Skip to main content
Log in

Taxonomic significance of coumarins in species from the subfamily Mutisioideae, Asteraceae

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Asteraceae, the largest family of angiosperms, is divided into 12 subfamilies. The Mutisioideae, which has many representatives in southern South America, is divided into three tribes: Mutisieae, Nassauvieae and Onoserideae. The taxon is highlighted by the production of 5-methylcoumarins, compounds that occur in few families of plants. Within Asteraceae, they are almost restricted to representatives of this subfamily. As the substitution patterns of the 5-methylcoumarins vary in the species of the three different tribes, their occurrence may have a taxonomic significance. Most of the 5-methylcoumarins present terpene moieties connected to the coumarin scaffold. Prenyl and geranyl substituted coumarins are predominant in species of Mutisieae, while in those of tribes Onoserideae and Nassauvieae, compounds chiefly present sesquiterpene units attached to C-3 and C-4 of the α-pyrone moiety. Another interesting observation is the occurrence of furanocoumarins, restrict to species from the tribe Mutisieae. This type of coumarins is rare in Asteraceae. From a biological point of view, the 5-methylcoumarins have been scantily investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akak CM, Djama CM, Nkengfack AE et al (2010) New coumarin glycosides from leaves of Diospyros crassiflora (Hiern). Fitoterapia 81:873–877

    Article  CAS  Google Scholar 

  • Alarcón SR, de la Fuente JR, Novara L, Sosa VE (1998) Un benzofurano y cumarinas en Trichocline reptans wedd. Na Asoc Quim Argent 86:248–251

    Google Scholar 

  • Amaral JC, Da Silva MM, Da Silva MFGF et al (2020) Advances in the biosynthesis of pyranocoumarins: Isolation and 13C-incorporation analysis by high-performance liquid chromatography-ultraviolet-solid-phase extraction-nuclear magnetic resonance data. J Nat Prod 83:1409–1415. https://doi.org/10.1021/acs.jnatprod.9b00607

    Article  CAS  PubMed  Google Scholar 

  • Angeles LR, Lock de UO, Salkeld IC, Joseph-Nathan P (1984) A coumarin from Perezia coerulescens. Phytochemistry 23:2094–2095

    Article  CAS  Google Scholar 

  • Appendino G, Tettamanzi P, Gariboldi P (1991) Sesquiterpene lactones and furanocoumarins from Cicerbita alpina. Phytochemistry 30:1319–1320

    Article  CAS  Google Scholar 

  • Bauri AK, Foro S, Do NQ (2016) Crystal structure of a photobiologically active furanocoumarin from Artemisia reticulata. Crystallogr Commun E72:463–466

    Article  Google Scholar 

  • Bittner M, Jakupovic J, Bohlmann F et al (1988a) 5-methylcoumarins and chromones from Triptilion species. Phytochemistry 27:3262–3266

    Google Scholar 

  • Bittner M, Jakupovic J, Bohlmann F, Silva M (1988b) 5-methylcoumarins from Nassauvia species. Phytochemistry 27:3845–3847

    Article  CAS  Google Scholar 

  • Bittner M, Jakupovic J, Bohlmann F, Silva M (1989a) Coumarins and guaianolides from further Chilean representatives of the subtribe Nassauviinae. Phytochemistry 28:2867–2868

    Article  CAS  Google Scholar 

  • Bittner M, Jakupovic J, Silva M (1989b) Isocedrene derivatives and other compounds from Chilean Perezia species. Phytochemistry 28:1887–1890

    Article  CAS  Google Scholar 

  • Bittner M, Silva M, Rozas Z et al (1994) Sesquiterpenes and other constituents from Chilean Mutisieae. Phytochemistry 36:695–598

    Article  CAS  Google Scholar 

  • Bohlmann F, Grenz M (1975) Über die Inhaltsstoffe von Gerbera piloselloides Cass. (Constituents of Gerbera piloselloides Cass.). Chem Ber 108:26–30

    Article  CAS  Google Scholar 

  • Bohlmann F, Grenz M, Zdero C et al (1985a) Onognaphalin, a further 5-methylcoumarin from Onoseris gnaphalioides. Phytochemistry 24:1392–1393

    Article  CAS  Google Scholar 

  • Bohlmann F, Jakupovic J, Misraa LN, Castro V (1985b) 5-methylcumarin-derivate aus Lycoseris latifolia (5-methylcoumarin derivatives from Lycoseris latifolia). Justus Liebigs Ann Chem 1:1367–1376

    Article  Google Scholar 

  • Bohlmann F, Zdero C (1979) Neue sesquiterpene mit anomalem Kohlenstoffgerüst aus der Tribus Mutisieae (New sesquiterpenes with anomalous carbon skeletons from the tribe Mutisieae). Chem Ber 112:427–434

