Skip to main content
Log in

Larval ecology and development of swallowtail butterfly, Papilio nireus (Lepidoptera: Papilionidae) on wild citrus species (Rutaceae) in Kenya

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Butterflies are among the most important biodiversity components within the ecosystem. They are pollinators of both wild plants and agricultural crops. Swallowtail butterfly, Papilio nireus is a common species with a wide range of distribution in Sub-Saharan Africa. In Kenya, it’s commonly found in Taita hills on diverse species of forest trees and shrubs amongst them, wild citrus (Rutaceae), Clausena anisata and Toddalia asiatica. Little information on the larval ecology and development on its host plants makes species management and conservation difficult. This study, therefore, analyzed larval ecology and development of P. nireus on two host plants, C. anisata and T. asiatica in captivity in Ngangao forest, Taita Hills for two seasons from February to July 2021. Egg incubation period was significantly longer on T. asiatica than on C. anisata. Similarly, the total larval period was significantly higher on T. asiatica than on C. anisata. The development period from egg to adult was shorter on C. anisata (60.26 days in the 1st season, 63.15 days in the 2nd season) than on T. asiatica (66.44 days during the 1st season, 69.01 days in the 2nd season). However, the sex ratio and larval weight of P. nireus varied with season and the rearing host plant. The 1st season population had a sex ratio that was female-biased on both C. anisata and T. asiatica while in the 2nd season, sex ratio on C. anisata was male-biased and that of T. asiatica female-biased. In the 1st season, fourth larval instar weight was higher on T. asiatica (142.50 mg) than on C. anisata (88.70 mg) while in the 2nd season, the weight was higher on T. asiatica than on C. anisata from the second instar to the fifth instar. Findings from this study showed that the larval period and development of P. nireus was shorter on C. anisata than on T. asiatica. Therefore, the study revealed that both C. anisata and T. asiatica were host plants for this butterfly species but C. anisata was the most suitable host plant in the area of study. The study recommends conservation of both host plants for the species survival within its habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: Genga, 2021

Fig. 3

Source: Genga, 2021

Fig. 4

Source: Genga, 2021

Fig. 5
Fig. 6
Fig. 7

Source: Genga, 2021

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econom Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Adler PH, Pearson DL (1982) Why do male butterflies visit mud puddles? Can J Zool 60(3):322–325

    Article  CAS  Google Scholar 

  • Ali S, Ullah MI, Sajjad A, Majeed MZ, Farooqi MA, Rizwan MS, Shakeel Q, Akhter S, Raheel M, Arshad M (2020) Physicomorphic response of polyphagous Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) towards different host plants. Pakistan J Zool 52(5):1833

    Article  CAS  Google Scholar 

  • Astuti D (1993) Pemeliharaan beberapa jenis larva kupu Papilio di laboratorium pada berbagai jenis daun inang jeruk. Pros Seminar Hasil Litbang SDH, 14 June 1993, Bogor

    Google Scholar 

  • Balducci MG, Van der Niet T, Johnson SD (2019) Butterfly pollination of Bonatea cassidea (Orchidaceae): solving a puzzle from the Darwin era. S Afr J Bot 123:308–316. https://doi.org/10.1016/j.sajb.2019.03.030

    Article  Google Scholar 

  • Barnes TG (2001) Attracting butterflies with native plants. (n.d). http://www2.ca.uky.edu/agcomm/pubs/for/for98/for98.pdf. Accessed 1 January 2001

  • Borghesio L, Wagura L, Githiru M (2015) Survey of a recently discovered subpopulation of the critically endangered Taita Apalis. Bull Afr Bird Club 22(1):26–35

    Google Scholar 

  • Burgess ND, Butynski TM, Cordeiro NJ, Doggart NH, Fjeldsa˚ J, Howell KM, Kilahama FB, Loader SP, Lovett JC, Mbilinyi B, Menegon M, Moyer D, Nashanda E, Perkin A, Rovero F, Stanley WT, Stuart SN (2007) The biological importance of the Eastern Arc Mountains of Tanzania and Kenya. Biol Conserv 134:209–231. https://doi.org/10.1016/j.biocon.2006.08.015

