Skip to main content

Evolution and Diversity of the Cotton Genome

  • Chapter
  • First Online:
Cotton Precision Breeding

Abstract

We present an overview of Gossypium genome evolution and the implications of this understanding for targeted breeding objectives. The cotton genus (Gossypium) contains more than 50 species distributed in arid to semiarid regions of the tropic and subtropics. Following the genus origin approximately 10–15 million years ago, a rapid global radiation leads to eight major genome groups (A through G and K) of diploids (n = 13). Allopolyploid cottons appeared within the last 1–2 million years, as a consequence of transoceanic dispersal of an A-genome taxon to the New World and subsequent hybridization with an indigenous D-genome diploid. The nascent allopolyploid radiated into three modern lineages of seven described species, including the agronomically important species G. hirsutum L. and G. barbadense L. These two allopolyploids, together with two A-genome diploids from Africa-Asia, G. arboreum L. and G. herbaceum L., were independently domesticated for their seed fiber, representing a remarkable case of human-driven parallel evolution. Recent investigations have clarified many aspects of this evolutionary history of Gossypium with genomic insights, including the paleopolyploid history of diploid species, a surprisingly high frequency of natural interspecific hybridization within and among genome groups, myriad interactions of molecular mechanisms underlying allopolyploid genome evolution, and a much-refined evolutionary relationship among gene pools of each of the four cultivated species. The extraordinary natural diversity in Gossypium in fiber morphology, stress tolerance, and other agronomic characteristics provides ample resources for breeders to develop new cotton varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 05 June 2022

    The original version of this chapter was revised to include a co-author. The correct version of the list of authors is as follows:

References

  • Abdalla AM, Reddy OUK, El-Zik KM, Pepper AE (2001) Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor Appl Genet 102:222–229

    CAS  Google Scholar 

  • Abdellatif KF, Khidr YA, El-Mansy YM et al (2012) Molecular diversity of Egyptian cotton (Gossypium barbadense L.) and its relation to varietal development. J Crop Sci Biotechnol 15:93–99

    Google Scholar 

  • Abdelraheem A, Esmaeili N et al (2019) Progress and perspective on drought and salt stress tolerance in cotton. Ind Crop Prod 130:118–129

    CAS  Google Scholar 

  • Abdul Kadir ZB (1976) DNA evolution in the genus Gossypium. Chromosoma 56:85–94

    Google Scholar 

  • Abraham P et al (1940) Cytological studies in Gossypium: chromosome behaviour in the interspecific hybrid G. arboreum x G. stocksii. Indian J Agric Sci 10:285–298

    Google Scholar 

  • Adams KL, Wendel JF (2013) Dynamics of duplicated gene expression in polyploid cotton. In: Polyploid and hybrid genomics. pp 187–194

    Google Scholar 

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci U S A 100:4649–4654

    Google Scholar 

  • Adams KL, Percifield R, Wendel JF (2004) Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics 168:2217–2226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adams KL, Flagel L, Wendel JF (2009) Responses of the cotton genome to polyploidy. In: Paterson AH (ed) Plant Genetics and Genomics: Crops and Models. Springer, New York, NY, pp 419–4

    Google Scholar 

  • Ågren JA, Huang H-R, Wright SI (2016) Transposable element evolution in the allotetraploid Capsella bursa-pastoris. Am J Bot 103:1197–1202

    PubMed  Google Scholar 

  • Ahmad MQ, Khan SH, Azhar FM (2012) Decreasing level of genetic diversity in germplasm and cultivars of upland cotton (Gossypium hirsutum) in Pakistan. J Agric Soc Sci 8:92–96

    Google Scholar 

  • Ainouche ML, Wendel JF (2014) Polyploid speciation and genome evolution: lessons from recent allopolyploids. In: Pontarotti P (ed) Evolutionary biology: genome evolution, speciation, coevolution and origin of life. Springer International Publishing, Cham, pp 87–113

    Google Scholar 

  • Alvarez I, Wendel JF (2006) Cryptic interspecific introgression and genetic differentiation within Gossypium aridum (Malvaceae) and its relatives. Evolution 60:505–517

    CAS  PubMed  Google Scholar 

  • An Z, Tang Z, Ma B et al (2014) Transposon variation by order during allopolyploidisation between Brassica oleracea and Brassica rapa. Plant Biol 16:825–835

    CAS  PubMed  Google Scholar 

  • Applequist WL, Cronn R, Wendel JF (2001) Comparative development of fiber in wild and cultivated cotton. Evol Dev 3:3–17

    CAS  PubMed  Google Scholar 

  • Argiriou A, Kalivas A, Michailidis G, Tsaftaris A (2012) Characterization of PROFILIN genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors and expression analysis in cotton genotypes differing in fiber characteristics. Mol Biol Rep 39:3523–3532

    CAS  PubMed  Google Scholar 

  • Bao Y, Hu G, Flagel LE et al (2011) Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium). Proc Natl Acad Sci U S A 108:21152–21157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basu AK (1996) Current genetic research in cotton in India. Genetica 97:279–290

    Google Scholar 

  • Beasley JO (1940) The origin of American tetraploid Gossypium species. Am Nat 74:285–286

    Google Scholar 

  • Beasley JO (1942) Meiotic chromosome behavior in species, species hybrids, haploids, and induced polyploids of Gossypium. Genetics 27:25–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becerra Lopez-Lavalle LA, Brubaker CL (2007) Frequency and fidelity of alien chromosome transmission in Gossypium hexaploid bridging populations. Genome 50:479–491

    PubMed  Google Scholar 

  • Bell AA (1984) Morphology, chemistry, and genetics of Gossypium adaptations to pests. In: Timmermann BN, Steelink C, Loewus FA (eds) Phytochemical adaptations to stress. Springer US, Boston, pp 197–230

    Google Scholar 

  • Bell A, Robinson AF (2004) Development and characteristics of triple species hybrids used to transfer reniform nematode resistance from Gossypium longicalyx to Gossypium hirsutum. In: Proceedings of the beltwide cotton conferences. pp 422–426

    Google Scholar 

  • Bell AA, Forest Robinson A, Quintana J et al (2014) Registration of LONREN-1 and LONREN-2 germplasm lines of upland cotton resistant to Reniform Nematode. J Plant Regist 8:187

    Google Scholar 

  • Bell AA, Robinson AF, Quintana J et al (2015) Registration of BARBREN-713 germplasm line of upland cotton resistant to Reniform and Root-Knot Nematodes. J Plant Regist 9:89

    Google Scholar 

  • Ben-David S, Yaakov B, Kashkush K (2013) Genome-wide analysis of short interspersed nuclear elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat. Plant J 76:201–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boopathi NM, Gopikrishnan A, Selvam NJ et al (2008) Genetic diversity assessment of G. barbadense accessions to widen cotton (Gossypium spp.) gene pool for improved fibre quality. J Cotton Res Dev 22:135–138

    Google Scholar 

  • Bowman DT, McCarty JC (1997) Thrips (Thysanoptera: Thripidae) Tolerance in cotton: sources and heritability. J Entomol Sci 32:460–471

    Google Scholar 

  • Brown HB, Ware JO (1958) Cotton. McGraw-Hill, New York

    Google Scholar 

  • Brubaker CL, Wendel JF (1994) Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). Am J Bot 81:1309–1326

    Google Scholar 

  • Brubaker CL, Wendel JF (2001) RFLP diversity in cotton. In: Jenkins JN, Saha S (eds) Genetic improvement of cotton: emerging technologies. Science Publishers, Enfield, pp 81–102

    Google Scholar 

  • Brubaker CL, Koontz JA, Wendel JF (1993) Bidirectional cytoplasmic and nuclear introgression in the New World cottons Gossypium barbadense and G. hirsutum (Malvaceae). Am J Bot 80:1203–1208

    Google Scholar 

  • Brubaker CL, Benson CG, Miller C, Leach DN (1996) Occurrence of terpenoid aldehydes and lysigenous cavities in the “glandless” seeds of Australian Gossypium species. Aust J Bot 44:601

    CAS  Google Scholar 

  • Brubaker CL, Borland FM, Wendel JF (1999a) The origin and domestication of cotton. In: Smith CW, Cothren JT (eds) Cotton: origin, history, technology and production. Wiley, New York, pp 3–31

    Google Scholar 

  • Brubaker CL, Paterson AH, Wendel JF (1999b) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203

