Skip to main content

Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Year-Round Rain

  • Chapter
  • First Online:
Global Vegetation

Abstract

The zonal vegetation of the subtropics with year-round rain (“wet subtropics”) consists of evergreen and semi-evergreen laurophyllous forests. Because they are located on the eastern sides of the continents, these forests receive rainfall throughout the year; towards the interior of the continents, maximum rainfall shifts into summer. Particularly in the Southern Hemisphere, these forests often include archaic conifers of the genera Araucaria and Podocarpus. It is remarkable that grassland occurs extensively, particularly in South America (campo, pampa), but also in South Africa, despite the consistently humid climate that would allow forest to occur. This grassland is considered to be a relic of postglacial dry periods; it is maintained by fire and grazing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bannister, P. (2007). A touch of frost? Cold hardiness of plants in the Southern Hemisphere. New Zealand Journal of Botany, 45, 1–33.

    Google Scholar 

  • Beadle, N. C. W. (1981). The Vegetation of Australia (690 pp). Stuttgart/New York: G. Fischer.

    Google Scholar 

  • Behling, H., 1993: Untersuchungen zur spätpleistozänen und holozänen Vegetationsgeschichte der tropischen Küstenwälder und der Araukarienwälder in Santa Catarina (Südbrasilien). Dissertationes Botanicae 206, Cramer, Berlin/Stuttgart, 149 pp.

    Google Scholar 

  • Behling, H. (1997). Late Quaternary vegetation, climate and fire history of the Araucaria forest and campos region from Serra Campos Gerais, Parana (South Brazil). Review of Palaeobotany and Palynology, 97, 109–121.

    Google Scholar 

  • Behling, H. (2002). South and Southeast Brazilian grasslands during Late Quaternary times: A synthesis. Palaeogeography Palaeoclimatology Palaeoecology, 177, 19–27.

    Google Scholar 

  • Behling, H., Pillar, V. D., Orlóci, L., & Bauermann, S. G. (2004). Late Quartenary Araucaria forest, grassland (campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 203, 277–297.

    Google Scholar 

  • Beierkuhnlein, C. (2007). Biogeographie. Stuttgart: E. Ulmer.

    Google Scholar 

  • Beretta, E. J. (2003). Country pasture profiles: Uruguay. http://www.fao.org/ag/AGP/AGPC/doc/Counprof/uruguay/uruguay.htm

  • Bohrer, C. (1998). Ecology and biogeography of an Atlantic Montane Forest in South-Eastern Brazil. PhD-Dissertation, University of Edinburgh, Edinburgh.

    Google Scholar 

  • Boldrini, I. I. (2009). A flora dos Campos do Rio Grande do Sul. In V. P. Pillar, S. C. Müller, Z. M. S. Castilhos, & A. V. A. Jaques (Eds.), Campos Sulinos. Conservação e uso sustentável da biodiversidade (pp. 63–77). Brasilia: Ministério de Meio Ambiente.

    Google Scholar 

  • Bredenkamp, G. J., Spada, F., & Kazmierczak, E. (2002). On the origin of northern and southern hemisphere grasslands. Plant Ecology, 163, 209–229.

    Google Scholar 

  • Brockmann-Jerosch, H., & Rübel, E. (1912). Die Einteilung von Pflanzengesellschaften nach ökologisch-physiognomischen Gesichtspunkten (72 pp). Leipzig: Engelmann.

    Google Scholar 

  • Burga, C. A., Klötzli, F., & Grabherr, G. (Eds.). (2004). Gebirge der Erde (504 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Busby, J. R., & Brown, M. J. (1994). Southern rainforests. In R. H. Groves (Ed.), Australian vegetation (2nd ed., pp. 131–155). Cambridge: Cambridge University Press.

    Google Scholar 

  • Cabrera, A. L., & Willink, A. (1980). Biogeografia da America Latina (Serie Biología 13) (2nd ed., 122 pp). Washington, DC: Organización de Estados Americanos.

