Skip to main content

Boraginaceae

Boraginaceae Juss., Gen. Pl.: 128 (1789) (‘Borragineae’), nom. cons.

  • Chapter
  • First Online:
Flowering Plants. Eudicots

Part of the book series: The Families and Genera of Vascular Plants ((FAMILIES GENERA,volume 14))

Abstract

Annual, biennial or perennial, rarely monocarpic herbs, subshrubs and rarely erect or lianescent shrubs, not aromatic; primary root usually persistent, often developed as strong taproot, rarely primary and secondary roots thickened and spindle-shaped or primary root splitting from above and forming root pleiocorm; stems terete, rarely angular, then often winged from decurrent leaf bases, erect, rarely ascending, sprawling, decumbent or procumbent, prostrate, sometimes forming rhizomes or stolon tubers; indumentum usually present on whole plant, often strongly developed, scabrid to hispid or strigose, sometimes uncinate, very rarely with stiffly deflexed trichomes for climbing or lanate or consisting of stellate trichome complexes or largely absent (trichomes reduced to basal cells), trichomes often scabrid, often mineralized with Si or Ca, often inserted on a multicellular basal tubercle or cystolith cell, rarely unicellular, simple and smooth or uniseriate and gland-tipped. Leaves alternate, rarely opposite, simple, entire, exstipulate, cauline leaves usually sessile to semiamplexicaulous, lamina linear, narrowly ovate to subcircular, usually decurrent on petiole, more rarely base distinctly rounded or cordate and distinctly petiolate, basal leaves usually forming an ephemeral or persistent rosette, sessile or tapering into a petiole. Inflorescences terminal or axillary, frondose, bracteose or ebracteose, paraclades monochasial or dichasial, lax or very dense, usually scorpioid and contracted into boragoids, these paraclades present as simple terminal inflorescence or combined into complex thyrsoids, sometimes with extensive accessory paraclades and metatopia. Inflorescences sometimes congested into terminal “heads” or strongly reduced to axillary or terminal single flowers. Flowers pentamerous, hypogynous, bisexual, often proterandrous; perianth biseriate, sepals united at base or nearly to apex, usually radially symmetrical, sometimes slightly or distinctly unequal, calyx tubular to rotate, membranaceous, usually accrescent in fruit, spreading or closing; petals usually united to form distinct tube, rarely united only basally, corolla actinomorphic, rarely zygomorphic or irregular, rotate, hypocrateriform, infundibular, campanulate or tubular, rarely curved or geniculate, corolla tube internally usually appendaged near base with ring-shaped intrusion or 5 or 10 free scales (basal scales = annulus) and near throat with 5 crescent- or scale-shaped intrusions (= faucal scales, fornices), these closing the tube and/or appressed to anthers and/or protruding to form a ring around opening of tube, erect, recurved or incurved, papillose to pubescent, usually contrastingly coloured (often yellow or white vs. blue or white corolla lobes); corolla lobes reflexed to porrect, narrowly triangular to (usually) subcircular; aestivation usually quincuncial, rarely contorted; stamens epipetalous and antesepalous, rarely unequal or some abortive, filaments free from each other, usually short and anthers included in tube or partially or completely exserted, inserted at the same or different heights in tube, filament lengths and/or point of insertion differing between morphs in taxa with stigma height polymorphism or heterostyly; anthers usually free from each other, dorsifixed, dithecous, tetrasporangiate, opening by longitudinal slits, sometimes anthers coherent, connective sometimes appendaged; gynoecium 2-carpellate, syncarpous, usually with basal nectary disc; ovary bilocular, but secondarily subdivided into four chambers by false septa, 4-lobed in flower; style overtopped by the nutlets (gynobasic), usually simple, rarely 2–4 stylodia, included or exserted, stigmas capitate to oblong; ovules anatropous-epitropous, usually basal or sub-basal, erect to pendulous, unitegmic, tenuinucellate. Fruit a dry schizocarp separating into four 1-seeded, rarely two 2-seeded, indehiscent mericarpids, sometimes fewer by abortion or fusion; mericarpids (“nutlets”, “eremocarpids”) usually equal, rarely heteromorphic (in individual fruit, in fruits on different parts of the plant or in different morphs of a population), nutlet shape and size highly variable, ovoid to subcircular, tetrahedral, lenticellate, bowl-shaped or disc-shaped, often with differentiated, lobed/glochidiate or membranaceous (“winged”) margin, surface smooth and shiny to papillose and dull, pubescent, verrucose or with complex glochidia, sometimes with base strongly modified as ring and/or with basal elaiosome. Mature seeds with scanty endosperm, cotyledons fleshy, embryo usually straight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cecchi et al. (2014) transferred two additional species to Glandora and segregated the perennial taxa of Buglossoides (sect. Margarospermum) into the re-instated genus Aegonychon Gray.

  2. 2.

    Two lineages of Omphalodes recognized as not belonging to the core-group of the genus have been removed to the novel genera Memoremea A. Otero, Jim.-Mejías, Valcárcel & P. Vargas and Nihon A. Otero, Jim.-Mejías, Valcárcel & P. Vargas. Memoremea is the first-branching lineage of the Mertensia-group and Nihon falls into the Bothriospermum-group (Weigend et al. 2013; Otero et al. 2014).

  3. 3.

    New molecular data retrieve Selkirkia and Myosotidium (the “Pacific Omphalodes”) together, deeply nested in Ompalodes, in a clade together with native South American Cynglossum. Generic realignments are in progress in order to accommodate these results.

  4. 4.