    CAS  Google Scholar 

  • Bruggmann R, Bharti AK, Gundlach H et al (2006) Uneven chromosome contraction and expansion in the maize genome. Genome Res 16:1241–1251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Z, Zhu X, Chen H, Zhang T (2015) Fine mapping of clustered quantitative trait loci for fiber quality on chromosome 7 using a Gossypium barbadense introgressed line. Mol Breed 35:215

    CAS  Google Scholar 

  • Chaudhary B, Flagel L, Stupar RM et al (2009) Reciprocal Silencing, Transcriptional Bias and Functional Divergence of Homeologs in Polyploid Cotton (Gossypium). Genetics 182:503–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chee PW, Paterson AH, Udall JA, Wendel JF (2016) Interspecific hybridization for upland cotton improvement. In: Mason AS (ed) Polyploidy and hybridization for crop improvement. pp 1–20

    Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J-G, Du X-M, Zhou X, Zhao H-Y (1997) Levels of cytokinins in the ovules of cotton mutants with altered fiber development. J Plant Growth Regul 16:181–185

    CAS  Google Scholar 

  • Chen Z, Feng K, Grover CE et al (2016) Chloroplast DNA structural variation, phylogeny, and age of divergence among diploid cotton species. PLoS One 11:e0157183

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Lu X, Shu N et al (2017a) Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep 7:44304. https://doi.org/10.1038/srep44304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Grover CE, Li P et al (2017b) Molecular evolution of the plastid genome during diversification of the cotton genus. Mol Phylogenet Evol 112:268–276

    CAS  PubMed  Google Scholar 

  • Chen Z, Nie H, Grover CE et al (2017c) Entire nucleotide sequences of Gossypium raimondii and G. arboreum mitochondrial genomes revealed A-genome species as cytoplasmic donor of the allotetraploid species. Plant Biology 19:484–493

    CAS  PubMed  Google Scholar 

  • Chen Z, Zhao N, Li S et al (2017d) Plant mitochondrial genome evolution and cytoplasmic male sterility. CRC Crit Rev Plant Sci 36:55–69

    Google Scholar 

  • Chen H, Li Y, Ma X et al (2019) Analysis of potential strategies for cadmium stress tolerance revealed by transcriptome analysis of upland cotton. Sci Rep 9:86

    Google Scholar 

  • Chen ZJ, Sreedasyam A, Ando A, et al (2020) Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat Genet 52:525–533

    Google Scholar 

  • Cheng F, Wu J, Fang L et al (2012) Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS One 7:e36442

    Google Scholar 

  • Cho SH, Purushotham P, Fang C et al (2017) Synthesis and self-assembly of cellulose microfibrils from reconstituted cellulose synthase. Plant Physiol 175:146–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conover JL, Karimi N, Stenz N et al (2019) A Malvaceae mystery: a mallow maelstrom of genome multiplications and maybe misleading methods? J Integr Plant Biol 61:12–31

    PubMed  Google Scholar 

  • Coppens d’Eeckenbrugge G, Lacape J-M (2014) Distribution and differentiation of wild, feral, and cultivated populations of perennial upland cotton (Gossypium hirsutum L.) in Mesoamerica and the Caribbean. PLoS One 9:e107458

    PubMed  PubMed Central  Google Scholar 

  • Craven LA, Stewart JMD, Brown AHD, Grace JP (1994) The Australian wild species of Gossypium. In: Challenging the future: proceedings of the world cotton research conference I. CSIRO. pp 278–281

    Google Scholar 

  • Cronn R, Wendel JF (2003) Cryptic trysts, genomic mergers, and plant speciation: research review. New Phytol 161:133–142

    Google Scholar 

  • Cronn RC, Zhao X, Paterson AH, Wendel JF (1996) Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42:685–705

    CAS  PubMed  Google Scholar 

  • Cronn RC, Small RL, Wendel JF (1999) Duplicated genes evolve independently after polyploid formation in cotton. Proc Natl Acad Sci 96:14406–14411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cronn RC, Small RL, Haselkorn T, Wendel JF (2002) Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Bot 89:707–725

    CAS  PubMed  Google Scholar 

  • Cronn R, Small RL, Haselkorn T, Wendel JF (2003) Cryptic repeated genomic recombination during speciation in Gossypium gossypioides. Evolution 57:2475–2489

    CAS  PubMed  Google Scholar 

  • Dasani SH, Thaker VS (2006) Role of abscisic acid in cotton fiber development. Russ J Plant Physiol 53:62–67

    CAS  Google Scholar 

  • Davie JH, Hugh Davie J (1933) Cytological studies in the Malvaceae and certain related families. J Genet 28:33–67

    Google Scholar 

  • de Peer YV, Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18:411–424

    PubMed  Google Scholar 

  • DeJoode DR, Wendel JF (1992) Genetic diversity and origin of the Hawaiian Islands cotton, Gossypium tomentosum. Am J Bot 79:1311–1319

    Google Scholar 

  • Delmer DP, Haigler CH (2002) The regulation of metabolic flux to cellulose, a major sink for carbon in plants. Metab Eng 4:22–28

    CAS  PubMed  Google Scholar 

  • Dempewolf H, Baute G, Anderson J et al (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57:1070–1082

    Google Scholar 

  • Ding M, Chen ZJ (2018) Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. Curr Opin Plant Biol 42:37–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Hu G, Yu J, et al (2020) Salt‐tolerance diversity in diploid and polyploid cotton (Gossypium) species. Plant J 101:1135–1151

    Google Scholar 

  • Doyle JJ, Coate JE (2019) Polyploidy, the nucleotype, and novelty: the impact of genome doubling on the biology of the cell. Int J Plant Sci 180:1–52

    Google Scholar 

  • Du X, Huang G, He S et al (2018) Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat Genet 50:796–802

    CAS  PubMed  Google Scholar 

  • Dudits D, Török K, Cseri A et al (2016) Response of organ structure and physiology to autotetraploidization in early development of energy willow Salix viminalis L. Plant Physiol 170(3):1504–1523. https://doi.org/10.1104/pp.15.01679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrendorfer F (1980) Polyploidy and distribution. In: Polyploidy. pp 45–60

    Google Scholar 

  • Endrizzi JE, Turcotte EL, Kohel RJ (1985) Genetics, cytology, and evolution of Gossypium. In: Caspari EW, Scandalios JG (eds) Advances in genetics. Academic, New York, pp 271–375

    Google Scholar 

  • Endrizzi JE, Katterman FRH, Geever RF (Department of Plant Sciences, University of Arizona, Tucson, AZ 85721 (USA)) (1989) DNA hybridization and time of origin of three species of Gossypium. In: Evolutionary trends in plants (United Kingdom). p 3

    Google Scholar 

  • Fan HH, Wei J, Li TC et al (2013) DNA methylation alterations of upland cotton (Gossypium hirsutum) in response to cold stress. Acta Physiol Plant 35:2445–2453

    CAS  Google Scholar 

  • Fan X, Guo Q, Xu P et al (2015) Transcriptome-wide identification of salt-responsive members of the WRKY gene family in Gossypium aridum. PLoS One 10:e0126148

    PubMed  PubMed Central  Google Scholar 

  • Fang DD (2018) Cotton fiber: physics, chemistry and biology. Springer, New York

    Google Scholar 

  • Fang DD, Hinze LL, Percy RG et al (2013) A microsatellite-based genome-wide analysis of genetic diversity and linkage disequilibrium in Upland cotton (Gossypium hirsutum L.) cultivars from major cotton-growing countries. Euphytica 191:391–401

    CAS  Google Scholar 

  • Fang L, Gong H, Hu Y et al (2017a) Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biol 18:33

    PubMed  PubMed Central  Google Scholar 

  • Fang L, Wang Q, Hu Y et al (2017b) Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49:1089–1098

    CAS  PubMed  Google Scholar 

  • Fang DD, Naoumkina M, Kim HJ (2018) Unraveling cotton fiber development using fiber mutants in the post-genomic era. Crop Sci 58:2214–2228

    Google Scholar 

  • Feldman M, Liu B, Segal G et al (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381–1387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng C, Ulloa M, Perez-M C, Stewart JM (2011) Distribution and molecular diversity of arborescent Gossypium species. Botany 89:615–624

    CAS  Google Scholar 

  • Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186:184–193

    CAS  PubMed  Google Scholar 

  • Flagel L, Udall J, Nettleton D, Wendel J (2008) Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol 6:16