    Google Scholar 

  • Christensen, N. L. (2000). Vegetation of the southeaster coastal plain. In M. G. Barbour & W. D. Billings (Eds.), North American terrestrial vegetation (2nd ed., pp. 397–448). Cambridge: Cambridge University Press.

    Google Scholar 

  • Coomes, D. A., & Bellingham, P. J. (2011). Temperate and tropical podocarps: How ecologically alike are they? In B. L. Turner & L. A. Cernusak (Eds.), Ecology of Podocarpaceae in tropical forests (Smithsonian Contribution to Botany 95) (pp. 119–140). Washington, DC: Smithsonian Institution Scholarly Press.

    Google Scholar 

  • Cowling, R. M., Gibbs Russel, G. E., Hoffman, M. T., & Hilton-Taylor, C. (1989). Patterns of plant species diversity in southern Africa. In B. J. Huntley (Ed.), Biotic diversity in Southern Africa. Concepts and conservation (pp. 19–50). Cape Town: Oxford University Press.

    Google Scholar 

  • Dümig, A., Schad, P., Kohok, M., Beyerlein, P., Schwimmer, W., & Kögel-Knabner, I. (2008a). A mosaic of nonallophanic Andosols, Umbrisols and Cambisols on rhyodacite in the southern Brazilian highlands. Geoderma, 145, 158–173.

    Google Scholar 

  • Dümig, A., Schad, P., Rumpel, C., Dignac, M.-F., & Kögel-Knabner, I. (2008b). Araucaria forest expansion on grassland in the southern Brazilian highlands as revealed by 14C and δ13 studies. Geoderma, 145, 143–157.

    Google Scholar 

  • Duryea, M. L., Kampf, E., Littell, R. C., & Rodríguez Pedraza, C. D. (2007). Hurricanes and the urban forest: II. Effects on tropical and subtropical tree species. Arboriculture & Urban Forestry, 33, 98–112.

    Google Scholar 

  • Eckenwalder, J. E. (2009). Conifers of the world. The complete reference (720 pp). Portland: Timber Press.

    Google Scholar 

  • Eeley, H. A. C., Lawes, M. J., & Piper, S. E. (1999). The influence of climate change on the distribution of indigenous forests in KwaZulu-Natal, South Africa. Journal of Biogeography, 26, 595–617.

    Google Scholar 

  • Eeley, H. A. C., Lawes, M. J., & Reyers, B. (2001). Priority areas for the conservation of subtropical indigenous forest in southern Africa: A case study from KwaZulu-Natal. Biodiversity and Conservation, 10, 1221–1246.

    Google Scholar 

  • eFloras. (2008). Published on the internet http://www.efloras.org (Accessed 27th of February 2012). Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, Cambridge, MA.

  • Ellenberg, H. (1962). Wald in der Pampa Argentiniens? (Veröffentlichungen des Geobotanischen Instituts an der ETH Zürich, Stiftung Rübel) (Vol. 37, pp. 39–56).

    Google Scholar 

  • Ellenberg, H., & Leuschner, C. (2010). Vegetation Mitteleuropas mit den Alpen (6th ed., 1357 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Ellenberg, H., & Mueller-Dombois, D. (1967). Tentative physiognomic-ecological classification of plant formations of the earth (Berichte des Geobotanischen Instituts der ETH, Stiftung Rübel) (Vol. 37, pp. 21–55).

    Google Scholar 

  • Enright, N. J., & Ogden, J. (1995). The southern conifers – A synthesis. In N. J. Enright & R. S. Hill (Eds.), Ecology of the southern conifers (pp. 271–287). Washington: Smithsonian Institution Press.

    Google Scholar 

  • Enright, N. J., Hill, R. S., & Veblen, T. T. (1995). The southern conifers – An introduction. In N. J. Enright & R. S. Hill (Eds.), Ecology of southern conifers (pp. 1–9). Washington: Smithsonian Institution Press.