    Synonymy and placement are highly tentative: these three genera are very poorly understood and – depending on generic type species - Lepechiniella may turn out to be a member of the Lappula-group, and possibly synonymous with Lappula, while Microparacaryum undoubtedly belongs here.

  5. 5.

    Dasynotus is now firmly placed at the base of the New World Cryptantha-group, together with several North American species of Cynoglossum (Weigend et al. 2013). Resolution in this clade is very poor and the description of two additional genera, Adelinia and Andersonglossum, to accommodate the representatives of Cynoglossum in this group, appears premature. Oncaglossum from Mexico likely also belongs here (Cohen 2015).

Selected Bibliography

  • Aldridge, A.E. 1981. Anatomy and evolution in Macaronesian Echium (Boraginaceae). Plant Syst. Evol. 138: 9–22.

    Article  Google Scholar 

  • Al-Shehbaz, I.A. 1991. The genera of Boraginaceae in the Southeastern United States. J. Arnold Arbor., Suppl. Ser. 1: 1–169.

    Google Scholar 

  • APG (Angiosperm Phylogeny Group) III, Bremer, B., Bremer, K., Chase, M.W. et al. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161: 105–121.

    Google Scholar 

  • Authority ANZF 2001. Pyrrolizidine alkaloids in food. A toxicological review and risk assessment. Technical Report Series No. 2. Canberra and Wellington: ANZFA, 16 pp.

    Google Scholar 

  • Avetisjan, E.M. 1956. Morphology of the microspores in Boraginaceae. Trudy Bot. Inst. Akad. Nauk Armen. SSR 10: 1–66.

    Google Scholar 

  • Baczyńska, B., Lityńska-Zając, M. 2005. Application of Lithospermum officinale L. in early Bronze Age medicine. Veget. Hist. Archaebot. 14: 77–80.

    Article  Google Scholar 

  • Baskin, J.M., Baskin, C.C. 1991. An eight-year greenhouse germination study of the cedar glade endemic Onosmodium molle subsp. molle. Nat. Areas J. 11: 190–192.

    Google Scholar 

  • Behnke, H.-D. 1981. Sieve-element characters. Nord. J. Bot. 1: 381–400.

    Article  Google Scholar 

  • Best, T.L., Smartt, R.A. 1986. Feeding ecology of mourning doves (Zenaida macroura) in southeastern New Mexico. Southwest. Nat. 31: 33–38.

    Article  Google Scholar 

  • Bigazzi, M., Nardi, E., Selvi, F. 1997. Anchusella, a new genus of Boraginaceae from the Central-Eastern Mediterranean. Pl. Syst. Evol. 205: 241–264.

    Google Scholar 

  • Bigazzi, M., Selvi, F. 1998. Pollen morphology in the Boragineae (Boraginaceae) in relation to the taxonomy of the tribe. Plant Syst. Evol. 213: 121–151.

    Article  Google Scholar 

  • Böhle, U.-R., Hilger, H.H., Martin, W.F. 1996. Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). Proc. Natl. Acad. Sci. USA 93: 11740–11745.

    Article  Google Scholar 

  • Bresinsky, A. 1963. Bau, Entwicklungsgeschichte und Inhaltsstoffe der Elaiosomen. Studien zur myrmekochoren Verbreitung von Samen und Früchten. Bibl. Bot. 126: 1–54.

    Google Scholar 

  • Briechle, M., Hilger, H.H. 1988. Die Embryogenese von Microparacaryum intermedium und die embryologische Klassifizierung der Boraginaceae nach Souèges. Flora 181: 45–59.

    Google Scholar 

  • Britton, D.M. 1951. Cytogenetic studies on the Boraginaceae. Brittonia 7: 233–266.

    Article  Google Scholar 

  • Buys, M.H, Hilger, H.H. 2003. Boraginaceae cymes are exclusively scorpioid and not helicoid. Taxon 52: 719–724.

    Article  Google Scholar 

  • Carlquist, S. 1970. Wood anatomy of Echium (Boraginaceae). Aliso 7: 183–199.

    Google Scholar 

  • Cecchi, L., Selvi, F. 2009. Phylogenetic relationships of the monotypic genera Halacsya and Paramoltkia and the origins of serpentine adaptation in circum-Mediterranean Lithospermeae (Boraginaceae): insights from ITS and matK DNA sequences. Taxon: 700–714.

    Google Scholar 

  • Cecchi, L., Coppi, A., Hilger, H. H., Selvi F. 2014. Non-monophyly of Buglossoides (Boraginaceae: Lithospermeae): Phylogenetic and morphological evidence for the expansion of Glandora and reappraisal of Aegonychon. Taxon 63: 1065–1078.

    Google Scholar 

  • Choudhary, M.I., Begum, A., Abbaskhan, A., Rehman, S.-u., Rahman, A.-U. 2006. Cinnamate derivatives of fructo-oligosaccharides from Lindelofia stylosa. Carbohydr. Res. 341: 2398–2405.

    Google Scholar 

  • Clarke, G.C.S. 1977. Boraginaceae. Rev. Palynol. Palaeobot. 24: A59–A101.

    Google Scholar 

  • Clowes, F.A.L. 2000. Pattern in root meristem development in angiosperms. New Phytol. 146: 83–94.

    Article  Google Scholar 

  • Cohen, J.I. 2015. Adelinia and Andersonglossum (Boraginaceae), two new genera from New World species of Cynoglossum. Syst. Bot. 40: 611–619.