    PubMed  PubMed Central  Google Scholar 

  • Flagel LE, Wendel JF, Udall JA (2012) Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allopolyploid cotton. BMC Genomics 13:302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:805–814

    CAS  PubMed  Google Scholar 

  • Fryxell PA (1965) A revision of the Australian species of Gossypium with observations on the occurrence of Thespesia in Australia (Malvaceae). Aust J Bot 13:71–102

    Google Scholar 

  • Fryxell PA (1968) A redefinition of the tribe Gossypieae. Bot Gaz 129:296–308

    Google Scholar 

  • Fryxell PA (1979) The natural history of the cotton tribe (Malvaceae, tribe Gossypieae). TAMU Press, College Station

    Google Scholar 

  • Fryxell PA (1986) Ecological adaptations of Gossypium species. In: Cotton Physiology. The Cotton Foundation, Memphis, TN, pp 1–7

    Google Scholar 

  • Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L (Malvaceae). Rheeda 2:108–165

    Google Scholar 

  • Fryxell PA, Kohel RJ, Lewis CF (1984) Taxonomy and germplasm resources. In: Cotton. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, pp 27–57

    Google Scholar 

  • Fryxell PA, Koch SD, Koch SD (1987) New or noteworthy species of flowering plants from the Sierra Madre de Sur of Guerrero and Michoacán, Mexico. J Syst Evol Bot 11:539–561

    Google Scholar 

  • Galau GA, Wilkins TA (1989) Alloplasmic male sterility in AD allotetraploid Gossypium hirsutum upon replacement of its resident A cytoplasm with that of D species G. harknessii. Theor Appl Genet 78:23–30

    CAS  PubMed  Google Scholar 

  • Gallagher JP, Grover CE, Hu G, Wendel JF (2016) Insights into the ecology and evolution of polyploid plants through network analysis. Mol Ecol 25:2644–2660

    PubMed  Google Scholar 

  • Gallagher JP, Grover CE, Rex K et al (2017) A new species of cotton from wake atoll, Gossypium stephensii (Malvaceae). Syst Bot 42:115–123

    Google Scholar 

  • Gallagher JP, Grover CE, Hu G, et al (2020) Conservation and divergence in duplicated fiber coexpression networks accompanying domestication of the polyploid Gossypium hirsutum L. G3 10:2879–2892

    Google Scholar 

  • Gao W, Long L, Tian X et al (2017) Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci 8:1364

    PubMed  PubMed Central  Google Scholar 

  • Gerstel DU (1953) Chromosomal translocations in interspecific hybrids of the genus Gossypium. Evolution 7:234–244

    Google Scholar 

  • Grover CE, Yu Y, Wing RA et al (2008) A phylogenetic analysis of indel dynamics in the cotton genus. Mol Biol Evol 25:1415–1428

    CAS  PubMed  Google Scholar 

  • Grover CE, Gallagher JP, Szadkowski EP et al (2012a) Homoeolog expression bias and expression level dominance in allopolyploids. New Phytol 196:966–971

    CAS  PubMed  Google Scholar 

  • Grover CE, Salmon A, Wendel JF (2012b) Targeted sequence capture as a powerful tool for evolutionary analysis1. Am J Bot 99:312–319

    PubMed  Google Scholar 

  • Grover CE, Gallagher JP, Jareczek JJ et al (2015a) Re-evaluating the phylogeny of allopolyploid Gossypium L. Mol Phylogenet Evol 92:45–52

    PubMed  Google Scholar 

  • Grover CE, Gallagher JP, Wendel JF (2015b) Candidate gene identification of flowering time genes in cotton. Plant Genome 8: plantgenome2014.12.0098

    Google Scholar 

  • Grover CE, Zhu X, Grupp KK et al (2015c) Molecular confirmation of species status for the allopolyploid cotton species, Gossypium ekmanianum Wittmack. Genet Resour Crop Evol 62:103–114

    Google Scholar 

  • Grover CE, Arick MA 2nd, Conover JL et al (2017a) Comparative genomics of an unusual biogeographic disjunction in the cotton tribe (Gossypieae) yields insights into genome downsizing. Genome Biol Evol 9:3328–3344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grover CE, Gallagher JP, Szadkowski EP et al (2017b) Nucleotide diversity in the two co-resident genomes of allopolyploid cotton. Plant Syst Evol 303:1021–1042

    CAS  Google Scholar 

  • Grover CE, Arick MA 2nd, Thrash A et al (2019a) Insights into the evolution of the New World diploid cottons (Gossypium, Subgenus Houzingenia) based on genome sequencing. Genome Biol Evol 11:53–71

    CAS  PubMed  Google Scholar 

  • Grover CE, Yoo M-J, Gore MA et al (2019b) Genetic analysis of the transition from wild to domesticated cotton (G. hirsutum). bioRxiv 616763

    Google Scholar 

  • Guan X, Pang M, Nah G et al (2014) miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat Commun 5:3050

    PubMed  Google Scholar 

  • Gulati AN, Turner AJ (1928) A note on the early history of cotton. Indian Central Cotton Committee, Technological Laboratory

    Google Scholar 

  • Guo W-Z, Zhou B-L, Yang L-M et al (2006) Genetic diversity of landraces in Gossypium arboreum L. race sinense assessed with simple sequence repeat markers. J Integr Plant Biol 48:1008–1017

    CAS  Google Scholar 

  • Guo H, Wang X, Gundlach H et al (2014) Extensive and biased intergenomic nonreciprocal DNA exchanges shaped a nascent polyploid genome, Gossypium (Cotton). Genetics 197:1153–1163

    PubMed  PubMed Central  Google Scholar 

  • Guseinov VA, Kiryanov GI, Vanyushin BF (1975) Intragenome distribution of 5-methylcytosine in DNA of healthy and wilt-infected cotton plants (Gossypium hirsutum L.). Mol Biol Rep 2:59–63

    CAS  PubMed  Google Scholar 

  • Hahn MA, van Kleunen M, Müller-Schärer H (2012) Increased phenotypic plasticity to climate may have boosted the invasion success of polyploid Centaurea stoebe. PLoS One 7:e50284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haigler CH, Zhang D, Wilkerson CG (2005) Biotechnological improvement of cotton fibre maturity. Physiol Plant 124:285–294

    CAS  Google Scholar 

  • Haigler CH, Singh B, Wang G, Zhang D (2009) Genomics of cotton fiber secondary wall deposition and cellulose biogenesis. In: Paterson AH (ed) Genetics and genomics of cotton. Springer US, New York, pp 385–417

    Google Scholar 

  • Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han Z, Wang C, Song X et al (2006) Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet 112:430–439

    CAS  PubMed  Google Scholar 

  • Hanson R, Zhao XP, Islam-Faridi MN et al (1998) Evolution of interspersed repetitive elements in Gossypium (Malvaceae). Am J Bot 85:1364–1368

    CAS  PubMed  Google Scholar 

  • Hanson RE, Islam-Faridi MN, Crane CF et al (2000) Ty1-copia-retrotransposon behavior in a polyploid cotton. Chromosome Res 8:73–76

    CAS  PubMed  Google Scholar 

  • Harkess A (2018) Handling the heat: methylome variation underlying heat tolerance in cotton. Plant Cell 30:1947–1948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins JS, Kim H, Nason JD et al (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins JS, Hu G, Rapp RA et al (2008) Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Genome 51:11–18

    CAS  PubMed  Google Scholar 

  • Hendrix B, Stewart JM (2005) Estimation of the nuclear DNA content of Gossypium species. Ann Bot 95:789–797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hinze LL, Fang DD, Gore MA et al (2015) Molecular characterization of the Gossypium diversity reference set of the US National Cotton Germplasm Collection. Theor Appl Genet 128:313–327

    PubMed  Google Scholar 

  • Hinze LL, Gazave E, Gore MA et al (2016) Genetic diversity of the two commercial tetraploid cotton species in the Gossypium diversity deference set. J Hered 107:274–286

    PubMed  PubMed Central  Google Scholar 

  • Hovav R, Udall JA, Chaudhary B et al (2008) Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant. Proc Natl Acad Sci U S A 105:6191–6195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hovav R, Faigenboim-Doron A, Kadmon N et al (2015) A transcriptome profile for developing seed of polyploid cotton. Plant Genome 8

    Google Scholar 

  • Hu G, Wendel JF (2019) Cis-trans controls and regulatory novelty accompanying allopolyploidization. New Phytol 221:1691–1700