    Google Scholar 

  • Facelli, J. M., & León, R. J. C. (1986). El establecimiento espontáneo de árboles en la Pampa. Un enfoque experimental. Phytocoenologia, 14, 263–274.

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations). (2010). Global forest resources assessment 2010. Main report (FAO Forestry Paper 163) (340 pp). Rome: FAO.

    Google Scholar 

  • Farjon, A. (1999). Plate 371. Cryptomeria japonica, Cupressaceae. Curtis Botanical Magazine, 16, 212–228.

    Google Scholar 

  • Farjon, A. (2010). A handbook of the world’s conifers (Vol. 2, 967 pp). Leiden: Brill.

    Google Scholar 

  • Fidelis, A., Delgado-Cartay, M. D., Blanco, C. C., Müller, S. C., Pillar, V. D., & Pfadenhauer, J. (2010a). Fire intensity and severity in Brazilian Campos grasslands. Interciencia, 35, 739–745.

    Google Scholar 

  • Fidelis, A., Müller, S. C., Pillar, V. D., & Pfadenhauer, J. (2010b). Population biology and regeneration of forbs and shrubs after fire in Brazilian Campos grasslands. Plant Ecology, 211, 107–117.

    Google Scholar 

  • Flegenheimer, N., & Zárate, M. (1993). The archaeological record in Pampean loess deposits. Quaternary International, 17, 95–100.

    Google Scholar 

  • Fujii, S., Kubota, Y., & Enoki, T. (2009). Resilience of stand structure and tree species diversity in subtropical forest degraded by clear logging. Journal of Forest Research, 14, 373–387.

    Google Scholar 

  • Fujiwara, K., & Box, E. O. (1994). Evergreen broad-leaved forests of the Southeastern United States. In A. Miyawaki, K. Iwatsuki, & M. M. Grandtner (Eds.), Vegetation in eastern North America (pp. 273–312). Tokyo: University of Tokyo Press.

    Google Scholar 

  • Furley, P. A. (2007). Tropical forests of the lowland. In T. T. Veblen, K. R. Young, & A. R. Orme (Eds.), The physical geography of South America (pp. 135–157). New York: Oxford University Press.

    Google Scholar 

  • Galindo-Leal, C., & Câmara, I. G. (Eds.). (2003). The Atlantic Forest of South America. Biodiversity status, threats, and outlook. Washington, DC: Island Press.

    Google Scholar 

  • Gautreau, P. (2010). Rethinking the dynamics of woody vegetation in Uruguayan campos, 1800–2000. Journal of Historical Geography, 36, 194–204.

    Google Scholar 

  • Greller, A. M. (2004). A review of the temperate broad-leaved evergreen forest zone of southeastern North America: Floristic affinities and arborescent vegetation types. The Botanical Review, 69, 269–299.

    Google Scholar 

  • Groves, R. H., Beard, J. S., Deacon, H. J., Lambrechts, J. J. N., Rabonovitch, V. A., Specht, R. L., & Stock, W. D. (1983). Introduction: The origins and characteristics of Mediterranean ecosystems. In J. A. Day (Ed.), Mineral nutrients in Mediterranean ecosystems (South African national scientific programms report N 71) (pp. 1–17). Pretoria: CSIR.

    Google Scholar 

  • Haeupler, H. (1994). Das Zonobiom-Konzept von Heinrich Walter - Probleme seiner Anwendung am Beispiel von Florida, USA. Phytocoenologia, 24, 257–282.

    Google Scholar 

  • Henning, I. (1988). Zum Pampa-problem. Die Erde, 119, 25–30.

    Google Scholar 

  • Heywood, V. H., Brummit, R. K., Culham, A., & Seberg, O. (2007). Flowering plants of the world (424 pp). Ontario: Firefly Books.