    Google Scholar 

  • Cohen, J. I., DAVIS, J. I. 2009. Nomenclatural changes in Lithospermum (Boraginaceae) and related taxa following a reassessment of phylogenetic relationships. Brittonia 61: 101–111.

    Google Scholar 

  • Cook, D., Grierson, D., Jones, C., Wallace, A., West, G., Tucker, G. 2002. Modification of fatty acid composition in tomato (Lycopersicon esculentum) by expression of a borage delta 6-desaturase. Mol. Biotechnol. 21: 123–128.

    Article  CAS  PubMed  Google Scholar 

  • Crété, P. 1963. Embryo. In: Maheshwari, P. (ed.) Recent advances in the embryology of angiosperms. Delhi: International Society of Plant Morphologists, pp. 171–220.

    Google Scholar 

  • Czukavina, A., Meling, E. 1982. Generis Solenanthus Ledeb. (Boraginaceae) species nova e Tadzhikistania. Novosti Sist. Vyssh. Rast. 19: 161–164.

    Google Scholar 

  • Dasti, A.A., Bokhari, T.Z., Malik, A.S., Akhtar, R. 2003. Epidermal morphology in some members of family Boraginaceae in Baluchistan. Asian J. Plant Sci. 2: 42–47.

    Article  Google Scholar 

  • Dietz, H., Ullmann, I. 1997. Age-determination of dicotyledonous herbaceous perennials by means of annual rings: exception or rule? Ann. Bot. 80: 377–379.

    Article  Google Scholar 

  • Duke, J.A., Ayensu, E.S. 1985. Medicinal Plants of China. Medicinal Plants of the World. Algonac, MI: Reference Publications, 705 pp.

    Google Scholar 

  • Dupont, Y.L., Hansen, D.M., Rasmussen, J.T., Olesen, J.M. 2004. Evolutionary changes in nectar sugar composition associated with switches between bird and insect pollination: the Canarian bird-flower element revisited. Funct. Ecol. 18: 670–676.

    Article  Google Scholar 

  • Elias, M.K. 1932. Grasses and other plants from the tertiary rocks of Kansas and Colorado. Univ. Kansas Sci. Bull. 20: 333–367.

    Google Scholar 

  • Elias, M.K. 1942. Tertiary prairie grasses and other herbs from the high plains. Geol. Soc. Amer. Special Papers 41: 1–176.

    Google Scholar 

  • Erbar, C., Leins, P. 1996. Distribution of the character states “early sympetaly” and “late sympetaly” within the “sympetalae tetracyclicae” and presumably allied groups. Bot. Acta 109: 427–440.

    Article  Google Scholar 

  • Erbar, C., Porembski, S., Leins, P. 2005. Contributions to the systematic position of Hydrolea (Hydroleaceae) based on floral development. Plant Syst. Evol. 252: 71–83.

    Article  Google Scholar 

  • Farnsworth, N.R., Bingel, A.S., Cordell, G.A., Crane, F.A., Fong, H.H. 1975. Potential value of plants as sources of new antifertility agents I. J. Pharm. Sci. 64: 535–598.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson, D.M. 1996. Phylogenetic analysis of Hydrophyllaceae and a preliminary study of biogeographic patterns and life history evolution. Amer. J. Bot. 83: 155–156.

    Article  Google Scholar 

  • Fisher, D.D., Thorsch, J., Esau, K. 1989. Inclusions in nuclei and plastids of Boraginaceae and their possible taxonomic significance. Can. J. Bot. 67: 3608–3617.

    Article  Google Scholar 

  • Frölich, C., Ober, D., Hartmann, T. 2007. Tissue distribution, core biosynthesis and diversification of pyrrolizidine alkaloids of the lycopsamine type in three Boraginaceae species. Phytochemistry 68: 1026–1037.

    Article  PubMed  CAS  Google Scholar 

  • Gabel, M.L. 1987. A fossil Lithospermum (Boraginaceae) from the tertiary of South Dakota. Amer. J. Bot. 74: 1690–1693.

    Article  Google Scholar 

  • Ganders, F.R. 1979. The biology of heterostyly. New Zeal. J. Bot. 17: 607–635.

    Article  Google Scholar 

  • Gilbert, F., Azmeh, S., Barnard, C., Behnke, J., Collins, S.A., Hurst, J., Shuker, D. 2001. Individually recognizable scent marks on flowers made by a solitary bee. Anim. Behav. 61: 217–229.

    Article  PubMed  Google Scholar 

  • Gilg, E. 1907. Die systematische Stellung der Gattung Hoplestigma und einiger anderer zweifelhafter Gattungen. Bot. Jahrb. Syst. 40, Beiblatt Nr. 93: 76–84.

    Google Scholar 

  • Grau, J. 1983. Life form, reproductive biology and distribution of the Californian/Chilean genus Cryptantha. In: Kubitzki K. (ed.) Dispersal and distribution. Sonderbd. Naturwiss. Ver. Hamburg, pp. 231–240.

    Google Scholar 

  • Grau, J., Leins, P. 1968. Pollenkorntypen und Sektionsgliederung der Gattung Myosotis. Ber. Deutsch. Bot. Ges. 81: 107–115.

    Google Scholar 

  • Gunning, B.E.S., Pate, J.S., Green, L.W. 1970. Transfer cells in the vascular system of stems: Taxonomy, association with nodes, and structure. Protoplasma 71: 147–171.

    Article  Google Scholar 

  • Gürke, M. 1893, 1897. Borraginaceae (Asperifoliaceae). In: Engler, A., Prantl, K. (eds.) Die natürlichen Pflanzenfamilien, IV, 3a, 3b. Leipzig: Engelmann, pp. 71–131 (1893), 377 (1897).

