Skip to main content
Log in

Euclea natalensis Root Extract as a Green Acid-Base Indicator: pKa Determination and Application in Acid-Base Titration

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This work presents Euclea natalensis root extracts as a Green acid-base indicator, focusing on the application in titration and determination of pKa. The Euclea natalensis root extracts were obtained by heating the biomass in water at 60 °C for 1 h. The obtained extracts were applied for acid-base titration, and the pKa value was determined and compared to bromothymol blue and methyl orange, conventional acid-base indicators. Furthermore, the pKa of some naphthoquinones that occur in Euclea natalensis root were predicted using MolG pKa web server and compared with experimental pKa value. The results showed that the Euclea natalensis extract presented a titration performance comparable to common synthetic acid-based indicators (bromothymol blue-NaOH/HCl, required volume-11.8 ± 0.1 mL and Euclea natalensis, NaOH/HCl, required volume 11,6 ± 0.1 mL). Euclea natalensis root extracts presented a pKa of 7.01, corroborating the predicted pKa values of two main candidate compounds in Euclea natalensis root. These two compounds may cause color changes in Euclea natalensis root extracts in acidic media and basic solutions. These results showed that the Euclea natalensis root extracts are potential green and locally available acid-base indicators. However, additional work is still necessary to understand the stability and which compound or compounds are the core for color change.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from [20]

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

The data are available by request.

References

  1. Wolfbeis, O.S., Coulet, P.R., Blum, L.J., Sepaniak, M.J., Haapakka, K., Kankare, J., Kulmala, S., Burns, D.T.: Achievements and new directions in Analytical Chemistry: Luminescence and optical sensors. Anal. Proc. 28, 357 (1991). https://doi.org/10.1039/ap9912800357

    Article  Google Scholar 

  2. Grudpan, K., Hartwell, S.K., Lapanantnoppakhun, S., McKelvie, I.: The case for the use of unrefined natural reagents in analytical chemistry - A green chemical perspective. Anal. Method. 2(11), 1651–1661 (2010)

    Article  Google Scholar 

  3. Kapilraj, N., Keerthanan, S., Sithambaresan, M.: Natural plant extracts as acid-base indicator and determination of their pKa value. J. Chem. 2019, 2031342 (2019). https://doi.org/10.1155/2019/2031342

    Article  Google Scholar 

  4. Suratsawadee, A., Wangmo, L., Ratvijitvech, T., Siripinyanond, A.: A spoilage indicator card based on distance-based color change of paper impregnated with acid-base indicator for freshness monitoring of shrimp. Microchem. J. 175, 107110 (2022). https://doi.org/10.1016/j.microc.2021.107110

    Article  Google Scholar 

  5. Ghezal, I., Moussa, I., Sakli, F.: An eco-friendly acid–base Indicator extracted from Carissa macrocarpa Fruit. Waste Biomass Valorization 13, 4297–4305 (2022). https://doi.org/10.1007/s12649-022-01782-1

    Article  Google Scholar 

  6. Jamróz, E., Kulawik, P., Guzik, P., Duda, I.: The verification of intelligent properties of furcellaran films with plant extracts on the stored fresh Atlantic mackerel during storage at 2 °C. Food Hydrocoll. 97, 105211 (2019). https://doi.org/10.1016/j.foodhyd.2019.105211

    Article  Google Scholar 

  7. Macuvele, D.L.P., Sithole, G.Z.S., Cesca, K., Macuvele, S.L.P., Matsinhe, J.V.: Aqueous extracts of Mozambican plants as alternative and environmentally safe acid-base indicators. Environ. Sci. Pollut. Res. 23, 11639–11644 (2016). https://doi.org/10.1007/s11356-016-6284-2

    Article  Google Scholar 

  8. Peralta, J., Bitencourt-Cervi, C.M., Maciel, V.B.V., Yoshida, C.M.P., Carvalho, R.A.: Aqueous hibiscus extract as a potential natural pH indicator incorporated in natural polymeric films. Food Packag Shelf Life. 19, 47–55 (2019). https://doi.org/10.1016/j.fpsl.2018.11.017