    Article  Google Scholar 

  • Chakraborti U, Mitra B, Bhadra K (2019) Diversity and ecological role of insect flower visitors in the pollination of mangroves from the indian Sundarbans. Curr Sci 117(6):1060–1070. https://doi.org/10.18520/cs/v117/i6/1060-1070

    Article  Google Scholar 

  • Chapman RF, Simpson SJ, Douglas AE (2013) The insects: structure and function. Cambridge University Press, New York, pp 70–82

    Google Scholar 

  • Clissold FJ, Sanson GD, Read J, Simpson SJ (2009) Gross vs. net income: how plant toughness affects performance of an insect herbivore. Ecology 90:3393–3405. https://doi.org/10.1890/09-0130.1

    Article  PubMed  Google Scholar 

  • Collin NM, Morris MG (1985) Threatened swallowtail butterflies of the world: the IUCN Red Data Book. International Union for Conservation of Nature and Natural Resources. Gland, Switzerland and Cambridge, UK

    Google Scholar 

  • David WAL, Gardiner BOC (1962) Oviposition and the hatching of the egg of Pieris brassicae (L.) in a laboratory culture. Bull Entomol Res 53:91–109. https://doi.org/10.1017/S0007485300047982

    Article  CAS  Google Scholar 

  • Davies CR, Gilbert N (1985) A comparative study of the egg-laying behavior and larval development of Pieris rapae L. and P. brassicae L. on the same host plants. Oecologia 67:278–281

    Article  CAS  PubMed  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105(18):6668–6672. https://doi.org/10.1073/pnas.0709472105

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaikwad SM, Aland SR, Mamlayya AB, Bhawane GP (2011) Anatomy and histology of the alimentary canal of adult Papilio polytes L. (Lepidoptera: Papilionidae). The Bioscan 6(3):399–402

    Google Scholar 

  • Gordon I, Ayiemba W (2003) Harnessing butterfly biodiversity for improving livelihoods and forest conservation: the Kipepeo Project. J Environ Develop 12(1):82–98. https://doi.org/10.1177/1070496502250439

    Article  Google Scholar 

  • Hailay G, Getu E (2023) Diversity of butterflies across three land use types of Chebera Churchura National Park and its surroundings, Southwestern Ethiopia. Asian J Conserv Biol 12(1):10–26. https://doi.org/10.53562/ajcb.73590

    Article  Google Scholar 

  • Hardie J, Gibson G, Wyatt TD (2001) Insect behaviors associated with resource finding. In: Woiwod I, Thomas C, Reynolds D (eds) Insect Movement, Mechanisms and Consequences. CABI Publishing, Wallingford, Oxon, pp 87–109

    Google Scholar 

  • Hill GM, Kawahara AY, Daniels JC, Bateman CC, Scheffers BR (2021) Climate change effects on animal ecology: butterflies and moths as a case study. Biol Rev 96(5):2113–2126. https://doi.org/10.1111/brv.12746

    Article  PubMed  Google Scholar 

  • Idris AB, Grafius E (1996) Effects of wild and cultivated host plants on oviposition, survival, and development of diamondback moth (Lepidoptera: Plutellidae) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Environ Entomol 25(4):825–833. https://doi.org/10.1093/ee/25.4.825

    Article  Google Scholar 

  • Islam MS, Islam ATMF, Rahman MM, Yamanaka A (2017) Biology and morphometrics of the common Mormon butterfly, Papilio polytes Linnaeus (Lepidoptera: Papilionidae) rearing in laboratory condition. Rajshahi Univ J Zool 36:49–56

    Google Scholar 

  • Islam MS, Yasmin M, Islam TMF (2019) Studies on the biology and population abundance of Lemon butterfly, Papilio demoleus L. (Lepidoptera: Papilionidae). Bangladesh J Entomol 29(1):77–90

    Google Scholar 

  • Kahuthia-Gathu R, Lohr B, Poehling HM (2008) Development and reproductive potential of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) on cultivated and wild crucifer species in Kenya. Int J Trop Insect Sci 28(1):19–29

    Article  Google Scholar 

  • Kioko EN (1998) Biodiversity of wild silkmoths (Lepidoptera) and their potential for silk production in East Africa. Ph.D Thesis, Kenyatta University, Kenya