    Google Scholar 

  • Hill, R. S. (1995). Conifer origin, evolution and diversification in the Southern Hemisphere. In N. J. Enright & R. S. Hill (Eds.), Ecology of southern conifers (pp. 10–29). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Hübl, E. (1988). Lorbeerwälder und Hartlaubwälder (Ostasien, Mediterraneis und Makaronesien). Düsseldorfer Geobotanisches Kolloquium, 5, 3–26.

    Google Scholar 

  • Hubrig, M. (2004). Analyse von Tornado- und Downburst-Windschäden an Bäumen. Forst und Holz, 59, 78–84.

    Google Scholar 

  • Hueck, K. (1966). Die Wälder Südamerikas (422 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Hueck, K., & Seibert, P. (1981). Vegetationskarte von Südamerika (2nd ed., 90 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • IBGE (Instituto Brasileiro de Geografia e Estatístico). (2006). Censo Agropecuária. www.ibge.gov.br

  • Ito, I. (1990). Managed grassland in Japan. In A. I. Breymeyer (Ed.), Managed grassland regional studies (Ecosystems of the world 17A) (pp. 129–148).

    Google Scholar 

  • Itô, Y. (1997). Diversity of forest tree species in Yanbaru, the northern part of Okinawa Island. Plant Ecology, 133, 125–133.

    Google Scholar 

  • Kadereit, J. W., Körner, C., Kost, B., & Sonnewald, U. (2014). Strasburger – Lehrbuch der Pflanzenwissenschaften (37th ed., 919 pp). Heidelberg/Berlin: Springer Spektrum.

    Google Scholar 

  • Kershaw, P., & Wagstaff, B. (2001). The southern conifer family Araucariaceae: History, status, and value for paleoenvironmental reconstruction. Annual Review of Ecology and Systematics, 32, 397–414.

    Google Scholar 

  • Klein, R. M. (1984). Aspectos dinâmicos da vegetação do Sul do Brasil. Sellowia, 36, 5–54.

    Google Scholar 

  • Klötzli, F. (1988). On the global position of the evergreen broad-leaved (non-ombrophilous) forest in the subtropical and temperate zones (Veröffentlichungen des Geobotanischen Instituts an der ETH Zürich, Stiftung Rübel) (Vol. 98, pp. 169–196).

    Google Scholar 

  • Knapp, R. (1965). Die Vegetation von Nord- und Mittelamerika und der Hawaii-Inseln (373 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Koch, Z., & Corrêa, M. C. (2002). Araucária: A Floresta do Brasil Meridional. Curitiba: Olhar Brasileiro Editora.

    Google Scholar 

  • Köppen, W. (1931). Grundriss der Klimakunde (388 pp). Berlin: De Gruyter.

    Google Scholar 

  • Kotze, D. J., & Lawes, M. J. (2007). Viability of ecological processes in small Afromontane forest patches in South Africa. Austral Ecology, 32, 294–304.

    Google Scholar 

  • Kunzmann, L. (2007). Araucariaceae (Pinopsida): aspects in palaeobiogeography and palaeobiodiversity in the Mesozoic. Zoologischer Anzeiger, 246, 257–277.

    Google Scholar 

  • Lanner, R. (2007). The Bristlecone book: A natural history of the world’s oldest trees (117 pp). Missoula: Mountain Press Publishing Company.

    Google Scholar 

  • Lauer, W., & Rafiqpoor, M. D. (2002). Die Klimate der Erde. Eine Klassifikation auf der Grundlage der ökophysiologischen Merkmale der realen Vegetation (271 pp). Stuttgart: Franz Steiner.

    Google Scholar 

  • Leite, P. F. (2002). Contribuição ao conhecimento fitoecológico do Sul do Brasil. Ciência & Ambiente, 24, 51–73.

    Google Scholar 

  • Leuschner, C., & Ellenberg, H. (2017). Ecology of central european forests (971 pp). Cham (Switzerland): Springer Nature.