    Google Scholar 

  • Guşuleac, M. 1923. Beiträge zur Systematik der Anchuseae. Publ. Soc. Nat. Bucur. 6: 79–92.

    Google Scholar 

  • Guşuleac, M. 1928. Die monotypischen und artenarmen Gattungen der Anchuseae (Caryolopha, Brunnera, Hormuzakia, Gastrocotyle, Phyllocara, Trachystemon, Procopiania und Borago). Bul. Fac. Ştiinte Cernăuti 2: 394–461.

    Google Scholar 

  • Guşuleac, M. 1931. Die monotypischen und artenarmen Gattungen der Anchuseae (Caryolopha, Brunnera, Hormuzakia, Gastrocotyle, Phyllocara, Trachystemon, Procopiania und Borago). Feddes Repert. 29:113–125.

    Google Scholar 

  • Halbritter, H., Weber, M., Zetter, R., Frosch-Radivo, A., Buchner, R., Hesse M. 2008. PalDat - Illustrated handbook on pollen terminology. Wien: http://www.paldat.org/Paldat_Terminology_small.pdf.

  • Hargrove, L., Simpson, M.G. 2003. Ultrastructure of heterocolpate pollen in Cryptantha (Boraginaceae). Int. J. Plant Sci. 164: 137–151.

    Article  Google Scholar 

  • Harley, R.M., Atkins, S., Budantsev, A.L., Cantino, P.D., Conn, B.J., Grayer, R., Harley, M.M., De Kok, R., Krestovskaja, T., Morales, R., Paton, A.J., Ryding, O., Upson, T. 2004. Labiatae. In: Kubitzki, K. (ed.) The Families and Genera of Vascular Plants, vol. VII. Heidelberg: Springer, pp. 167–275.

    Google Scholar 

  • Hartmann, T., Ober, D. 2000. Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. In: Leeper, F.J., Vederas, J.C. (eds.) Topics in Current 5 Chemistry. Berlin: Springer, pp. 207–244.

    Google Scholar 

  • Hartmann, T., Witte, L. 1995. Chemistry, biology and chemoecology of the pyrrolizidine alkaloids. In: Pelletier, S.W. (ed.) Alkaloids: Chemical and biological perspectives. Oxford: Pergamon Press, pp. 155–233.

    Google Scholar 

  • Hasenstab-Lehman, K.E., Simpson, M.G., 2012. Cat’s eyes and popcorn flowers: Phylogenetic systematics of the genus Cryptantha s.l. (Boraginaceae). Syst. Bot. 37: 738–757.

    Article  Google Scholar 

  • Hegnauer, R. 1964. Chemotaxonomie der Pflanzen. Bd. 3. Dicotyledoneae: Acanthaceae–Cyrillaceae. Basel, Stuttgart: Birkhäuser, 743 pp.

    Google Scholar 

  • Hegnauer, R. 1989. Chemotaxonomie der Pflanzen. Bd. 8. Nachträge zu Band 3 und Band 4 (Acanthaceae bis Lythraceae). Basel, Boston, Berlin: Birkhäuser, 718 pp.

    Google Scholar 

  • Hegnauer, R. 1997. Phytochemistry and chemotaxonomy. In: Kalkman, C., Kirkup, D.W., Nooteboom, H.P., Stevens, P.F., de Wilde, W.J.J.O. (eds.) Flora Malesiana Series I Seed Plants, vol. 13. Leiden: Publications Department Rijksherbarium, pp. 52–58.

    Google Scholar 

  • Heslop-Harrison, Y. 1981. Stigma characteristics and angiosperm taxonomy. Nord. J. Bot. 1: 401–420.

    Article  Google Scholar 

  • Higgins, L.C. 1971. A revision of Cryptantha subgenus Oreocarya. Brigham Young Univ. Sci. Bull., Biol. Series 13: 1–63.

    Google Scholar 

  • Hilger, H.H. 1985. Ontogenie, Morphologie und systematische Bedeutung geflügelter und glochidientragender Cynoglosseae- und Eritrichieae-Früchte (Boraginaceae). Bot. Jahrb. Syst. 105: 323–378.

    Google Scholar 

  • Hilger, H.H., Balzer, M., Frey, W., Podlech, D. 1985. Heteromerikarpie und Fruchtpolymorphismus bei Microparacaryum, gen. nov. (Boraginaceae). Plant Syst. Evol. 148: 291–312.

    Google Scholar 

  • Hilger, H.H., Hoppe, J.R., Hofmann, M. 1993. Energiedispersive Röntgenmikroanalyse (EDX) von Boraginaceae subfam. Boraginoideae - Klausenoberflächen. Sind Silicium- und Calcium - Einlagerungen in die Fruchtwand systematisch verwertbare Merkmale? Flora 188: 387–398.

    Google Scholar 

  • Hilger, H.H., Selvi, F., Papini, A., Bigazzi, M. 2004. Molecular systematics of Boraginaceae tribe Boragineae based on ITS1 and trnL sequences, with special reference to Anchusa s.l. Ann. Bot. 94: 201–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jodin, H. 1903. Recherches anatomiques sur les Borraginées. Ann. Sci. Nat., 8e sér., Bot. 17: 263–346.

    Google Scholar 

  • Johansen, D.A. 1950. Plant embryology. Waltham MA: Chronica Botanica, 305 pp.

    Google Scholar 

  • Johnston, I.M. 1927. Studies in the Boraginaceae. VI. A revision of South American Boraginoideae. Contr. Gray Herb. 78: 3–118.