  • Kioko E, Musyoki AM, Luanga A, Kioko MD, Mwangi EW, Monda L (2020) Swallowtail butterflies (Lepidoptera: Papilionidae) species diversity and distribution in Africa: the Papilionidae collection at the National Museums of Kenya, Nairobi, Kenya. Biodivers Data J 8:50664. https://doi.org/10.3897/BDJ.8.e50664

    Article  Google Scholar 

  • Kioko EN, Musyoki AM, Luanga AE, Genga OC, Mwinzi DK (2021) Fluttering beauty with benefits: the butterflies of Taita Hills. A field guide. National Museums of Kenya, Nairobi, Kenya

    Google Scholar 

  • Kleijn D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M, Isaacs R, Klein AM, Kremen C, M’Gonigle LK, Rader R, Ricketts TH, Williams NM, Lee Adamson N, Ascher JS, Báldi A, Batáry P, Benjamin F, Biesmeijer JC, Blitzer EJ, Potts SG (2015) The delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat Commun 6(1):7414. https://doi.org/10.1038/ncomms8414

  • Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc Royal Soc B: Biol Sci 274(1608):303–313. https://doi.org/10.1098/rspb.2006.3721

  • Kumar S, Simonson SE, Stohlgren TJ (2009) Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA. Biodivers Conserv 18(3):739–763. https://doi.org/10.1007/s10531-008-9536-8

  • Konagaya T, Idogawa N, Watanabe M (2020) Destination of apyrene sperm following migration from the bursa copulatrix in the monandrous swallowtail butterfly Byasa alcinous. Sci Rep 10(1):20907. https://doi.org/10.1038/s41598-020-77683-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotkar HM, Sarate PJ, Tamhane VA, Gupta VS, Giri AP (2009) Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants. J Insect Physiol 55:663–670. https://doi.org/10.1016/j.jinsphys.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  • La CDE, Del D, En S (2009) Comparative description of land use and characteristics of Bgbd Benchmark sites in Kenya. Trop Subtrop Agroecosyst 11(2):263–275

    Google Scholar 

  • Larsen TB (1996) The butterflies of Kenya and their natural history. Oxford University Press, Oxford, UK

    Google Scholar 

  • Lederhouse RC, Finke MD, Scriber JM (1982) The contributions of larval growth and pupal duration to protandry in the black swallowtail butterfly, Papilio polyxenes. Oecologia 53:296–300

    Article  CAS  PubMed  Google Scholar 

  • Lehouck V, Spanhove T, Gonsamo A, Cordeiro N, Lens L (2009) Spatial and temporal effects on recruitment of an afromontane forest tree in a threatened fragmented ecosystem. Biol Conserv 142(3):518–528. https://doi.org/10.1016/j.biocon.2008.11.007

    Article  Google Scholar 

  • Mackey AP (1978) Growth and biogenetics of the moth Cyclophragma leucosticte Grunberg. Oecologia 32:367–376

    Article  CAS  PubMed  Google Scholar 

  • Marek B (2010) Pathogenicity assessment of entomopathogenic fungi infecting Leptoglossus occidentalis (Heteroptera: Coreidae). J Mycol 62(1):67–78

    Google Scholar 

  • Maundu P, Tengnas T (2005) Useful trees and shrubs for Kenya. Technical Handbook No. 35. World Agroforestry Centre-Eastern Africa Regional Programme (ICRAF-ECA), Nairobi, Kenya

    Google Scholar 

  • Mbahin N, Raina SK, Kioko EN, Mueke JM (2010) Use of sleeve nets to improve survival of the Boisduval silkworm, Anaphe panda, in the Kakamega Forest of western Kenya. J Insect Sci 10(1):1–10. https://doi.org/10.1673/031.010.0601

    Article  Google Scholar 

  • Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C (2011) Global Biodiversity Conservation: the critical role of hotspots. In: Zachos F, Habel J (eds) Biodiversity hotspots. Springer, Berlin, Heidelberg, pp 3–22. https://doi.org/10.1007/978-3-642-20992-5_1

    Chapter  Google Scholar 

  • Molleman F, Halali S, Kodandaramaiah U (2020) Oviposition preference maximizes larval survival in the grass-feeding butterfly Melanitis leda (Lepidoptera: Nymphalidae). Eur J Entomol 117:1–17. https://doi.org/10.14411/eje.2020.001