    Google Scholar 

  • Lieberei, R., & Reisdorff, C. (2007). Nutzpflanzenkunde (7th ed., 476 pp). Stuttgart/New York: Georg Thieme.

    Google Scholar 

  • Lieth, H., Berlekamp, J., Fuest, S., & Riediger, S. (1999). Climate diagram world Atlas (CD-ROM). Leiden: Backhuys Publ.

    Google Scholar 

  • Lin, C. P., Huang, J. P., Wu, C. S., Hsu, C. Y., & Chaw, S. M. (2010). Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies. Genome Biology and Evolution, 2, 504–517.

    PubMed  PubMed Central  Google Scholar 

  • Lin, T.-C., Hamburg, S. P., Lin, K.-C., Wang, L.-J., Chang, C.-T., Hsia, Y.-J., Vadeboncoeur, M. A., Mabry McMullen, C. M., & Liu, C.-P. (2011). Typhoon disturbance and forest dynamics: Lessons from a Northwest Pacific subtropical forest. Ecosystems, 14, 127–143.

    CAS  Google Scholar 

  • Loehle, C. (1988). Tree life history: The role of defenses. Canadian Journal of Forest Research, 18, 209–222.

    Google Scholar 

  • Lughada, E. N., Govaerts, R., Belyaeva, I., Black, N., Lindon, H., Allkin, R., Magill, R. E., & Nicolson, N. (2016). Counting counts: Revised estimates of numbers of accepted species of flowering plants, seed plants, vascular plants and land plants with a review of other recent estimates. Phytotaxa, 272, 82–88.

    Google Scholar 

  • Lugo, A. E. (2008). Visible and invisible effects of hurricanes on forest ecosystems: An international review. Austral Ecology, 33, 368–398.

    Google Scholar 

  • Lugo, A. E., & Zimmerman, J. K. (2002). Ecological life histories. In J. A. Vozzo (Ed.), Tropical tree seed manual (USDA Forest Service agriculture handbook 721) (pp. 191–213). Washington, DC: US Department of Agriculture, Forest Service.

    Google Scholar 

  • Marques, M. C. M., Roper, J. J., & Salvalaggio, A. P. B. (2004). Phenological patterns among plant life-forms in a subtropical forest in southern Brazil. Plant Ecology, 173, 203–213.

    Google Scholar 

  • Martin, K., & Sauerborn, J. (2006). Agrarökologie (297 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • McQueen, J. C., Tozer, W. C., & Clarkson, B. D. (2006). Consequences of alien N2-fixers on vegetation succession in New Zealand. In R. B. Allen & W. G. Lee (Eds.), Biological invasions in New Zealand (Ecological studies) (Vol. 186, pp. 295–306).

    Google Scholar 

  • Meadows, M. E., & Linder, H. P. (1993). A palaeoecological perspective on the origin of Afromontane grasslands. Journal of Biogeography, 20, 345–355.

    Google Scholar 

  • Meurk, C. D. (1995). Evergreen broadleaved forests of New Zealand and their bioclimatic definition. In E. O. Box, R. K. Peet, T. Masuzawa, I. Yamada, K. Fujiwara, & P. F. Maycock (Eds.), Vegetation science in forestry (Handbook of vegetation science 12/1) (pp. 151–197).

    Google Scholar 

  • Midgley, J. J., Cowling, R. M., Seydack, A. H. W., & van Wyk, G. F. (1997). Forest. In R. M. Cowling, D. M. Richardson, & S. M. Pierce (Eds.), Vegetation of South Africa (pp. 278–299). Cambridge: Cambridge University Press.

    Google Scholar 

  • Miyawaki, A. (1979). Vegetation und Vegetationskarten auf den Japanischen Inseln. In A. Miyawaki & S. Okuda (Eds.), Vegetation und Landschaft Japans (Bulletin Yokohama Phytosociological Society Japan, 16) (pp. 49–70). Yokohama: Yokohama Phytosociological Society.