    Google Scholar 

  • Johnston, I.M. 1953. Studies in the Boraginaceae. XXIV, A. Three genera segregated from Lithospermum 1–7; B. Supplementary notes on Lithospermum. J. Arnold Arbor. 34: 7–16.

    Google Scholar 

  • Johnston, I.M. 1953. Studies in the Boraginaceae. XXV. A revaluation of some genera of the Lithospermeae. J. Arnold Arbor. 34: 258–299.

    Google Scholar 

  • Jonová, M. 1926. Anatomie a morfologie trichomu u Borraginacei s ohledem na systematiku této celedi (L’anatomie et la morphologie des trichomes des Borraginées à l’égard du système de cette famille). Vestnik Král. Ceské Spolecn. Nauk, Tr. Mat.-Prir. 2: 1–66.

    Google Scholar 

  • Kaul, M.K. 1997. Medicinal plants of Kashmir and Ladakh: Temperate and cold arid Himalaya. Delhi: Indus Publishing Company, 173 pp.

    Google Scholar 

  • Keeley, J.E., Fotheringham, C.J. 1998. Smoke-induced germination in California chaparral. Ecology 79: 2320–2336.

    Article  Google Scholar 

  • Khaleel, T.F. 1977. Embryology of Trichodesma (Boraginaceae). Bot. Notiser 130: 441–452.

    Google Scholar 

  • Khanna, P. 1964. Embryology of Mertensia. J. Indian Bot. Soc. 43: 192–202.

    Google Scholar 

  • Khatamsaz, M. 2001. Pollen morphology of Iranian Boraginaceae family and its taxonomic significance. Iranian J. Bot. 9: 27–40.

    Google Scholar 

  • Kim, K., Park, J., Rhee, S. 2007. Structural and functional basis for (S)-allantoin formation in the ureide pathway. J. Biol. Chem. 282: 23457–23464.

    Article  CAS  PubMed  Google Scholar 

  • Knight, A.P., Walter, R.G. (eds.) 2001. A guide to plant poisoning of animals in North America. Jackson, WY: Teton New Media, 367 pp.

    Google Scholar 

  • Långström, E., Chase, M.W. 2002. Tribes of Boraginoideae (Boraginaceae) and placement of Antiphytum, Echiochilon, Ogastemma and Sericostoma: A phylogenetic analysis based on atpB plastid DNA sequence data. Plant Syst. Evol. 234: 137–153.

    Google Scholar 

  • Lersten, N.R., Czlapinski, A.R., Curtis, J.D., Freckmann, R., Horner, H.T. 2006. Oil bodies in leaf mesophyll cells of angiosperms: overview and a selected survey. Amer. J. Bot. 93: 1731–1739.

    Article  Google Scholar 

  • Levyns, M.R. 1934. A revision of Lobostemon Lehm., and a discussion of the species problem. Bot. J. Linn. Soc. 49: 393–451.

    Article  Google Scholar 

  • Lönn, E. 1999. Revision of the three Boraginaceae genera Echiochilon, Ogastemma and Sericostoma. Bot. J. Linn. Soc. 130: 185–259.

    Google Scholar 

  • Lord, E.M. 1981. Cleistogamy: a tool for the study of floral morphogenesis, function and evolution. Bot. Rev. 47: 421–449.

    Article  Google Scholar 

  • Mascré, M. 1922. Sur l’étamine des Borraginées. Compt. Rend. Hebd., Séances Acad. Sci. Paris 175: 987–989.

    Google Scholar 

  • Maurer, E.S. 1961. The scent of flowers and leaves; a search for fragrance among the minor natural orders. 4. The borage family (Boraginaceae). Manufact. Chem. 32: 176–178.

    Google Scholar 

  • McGill, C.R., McIntosh, J.C., Outred, H.A., Fountain, D.W. 2002. Seed storage and seed storage reserves in Chatham Island forget-me-not (Myosotidium hortensia, Boraginaceae). New Zeal. J. Bot. 40: 337–346.

    Article  Google Scholar 

  • Metcalfe, C.R., Chalk, L. 1950. Anatomy of the dicotyledons. Vol. 2. Boraginaceae. Oxford: Clarendon Press, pp. 945–954.

    Google Scholar 

  • Miller, J.S. 2005. A synopsis of the genus Cynoglossum L. (Boraginaceae) in Madagascar and the Comoro Islands. Adansonia III, 27: 113–127.

    Google Scholar 

  • Moerman, D.E. 1998. Native American ethnobotany. Portland, OR: Timberland Press, 927 pp.

    Google Scholar 

  • Mosti, S., Selvi, F. 2007. Trichodesma cinereum Mosti & Selvi (Boraginaceae), a new species from Oman. Candollea 62: 205–210.

    Google Scholar 

  • Muller, J. 1981. Fossil pollen records of extant angiosperms. Bot. Rev. 47: 1–142.

    Article  Google Scholar 

  • Müller, A., Kuhlmann, M. 2003. Narrow flower specialization in two European bee species of the genus Colletes (Hymenoptera: Apoidea: Colletidae). Eur. J. Entomol. 100: 631–635.

    Article  Google Scholar 

  • Nakanishi, H. 2002. Splash seed dispersal by raindrops. Ecol. Res. 17: 663–671.

    Article  Google Scholar 

  • Nepi, M., Selvi, F., Pacini, E. 2010. Variation in nectar-sugar profile of Anchusa and allied genera (Boraginaceae). Bot. J. Linn. Soc. 162: 616–627.