    Article  Google Scholar 

  9. Abugri, D.A., Apea, O.B., Pritchett, G.: Investigation of a simple and cheap source of a Natural Indicator for Acid-Base Titration: Effects of System conditions on Natural indicators. Green. And Sustainable Chemistry. 2, 117–122 (2012). https://doi.org/10.4236/gsc.2012.23017

    Article  Google Scholar 

  10. Pattarapongdilok, N., Malichim, P., Simmee, N., Sichaem, J.: Senna flower extract as an indicator for acid-base titration. Rasayan J. Chem. 14, 1402–1407 (2021). https://doi.org/10.31788/RJC.2021.1425784

    Article  Google Scholar 

  11. Okoduwa, S.I.R., Mbora, L.O., Adu, M.E., Adeyi, A.A.: Comparative analysis of the properties of acid-base indicator of rose (Rosa setigera), Allamanda (Allamanda cathartica), and hibiscus (Hibiscus rosa-sinensis) flowers. Biochem. Res. Int. 2015, 381721 (2015). https://doi.org/10.1155/2015/381721

    Article  Google Scholar 

  12. Singh, S., Bothara, S.B., Singh, S.: Acid-base Indicator Properties of dyes from local flowers: Cassia Aungostifolia Linn., Thevetia peruviana (pers.) K. Schum and Thevetia thvetiodes (Kunth) K. Schum. Pharmacognosy J. 3, 35–39 (2011). https://doi.org/10.5530/pj.2011.19.7

    Article  Google Scholar 

  13. Singh, S., Nwabor, O.F., Syukri, D.M., Voravuthikunchai, S.P.: Chitosan-poly(vinyl alcohol) intelligent films fortified with anthocyanins isolated from Clitoria ternatea and Carissa carandas for monitoring beverage freshness. Int. J. Biol. Macromol. 182, 1015–1025 (2021). https://doi.org/10.1016/j.ijbiomac.2021.04.027

    Article  Google Scholar 

  14. Eze, F.N., Jayeoye, T.J., Singh, S.: Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken Riceberry phenolic extract. Food Chem. 366, 130574 (2022). https://doi.org/10.1016/j.foodchem.2021.130574

    Article  Google Scholar 

  15. Weigenand, O., Hussein, A.A., Lall, N., Meyer, J.J.M.: Antibacterial activity of naphthoquinones and triterpenoids from Euclea natalensis root bark. J. Nat. Prod. (2004). https://doi.org/10.1021/np030465d

    Article  Google Scholar 

  16. Natalensis, E., Ferreira, M.A., Correia, A., Vus, A., jre ~ a, M., Costa, C., Paul, M.I.: NAPHTHOQUINONE DIMERS AND TRIMERS FROM. Phytochemistry. 16, 117–111 (1977)

    Article  Google Scholar 

  17. Sales-Peres, S.H.D.C., Brianezzi, L.F.D.F., Marsicano, J.A., Forim, M.R., da Silva, M.F.D.G.F., Sales-Peres, A.: Evaluation of an experimental gel containing euclea natalensis: An in vitro study. Evid.-based Complement.  Alter. Med. 2012, 184346 (2012). https://doi.org/10.1155/2012/184346

    Article  Google Scholar 

  18. Maroyi, A.: Review of ethnomedicinal uses, phytochemistry and pharmacological properties of euclea natalensis A.DC. Molecules 22(12), 2128 (2017)

    Article  Google Scholar 

  19. Ur, C.O.L.O.: Juglone and Lawsone as acid-base indicators. Zeitschrift für Naturforschung B 32(8), 890–892 (1977)

    Article  Google Scholar 

  20. Pan, X., Wang, H., Li, C., Zhang, J.Z.H., Ji, C.: MolGpka: A web server for small molecule pKaPrediction using a graph-convolutional neural network. J. Chem. Inf. Model. 61, 3159–3165 (2021). https://doi.org/10.1021/acs.jcim.1c00075