    PubMed  Google Scholar 

  • Hu G, Hawkins JS, Grover CE, Wendel JF (2010) The history and disposition of transposable elements in polyploid Gossypium. Genome 53:599–607

    CAS  PubMed  Google Scholar 

  • Hu G, Houston NL, Pathak D et al (2011) Genomically biased accumulation of seed storage proteins in allopolyploid cotton. Genetics 189:1103–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu G, Koh J, Yoo M-J et al (2013) Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. New Phytol 200:570–582

    CAS  PubMed  Google Scholar 

  • Hu G, Koh J, Yoo M-J et al (2015) Gene-expression novelty in allopolyploid cotton: a proteomic perspective. Genetics 200:91–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu G, Hovav R, Grover CE et al (2016) Evolutionary conservation and divergence of gene coexpression networks in Gossypium (cotton) seeds. Genome Biol Evol 8:3765–3783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Chen J, Fang L et al (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51(4):739–748. https://doi.org/10.1038/s41588-019-0371-5

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson JB (1951) Intra-specific differentiation in Gossypium hirsutum. Heredity 5:161–193

    Google Scholar 

  • Hutchinson JB (1954) New evidence on the origin of the old world cottons. Heredity 8:225–241

    Google Scholar 

  • Hutchinson JB (1959) The application of genetics to cotton improvement, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Hutchinson JB, Silow RA, Stephens SG (1947) The evolution of Gossypium and the differentiation of the cultivated cottons. Geoffrey Cumberlege, Oxford University Press, London

    Google Scholar 

  • Idris AM, Tuttle JR, Robertson D et al (2010) Differential Cotton leaf crumple virus-VIGS-mediated gene silencing and viral genome localization in different Gossypium hirsutum genetic backgrounds. Physiol Mol Plant Pathol 75:13–22

    CAS  Google Scholar 

  • Iqbal MJ, Aziz N, Saeed NA et al (1997) Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor Appl Genet 94:139–144

    CAS  PubMed  Google Scholar 

  • Iqbal MJ, Reddy OUK, El-Zik KM, Pepper AE (2001) A genetic bottleneck in the ‘evolution under domestication’ of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theor Appl Genet 103:547–554

    CAS  Google Scholar 

  • Janga MR, Campbell LM, Rathore KS (2017) CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.). Plant Mol Biol 94:349–360

    CAS  PubMed  Google Scholar 

  • Jena SN, Srivastava A, Singh UM et al (2012) Analysis of genetic diversity, population structure and linkage disequilibrium in elite cotton (Gossypium L.) germplasm in India. Crop Pasture Sci 62:859–875

    Google Scholar 

  • Jiang C, Wright RJ, El-Zik KM, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci U S A 95:4419–4424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang CX, Chee PW, Draye X et al (2000) Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (cotton). Evolution 54:798–814

    CAS  PubMed  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    CAS  PubMed  Google Scholar 

  • Jin S, Zhang X, Nie Y et al (2006) Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol Plant 50:519–524

    CAS  Google Scholar 

  • Jin S-X, Liu G-Z, Zhu H-G et al (2012) Transformation of upland cotton (Gossypium hirsutum L.) with gfp gene as a visual marker. J Integr Agric 11:910–919

    CAS  Google Scholar 

  • Jin X, Pang Y, Jia F et al (2013) A potential role for CHH DNA methylation in cotton fiber growth patterns. PLoS One 8:e60547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johar Campus H (2005) In-ovule embryo culture: a novel method of cotton transformation. Pak J Biol Sci 8:297–301

    Google Scholar 

  • Johnson BL (1975) Gossypium palmeri and a polyphyletic origin of the New World cottons. Bull Torrey Bot Club 102:340–349

    Google Scholar 

  • Juturu VN, Mekala GK, Kirti PB (2015) Current status of tissue culture and genetic transformation research in cotton (Gossypium spp.). Plant Cell Tissue Organ Cult 120:813–839

    CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    CAS  PubMed  Google Scholar 

  • Katterman FRH, Ergle DR (1970) A study of quantitative variations of nucleic acids in Gossypium. Phytochemistry 9:2007–2010

    CAS  Google Scholar 

  • Kawakami T, Strakosh SC, Zhen Y, Ungerer MC (2010) Different scales of Ty1/copia-like retrotransposon proliferation in the genomes of three diploid hybrid sunflower species. Heredity 104:341–350

    CAS  PubMed  Google Scholar 

  • Keyte AL, Percifield R, Liu B, Wendel JF (2006) Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). J Hered 97:444–450

    CAS  PubMed  Google Scholar 

  • Khadi BM, Santhy V, Yadav MS (2010) Cotton: an introduction. In: Cotton: biotechnological advances. Springer, Berlin, Heidelberg, pp 1–14

    Google Scholar 

  • Khan A, Pan X, Najeeb U et al (2018) Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biol Res 51:47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konan NO, Baudoin J-P, D’Hont A, Mergeai G (2009) Bridging classical and molecular cytogenetics of Gossypium. In: Paterson AH (ed) Genetics and genomics of cotton. Springer US, New York, pp 257–281

    Google Scholar 

  • Kranthi KR (2018) Cotton production practices: snippets from global data 2017. The ICAC Recorder XXXVI:4–14

    Google Scholar 

  • Krapovickas A, Seijo G, Seijo JG (2008) Gossypium ekmanianum (Malvaceae), algodon silvestre de la Republica Dominicana. Bonplandia 55–63

    Google Scholar 

  • Lacape J-M, Nguyen T-B, Courtois B et al (2005) QTL analysis of cotton fiber quality using multiple Gossypium hirsutum Gossypium barbadense backcross generations. Crop Sci 45:123–140

    Google Scholar 

  • Lacape J-M, Dessauw D, Rajab M et al (2007) Microsatellite diversity in tetraploid Gossypium germplasm: assembling a highly informative genotyping set of cotton SSRs. Mol Breed 19:45–58

    CAS  Google Scholar 

  • LaDuke JC, Doebley J (1995) A chloroplast DNA based phylogeny of the Malvaceae. Syst Bot 20:259

    Google Scholar 

  • Lawrence WJC (1931) The secondary association of chromosomes. Cytologia 2:352–384

    Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    CAS  PubMed  Google Scholar 

  • Lewis WH (1979) Polyploidy in species populations. Basic Life Sci 13:103–144

    CAS  PubMed  Google Scholar 

  • Li C, Zhang B (2019) Genome editing in cotton using CRISPR/Cas9 system. Methods Mol Biol 1902:95–104

    CAS  PubMed  Google Scholar 

  • Li F, Fan G, Wang K et al (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572

    CAS  PubMed  Google Scholar 

  • Li F, Fan G, Lu C et al (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530

    PubMed  Google Scholar 

  • Li C, Unver T, Zhang B (2017) A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.). Sci Rep 7:43902

    PubMed  PubMed Central  Google Scholar 

  • Li B, Rui H, Li Y et al (2019a) Robust CRISPR/Cpf1(Cas12a) mediated genome editing in allotetraploid cotton (G. hirsutum). Plant Biotechnol J 17(10):1862–1864. https://doi.org/10.1111/pbi.13147

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Manghwar H, Sun L et al (2019b) Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Plant Biotechnol J 17:858–868

    CAS  PubMed  Google Scholar 

  • Liao W, Zhang J, Xu N, Peng M (2010) The role of phytohormones in cotton fiber development. Russ J Plant Physiol 57:462–468

    CAS  Google Scholar 

  • Lim KY, Kovarik A, Matyasek R et al (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:756–763

    CAS  PubMed  Google Scholar 

  • Liu Z, Adams KL (2007) Expression partitioning between genes duplicated by polyploidy under abiotic stress and during organ development. Curr Biol 17:1669–1674

    CAS  PubMed  Google Scholar 

  • Liu B, Vega JM, Feldman M (1998a) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome 41:535–542

    CAS  PubMed  Google Scholar 

  • Liu B, Vega JM, Segal G et al (1998b) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome 41:272–277

    CAS  Google Scholar 

  • Liu B, Brubaker CL, Mergeai G et al (2001a) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    CAS  PubMed  Google Scholar 

  • Liu Q, Brubaker CL, Green AG et al (2001b) Evolution of the FAD2-1 fatty acid desaturase 5’ UTR intron and the molecular systematics of Gossypium (Malvaceae). Am J Bot 88:92–102