    Article  Google Scholar 

  • Nesom, G.L. 1988. Synopsis of the species of Omphalodes (Boraginaceae) native to the New World. Sida 13: 25–30.

    Google Scholar 

  • Neubauer, H.F. 1977. Über Knotenbau und Blattgrund von Cordia myxa L., Anchusa officinalis L. und Borago officinalis L. (Boraginaceae). Bot. Jahrb. Syst. 98: 362–371.

    Google Scholar 

  • Niemüller, D., Reimann, A., Ober, D. [unpublished]. Tissue specific expression of homospermidine synthase in species of the Boraginales.

    Google Scholar 

  • Nowicke, J.W., Miller, J.S. 1989. Pollen morphology and the relationships of Hoplestigmataceae. Taxon 38: 12–16.

    Article  Google Scholar 

  • Ober, D., Hartmann, T. 1999. Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. Proc. Natl. Acad. Sci. USA 96: 14777–14782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olesen, J.M. Valido, A. 2004. Lizards and birds as generalized pollinators and seed dispersers of island plants. In: Fernandez-Palacios, J.M., Morici, C. (eds.) Ecologia insular/Island ecology. Asociacion Espanola de Ecologia Terrestre (AEET). La Palma: Cabilda Insular de La Palma, pp. 229–249.

    Google Scholar 

  • Otero, A., Jiménez-Mejía, P., Valcárcel, V. & Vargas, P. 2014. Molecular phylogenetics and morphology support two new genera (Memoremea and Nihon) of Boraginaceae s.s. Phytotaxa 173: 241–277.

    Google Scholar 

  • Ovczinnikova, S. 2009. On the position of the tribe Eritrichieae in the Boraginaceae system. Botanica Serbica 33: 141–146.

    Google Scholar 

  • Pakeman, R.J., Engelen, J., Attwood, J.P. 1999. Rabbit endozoochory and seedbank build-up in an acidic grassland. Vegetatio 145: 83–90.

    Google Scholar 

  • Papageorgiou, V.P., Assimopoulou, A.N., Couladouros, E.A., Hepworth, D., Nicolaou, K.C. 1999. The chemistry and biology of alkannin, shikonin and related naphthazarin natural products. Angew. Chem. Int. Edn. 38: 270–301.

    Article  Google Scholar 

  • Papageorgiou, V.P., Assimopoulou, A.N., Samanidou, V.F., Papadoyannis, I.N. 2006. Recent advances in chemistry, biology and biotechnology of alkannins and shikonins. Curr. Org. Chem. 10: 2123–2142.

    Article  CAS  Google Scholar 

  • Park, C.U. 1982. Study of the secondary xylem in herbaceous dicotyledons I. Boraginaceae, Cruciferae, and Euphorbiaceae. Trans. Missouri Acad. Sci 16: 25–36.

    Google Scholar 

  • Parsons, W.T., Cuthbertson, E.G. 2001. Noxious weeds of Australia, ed. 2. Collingwood: CSIRO Publishing, 712 pp.

    Google Scholar 

  • Pate, J.S., Gunning, B.E.S. 1969. Vascular transfer cells in angiosperm leaves. A taxonomic and morphological survey. Protoplasma 68: 135–156.

    Article  Google Scholar 

  • Petersen, M., Simmonds, M.S. 2003. Rosmarinic acid. Phytochemistry 62: 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Pilger, R. 1912. Die Gattung Wellstedia in Südwestafrika. Bot. Jahrb. Syst. 46: 558–561.

    Google Scholar 

  • Pitot, A. 1937. L’ovaire du Symphytum orientale L. Bull. Soc. bot. France 84: 393–400.

    Article  Google Scholar 

  • Popov, M.G. 1953. Boraginaceae. In: Shishkin, B., Bobrov, E. (eds.) Vol. 19. Tubiflorae. Moskva, Leningrad: Izdatel’stvo Akademii Nauk SSSR, pp. 97–691, 703–718.

    Google Scholar 

  • Quilichini, A., Debussche, M. 2001. Seed dispersal and germination patterns in a rare Mediterranean island endemic (Anchusa crispa Viv., Boraginaceae). Acta Oecol. 21: 303–313.

    Article  Google Scholar 

  • Quilichini, A., Debussche, M., Thompson, J.D. 2001. Evidence for local outbreeding depression in the Mediterranean island endemic Anchusa crispa Viv. (Boraginaceae). Heredity 87: 190–197.

    Article  CAS  PubMed  Google Scholar 

  • Radcliffe, C.E. 1927. The Stockholm Papyrus. J. Chem. Educ. 4: 979–1002.

    Article  Google Scholar 

  • Retief, E., van Wyk, A.E. 2005. Boraginaceae: Codonoideae, a new subfamily based on Codon. Bothalia 35: 78–80.

    Article  Google Scholar 

  • Ridley, H.N. 1930. The dispersal of plants throughout the world. Ashford: Reeve, 744 pp.

    Google Scholar 

  • Riedl, H. 1997. Boraginaceae. In: Kalkman, C., Kirkup, D.W., Nooteboom, H.P., Stevens, P.F., de Wilde, W.J.J.O. (eds.) Flora Malesiana Series I Seed Plants 13. Leiden: Publications Department Rijksherbarium, pp. 43–144.

    Google Scholar 

  • Roeder, E. 1995. Medicinal plants in Europe containing pyrrolizidine alkaloids. Pharmazie 50: 83–98.

    CAS  PubMed  Google Scholar 

  • Roeder, E. 2000. Medicinal plants in China containing pyrrolizidine alkaloids. Pharmazie 55: 711–726.