    Google Scholar 

  • Miyawaki, A. (1980). Vegetation of Japan. 1. Yakushima (376 pp). Tokyo: Shibundo.

    Google Scholar 

  • Mucina, L., & Rutherford, M. C. (Eds.). (2006). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19 (807 pp). Pretoria: South African National Bodiversity Institute.

    Google Scholar 

  • NWS. (2011). Tropical cyclone definitions. National Weather Service Instruction 10-604, National Weather Service, NOAA (www.nws.noaa.gov).

    Google Scholar 

  • O’Connor, T. G., & Bredenkamp, G. J. (1997). Grassland. In R. M. Cowling, D. M. Richardson, & S. M. Pierce (Eds.), Vegetation of Southern Africa (pp. 215–257). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ogden, J., & Stewart, G. H. (1995). Community dynamics of the New Zealand conifers. In N. J. Enright & R. S. Hill (Eds.), Ecology of the southern conifers (pp. 81–119). Washington: Smithsonian Institution Press.

    Google Scholar 

  • Oliveira-Filho, A. T., & Fontes, M. A. L. (2000). Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica, 32, 793–810.

    Google Scholar 

  • Ostertag, R., Silver, W. L., & Lugo, A. E. (2005). Factors affecting mortality and resistance to damage following hurricanes in a rehabilitated subtropical moist forest. Biotropica, 37, 16–24.

    Google Scholar 

  • Overbeck, G. E., & Pfadenhauer, J. (2007). Adaptive strategies to fire in subtropical grasslands in southern Brazil. Flora, 202, 27–49.

    Google Scholar 

  • Overbeck, G. E., Müller, S. C., Fidelis, A., Pfadenhauer, J., Pillar, V. D., Blanco, C. C., Boldrini, I. I., Both, R., & Forneck, E. D. (2007). Brazil’s neglected biome: The South Brazilian Campos. Perspectives in Plant Ecology, Evolution and Systematics, 9, 101–116.

    Google Scholar 

  • Ovington, J. D. (1983). Introduction. In J. D. Ovington (Ed.), Temperate broad-leaved evergreen forests (Ecosystems of the world, 10) (pp. 1–4). Amsterdam: Elsevier.

    Google Scholar 

  • Paton, A. J., Brummitt, N., Govaerts, R., Harman, K., Hinchcliffe, S., Allkin, B., & Lughadha, E. N. (2008). Towards target 1 of the global strategy for plant conservation: A working list of all known plant species – Progress and prospects. Taxon, 57, 602–611.

    Google Scholar 

  • Pausas, J. G., Lamont, B. B., Paula, S., Appezzato-da-Glória, B., & Fidelis, A. (2018). Unearthing belowground bud banks in fire-prone ecosystems. New Phytologist, 217, 1435–1438.

    PubMed  Google Scholar 

  • Pillar, V. D., & Quadros, F. L. F. (1997). Grassland-forest boundaries in Southern Brazil. Coenoses, 12, 119–126.

    Google Scholar 

  • Pott, R., Hüppe, J., & Wildbret de la Torre, W. (2003). Die kanarischen Inseln: Natur- und Kulturlandschaften (320 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Prieto, A. R. (1996). Late Quaternary vegetational and climatic changes in the Pampa grassland of Argentina. Quaternary Research, 45, 73–88.

    Google Scholar 

  • Rambo, B. (1956). A fisionomia do Rio Grande do Sul (456 pp). Porto Alegre: Livraria Selbach.

    Google Scholar 

  • Rees, M., & Hill, R. L. (2001). Large-scale disturbances, biological control and the dynamics of gorse populations. Journal of Applied Ecology, 38, 364–377.

    Google Scholar 

  • Reif, A. (1997). Waldnutzung in Neuseeland. Allgemeine Forst- und Jagdzeitung, 168, 6–12.

    Google Scholar 

  • Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., & Hirota, M. M. (2009). The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142, 1141–1153.