    Article  Google Scholar 

  • Mwinzi DK (2019) Diversity and Abundance of Butterfly Species and Farmers’ Pesticide Use Practices and Perceptions on Insect Pollinators in Farmland and Ngangao Forest, Taita Hills, Kenya. MSc thesis, University of Nairobi

  • Nasari SP, Treydte ACA, Ndakidemi P, Mbega ER (2020) Bionomics of the african apefly (Spalgis lemolea) as a potential natural enemy of the Papaya Mealybug (Paracoccus marginatus) in Tanzania. Sustainability 12(8):3155. https://doi.org/10.3390/su12083155

    Article  Google Scholar 

  • New TR, Collins NM (1991) Swallowtail butterflies: an Action Plan for their conservation. IUCN, Gland, Switzerland

    Google Scholar 

  • Odanga JJ (2017) Climate change induced-effect on biology and ecology of avocado insect pest along an altitudinal gradient of Taita Hills and Mount Kilimanjaro. Ph.D. Thesis, University of Nairobi

  • Ojeda-Avila T, Woods HA, Raguso RA (2003) Effect of dietary variation on growth, composition, and maturation of Manduca sexta (Sphingidae: Lepidoptera). J Insect Physiol 49(4):293–306. https://doi.org/10.1016/S0022-1910(03)00003-9

    Article  CAS  PubMed  Google Scholar 

  • Oloya J, Malinga GM, Nyafwono M, Akite P, Nakadai R, Holm S, Valtonen A (2021) Recovery of fruit-feeding butterfly communities in Budongo Forest Reserve after anthropogenic disturbance. For Ecol Manage 491:119087. https://doi.org/10.1016/j.foreco.2021.119087

    Article  Google Scholar 

  • Pelini SL, Keppel JA, Kelley AE, Hellmann JJ (2010) Adaptation to host plants may prevent rapid insect responses to climate change. Global Change Biol 16(11):2923–2929. https://doi.org/10.1111/j.1365-2486.2010.02177.x

    Article  Google Scholar 

  • Pellikka PKE, Lötjönen M, Siljander M, Lens L (2009) Airborne remote sensing of spatiotemporal change (1955–2004) in indigenous and exotic forest cover in the Taita Hills, Kenya. Int J Appl Earth Observ Geoinform 11:221–232

    Article  Google Scholar 

  • Penz CM, Araujo AM (1990) Interaction between Papilio hectorides (Papilionidae) and four host plants (Piperaceae, Rutaceae) in the southern brazilian population. J Res Lepidoptera 29(1–2):161–171

    Google Scholar 

  • Potter K, Davidowitz G, Woods HA (2009) Insect eggs protected from high temperatures by limited homeothermy of plant leaves. J Exp Biol 212(21):3448–3454. https://doi.org/10.1242/jeb.033365

    Article  PubMed  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines trends, impacts, and drivers. Trends Ecol Evol 25(6):345–353. https://doi.org/10.1016/j.tree.2010.01.007

    Article  PubMed  Google Scholar 

  • Price PW, Fernands GW, Lewinsohn TM, Benson WW (1991) Plant-animal interactions. John Willey and Sons Inc. 39, New York, USA

    Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria

    Google Scholar 

  • Rader R, Bartomeus I, Garibaldi LA, Garratt MPD, Howlett BG, Winfree R, Cunningham SA, Mayfield MM, Arthur AD, Andersson GKS, Bommarco R, Brittain C, Carvalheiro LG, Chacoff NP, Entling MH, Foully B, Freitas BM, Gemmill-Herren B, Ghazoul J, Woyciechowski M (2016) Non-bee insects are important contributors to global crop pollination. Proc Natl Acad Sci USA 113(1):146–151. https://doi.org/10.1073/pnas.1517092112

    Article  CAS  PubMed  Google Scholar 

  • Ramana SPV, Atluri JB, Deepika DS, Kumar VP, Naidu SA (2011) Life history and larval performance of the common gull butterfly Cepora nerissa (Lepidoptera: Rhopalocera: Pieridae). The Bioscan 6(2):219–22235

    Google Scholar 

  • Rathcke BJ, Poole RW (1975) Coevolutionary race continues: butterfly larval adaptation to plant trichomes. Science 187:175–176

