008. Bimodal pollination by wasps and beetles in the African milkweed Xysmalobium undulatum. Biotropica 40: 568–574.

    Article  Google Scholar 

  • Shuttleworth, A., Johnson, S.D. 2009. The importance of scent and nectar filters in a specialized wasp-pollination system. Funct. Ecol. 23: 931–940.

    Article  Google Scholar 

  • Shuttleworth, A., Johnson, S.D. 2012. The Hemipepsis wasp-pollination system in South Africa: a comparative analysis of trait convergence in a highly specialized plant guild. Bot. J. Linn. Soc. 168: 278–299.

    Article  Google Scholar 

  • Sidiyasa, K. 1998. Taxonomy, phylogeny and wood anatomy of Alstonia (Apocynaceae). Blumea Suppl. 11: 1–230.

    Google Scholar 

  • Sidney, N.C. 2012. A taxonomic revision of Finlaysonia and Streptocaulon (Periplocoideae; Apocynaceae). M.Sc. Thesis, Dept. Plant Sciences, Univ. Free State Bloemfontein, Bloemfontein, South Africa.

    Google Scholar 

  • Silva, U.C.S., Rapini, A., Liede-Schumann, S., Ribeiro, P.L., Van den Berg, C. 2012. Taxonomic considerations on Metastelmatinae (Apocynaceae) based on plastid and nuclear DNA. Syst. Bot. 37: 795–806.

    Article  Google Scholar 

  • Silva, U.C.S., Santos, R.G.P., Rapini, A., Fontella Pereira, J., Liede-Schumann, S. 2014. Monsanima tinguaensis (Apocynaceae), an enigmatic new species from Atlantic rainforest. Phytotaxa 173: 11. doi: http://dx.doi.org./10.1600/036364412X648733

    Google Scholar 

  • Simões, A.O., Endress, M.E., van der Niet, T., Conti, E., Kinoshita, L.S. 2004. Tribal and intergeneric relationships of Mesechiteae (Apocynoideae, Apocynaceae): evidence from three noncoding plastid DNA regions and morphology. Amer. J. Bot. 91: 1409–1418. doi: https://doi.org/10.3732/ajb.91.9.1409

  • Simões, A.O., Endress, M.E., van der Niet, T., Kinoshita, L.S., Conti, E. 2006. Is Mandevilla (Apocynaceae, Mesechiteae) monophyletic? Evidence from five plastid DNA loci and morphology. Ann. Missouri Bot. Gard. 93: 565–591. doi: https://doi.org/10.3417/0026-6493(2006)93[565:IMAMME]2.0.CO;2

  • Simões, A.O., Livshultz, T., Conti, E., Endress, M.E. 2007. Phylogeny and systematics of the Rauvolfioideae (Apocynaceae) based on molecular and morphological evidence. Ann. Missouri Bot. Gard. 94: 268–297. https://doi.org/10.3417/0026-6493(2007)94[268:PASOTR]2.0.CO;2

    Article  Google Scholar 

  • Simões, A.O., Endress, M.E., Conti, E. 2010. Systematics and character evolution of Tabernaemontaneae (Apocynaceae, Rauvolfioideae) based on molecular and morphological evidence. Taxon 59: 772–790.

    Article  Google Scholar 

  • Simões, A.O., Kinoshita, L.S., Koch, I., Silva, M.J., Endress, M.E. 2016. Systematics and character evolution of Vinceae (Apocynaceae). Taxon 65: 99–122. doi: http://dx.doi.org/0000-0003-3256-5922

  • Smith, A.R. 1971. Curroria macrophylla A.R. Smith. Hook. Icon. Pl. 37: pl. 3685. In: Taylor, G. (ed.) London: Bentham-Moxon Trusties.

    Google Scholar 

  • Solbreck, S. 2000. Ecology and biology of Euphranta connexa (Fabr.) (Diptera: Tephritidae) – a seed predator on Vincetoxicum hirundinaria Med. (Asclepiadaceae). Entomol. Tidskr. 121: 23–30.

    Google Scholar 

  • Solereder, H. 1899. Asclepiadaceae. In: Systematische Anatomie der Dicotyledonen. Stuttgart: Enke, pp. 603–609.

    Google Scholar 

  • Spellman, D.L., Gunn, C.R. 1976. Morrenia odorata and Araujia sericifera (Asclepiadaceae): weeds in Citrus groves. Castanea 41: 139–148.