    Google Scholar 

  • Royo Pallarés, O., Berretta, E. J., & Maraschin, G. E. (2005). The South American campos ecosystem. In J. M. Suttie, S. G. Reynolds, & C. Batello (Eds.), Grasslands of the world (Plant production and protection series (FAO), 34) (pp. 171–219). Rome: FAO.

    Google Scholar 

  • Ruschel, A. R., Guerra, M. P., Moerschbacher, B. M., & Nodari, R. O. (2005). Valuation and characterization of the timber species in remnants of the Alto Uruguay River ecosystem, southern Brazil. Forest Ecology and Management, 217, 103–116.

    Google Scholar 

  • Rutherford, M. C., Mucina, L., & Powrie, L. W. (2006). Biomes and bioregions of Southern Africa. In L. Mucina & M. C. Rutherford (Eds.), The vegetation of South Africa, Lesotho and Swaziland (Strelitzia, 19) (pp. 31–51). Pretoria: South African National Biodiversity Institute.

    Google Scholar 

  • Rzedowski, J. (2006). Vegetación de México. 1ra Edición digital. México: Comisión Nacional para el Conocimiento de la Biodiversidad, 504 pp.

    Google Scholar 

  • Schroeder, F.-G. (1998). Lehrbuch der Pflanzengeographie (457 pp). Wiesbaden: Quelle & Meyer.

    Google Scholar 

  • Schultz, J. (2000). Handbuch der Ökozonen (577 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Schulze, E.-D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., & Scherer-Lorenzen, M. (2019). Plant ecology (2nd ed., 910 pp). Berlin: Springer Nature.

    Google Scholar 

  • Schütt, P., Weisgerber, H., Schuck, H. J., Lang, K. J., Stimm, B., & Roloff, A. (Eds.). (2004). Lexikon der Nadelbäume (639 pp). Hamburg: Nicol-Verlagsgesellschaft.

    Google Scholar 

  • Song, Y.-C. (1988). The essential characteristics and main types of the broadleaved evergreen forest in China. Phytocoenologia, 16, 105–123.

    Google Scholar 

  • Song, Y.-C. (1995). On the global position of the evergreen broad-leaved forests of China. In E. O. Box, R. K. Peet, T. Masuzawa, I. Yamada, K. Fujiwara, & P. F. Maycock (Eds.), Vegetation science in forestry (Handbook of vegetation science 12/1) (pp. 69–84).

    Google Scholar 

  • Soriano, A., León, R. J. C., Sala, O. E., Lavado, R. S., Deriegibus, V. A., Cauhépé, M. A., Scdaglia, O. A., Velásquez, C. A., & Lemcoff, J. H. (1992). Rio de la Plata grasslands. In R. T. Coupland (Ed.), Natural grasslands: Introduction and Western Hemisphere (Ecosystems of the world, 8A) (pp. 367–407). Amsterdam: Elsevier.

    Google Scholar 

  • Staude, I. R., Vélez-Martin, E., Andrade, B. O., Podgaiski, L. R., Boldrini, I. I., Mendonça, M., Jr., Pillar, V. D., & Overbeck, G. E. (2017). Local biodiversity erosion in south Brazilian grasslands under moderate levels of landscape habitat loss. Journal of Applied Ecology, 55, 1241–1251.

    Google Scholar 

  • Steward, G. A., & Beveridge, A. E. (2010). A review of New Zealand kauri (Agathis australis (D. Don) Lindl.): Its ecology, history, growth and potential for management for timber. New Zealand Journal of Forestry Science, 40, 33–59.

    Google Scholar 

  • Suzuki, E., & Tsukahara, J. (1987). Age structure and regeneration of old growth Cryptomeria japonica forests on Yakushima Island. The Botanical Magazine Tokyo, 100, 223–241.

    Google Scholar 

  • Tang, C. Q., & Ohsawa, M. (2009). Ecology of subtropical evergreen broad-leaved forests of Yunnan, southwestern China as compared to those of southwestern Japan. Journal of Plant Research, 2009, 335–350.