    CAS  PubMed  Google Scholar 

  • Liu L, Guo W, Zhu X, Zhang T (2003) Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L. Theor Appl Genet 106:461–469

    CAS  PubMed  Google Scholar 

  • Liu Q, Chen Y, Wang Y et al (2015a) A new synthetic allotetraploid (A1A1G2G2) between Gossypium herbaceum and G. australe: bridging for simultaneously transferring favorable genes from these two diploid species into upland cotton. PLoS One 10:e0123209

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhao B, Zheng H-J et al (2015b) Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep 5:14139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long L, Guo D-D, Gao W et al (2018) Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods 14:85

    PubMed  PubMed Central  Google Scholar 

  • Lopes FR, Jjingo D, da Silva CRM et al (2013) Transcriptional activity, chromosomal distribution and expression effects of transposable elements in Coffea genomes. PLoS One 8:e78931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lubbers EL, Chee PW (2009) The worldwide gene pool of G. hirsutum and its improvement. In: Paterson AH (ed) Genetics and Genomics of Cotton. Springer US, New York, NY, pp 23–52

    Google Scholar 

  • Lukens LN, Pires JC, Leon E et al (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, He S, Wang X et al (2018) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet 50:803–813

    CAS  PubMed  Google Scholar 

  • Madlung A (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99–104

    CAS  PubMed  Google Scholar 

  • Madlung A, Tyagi AP, Watson B et al (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41:221–230

    CAS  PubMed  Google Scholar 

  • Mammadov J, Buyyarapu R, Guttikonda SK et al (2018) Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Front Plant Sci 9:886

    PubMed  PubMed Central  Google Scholar 

  • May OL (2001) Registration of PD 94045 germplasm line of Upland cotton. Crop Sci 41:279–280

    Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    CAS  PubMed  Google Scholar 

  • McFadden H, Beasley D, Brubaker CL (2004) Assessment of Gossypium sturtianum and G. australe as potential sources of Fusarium wilt resistance to cotton. Euphytica 138:61–72

    Google Scholar 

  • McIntyre PJ (2012) Polyploidy associated with altered and broader ecological niches in the Claytonia perfoliata (Portulacaceae) species complex. Am J Bot 99:655–662

    PubMed  Google Scholar 

  • Mehetre SS (2010) Wild Gossypium anomalum: a unique source of fibre fineness and strength. Curr Sci 99:58–71

    Google Scholar 

  • Menzel MY, Brown MS (1954) The significance of multivalent formation in three-species Gossypium hybrids. Genetics 39:546–557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith WR (1991) Contributions of introductions to cotton improvement. In: Use of plant introductions in cultivar development part 1. Crop Science Society of America, Madison, pp 127–146

    Google Scholar 

  • Meshram LD (1994) Development of male sterile system from various sources in cotton (Gossypium spp.). PKV Res J 18:83–86

    Google Scholar 

  • Meyer VG (1975) Male sterility from Gossypium harknessii. J Hered 66:23–27

    Google Scholar 

  • Meyer JR, Meyer VG (1961) Origin and inheritance of nectariless cotton. Crop Sci 1:167

    Google Scholar 

  • Müntzing A (1936) The evolutionary significance of autopolyploidy. Hereditas 21:363–378

    Google Scholar 

  • Muravenko OV, Fedotov AR, Punina EO et al (1998) Comparison of chromosome BrdU-Hoechst-Giemsa banding patterns of the A1 and (AD)2 genomes of cotton. Genome 41:616–625

    CAS  Google Scholar 

  • Nazeer W, Ahmad S, Mahmood K et al (2014) Introgression of genes for cotton leaf curl virus resistance and increased fiber strength from Gossypium stocksii into upland cotton (G. hirsutum). Genet Mol Res 13:1133–1143

    CAS  PubMed  Google Scholar 

  • Ni Z, Kim E-D, Ha M et al (2009) Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457:327–331

    CAS  PubMed  Google Scholar 

  • Nixon BT, Mansouri K, Singh A et al (2016) Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. Sci Rep 6:28696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oluoch G, Zheng J, Wang X et al (2016) QTL mapping for salt tolerance at seedling stage in the interspecific cross of Gossypium tomentosum with Gossypium hirsutum. Euphytica 209:223–235

    CAS  Google Scholar 

  • Osabe K, Clement JD, Bedon F et al (2014) Genetic and DNA methylation changes in cotton (Gossypium) genotypes and tissues. PLoS One 9:e86049

    PubMed  PubMed Central  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    CAS  PubMed  Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Page JT, Huynh MD, Liechty ZS et al (2013) Insights into the evolution of cotton diploids and polyploids from whole-genome re-sequencing. G3 3:1809–1818

    PubMed  PubMed Central  Google Scholar 

  • Page JT, Liechty ZS, Alexander RH et al (2016) DNA sequence evolution and rare homoeologous conversion in tetraploid cotton. PLoS Genet 12:e1006012

    PubMed  PubMed Central  Google Scholar 

  • Pang J, Zhu Y, Li Q et al (2013) Development of Agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense. PLoS One 8:e73211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parisod C, Senerchia N (2012) Responses of transposable elements to polyploidy. In: Grandbastien M-A, Casacuberta JM (eds) Plant transposable elements: impact on genome structure and function. Springer, Berlin, Heidelberg, pp 147–168

    Google Scholar 

  • Paterson AH, Bowers JE, Burow MD et al (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Saranga Y, Menz M et al (2003) QTL analysis of genotype × environment interactions affecting cotton fiber quality. Theor Appl Genet 106:384–396

    CAS  PubMed  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    CAS  PubMed  Google Scholar 

  • Paun O, Fay MF, Soltis DE, Chase MW (2007) Genetic and epigenetic alterations after hybridization and genome doubling. Taxon 56:649–656

    PubMed  PubMed Central  Google Scholar 

  • Percy RG, Wendel JF (1990) Allozyme evidence for the origin and diversification of Gossypium barbadense L. Theor Appl Genet 79:529–542

    CAS  PubMed  Google Scholar 

  • Phillips LL (1964) Segregation in new allopolyploids of Gossypium. V. multivalent formation in New World x Asiatic and New World x Wild American hexaploids. Am J Bot 51:324–329

    Google Scholar 

  • Phillips LL (1966) The cytology and phylogenetics of the diploid species of Gossypium. Am J Bot 53:328–335

    Google Scholar 

  • Phillips LL (1977) Interspecific incompatibility in Gossypium. Temperature-conditional lethality in hybrids of G. klotzschianum. Am J Bot 64:914–915

    Google Scholar 

  • Phillips LL, Clement D (1967) Variation in the diploid Gossypium species of Baja, California. Madrono 19:137–147

    Google Scholar 

  • Phillips LL, Strickland MA (1966) The cytology of a hybrid between G. hirsutum and G. longicalyx. Can J Genet Cytol 8:91–95

    Google Scholar 

  • Phuphathanaphong L (2006) Thepparatia (Malvaceae), a new genus from. Thailand 1:195–200

    Google Scholar 

  • Piednoël M, Carrete-Vega G, Renner SS (2013) Characterization of the LTR retrotransposon repertoire of a plant clade of six diploid and one tetraploid species. Plant J 75:699–709

    PubMed  Google Scholar 

  • Pinto de Menezes IP, Barroso PAV, Hoffmann LV et al (2010) Genetic diversity of mocó cotton (Gossypium hirsutum race marie-galante) from the northeast of Brazil: implications for conservation. Botany 88:765–773

    CAS  Google Scholar 

  • Piperno DR, Pearsall DM (1998) Background of tropical agricultural origins. Academic, San Diego

    Google Scholar 

  • Qin H, Guo W, Zhang Y-M, Zhang T (2008) QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet 117:883–894

    PubMed  Google Scholar 

  • Rajendran TP, Venugopalan MV, Praharaj CS (2005) Cotton research towards sufficiency to Indian textile industry. Indian J Agric Sci 75:699–708

    Google Scholar 

  • Ram SG, Thiruvengadam V, Ramakrishnan SH, Kannan Bapu JR (2008) Investigation on pre-zygotic barriers in the interspecific crosses involving Gossypium barbadense and four diploid wild species. Euphytica 159:241–248

    Google Scholar 

  • Rambani A, Page JT, Udall JA (2014) Polyploidy and the petal transcriptome of Gossypium. BMC Plant Biol 14:3