    Article  CAS  PubMed  Google Scholar 

  • Rayalu BM, Kumari KV, Rao CK (2012) Life history and larval performance of the tiny grass Blue Butterfly, Zizula hylax hylax Fabricius (Lepidoptera: Lycaenidae). Adv Bioresour 3(4):3–8

    Google Scholar 

  • Reddy GVP, Guerrero A (2000) Behavioral responses of diamondback moth, Plutella xylostella, to green leaf volatiles of Brassica oleracea subsp. capitata. J Agricult Food Chem 48:6025–6029. https://doi.org/10.1021/jf0008689

    Article  CAS  Google Scholar 

  • Republic of Kenya (2013) The First Taita Taveta County Integrated Development Plan 2013-2017 (263)

  • Satpute NS, Deshmukh SD, Rao NGV, Nimbalkar SA, Birch LC, DeWitt RM, Howe RW, Laughlin R, Nanthagopal R, Uthamasamy S, Wellik MJ, Pedigo LP (2005) Life tables and the intrinsic rate of increase of Earias vittella (Lepidoptera: Noctuidae) reared on different hosts. Int J Trop Insect Sci 25:73–79. https://doi.org/10.1079/IJT200561

    Article  Google Scholar 

  • Schmitt T, Ulrich W, Büschel H, Bretzel J, Gebler J, Mwadime L, Habel JC (2020) The relevance of cloud forest fragments and their transition zones for butterfly conservation in Taita Hills, Kenya. Biodivers Conserv 29(11–12):3191–3207. https://doi.org/10.1007/s10531-020-02017-2

    Article  Google Scholar 

  • Scriber JM, Slansky JrF (1981) The nutritional ecology of immature insects. Annu Rev Entomol 26:183–211. https://doi.org/10.1146/annurev.en.26.010181.001151

    Article  Google Scholar 

  • Singer MC (1984) Butterfly-host plant relationship: host quality adult choice and larval success. In: Vane-Wright RI, Ackery PR (eds) The biology of butterfly. Academic Press, London, pp 81–88

    Google Scholar 

  • Singh VK, Joshi PC, Bisht SPS, Kumar S, Nath P, Awasthi S, Mansotra DK (2016) Molecular characterization of butterflies and its significances in taxonomy. J Entomol Zool Stud 4(2):545–547

    Google Scholar 

  • Smith TJ, Saunders ME (2016) Honey bees: the queens of mass media, despite minority rule among insect pollinators. Insect Conserv Divers 9(5):384–390. https://doi.org/10.1111/icad.12178

    Article  Google Scholar 

  • Stamp NE (1980) Egg deposition patterns in butterflies: why do some species cluster their eggs rather than deposit them singly? Am Nat 115:367–380

    Article  Google Scholar 

  • Sun J, Tan X, Li Q, Francis F, Chen J (2022) Effects of different temperatures on the development and reproduction of Sitobion miscanthi from six different regions in China. Front Ecol Evol 10:794495. https://doi.org/10.3389/fevo.2022.794495

    Article  Google Scholar 

  • Suwarno MSi (2010) Population dynamic of the swallowtail butterfly, Papilio polytes (Lepidoptera: Papilionidae) in dry and wet seasons. Biodiversitas 11(1):19–23

    Google Scholar 

  • Suwarno MSi, Che SMR, Abu HA, Norani A (2007) Effect of different host plants on the life cycle of common Mormon butterfly Papilio polyte (Lepidoptera: Papilionidae). Jurnal Biosains 18(1):35–44

    Google Scholar 

  • Tanga CM, Ekesi S, Govender P, Mohamed SA (2013) Effect of six host plant species on the life history and population growth parameters of Rastrococcus iceryoides (Hemiptera: Pseudococcidae). Fla Entomol 96(3):1030–1041. https://doi.org/10.1653/024.096.0342

    Article  Google Scholar 

  • Teucher M, Schmitt CB, Wiese A, Apfelbeck B, Maghenda M, Pellikka P, Lens L, Habel JC (2020) Behind the fog: forest degradation despite logging bans in an east african cloud forest. Global Ecol Conserv 22:01024. https://doi.org/10.1016/j.gecco.2020.e01024