    Article  CAS  Google Scholar 

  • Bohlmann F, Zdero C (1977a) Über inhaltsstoffe der tribus Mutisiae (On the ingredients of tribe Mutisiae). Phytochemistry 16:329–242

    Google Scholar 

  • Bohlmann F, Zdero C (1977b) Über Inhaltsstoffe Der Tribus Mutisieae (Constituents of tribe Mutisieae). Phytochemistry 16:239–242. https://doi.org/10.1016/S0031-9422(00)86793-X

    Article  CAS  Google Scholar 

  • Bohlmann F, Zdero C, King R, Robinson H (1980) Onoseriolid, ein neus sesquiterpenlacton aus Onoseris albicans (Onoseriolid, a new sesquiterpene lactone from Onoseris albicans). Phytochemistry 19:689–691

    Article  CAS  Google Scholar 

  • Bohlmann F, Suwita A, Jakupovic J, King RM, Robinson H (1981) Trixikingolides and germacrene derivatives from Trixis species. Phytochemistry 20:1649–1655

    Article  CAS  Google Scholar 

  • Brahmachari G, Das S, Kumar A et al (2017) Structural confirmation, single X-ray crystallographic behavior, molecular docking and other physico-chemical properties of gerberinol, a natural dimethyl dicoumarol from Gerbera lanuginosa Benth. (Compositae). J Mol Struct 1136:214–221

    Article  CAS  Google Scholar 

  • Bremer K, Jansen RK (1992) A new subfamily of the asteraceae. Ann Missouri Bot Gard 79:414. https://doi.org/10.2307/2399777

    Article  Google Scholar 

  • Bremer K (1994) Asteraceae. Cladistics & Classification. Timber Press, Portland, pp 1–742

    Google Scholar 

  • Bourgaud F, Allard N, Guckert A, Forlot P (1989) Natural sources for furocoumarins. In: Fitzpatrick T, Forlot P, Pathak MA, Urbach F (eds) Psoralens, past, present and future of Photochemoprotection and other biological activities. J. Libbey Eurotext, Paris, pp 301–306

    Google Scholar 

  • Cabrera AL (1977) Mutisieae—Systematic review. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the Compositae, vol 2. Academic Press, London, pp 1039–1066

    Google Scholar 

  • Calabria LM, Emerenciano VP, Scotti MT, Mabry TJ (2009) Secondary chemistry of compositae. In: Funk VA, Susanna A, Stuessy TF, Bayer R (eds) Systematics, evolution, and biogeography of compositae. International Association for Plant Toxonomy, Vienna, pp 73–86

    Google Scholar 

  • Carlquist S (1976) Tribal interrelationships and phylogeny of the Asteraceae. Aliso A J Syst Evol Bot 8:465–492

    Google Scholar 

  • Carpinella MC, Ruiz G, Palacios SM (2010) Screening of native plants of central Argentina for antifungal activity. Allelopath J 25:423–432

    Google Scholar 

  • Carraz M, Lavergne C, Jullian V et al (2015) Antiproliferative activity and phenotypic modification induced by selected Peruvian medicinal plants on human hepatocellular carcinoma Hep3B cells. J Ethnopharmacol 166:185–199

    Article  CAS  PubMed  Google Scholar 

  • Casado R, Landa A, Calvo JJ et al (2010) Anti-inflammatory and antioxidant activities of Jungia paniculata. Pharm Biol 48:897–905. https://doi.org/10.3109/13880200903311128

    Article  CAS  PubMed  Google Scholar 

  • Catalán CAN, Borkosky SA, Joseph-Nathan P (1996) The secondary metabolite chemistry of the subtribe Gochnatiinae (Tribe Multisieae, Family Compositae). Biochem Syst Ecol 24:659–718

    Article  Google Scholar 

  • Catalano S, Cioni PL, Panizzi L, Morelli I (1998) Antimicrobial activity of extracts of Mutisia acuminata var acuminata. J Ethnopharmacol 59:207–209

    Article  CAS  PubMed  Google Scholar 

  • Ccana-Ccapatinta GV, Da CFB, Monge M, Ferreira PL (2018) Chemistry and medicinal uses of the subfamily Barnadesioideae (Asteraceae). Phytochem Rev 17:471–489. https://doi.org/10.1007/s11101-017-9544-y

    Article  CAS  Google Scholar 

  • Ccana-ccapatinta GV, Ferreira PL, Groppo M, Da FB (2019) Caffeic acid ester derivatives and flavonoids of genus Arnaldoa (Asteraceae, Barnadesioideae ). Biochem Syst Ecol 86:103911. https://doi.org/10.1016/j.bse.2019.103911