    Google Scholar 

  • Straub, S.C.K., Moore, M.J., Soltis, P.S., Soltis, D.E., Liston, A., Livshultz, T. 2014. Phylogenetic signal detection from an ancient rapid radiation: Effects of noise reduction, long-branch attraction, and model selection in crown clade Apocynaceae. Mol. Phyl. Evol. 80: 169–185. doi: https://doi.org/10.1016/j.ympev.2014.07.020

  • Struwe, L., Albert, V.A., Bremer, B. 1994. Cladistics and family level classification of the Gentianales. Cladistics 10: 175–206.

    Article  Google Scholar 

  • Sugiura, S., Yamazaki, K. 2005. Moth pollination of Metaplexis japonica (Apocynaceae): pollinaria transfer on the tip of the proboscis. J. Pl. Res. 118: 235–262.

    Article  Google Scholar 

  • Sukumar, E., Gopal, R.H., Rao, R.B., Viswanathan, S., Thirugnanasbantham, P., Vijayaserkaran, V. 1995. Pharmacological actions of ceropegin, a novel pyridine alkaloid from Ceropegia juncea. Fitoterapia 66: 403–406.

    CAS  Google Scholar 

  • Summons, R.E., Ellis, J., Gellert, E. 1972. Steroidal alkaloids of Marsdenia rostrata. Phytochemistry 11: 3335–3339.

    Article  CAS  Google Scholar 

  • Surveswaran, S., Sun, M., Grimm, G.W., Liede-Schumann, S. 2014. On the systematic position of some Asian enigmatic genera of Asclepiadoideae (Apocynaceae). Bot. J. Linn. Soc. 174: 601–619.

    Article  Google Scholar 

  • Suttisri, R., Lee, I.S., Kinghorn, A.D. 1995. Plant derived triterpenoid sweetness inhibitors. J. Ethnopharmacol. 47: 9–26.

    Article  CAS  PubMed  Google Scholar 

  • Swarupanandan, K., Mangaly, J.K., Sonny, T.K., Kishorekumar, K., Chand Basha, S. 1996. The subfamilial and tribal classification of the family Asclepiadaceae. Bot. J. Linn. Soc. 120: 327–369.

    Article  Google Scholar 

  • Sylla, T., Albers, F. 1989. Samenentwicklung und Samenmorphologie krautiger und sukkulenter Asclepiadaceae. Bot. Jahrb. Syst. 110: 479–492.

    Google Scholar 

  • Tanaka, H., Hatano, T., Kaneko, N., Kawachino, S., Kitamura, O., Suzuki, Y., Tada, T., Yaoi, Y. 2006. Andromonoecious sex expression of flowers and pollinia delivery by insects in a Japanese milkweed Metaplexis japonica (Asclepiadaceae), with special reference to its floral morphology. Pl. Spec. Biol. 21: 193–199.

    Article  Google Scholar 

  • Tank, D.C., Eastman, J.M., Pennell, M.W., Soltis, P.S., Soltis, D.E., Hinchliff, C.E., Brown, J.W., Sessa, E.B., Harmon, L.J. 2015. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol. 207: 454–467. doi: https://doi.org/10.1111/nph.13491

  • Taylor, W.I., Farnsworth, N. (eds.) 1975. The Catharanthus Alkaloids: Botany, chemistry, pharmacology, and clinical use. New York: Marcel Dekker, Inc.

    Google Scholar 

  • Teo, S. 2001. Alstonia. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 61–68. Leiden: Backhuys.

    Google Scholar 

  • Thiv, M., Struwe, L., Albert, V.A., Kadereit, J.W. 2000 [1999]. The phylogenetic relationships of Saccifolium bandeirae (Gentianaceae) reconsidered. Harvard Pap. Bot. 4: 519–526.

    Google Scholar 

  • Thomas, V., Dave, Y. 1994. Significance of follicle anatomy of Apocynaceae. Acta Soc. Bot. Pol. 63: 9–20.

    Article  Google Scholar 

  • Thorne, R.F. 1992. An updated phylogenetic classification of the flowering plants. Aliso 13: 365–389.

    Article  Google Scholar 

  • Torres, C., Galetto, L. 1998. Patterns and implications of floral nectar secretion, chemical composition, removal effects and standing crop in Mandevilla pentlandiana (Apocynaceae). Bot. J. Linn. Soc. 127: 207–223.

    Google Scholar 

  • Torres, C., Galetto, L. 1999. Factors constraining fruit set in Mandevilla pentlandiana (Apocynaceae). Bot. J. Linn. Soc. 129: 239–247.