    Article  Google Scholar 

  • Thijs KW, Roelen I, Musila WM (2014) Field guide to the woody plants of Taita Hills, Kenya. J East Afr Nat Hist 102:1–272

    Article  Google Scholar 

  • Thijs KW, Aerts R, van de Moortele P, Aben J, Musila W, Pellikka P, Gulinck H, Muys B (2015) Trees in a human-modified tropical landscape: species and trait composition and potential ecosystem services. Landsc Urban Plann 144:49–58. https://doi.org/10.1016/j.landurbplan.2015.07.015

    Article  Google Scholar 

  • Tiple AD, Khurad AM, Dennis RLH (2009) Adult butterfly feeding–nectar flower associations: constraints of taxonomic affiliation, butterfly, and nectar flower morphology. J Nat Hist 43(13–14):855–884. https://doi.org/10.1080/00222930802610568

    Article  Google Scholar 

  • van Huis A (2019) Cultural significance of Lepidoptera in sub-Saharan Africa. J Ethnobiol Ethnomed 15:26. https://doi.org/10.1186/s13002-019-0306-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkatesha MG, Shashikumar L, Gayathri-Devi SS (2004) Protective devices of the carnivorous butterfly, Spalgis epius (Westwood) (Lepidoptera: Lycaenidae). Curr Sci 87(5):571–572

    Google Scholar 

  • Vinson SB, Iwantsch GF (1980) Host regulation by insect parasitoids. Quar Rev Biol 55:143–165

    Article  CAS  Google Scholar 

  • Watuma BM, Kipkoech S, Melly DK, Ngumbau VM, Rono PC, Mutie FM, Mkala EM, Nzei JM, Mwachala G, Gituru RW, Hu GW, Wang QF (2022) An annotated checklist of the vascular plants of Taita Hills. East Arc Mountain PhytoKeys 191:1–158. https://doi.org/10.3897/phytokeys.191.73714

    Article  PubMed  Google Scholar 

  • Wekesa C, Leley N, Maranga E, Kirui B, Muturi G, Mbuvi M, Chikamai B (2016b) Effects of forest disturbance on vegetation structure and above-ground carbon in three isolated forest patches of Taita Hills. Open J Forest 6(2):142–161. https://doi.org/10.4236/ojf.2016.62013

    Article  Google Scholar 

  • Wendt M, Senftleben N, Gros P, Schmitt T (2021) Coping with environmental extremes: Population ecology and behavioural adaptation of Erebia pronoe, an alpine butterfly species. Insects 12:896. https://doi.org/10.3390/insects12100896

    Article  PubMed  PubMed Central  Google Scholar 

  • Wigglesworth VB (1972) The principles of insect physiology, 7th edn. Chapman and Hall Ltd, London, pp 476–552

    Book  Google Scholar 

  • Witter J, Kulman H (1972) Mortality factors affecting eggs of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). Can Entomol 104(5):705–710. https://doi.org/10.4039/Ent104705-5

    Article  Google Scholar 

Download references

Acknowledgements

The study was conducted with financial support from the JRS biodiversity foundation through the National Museums of Kenya. The funding source was not involved in the formulation of study design, data collection and analysis, the decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Oliver Cramswel Genga: Conceptualization, data collection, formal analysis, investigation, methodology, validation, writing-original draft, writing review and editing. Everlyne Namikoye Samita: Conceptualization, methodology, supervision and writing-review and editing. Ruth Kahuthia-Gathu: Conceptualization, methodology, supervision and writing-review and editing. Esther N. Kioko: Conceptualization, funding acquisition, project administration, methodology, resources, supervision and editing.

Corresponding author

Correspondence to Oliver Cramswel Genga.

Ethics declarations

Conflict of interest

The authors have declared no competing interests exist.

Ethics statement

All applicable institutional and national guideline for the use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genga, O.C., Samita, N.E., Kahuthia-Gathu, R. et al. Larval ecology and development of swallowtail butterfly, Papilio nireus (Lepidoptera: Papilionidae) on wild citrus species (Rutaceae) in Kenya. Biologia 78, 3547–3564 (2023). https://doi.org/10.1007/s11756-023-01491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11756-023-01491-7

Keywords

Navigation