    Google Scholar 

  • Trewartha, G. T., & Horn, L. H. (1980). An introduction to climate (416 pp). New York: McGraw-Hill.

    Google Scholar 

  • Troll, C. (1968). The cordilleras of the Tropical Americas. Aspects of climatic, phytogeographical and agrarian ecology. Colloquium Geographicum, 9, 15–56.

    Google Scholar 

  • Troll, C., & Paffen, K. H. (1964). Karte der Jahreszeitenklimate der Erde. Erdkunde, 18, 5–28.

    Google Scholar 

  • Turner, B. L., & Cernusak, L. A. (Eds.). (2011). Ecology of Podocarpaceae in tropical forests (Smithonian contribution to botany 95) (207 pp). Washington, DC: Smithsonian Institution Scholarly Press.

    Google Scholar 

  • Turton, S. M. (2008). Landscape-scale impacts of cyclone Larry on the forests of northeast Australia, including comparisons with previous cyclones impacting the region between 1858 and 2006. Austral Ecology, 33, 409–416.

    Google Scholar 

  • Van der Ham, R. W. J. M., Jagt, J. W. M., Renkens, S., & van Konijenburg-van Cittert, J. H. A. (2010). Seed-cone scales from the upper Maastrichtian document the last occurrence in Europe of the Southern Hemisphere conifer family Araucariaceae. Palaeogeography, Palaeoclimatology, Palaeoecology, 291, 469–473.

    Google Scholar 

  • Walter, H. (1967). Das Pampaproblem in vergleichend ökologischer Betrachtung und seine Lösung. Erdkunde, 21, 181–202.

    Google Scholar 

  • Walter, H., & Breckle, S.-W. (1999). Vegetation und Klimazonen (7th ed., 544 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Wang, C. W. (1961). The forests of China (Maria Moors Cabot Foundation publication series no. 5) (313 pp). Cambridge: Harvard University.

    Google Scholar 

  • Wang, X. H., Kent, M., & Fang, X. F. (2007). Evergreen broad-leaved forest in Eastern China: Its ecology and conservation and the importance of resprouting in forest restoration. Forest Ecology and Management, 245, 76–87.

    Google Scholar 

  • Wardle, P. (1991). Vegetation of New Zealand (Reprint 2002. 672 pp). Caldwell: The Blackburn Press.

    Google Scholar 

  • WBGU (Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen). (2000). Welt im Wandel – Erhaltung und nachhaltige Nutzung der Biosphäre (Jahresgutachten) (482 pp). Berlin: Springer.

    Google Scholar 

  • Webb, L. J. (1958). Cyclones as an ecological factor in tropical lowland rain-forest, North Queensland. Australian Journal of Botany, 6, 220–228.

    Google Scholar 

  • Webb, L. J., & Tracy, J. G. (1994). The rainforests of northern Australia. In R. H. Groves (Ed.), Australian vegetation (2nd ed., pp. 87–129). Cambridge: Cambridge University Press.

    Google Scholar 

  • Xu, X., Hirata, E., & Shibata, H. (2004). Effect of typhoon disturbance on fine litterfall and related nutrient input in a subtropical forest on Okinawa Island, Japan. Basic and Applied Ecology, 5, 271–282.

    Google Scholar 

  • Zech, W., Schad, P., & Hintermaier-Erhard, G. (2014). Böden der Welt: Ein Bildatlas (2nd ed., 152 pp). Berlin/Heidelberg: Springer Spektrum.

    Google Scholar 

  • Zhang, K., Xu, X., Wang, Q., & Liu, B. (2010). Biomass, and carbon and nitrogen pools in a subtropical evergreen broad-leaved forest in eastern China. Journal of Forest Research, 15, 274–282.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfadenhauer, J.S., Klötzli, F.A. (2020). Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Year-Round Rain. In: Global Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-49860-3_7

Download citation

Publish with us

Policies and ethics