    Google Scholar 

  • Tran, C.K. 2001. Cerbera. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 151–155. Leiden: Backhuys.

    Google Scholar 

  • Treiber, K. 1891. Anatomischer Bau des Stammes der Asclepiadaceae. Bot. Centralbl. 48: 209–218.

    Google Scholar 

  • Trigo, J.R., Brown, K.S., Jr. 1990. Variation of pyrrolizidine alkaloids in Ithomiinae: a comparative study between species feeding on Apocynaceae and Solanaceae. Chemoecology 1: 22–29.

    Article  CAS  Google Scholar 

  • Trivedi, B.S., Upadhyay, N. 1984. Cuticular studies of Asclepiadaceae. J. Indian Bot. Soc. 63: 129–147.

    Google Scholar 

  • Usher, G. 1974. A Dictionary of Plants Used by Man. London: Constable.

    Google Scholar 

  • Van Beck, T.A., Van Gessel, M.A.J.T. 1988. Alkaloids of Tabernaemontana species. In: Pelletier, S.W. (ed.) Alkaloids: Chemical and biological perspectives, Vol. 6. New York: Wiley, pp. 76–226.

    Google Scholar 

  • Van Beck, T.A., Verpoorte, R., Baerheim-Svendsen, A., Leeuwenberg, A.J.M., Bisset, N.G. 1984. Tabernaemontana L. (Apocynaceae): A review of its taxonomy, phytochemistry, ethnobotany and pharmacology. J. Ethnopharmacol. 10: 1–156.

    Article  Google Scholar 

  • Van de Ven, E.A., Van der Ham, R.W.J.M. 2006. Pollen of Melodinus (Apocynaceae): Monads and tetrads. Grana 45: 1–8.

    Google Scholar 

  • Van der Ham, R., Zimmermann, Y.-M., Nilsson, S., Igersheim, A. 2001. Pollen morphology of the Alyxieae (Apocynaceae). Grana 40: 169–191. doi: https://doi.org/10.1080/001731301317223114

  • Van der Heijden, R., Jacobs, D.I., Snoeijer, W., Hallard, D., Verpoorte, R. 2004. The Catharanthus alkaloids: Pharmacognosy and biotechnology. Curr. Med. Chem. 11: 607–628. doi: https://doi.org/10.2174/0929867043455846

  • Van der Laan, F.M., Arends, J.C. 1985. Cytotaxonomy of the Apocynaceae. Genetica 68: 3–35.

    Article  Google Scholar 

  • Van der Ploeg, J. 1985. Revision of genera Cyclocotyla Stapf, Dewevrella De Wild. and of the African species of the genus Malouetia A. DC. (Apocynaceae). Series of revisions of Apocynaceae, XVIII. Wageningen Agric. Univ. Pap. 85.2: 57–83.

    Google Scholar 

  • Van der Weide, J.C., Van der Ham, R.W.J.M. 2012. Pollen morphology and phylogeny of the tribe Tabernaemontaneae (Apocynaceae, subfamily Rauvolfioideae). Taxon: 61: 131–145.

    Article  Google Scholar 

  • Van Heerden, F.R. 2008. Hoodia gordonii: A natural appetite suppressant. J. Ethnopharmacol. 119: 434–437. doi: https://doi.org/10.1016/j.jep.2008.08.023

  • Van Roosmalen, M.G.M. 1985. Fruits of the Guianan Flora. Wageningen: Veenman.

    Google Scholar 

  • Van Valkenburg, J.L.C.H., Hendrian. 2001. Ochrosia. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 386–389. Leiden: Backhuys.

    Google Scholar 

  • Van Valkenburg, J.L.C.H., Horsten, S.F.A.J. 2001. Thevetia. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 544–546. Leiden: Backhuys.

    Google Scholar 

  • Venter, H.J.T. 2009. A taxonomic revision of Raphionacme (Apocynaceae: Periplocoideae). S. African J. Bot. 75: 292–350. doi: https://doi.org/10.1016/j.sajb.2009.02.174

  • Venter, H.J.T., Verhoeven, R.L. 2001. Diversity and relationships within Periplocoideae. Ann. Missouri Bot. Gard. 88: 550–568.