    CAS  PubMed  Google Scholar 

  • Rosen, D., Barthlott, W. 1991. Ökologische Aspekte der Ultraviolett-Reflexion von Blumen in Mitteleuropa, besonders in der Eifel. Decheniana 144: 72–112.

    Google Scholar 

  • Sahay, S.K. 1979. Palynotaxonomy of Boraginaceae and some other families of Tubiflorae. Biol. Mem. 4: 117–205.

    Google Scholar 

  • Schaal, B.A., Leverich, W.J. 1982. Survivorship patterns in an annual plant community. Oecologia 54: 149–151.

    Article  Google Scholar 

  • Schittengruber, B. 1953. Die Stomaverteilung an Blättern von Pulmonaria - Arten. Phyton 5: 128–132.

    Google Scholar 

  • Schwarzer, C. 2007. Systematische Untersuchungen an den peruanischen Vertretern der Gattungen Pectocarya DC. ex Meisn., Amsinckia Lehm., Plagiobothrys Fisch. & C.A. Mey. und Cryptantha Lehm. ex G. Don (Boraginaceae). Diploma thesis, Systematic Botany, FU Berlin.

    Google Scholar 

  • Seibert, J. 1978. Fruchtanatomische Untersuchungen an Lithospermeae (Boraginaceae). Bibl. Bot. 44. Vaduz: Cramer.

    Google Scholar 

  • Selvi, F., Bigazzi, M. 2001. Leaf surface and anatomy in Boraginaceae tribe Boragineae with respect to ecology and taxonomy. Flora 196: 269–285.

    Google Scholar 

  • Selvi, F., Bigazzi, M., Hilger, H.H., Papini, A. 2006. Molecular phylogeny, morphology and taxonomic re-circumscription of the generic complex Nonea/Elizaldia/Pulmonaria/Paraskevia (Boraginaceae-Boragineae). Taxon 55: 907–918.

    Article  Google Scholar 

  • Selvi, F., Cecchi, L. Coppi, A. 2009. Phylogeny, karyotype evolution and taxonomy of Cerinthe L. (Boraginaceae). Taxon 58: 1307–1325.

    Google Scholar 

  • Shevchenko, N.K., Baimuradov, T., Iaraeva, R.M. 1973. Trichodesma poisoning in poultry. Veterinariia 49: 99–100.

    PubMed  Google Scholar 

  • Skarpaas, O., Stabbetorp, E. 2001. Diaspore ecology of Mertensia maritima: effects of physical treatments and their relative timing on dispersal and germination. Oikos 95: 374–382.

    Article  Google Scholar 

  • Smith, S.G. 1932. Cytology of Anchusa and its relation to the taxonomy of the genus. Bot. Gaz. 94: 394–403.

    Article  Google Scholar 

  • Solereder, H. 1899. Systematische Anatomie der Dicotyledonen. Stuttgart: Ferdinand Enke, 984 pp.

    Google Scholar 

  • Souèges, R. 1948. Embryogénie et classification, 3e fascicule: Essai d’un système embryogénique (Partie spéciale: Première période du système). Actualités scientif. industr. 1060: 1–107.

    Google Scholar 

  • Stegelmeier, B.L., Edgar, J.A., Colegate, S.M., Gardner, D.R., Schoch, T.K., Coulombe, R.A., Molyneux, R.J. 1999. Pyrrolizidine alkaloid plants, metabolism and toxicity. J. Nat. Toxins 8: 95–116.

    CAS  PubMed  Google Scholar 

  • Stewart, M.J., Steenkamp, V. 2001. Pyrrolizidine poisoning: A neglected area in human toxicology. Therap. Drug Monit. 23: 698–708.

    Article  CAS  Google Scholar 

  • Strey, M. 1931. Karyologische Studien an Borraginoideae. Planta 14: 682–730.

    Article  Google Scholar 

  • Svensson, H.G. 1925. Zur Embryologie der Hydrophyllaceen, Borraginaceen und Heliotropiaceen mit besonderer Rücksicht auf die Endospermbildung. Uppsala Univ. Årsskr. 2: 3–175.

    Google Scholar 

  • Teppner, H. 2011. Flowers of Boraginaceae (Symphytum, Onosma, Cerinthe) and Andrena symphyti (Hymenoptera-Andrenidae). Morphology, pollen portioning, vibratory pollen collection, nectar robbing. Phyton 50: 145–180.

    Google Scholar 

  • Thomas, D.C., Weigend, M., Hilger, H.H. 2008. Phylogeny and systematics of Lithodora (Boraginaceae - Lithospermeae) and its affinities to the monotypic genera Mairetis, Halacsya and Paramoltkia based on ITS1 and trnLUAA-sequence data and morphology. Taxon 57: 79–97.

    Google Scholar 

  • Thomasson, J.R. 1979. Late cenozoic grasses and other angiosperms from Kansas, Nebraska, and Colorado: Biostratigraphy and relationships to living taxa. Kansas Geol. Surv. Bull. 128: 1–68.

    Google Scholar 

  • Thomasson, J.R. 1987. Late Miocene plants from Northeastern Nebraska (USA). J. Paleontol. 61: 1065–1079.

    Google Scholar 

  • Tsai, S.L., Harris, P.J., Lovell, P.H. 2003. The root epidermis of Echium plantagineum L.: a novel type of pattern based on the distribution of short and long root hairs. Planta 217: 238–244.