    PubMed  PubMed Central  Google Scholar 

  • Rapp RA, Udall JA, Wendel JF (2009) Genomic expression dominance in allopolyploids. BMC Biol 7:18

    PubMed  PubMed Central  Google Scholar 

  • Reddy UK, Nimmakayala P, Abburi VL et al (2017) Genome-wide divergence, haplotype distribution and population demographic histories for Gossypium hirsutum and Gossypium barbadense as revealed by genome-anchored SNPs. Sci Rep 7:41285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinisch AJ, Dong JM, Brubaker CL et al (1994) A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renny-Byfield S, Gong L, Gallagher JP, Wendel JF (2015) Persistence of subgenomes in paleopolyploid cotton after 60 my of evolution. Mol Biol Evol 32:1063–1071

    CAS  PubMed  Google Scholar 

  • Renny-Byfield S, Page JT, Udall JA et al (2016) Independent domestication of two Old World cotton species. Genome Biol Evol 8:1940–1947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson AF, Bell AA, Dighe ND et al (2007) Introgression of resistance to nematode Rotylenchulus reniformis into upland cotton (Gossypium hirsutum) from Gossypium longicalyx. Crop Sci 47:1865–1877

    Google Scholar 

  • Rombolá-Caldentey B, Rueda-Romero P, Iglesias-Fernández R et al (2014) Arabidopsis DELLA and two HD-ZIP transcription factors regulate GA signaling in the epidermis through the L1 box cis-element. Plant Cell 26:2905–2919

    PubMed  PubMed Central  Google Scholar 

  • Rong J, Feltus FA, Waghmare VN et al (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577–2588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossen J, Dillehay TD, Ugent D (1996) Ancient cultigens or modern intrusions?: evaluating plant remains in an Andean case study. J Archaeol Sci 23:391–407

    Google Scholar 

  • Ruan Y-L, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saha S, Jenkins JN, Wu J et al (2006) Effects of chromosome-specific introgression in upland cotton on fiber and agronomic traits. Genetics 172:1927–1938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Said JI, Song M, Wang H et al (2015) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics 290:1003–1025

    CAS  PubMed  Google Scholar 

  • Salmon A, Flagel L, Ying B et al (2010) Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol 186:123–134

    CAS  PubMed  Google Scholar 

  • Sarilar V, Marmagne A, Brabant P et al (2011) BraSto, a Stowaway MITE from Brassica: recently active copies preferentially accumulate in the gene space. Plant Mol Biol 77:59–75

    CAS  PubMed  Google Scholar 

  • Sarilar V, Palacios PM, Rousselet A et al (2013) Allopolyploidy has a moderate impact on restructuring at three contrasting transposable element insertion sites in resynthesized Brassica napus allotetraploids. New Phytol 198:593–604

    CAS  PubMed  Google Scholar 

  • Sattler MC, Carvalho CR, Clarindo WR (2016) The polyploidy and its key role in plant breeding. Planta 243:281–296

    CAS  PubMed  Google Scholar 

  • Saunders JH (1961) The wild species of Gossypium and their evolutionary history. Oxford University Press, New York

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  PubMed  Google Scholar 

  • Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci U S A 108:4069–4074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seelanan T, Brubaker CL, James McD. Stewart, et al (1999) Molecular systematics of Australian Gossypium section Grandicalyx (Malvaceae). Syst Bot 24:183–208

    Google Scholar 

  • Senchina DS, Alvarez I, Cronn RC et al (2003) Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol Biol Evol 20:633–643

    CAS  PubMed  Google Scholar 

  • Senerchia N, Felber F, Parisod C (2014) Contrasting evolutionary trajectories of multiple retrotransposons following independent allopolyploidy in wild wheats. New Phytol 202:975–985

    CAS  PubMed  Google Scholar 

  • Shaked H, Kashkush K, Ozkan H et al (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shan C-M, Shangguan X-X, Zhao B et al (2014) Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun 5:5519

    CAS  PubMed  Google Scholar 

  • Shangguan X-X, Xu B, Yu Z-X et al (2008) Promoter of a cotton fibre MYB gene functional in trichomes of Arabidopsis and glandular trichomes of tobacco. J Exp Bot 59:3533–3542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd RL (1974) Breeding root-knot-resistant Gossypium hirsutum L. Using a resistant wild G. barbadense L.1. Crop Sci 14:687–691

    Google Scholar 

  • Shi Y-H, Zhu S-W, Mao X-Z et al (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh B, Cheek HD, Haigler CH (2009) A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber. Plant Cell Rep 28:1023–1032

    CAS  PubMed  Google Scholar 

  • Skovsted A (1933) Cytological studies in cotton I. The mitosis and the meiosis in diploid and triploid Asiatic cotton. Ann Bot os-47:227–251

    Google Scholar 

  • Skovsted A (1937) Cytological studies in cotton. J Genet 34:97–134

    Google Scholar 

  • Small RL, Wendel JF (1999) The mitochondrial genome of allotetraploid cotton (Gossypium L.). J Hered 90:251–253

    CAS  PubMed  Google Scholar 

  • Small RL, Wendel JF (2000) Phylogeny, duplication, and intraspecific variation of Adh sequences in New World diploid cottons (Gossypium l., malvaceae). Mol Phylogenet Evol 16:73–84

    CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    CAS  PubMed  Google Scholar 

  • Soltis PS, Soltis DE (2016) Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol 30:159–165

    PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Rieseberg LH (1993) Molecular data and the dynamic nature of polyploidy. CRC Crit Rev Plant Sci 12:243–273

    CAS  Google Scholar 

  • Soltis DE, Soltis PS, Tate JA (2004) Advances in the study of polyploidy since plant speciation. New Phytol

    Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J et al (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Google Scholar 

  • Soltis DE, Visger CJ, Blaine Marchant D, Soltis PS (2016) Polyploidy: pitfalls and paths to a paradigm. Am J Bot 103:1146–1166

    PubMed  Google Scholar 

  • Song Q, Chen ZJ (2015) Epigenetic and developmental regulation in plant polyploids. Curr Opin Plant Biol 24:101–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci U S A 92:7719–7723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Guan X, Chen ZJ (2015) Dynamic roles for small RNAs and DNA methylation during ovule and fiber development in allotetraploid cotton. PLoS Genet 11:e1005724

    PubMed  PubMed Central  Google Scholar 

  • Song Q, Zhang T, Stelly DM, Chen ZJ (2017) Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol 18:99

    PubMed  PubMed Central  Google Scholar 

  • Splitstoser JC, Dillehay TD, Wouters J, Claro A (2016) Early pre-Hispanic use of indigo blue in Peru. Sci Adv 2:e1501623

    PubMed  PubMed Central  Google Scholar 

  • Springer NM, Lisch D, Li Q (2016) Creating order from chaos: epigenome dynamics in plants with complex genomes. Plant Cell 28:314–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanton MA, Stewart JM, Pervical AE, Wendel JF (1994) Morphological diversity and relationships in the A-Genome cottons, Gossypium arboreum and G. herbaceum. Crop Sci 34:519–527

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. New York, Columbia University Press. 643 pp.

    Google Scholar 

  • Stebbins GL (1985) Polyploidy, hybridization, and the invasion of new habitats. Ann Mo Bot Gard 72:824–832

    Google Scholar 

  • Stebbins GL et al (1971) Chromosomal evolution in higher plants. In: Chromosomal evolution in higher plants

    Google Scholar 

  • Stephens SG (1944) The genetic organization of leaf-shape development in the genus Gossypium. J Genet 46:28–51

    Google Scholar 

  • Stephens SG (1946) The genetics of corky; the New World alleles and their possible role as an interspecific isolating mechanism. J Genet 47:150–161

    CAS  PubMed  Google Scholar 

  • Stephens SG (1947) Cytogenetics of Gossypium and the problem of the origin of New World cottons. In: Demerec M (ed) Advances in genetics. Academic, New York, pp 431–442

    Google Scholar 

  • Stephens SG (1949) The cytogenetics of speciation in Gossypium. I. Selective elimination of the donor parent genotype in interspecific backcrosses. Genetics 34:627–637

    PubMed  PubMed Central  Google Scholar 

  • Stephens SG (1950) The internal mechanism of speciation in Gossypium. Bot Rev 16:115–149

    Google Scholar 

  • Stephens SG (1958) Salt water tolerance of seeds of Gossypium species as a possible factor in seed dispersal. Am Nat 92:83–92