    Article  Google Scholar 

  • Verhoeven, R.L., Venter, H.J.T. 1998. Pollinium structure in Periplocoideae (Apocynaceae). Grana 37: 1–14. doi: https://doi.org/10.1080/00173139809362633

  • Verhoeven, R.L., Venter, H.J.T. 2001. Pollen morphology of the Periplocoideae, Secamonoideae and Asclepiadoideae (Apocynaceae). Ann. Missouri Bot. Gard. 88: 569–582. doi: https://doi.org/10.2307/3298634

  • Verhoeven, R.L., Liede, S., Endress, M.E. 2003. The tribal position of Fockea and Cibirhiza (Apocynaceae: Asclepiadoideae): evidence from pollinium structure and cpDNA sequence data. Grana 42: 70–81. doi: https://doi.org/10.1080/00173130310012549

  • Vieira, M.F., Shepherd, G.J. 1999. Pollination of Oxypetalum (Asclepiadaceae) in southeastern Brazil. Rev. Brasil. Biol. 59: 693–704.

    Article  CAS  PubMed  Google Scholar 

  • Waddington, K.D. 1976. Pollination of Apocynum sibiricum (Apocynaceae) by Lepidoptera. Southwest. Naturalist 21: 31–36.

    Article  Google Scholar 

  • Wagenitz, G. 1964. Gentianales. In: Melchior, H. (ed.) Engler’s Syllabus der Pflanzenfamilien. Berlin: Borntraeger, pp. 405–425.

    Google Scholar 

  • Walker, D.B. 1975. Postgenital carpel fusion in Catharanthus roseus (Apocynaceae). I. Light and scanning electron microscopic study of gynoecial ontogeny. Amer. J. Bot. 64: 457–467.

    Article  Google Scholar 

  • Walker, D.B. 1978. Postgenital carpel fusion in Catharanthus roseus (Apocynaceae). IV. Significance of the fusion. Amer. J. Bot. 65: 119–121.

    Article  Google Scholar 

  • Walther, R. 1994. Pollenfracht als Indikator fuer Ressourcennutzung und Einnischung bei madagassischen Schwärmern (Lepidoptera). Ph.D. Thesis, Friedrich-Alexander University, Erlangen-Nürnberg.

    Google Scholar 

  • Wanntorp, H.-E. 1974. Calotropis gigantea (Asclepiadaceae) und Xylocopa tenuiscapa (Hymenoptera, Apidae): Studies in flower morphology and pollination biology. Svensk Bot. Tidskr. 68: 25–32.

    Google Scholar 

  • Wanntorp, H.-E. 1988 [1989]. The genus Microloma (Asclepiadaceae). Opera Bot. 98: 1–69.

    Google Scholar 

  • Wanntorp, L., Forster, P.I. 2007. Phylogenetic relationships between Hoya and the monotypic genera Madangia, Absolmsia, and Micholitzia (Apocynaceae, Marsdenieae): Insights from flower morphology. Ann. Missouri Bot. Gard. 94: 36–55. doi: https://doi.org/10.3417/0026-6493(2007)94[36:prbhat]2.0.co;2

  • Watt, J.M., Breyer-Brandwijk, M.G. 1962. The Medicinal and Poisonous Plants of Southern Africa. Edinburgh: E. and S. Livingstone.

    Google Scholar 

  • Williams, L.O. 1981. Asclepiadaceae. In: The useful plants of Central America. Ceiba 24: 3–381.

    Google Scholar 

  • Williams, J.K., Stutzman, J.K. 2008. Chromosome number of Thevetia ahouai (Apocynaceae: Rauvolfioideae: Plumerieae) with discussion on the generic boundaries of Thevetia. J. Bot. Res. Inst. Texas 2: 489–493.

    Google Scholar 

  • Winks, C.J., Fowler, S.V. 2000. Prospects for biological control of moth plant Araujia sericifera (Asclepiadaceae). Landcare Research Contract Report LC9900/100 (unpubl.), Auckland, New Zealand.

    Google Scholar 

  • Wong, S.K., Lim, Y.Y., Chan, E.W.C. 2013. Botany, uses, phytochemistry and pharmacology of selected Apocynaceae species: A review. Pharmacognosy Comm. 3: 2–11.

    Article  CAS  Google Scholar 

  • Woodell, S.R.J. 1979. The role of unspecific pollinators in the reproductive success of Aldabran plants. Philos. Trans., Ser. B 286: 99–108.

    Article  Google Scholar 

  • Woodson, R.E., Jr. 1936. Studies in the Apocynaceae. IV. The American genera of Echitoideae. Ann. Missouri Bot. Gard. 23: 169–438.

    Article  Google Scholar 

  • Woodson, R.E., Jr. 1954. The North American species of Asclepias. Ann. Missouri Bot. Gard. 41: 1–211.