    Article  Google Scholar 

  21. Botha, L.E., Prinsloo, G., Deutschländer, M.S.: Variations in the accumulation of three secondary metabolites in Euclea Undulata Thunb. Var. Myrtina as a function of seasonal changes. South Afr. J. Bot. 117, 34–40 (2018). https://doi.org/10.1016/j.sajb.2018.04.016

    Article  Google Scholar 

  22. Joubert, A., Kooy, F., Meyer, J.J.M., Lall, N.: HPLC in the comparative study of the content of Naphthoquinones (Quinonoid constituents) in Euclea Species of South Africa. Chromatographia. 64, 399–403 (2006). https://doi.org/10.1365/s10337-006-0055-z

    Article  Google Scholar 

  23. Orsavová, J., Sytařová, I., Mlček, J., Mišurcová, L.: Phenolic compounds, vitamins C and E and antioxidant activity of Edible Honeysuckle berries (Lonicera caerulea L. var. Kamtschatica Pojark) in relation to their origin. Antioxidants. 11, 433 (2022). https://doi.org/10.3390/antiox11020433

    Article  Google Scholar 

  24. Lall, N., Weiganand, O., Hussein, A.A., Meyer, J.J.M.: Antifungal activity of naphthoquinones and triterpenes isolated from the root bark of Euclea Natalensis. South Afr. J. Bot. (2006). https://doi.org/10.1016/j.sajb.2006.03.005

    Article  Google Scholar 

  25. da Silva, A.F.V., Fagundes, A.P., Macuvele, D.L.P., de Carvalho, E.F.U., Durazzo, M., Padoin, N., Soares, C., Riella, G.: Green synthesis of zirconia nanoparticles based on Euclea natalensis plant extract: Optimization of reaction conditions and evaluation of adsorptive properties. Colloids Surf. A Physicochem Eng. Asp. 583, 123915 (2019). https://doi.org/10.1016/j.colsurfa.2019.123915

    Article  Google Scholar 

  26. Harborne, J.B., From Plants: Classes and functions of secondary products. In: Chemicals from Plants. pp. 1–25. World Scientific/Imperial College Press (1999)

  27. Agarwala, N., Rohani, L., Hastings, G.: Experimental and calculated infrared spectra of disubstituted naphthoquinones. Spectrochim Acta A Mol Biomol Spectrosc. 268, 120674 (2022). https://doi.org/10.1016/j.saa.2021.120674

    Article  Google Scholar 

  28. van der Burgt, M.J., Huizer, A.H., Varma, C.A.G.O., Wagner, B.D., Lustztyk, J.: Evidence for molecular distortion involving the carbonyl group in triplet states of carbonyl derivatives of naphthalene obtained from time resolved vibrational spectroscopic studies. Chem. Phys. 196, 193–210 (1995). https://doi.org/10.1016/0301-0104(95)00117-7

    Article  Google Scholar 

Download references

Acknowledgements

The University of Rovuma - Instituto Superior de Desenvolvimento Rural e Biociências provided all support for the laboratory infrastructure to carry out the research; likewise, we thank the Agrarian Institute of Lichinga (IAL) for the material support and laboratory. We also thanks CAPES, FAPESC and CNPq, because DLPM, TAA, CMAM, MBSJ and NFN are scholarship recipients from these funding agencies. However, the present work did not receive any specific grant from CAPES, FAPESC, and CNPq.   

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

CR: Experimentation, Characterizations and Data Curation; GJM:Performed FTIR and UV analysis, and discussed the results. MBSJ: Determined the total anthocyanins and discussed the results, Writing—review and editing. NFN, CMAM, DLPM and TAA: Writing—review and editing, Supervision, Conceptualization, Methodology, Funding, Data Curation, Writing—original draft, Funding.

Corresponding authors

Correspondence to Neuana Fernando Neuana, Célio Matias Airone Macalia, Domingos Lusitâneo Pier Macuvele or Taualia Achira Aly.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raimundo, C.J., Muchave, G.J., Neuana, N.F. et al. Euclea natalensis Root Extract as a Green Acid-Base Indicator: pKa Determination and Application in Acid-Base Titration. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-023-02384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-023-02384-1

Keywords

Navigation