    Article  CAS  Google Scholar 

  • Celaya L, Viturro C (2017) Chemical composition and biological prospects of essential oils and extracts of Aphyllocladus spartioides Growing in Northwest Argentina. Chem Biodivers 14:e1600227. https://doi.org/10.1002/cbdv.201600227

    Article  CAS  Google Scholar 

  • Chawla R, Kumar S, Sharma A (2012) The genus Clematis (Ranunculaceae): chemical and pharmacological perspectives. J Ethnopharmacol 143:116–150. https://doi.org/10.1016/j.jep.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  • Chen YJ, Li Y, Chen JJ, Gao K (2007) Benzofuran derivatives from Gerbera saxatilis. Helv Chim Acta 90:176–182. https://doi.org/10.1002/hlca.200790013

    Article  CAS  Google Scholar 

  • Daily A, Seligmann O, Nonnenmacher G et al (1988) New chromone, coumarin, and coumestan derivatives from Mutisia acuminata var. hirsuta. Planta Med 54:50–52. https://doi.org/10.1055/s-2006-962334

    Article  CAS  PubMed  Google Scholar 

  • de Athayde AE, Richetti E, Wolff J et al (2019) “Arnicas” from Brazil: comparative analysis among ten species. Rev Bras Farmacogn 29:401–424. https://doi.org/10.1016/j.bjp.2019.02.006

    Article  Google Scholar 

  • de Borba ICG, Bridi H, Daian Soares K et al (2019) New natural coumarins from Trichocline macrocephala (Asteraceae). Phytochem Lett 32:129–133. https://doi.org/10.1016/j.phytol.2019.05.015

    Article  CAS  Google Scholar 

  • de Souza GC, Haas APS, von Poser GL, el al, (2004) Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. J Ethnopharmacol 90:135–143

    Article  PubMed  Google Scholar 

  • Delporte C, Backhouse N, Erazo S et al (2005) Analgesic-antiinflammatory properties of Proustia pyrifolia. J Ethnopharmacol 99:119–124

    Article  CAS  PubMed  Google Scholar 

  • Flores Y, Rodrigo G, Mollinedo P et al (2009) A 5-methylcoumarin glucoside and a coumestan derivative from Mutisia orbignyana. Boliv J Chem/Rev Boliv Quim 26:21–26

    CAS  Google Scholar 

  • Funk VA, Bayer R, Keeley S et al (2005) Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biol Skr 55:756–757

    Google Scholar 

  • Funk VA, Susanna A, Stuessy TF, Bayer RJ (2009a) Systematics, evolution, and biogeography of compositae. IAPT, Vienna

    Google Scholar 

  • Funk VA, Susanna A, Stuessy TF, Robinson H (2009b) Classification of Compositae. In: Funk VA, Susanna A, Stuessy TF, Bayer R (eds) Systematics, evolution, and biogeography of compositae. International Association for Plant Toxonomy, Vienna, pp 171–176

    Google Scholar 

  • Gliszczyńska A, Brodelius PE (2012) Sesquiterpene Coumarins. Phytochem Rev 11:77–96. https://doi.org/10.1007/s11101-011-9220-6

    Article  CAS  Google Scholar 

  • Guerreiro E, Joseph-Nathan P (1986) Coumarins from Perezia carthamoides. J Nat Prod 50:2094

    Google Scholar 

  • Harinantenaina L, Brodie PJ, Callmander MW et al (2011) Astrotricoumarin, an antiproliferative 4′-hydroxy-2′,3′- dihydroprenylated methylcoumarin from an Astrotrichilia sp. from the Madagascar Dry Forest. Nat Prod Commun 6:1259–1262

    CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Wang M, Gao M et al (2014) Chemical composition and biological activities of Gerbera anandria. Molecules 19:4046–4057. https://doi.org/10.3390/molecules19044046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Yang J, Cheng X et al (2019) 8-methoxymyrindiol from Gerbera piloselloides (L.) Cass. and its vasodilation effects on isolated rat mesenteric arteries. Fitoterapia 138:104299

    Article  CAS  Google Scholar 

  • Heinrich M, Kuhnt M, Wright CM et al (1991) Lowland mixe Indian medicinal plants: parasitological and microbiological evaluation and initial phytochemical study of Chaptalia nutans. Planta Med 57:3858

    Article  Google Scholar 

  • Heinrich M, Kuhnt M, Wright CW et al (1992) Parasitological and microbiological evaluation of Mixe Indian medicinal plants (Mexico). J Ethnopharmacol 36:81–85. https://doi.org/10.1016/0378-8741(92)90063-W