    Article  Google Scholar 

  • Wrangham, R.W., Waterman, P.G. 1983. Condensed tannins in fruits eaten by chimpanzees. Biotropica 15: 214–222.

    Article  Google Scholar 

  • Wyatt, R. 1976. Pollination and fruit-set in Asclepias: a reappraisal. Amer. J. Bot. 63: 845–851.

    Article  Google Scholar 

  • Wyatt, R. 1981. The reproductive biology of Asclepias tuberosa II. Factors determining fruit-set. New Phytol. 88: 375–185.

    Article  Google Scholar 

  • Wyatt, R., Broyles, S.B. 1994. Ecology and evolution of reproduction in milkweeds. Ann. Rev. Ecol. Syst. 25: 423–441.

    Article  Google Scholar 

  • Wyatt, R., Broyles, S.B. 1997. The weedy tropical milkweeds Asclepias curassavica and A. fruticosa are self-compatible. Biotropica 29: 232–234.

    Article  Google Scholar 

  • Wyatt, R., Edwards, A.L., Lipow, S.R., Ivey, C.T. 1998. The rare Asclepias texana and its widespread sister species, A. perennis, are self-incompatible and interfertile. Syst. Bot. 23: 151–156.

    Article  Google Scholar 

  • Yaman, B., Tumen, I. 2012. Anatomical notes on Marsdenia erecta (Apocynaceae) wood: Is it secondarily woody? Dendrobiology 67: 87–93.

    Google Scholar 

  • Yamashiro, T., Yamashiro, A., Yokoyama, J., Maki, M. 2008. Morphological aspects and phylogenetic analyses of pollination systems in the Tylophora – Vincetoxicum complex (Apocynaceae-Asclepiadoideae) in Japan. Biol. J. Linn. Soc. 93: 325–341.

    Article  Google Scholar 

  • Yamauchi, T., Abe, F. 1990. Cardiac glycosides and pregnanes from Adenium obesum (Studies on the constituents of Adenium 1). Chem. Pharm. Bull. 38: 669–672.

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi, T., Abe, F., Santisuk, T. 1990. Cardiac glycosides of Beaumontia brevituba and B. murtonii. Phytochemistry 29: 1961–1965.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L.-L., Li, H.-L., Wei, L., Yang, T., Kuang, D.-Y., Li, M.-H., Liao, Y.-Y., Chen, Z.-D., Wu, H., Zhang, S.-Z. 2016. A supermatrix approach provides a comprehensive genus-level phylogeny for Gentianales. J. Syst. Evol. 54: 400–415.

    Article  Google Scholar 

  • Yoshikawa, M., Murakami, T., Kadoya, M., Yuhao, L.I., Murakami, N., Yamahara, J., Matsuda, H. 1997. Medicinal foodstuffs. IX. The inhibitors of glucose absorption from the leaves of Gymnema sylvestre R. Br. (Asclepiadaceae): structures of gymnemosides a and b. Chem. Pharm. Bull. 45: 1671–1676.

    Article  CAS  PubMed  Google Scholar 

  • Young, J., Weed, A.S. 2014. Hypena opulenta (Erebidae): A European species for the biological control of invasive Swallow-worts (Vincetoxicum spp.) in North America. J. Lepid. Soc. 68: 162–166.

    Google Scholar 

  • Zarucchi, J.L. 1987. A revision of the tribe Ambelanieae (Apocynaceae – Plumerioideae). Series of revisions of Apocynaceae, part XXIV. Agric. Univ. Wageningen Pap. 87: 1–106.

    Google Scholar 

  • Zarucchi, J.L., Morillo, G., Endress, M.E., Hansen, B.F., Leeuwenberg, A.J.M. 1995. Apocynaceae. 2: 471–571. In: Berry, P.E., Holst, B.K., Yatskievych, K. (eds.) Flora of the Venezuelan Guyana. St. Louis, Missouri: Missouri Botanical Garden Press.

    Google Scholar 

  • Zhu, J.-P., Guggisberg, A., Kalt-Hadamowsky, A., Hesse, M. 1990. Chemotaxonomic study of the genus Tabernaemontana (Apocynaceae) based on their indole alkaloid content. Pl. Syst. Evol. 172: 13–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Endress .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Endress, M.E., Meve, U., Middleton , D.J., Liede-Schumann, S. (2018). Apocynaceae. In: Kadereit, J., Bittrich, V. (eds) Flowering Plants. Eudicots. The Families and Genera of Vascular Plants, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-93605-5_3

Download citation

Publish with us

Policies and ethics