    Google Scholar 

  • Stephens SG (1966) The potentiality for long range oceanic dispersal of cotton seeds. Am Nat 100:199–210

    Google Scholar 

  • Stephens SG (1967) Evolution under domestication of the New World cotton (Gossypium spp.). Cienciae Cultura 19:118–134

    Google Scholar 

  • Stephens SG (1974) Geographic and taxonomic distribution of anthocyanin genes in New World cottons. J Genet 61:128

    Google Scholar 

  • Stewart JM (1992) A new cytoplasmic male sterile and restorer for cotton. In: Proceedings of the Beltwide cotton conference. National Cotton Council, Memphis. p 610

    Google Scholar 

  • Stewart J (1995) Potential for crop improvement with exotic germplasm and genetic engineering. In: Proceeding of the world cotton research conference-I, Brisbane, Australia, February 14–17, Melbourne. pp 313–327

    Google Scholar 

  • Sun Y, Wu Y, Yang C et al (2017) Segmental allotetraploidy generates extensive homoeologous expression rewiring and phenotypic diversity at the population level in rice. Mol Ecol 26:5451–5466

    CAS  PubMed  Google Scholar 

  • Suzuki H, Yu J, Ness SA et al (2013) RNA editing events in mitochondrial genes by ultra-deep sequencing methods: a comparison of cytoplasmic male sterile, fertile and restored genotypes in cotton. Mol Gen Genomics 288:445–457

    CAS  Google Scholar 

  • Tan J, Walford S-A, Dennis ES, Llewellyn D (2016) Trichomes control flower bud shape by linking together young petals. Nat Plants 2:16093

    CAS  PubMed  Google Scholar 

  • Tang H, Woodhouse MR, Cheng F et al (2012) Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. Genetics 190:1563–1574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang M, Chen Z, Grover CE et al (2015) Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes. BMC Genomics 16:770

    PubMed  PubMed Central  Google Scholar 

  • Tate JA, Ni Z, Scheen A-C et al (2006) Evolution and expression of homeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid. Genetics 173:1599–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tu L-L, Zhang X-L, Liang S-G et al (2007) Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep 26:1309–1320

    CAS  PubMed  Google Scholar 

  • Tuttle JR, Nah G, Duke MV et al (2015) Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics 16:477

    PubMed  PubMed Central  Google Scholar 

  • Tyagi P, Gore MA, Bowman DT et al (2014) Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.). Theor Appl Genet 127:283–295

    PubMed  Google Scholar 

  • Udall JA, Long E, Ramaraj T, et al (2019) The genome sequence of Gossypioides kirkii illustrates a descending dysploidy in plants. Frontiers in Plant Science 10:1541

    Google Scholar 

  • Van Deynze A, Stoffel K, Lee M et al (2009) Sampling nucleotide diversity in cotton. BMC Plant Biol 9:125

    PubMed  PubMed Central  Google Scholar 

  • Vicient CM, Casacuberta JM (2017) Impact of transposable elements on polyploid plant genomes. Ann Bot 120:195–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vicient CM, Suoniemi A, Anamthawat-Jónsson K et al (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vollesen K (1987) The native species of Gossypium (Malvaceae) in Africa, Arabia and Pakistan. Kew Bull 42:337–349

    Google Scholar 

  • Walford S-A, Wu Y, Llewellyn DJ, Dennis ES (2011) GhMYB25-like: a key factor in early cotton fibre development. Plant J 65:785–797

    CAS  PubMed  Google Scholar 

  • Walker GP, Natwick ET (2006) Resistance to silverleaf whitefly, Bemisia argentifolii (Hem., Aleyrodidae), in Gossypium thurberi, a wild cotton species. J Appl Entomol 130:429–436

    Google Scholar 

  • Wan Q, Guan X, Yang N et al (2016) Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development. New Phytol 210:1298–1310

    CAS  PubMed  Google Scholar 

  • Wang GL, Dong JM, Paterson AH (1995) The distribution of Gossypium hirsutum chromatin in G. barbadense germ plasm: molecular analysis of introgressive plant breeding. Theor Appl Genet 91:1153–1161

    CAS  PubMed  Google Scholar 

  • Wang B, Brubaker CL, Burdon JJ (2004) Fusarium species and Fusarium wilt pathogens associated with native Gossypium populations in Australia. Mycol Res 108:35–44

    PubMed  Google Scholar 

  • Wang J, Wang H-Y, Zhao P-M et al (2010) Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers. Plant Cell Physiol 51:1276–1290

    CAS  PubMed  Google Scholar 

  • Wang F, Gong Y, Zhang C et al (2011a) Genetic effects of introgression genomic components from Sea Island cotton (Gossypium barbadense L.) on fiber related traits in upland cotton (G. hirsutum L.). Euphytica 181:41–53

    Google Scholar 

  • Wang XQ, Feng CH, Lin ZX, Zhang XL (2011b) Genetic diversity of sea-island cotton (Gossypium barbadense) revealed by mapped SSRs. Genet Mol Res 10:3620–3631

    CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Wang J et al (2011c) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    CAS  PubMed  Google Scholar 

  • Wang K, Wang Z, Li F et al (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103

    CAS  PubMed  Google Scholar 

  • Wang M, Yuan D, Tu L et al (2015a) Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.). New Phytol 207:1181–1197

    CAS  PubMed  Google Scholar 

  • Wang M, Yuan D, Zhang X (2015b) Genome Sequencing. In: Fang DD, Percy RG (eds) Cotton. American Society of Agronomy, Inc.; Crop Science Society of America, Inc.; Soil Science Society of America, Inc., 5585 Guilford Road, Madison, WI 53711-1086 USA, pp 289–302

    Google Scholar 

  • Wang B, Zhang M, Fu R et al (2016a) Epigenetic mechanisms of salt tolerance and heterosis in Upland cotton (Gossypium hirsutum L.) revealed by methylation-sensitive amplified polymorphism analysis. Euphytica 208:477–491

    CAS  Google Scholar 

  • Wang X, Guo H, Wang J et al (2016b) Comparative genomic de-convolution of the cotton genome revealed a decaploid ancestor and widespread chromosomal fractionation. New Phytol 209:1252–1263

    CAS  PubMed  Google Scholar 

  • Wang X, Zhang H, Li Y et al (2016c) Transcriptome asymmetry in synthetic and natural allotetraploid wheats, revealed by RNA-sequencing. New Phytol 209:1264–1277

    CAS  PubMed  Google Scholar 

  • Wang M, Tu L, Lin M et al (2017) Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet 49:579–587

    CAS  PubMed  Google Scholar 

  • Wang K, Wendel JF, Jinping HUA (2018a) Designations for individual genomes and chromosomes in Gossypium. J Cotton Res 1:3

    Google Scholar 

  • Wang P, Zhang J, Sun L et al (2018b) High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J 16:137–150

    CAS  PubMed  Google Scholar 

  • Wang M, Tu L, Yuan D et al (2019) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51:224–229

    CAS  PubMed  Google Scholar 

  • Ware JO (1951) Origin, rise and development of American Upland cotton varieties and their status at present. University of Arkansas College of Agriculture, Agricultural Experiment Station, Fayetteville

    Google Scholar 

  • Watt SG (1907) The wild and cultivated cotton plants of the world: a revision of the genus Gossypium, framed primarily with the object of aiding planters and investigators who may contemplate the systematic improvement of the cotton staple. Longmans, Green, and Co.