    Article  CAS  PubMed  Google Scholar 

  • Türkmen, N., Düzenli, A. 2005. Changes in floristic composition of Quercus coccifera macchia after fire in the Çukurova region (Turkey). Ann. Bot. Fennici 42: 453–460.

    Google Scholar 

  • Van Campo, E. 1976. La flore sporopollénique du gisement Miocène terminal de Venta del Moro (Espagne). PhD Thesis, Univ. Montpellier.

    Google Scholar 

  • Van Valen, F. 1979. Contribution to the knowledge of cyanogenesis in Angiosperms. 12. Cyanogenesis in Boraginaceae. Proc. K. Ned. Akad. Wet., Ser. C 82: 171–176.

    Google Scholar 

  • Van Wyk, B.E, Winter, P.J.D., Buys, M.H. 1997. The major flower anthocyanins of Lobostemon (Boraginaceae). Biochem. Syst. Ecol. 25: 39–42.

    Article  Google Scholar 

  • Velasco, L., Goffman, F.D. 1999. Chemotaxonomic significance of fatty acids and tocopherols in Boraginaceae. Phytochemistry 52: 423–426.

    Article  CAS  Google Scholar 

  • Veno, B.A. 1979. A revision of the genus Pectocarya (Boraginaceae) including reduction to synonymy of the genus Harpagonella (Boraginaceae). Ph.D. dissertation, University of California, Los Angeles, pp. 1–201.

    Google Scholar 

  • von Arx, G., Dietz, H. 2006. Growth rings in the roots of temperate forbs are robust annual markers. Plant Biol. 8: 224–233.

    Article  Google Scholar 

  • Wang, W.-M., Harley, M.M. 2004. The Miocene genus Fupingopollenites: comparisons with ultrastructure and pseudocolpi in modern pollen. Rev. Palaeobot. Palynol. 131: 117–145.

    Article  Google Scholar 

  • Weber, S., Eisenreich, W., Bacher, A., Hartmann, T. 1999. Pyrrolizidine alkaloids of the lycopsamine type: Biosynthesis of trachelanthic acid. Phytochemistry 50: 1005–1014.

    Article  CAS  Google Scholar 

  • Weigend, M., Hilger, H.H. 2010. Codonaceae - a newly required family name in Boraginales. Phytotaxa 10: 26–30.

    Article  Google Scholar 

  • Weigend, M., Selvi, F., Gottschling, M., Hilger, H.H., 2009. Marbleseeds are Gromwells - systematics and evolution of Lithospermum L. s.l. (Boraginaceae tribe Lithospermeae) based on molecular and morphological data. Mol. Phylogenet. Evol. 52: 755–768.

    Article  PubMed  Google Scholar 

  • Weigend, M., Gottschling, M., Selvi, F., Hilger, H.H. 2010. Fossil and extant Western Hemisphere Boragineae, and the polyphyly of “Trigonotideae” Riedl (Boraginaceae: Boraginoideae). Syst. Bot. 35: 409–419.

    Article  Google Scholar 

  • Weigend, M., Luebert, F., Selvi, F., Brokamp, G., Hilger, H.H., 2013. Multiple origins for Hounds tongues (Cynoglossum L.) and Navel seeds (Omphalodes Mill.) – the phylogeny of the borage family (Boraginaceae s.str.). Mol. Phylogenet. Evol. 68: 604–618.

    Article  PubMed  Google Scholar 

  • Weigend, M., Luebert, F., Gottschling, M., Couvreur, T.L.P., Hilger, H.H., Miller, J. 2014. From capsules to nutlets—phylogenetic relationships in the Boraginales. Cladistics 30(5): 508–518.

    Article  Google Scholar 

  • Weiss, M.R. 1995. Floral color change: A widespread functional convergence. Amer. J. Bot. 82: 167–185.

    Article  Google Scholar 

  • Winkworth, R.C., Grau, J., Robertson, A.W., Lockhart, P.J. 2002. The origins and evolution of the genus Myosotis L. (Boraginaceae). Mol. Phylogenet. Evol. 24: 180–193.

    Article  PubMed  Google Scholar 

  • Wolff, K., El Akkad, S., Abbott, R.J. 1997. Population substructure in Alkanna orientalis (Boraginaceae) in the Sinai desert, in relation to its pollinator behaviour. Mol. Ecol. 6: 365–372.

    Article  Google Scholar 

  • Wollenweber, E., Wehde, R., Dörr, M., Stevens, J.F. 2002. On the occurrence of exudate flavonoids in the borage family (Boraginaceae). Z. Naturforsch., C: Biosci. 57: 445–448.

    Google Scholar 

  • Wunderlich, R. 1959. Zur Frage der Phylogenie der Endospermtypen bei den Angiospermen. Österr. Bot. Z. 106: 203–293.

    Article  Google Scholar 

  • Wunderlich, R. 1991. Zur Frage nach der systematischen Stellung der Limnanthaceae. Stapfia 25: 1–59.

    Google Scholar 

  • Zhu, G., Riedl, H., Kamelin, R.V. 1995. Boraginaceae. In: Wu, Z.Y., Raven, P.H. (eds.) Flora of China, vol. 16: Gentianaceae through Boraginaceae, pp. 329–431. Beijing: Science Press and St. Louis: Missouri Botanical Garden Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Weigend .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weigend, M., Selvi, F., Thomas, D.C., Hilger, H.H. (2016). Boraginaceae. In: Kadereit, J., Bittrich, V. (eds) Flowering Plants. Eudicots. The Families and Genera of Vascular Plants, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-28534-4_5

Download citation

Publish with us

Policies and ethics