    Google Scholar 

  • Wayne Smith C, Tom Cothren J (1999) Cotton: origin, history, technology, and production. Wiley, New York

    Google Scholar 

  • Wei Y, Xu Y, Lu P et al (2017) Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis. PLoS One 12:e0178313

    PubMed  PubMed Central  Google Scholar 

  • Wendel JF (1989) New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci U S A 86:4132–4136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel JF (2015) The wondrous cycles of polyploidy in plants. Am J Bot 102:1753–1756

    CAS  PubMed  Google Scholar 

  • Wendel JF, Albert VA (1992) Phylogenetics of the cotton genus (Gossypium): character-state weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Syst Bot 17:115–143

    Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Google Scholar 

  • Wendel JF, Grover CE (2015) Taxonomy and evolution of the cotton genus, Gossypium. In: Agronomy monograph

    Google Scholar 

  • Wendel JF, Percival AE (1990) Molecular divergence in the Galapagos Islands—Baja, California species pair, Gossypium klotzschianum and G. davidsonii (Malvaceae). Plant Syst Evol 171:99–115

    CAS  Google Scholar 

  • Wendel JF, Olson PD, Stewart JM (1989) Genetic diversity, introgression, and independent domestication of Old World cultivated cottons. Am J Bot 76:1795–1806

    Google Scholar 

  • Wendel JF, Stewart JM, Rettig JH (1991) Molecular evidence for homoploid reticulate evolution among Australian species of Gossypium. Evolution 45:694–711

    PubMed  Google Scholar 

  • Wendel JF, Brubaker CL, Percival AE (1992) Genetic diversity in Gossypium hirsutum and the origin of Upland cotton. Am J Bot 79:1291–1310

    Google Scholar 

  • Wendel JF, Rowley R, Stewart JM (1994) Genetic diversity in and phylogenetic relationships of the Brazilian endemic cotton, Gossypium mustelinum (Malvaceae). Plant Syst Evol 192:49–59

    Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995a) An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol Phylogenet Evol 4:298–313

    CAS  PubMed  Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995b) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci U S A 92:280–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel JF, Cronn RC, Alvarez I et al (2002) Intron size and genome size in plants. Mol Biol Evol 19:2346–2352

    CAS  PubMed  Google Scholar 

  • Wendel JF, Brubaker C, Alvarez I et al (2009) Evolution and natural history of the cotton genus. In: Paterson AH (ed) Genetics and genomics of cotton. Springer US, New York, pp 3–22

    Google Scholar 

  • Wendel JF, Brubaker CL, Seelanan T (2010) The origin and evolution of Gossypium. In: Physiology of cotton, pp 1–18

    Google Scholar 

  • Wendel JF, Flagel LE, Adams KL (2012) Jeans, genes, and genomes: cotton as a model for studying polyploidy. In: Polyploidy and genome evolution

    Google Scholar 

  • Westengen OT, Huamán Z, Heun M (2005) Genetic diversity and geographic pattern in early South American cotton domestication. Theor Appl Genet 110:392–402

    PubMed  Google Scholar 

  • Wittkopp PJ, Haerum BK, Clark AG (2004) Evolutionary changes in cis and trans gene regulation. Nature 430:85–88

    CAS  PubMed  Google Scholar 

  • Woodhouse MR, Schnable JC, Pedersen BS et al (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homeologs. PLoS Biol 8:e1000409

    PubMed  PubMed Central  Google Scholar 

  • Woodhouse MR, Cheng F, Pires JC et al (2014) Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proc Natl Acad Sci U S A 111:5283–5288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Tian Y, Wan Q et al (2018) Genetics and evolution of MIXTA genes regulating cotton lint fiber development. New Phytol 217:883–895

    CAS  PubMed  Google Scholar 

  • Xu Q, Xiong G, Li P et al (2012) Analysis of complete nucleotide sequences of 12 Gossypium chloroplast genomes: origin and evolution of allotetraploids. PLoS One 7:e37128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Bai Y, Lin X et al (2014) Genome-wide disruption of gene expression in allopolyploids but not hybrids of rice subspecies. Mol Biol Evol 31:1066–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SS, Samuel Yang S, Cheung F et al (2006) Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 47:761–775

    CAS  PubMed Central  Google Scholar 

  • Yik CP, Birchfield W (1984) Resistant germplasm in Gossypium species and related plants to Rotylenchulus reniformis. J Nematol 16:146–153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo M-J, Wendel JF (2014) Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. PLoS Genetics 10:e1004073

    PubMed  PubMed Central  Google Scholar 

  • Yoo M-J, Szadkowski E, Wendel JF (2013) Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 110:171–180

    CAS  PubMed  Google Scholar 

  • Yoo M-J, Liu X, Pires JC et al (2014) Nonadditive gene expression in polyploids. Annu Rev Genet 48:485–517

    CAS  PubMed  Google Scholar 

  • Yuan D, Tang Z, Wang M et al (2015) The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep 5:17662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu-xiang W, Jin-hong C, Qiu-ling H, Shui-jin Z (2013) Parental origin and genomic evolution of tetraploid Gossypium species by molecular marker and GISH analyses. Caryologia 66:368–374

    Google Scholar 

  • Zafar SA, Noor MA, Waqas MA et al (2018) Temperature extremes in cotton production and mitigation strategies. In: Mehboob-Ur-Rahman, Zafar Y (eds) Past, present and future trends in cotton breeding. InTech

    Google Scholar 

  • Zhang T, Chen T (2012) Cotton pistil drip transformation method. Methods Mol Biol 847:237–243

    CAS  PubMed  Google Scholar 

  • Zhang T, Endrizzi JE (2015) Cytology and cytogenetics. In: Cotton. American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc., Madison, pp 129–154

    Google Scholar 

  • Zhang JF, Stewart JM (1999) Cytoplasmic male sterility based on Gossypium sturtianum cytoplasm (CMS-C1): Characterization and genetics of restoration. Proc Cotton Res Meeting, Ark Agric Exp Stn Special Rep 193:269–272

    Google Scholar 

  • Zhang JF, Stewart JM (2001) Inheritance and genetic relationships of the D8 and D2-2 restorer genes for cotton cytoplasmic male sterility. Crop Sci 41:289–294

    Google Scholar 

  • Zhang J, Lu Y, Adragna H, Hughs SE (2005) Genetic improvement of New Mexico Acala cotton germplasm and their genetic diversity. Crop Sci 45:2363–2373

    CAS  Google Scholar 

  • Zhang J, Fang H, Zhou H et al (2013) Inheritance and transfer of thrips resistance from Pima cotton to Upland cotton. J Cotton Sci 17:163–169

    CAS  Google Scholar 

  • Zhang J, Percy RG, McCarty JC (2014) Introgression genetics and breeding between Upland and Pima cotton: a review. Euphytica 198:1–12

    Google Scholar 

  • Zhang T, Hu Y, Jiang W et al (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    CAS  PubMed  Google Scholar 

  • Zhang F, Zhu G, Du L et al (2016) Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. Sci Rep 6:20582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Mittal N, Leamy LJ et al (2017a) Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 10:5–24

    PubMed  Google Scholar 

  • Zhang X, Hu D-P, Li Y et al (2017b) Developmental and hormonal regulation of fiber quality in two natural-colored cotton cultivars. J Integr Agric 16:1720–1729

    CAS  Google Scholar 

  • Zhang Z, Ge X, Luo X et al (2018) Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Front Plant Sci 9:842

    PubMed  PubMed Central  Google Scholar 

  • Zhao X-P, Si Y, Hanson RE et al (1998) Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res 8:479–492

    CAS  PubMed  Google Scholar 

  • Zhao Y-L, Yu S-X, Ye W-W et al (2010) Study on DNA cytosine methylation of cotton (Gossypium hirsutum L.) genome and its implication for salt tolerance. Agric Sci China 9:783–791

    CAS  Google Scholar 

  • Zhao F, Fang W, Xie D et al (2012) Proteomic identification of differentially expressed proteins in Gossypium thurberi inoculated with cotton Verticillium dahliae. Plant Sci 185-186:176–184

    CAS  PubMed  Google Scholar 

  • Zhao Y, Wang H, Chen W et al (2015) Genetic diversity and population structure of elite cotton (Gossypium hirsutum L.) germplasm revealed by SSR markers. Plant Syst Evol 301:327–336

    Google Scholar 

  • Zhao X, Meng Z, Wang Y et al (2017) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plants 3:956–964

    CAS  PubMed  Google Scholar 

  • Zhao B, Cao J-F, Hu G-J et al (2018) Core cis-element variation confers subgenome-biased expression of a transcription factor that functions in cotton fiber elongation. New Phytol 218:1061–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng D, Ye W, Song Q et al (2016) Histone modifications define expression bias of homoeologous genomes in allotetraploid cotton. Plant Physiol 172:1760–1771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu SJ, Reddy N, Jiang YR (2005) Introgression of a gene for delayed pigment gland morphogenesis from Gossypium bickii into upland cotton. Plant Breed 124:590–594

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan F. Wendel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, G. et al. (2021). Evolution and Diversity of the Cotton Genome. In: Rahman, Mu., Zafar, Y., Zhang, T. (eds) Cotton Precision Breeding. Springer, Cham. https://doi.org/10.1007/978-3-030-64504-5_2

Download citation

Publish with us

Policies and ethics