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Carlos B, Burgueño-Tapia E, Joseph-Nathan P (2003) A new coumarin from Perezia hebeclada. Magn Reson Chem 41:962–964. https://doi.org/10.1002/mrc.1284

    Article  CAS  Google Scholar 

  • Heywood VH (2009) The recent history of Compositae systematics: from daisies to deep achenes, sister groups and metatrees. In: Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution, and biogeography of compositae, 1st edn. International Association for Plant Toxonomy, Vienna, Austria, pp 39–45

    Google Scholar 

  • Hoeneisen M, Hernandez V, Becerra J et al (1999) 5-methylcoumarins and a new phenol from Nassauvia pyramidalis and N. digitata. Phytochemistry 52:1667–1669

    Article  CAS  Google Scholar 

  • Hoeneisen M, Silva M, Jakupovic J (1997) Coumarins from Nassauvia cuminngii. Phytochemistry 46:1393–1395

    Article  CAS  Google Scholar 

  • Bin HuH, Zheng XD, Jian YF et al (2011) Constituents of the root of Anemone tomentosa. Arch Pharm Res 34:1097–1105. https://doi.org/10.1007/s12272-011-0707-x

    Article  CAS  Google Scholar 

  • Innocenti G, Bourgaud F, Piovan A, Favretto D (1997) Furocoumarins and other secondary metabolites from Psoralea canescens. Pharm Biol 35:232–236. https://doi.org/10.1076/phbi.35.4.232.13305

    Article  CAS  Google Scholar 

  • Inoue T, Toyonaga T, Nagumo S, Nagai M (1989) Biosynthesis of 4-hydroxy-5-methylcoumarin in a Gerbera jamesonii hybrid. Phytochemistry 28:2329–2330

    Article  CAS  Google Scholar 

  • Jakupovic J, Boeker R, Schuster A et al (1987) Furthter guaianolides and 5-alkylcoumarins from Gutenbergia and Bothriocline species. Phytochemistry 26:1069–1075

    Article  CAS  Google Scholar 

  • Joseph-Nathan P, Hernandez JD, Román LU et al (1982) Sesquiterpenes from Perezia carpholepis. Phytochemistry 21:669–672

    Article  CAS  Google Scholar 

  • Joseph-Nathan P, Hidalgo J, Abramo-Bruno D (1978) A new coumarin from Perezia multiflora. Phytochemistry 17:583–584

    Article  CAS  Google Scholar 

  • Katinas L, Funk VA (2020) An updated classification of the basal grade of Asteraceae (=Compositae): from Cabrera’s 1977 tribe Mutisieae to the present. New Zeal J Bot 58:67–93. https://doi.org/10.1080/0028825X.2020.1718168

    Article  Google Scholar 

  • Katinas L, Pruski J, Sancho G, Tellería MC (2008) The subfamily Mutisioideae (Asteraceae)

  • Katinas L, Sancho G, Telleria MC, Crisci JV (2009) Mutisieae sensu stricto (Mutisioideae sensu strictu). In: Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution, and biogeography of compositae, 1st edn. Smithsonian, Vienna, Austria, pp 229–244

    Google Scholar 

  • Kose LS, Moteetee A, Van Vuuren S (2021) Ethnobotany, toxicity and antibacterial activity of medicinal plants used in the Maseru District of Lesotho for the treatment of selected infectious diseases. South African J Bot 143:141–154. https://doi.org/10.1016/j.sajb.2021.07.048

    Article  CAS  Google Scholar 

  • Lei L, Xue Y, Liu Z et al (2015) Coumarin derivatives from Ainsliaea fragrans and their anticoagulant activites. Nat Sci Rep 5:13544. https://doi.org/10.1038/srep13544

    Article  CAS  Google Scholar 

  • Li T, Ma X, Fedotov D et al (2020) Structure elucidation of prenyl- and geranyl-substituted coumarins in Gerbera piloselloides by NMR spectroscopy, electronic circular dichroism calculations, and single crystal X-ray crystallography. Molecules 25:1–25. https://doi.org/10.3390/molecules25071706

    Article  CAS  Google Scholar 

  • Liu S, Feng J, Wu J, Zhao W (2010) A new monoterpene – coumarin and a new monoterpene – Chromone from Gerbera delavayi the world, mainly distributed in Africa and Asia. There are 20 Gerbera species found in China, and several of them have long been used in folk medicines as detoxifying. Helv Chim Acta 93:2026–2029

    Article  CAS  Google Scholar 

  • Macêdo ME, Consoli RAGB, Grandi TSM et al (1997) Screening of Asteraceae (Compositae) plant extracts for larvicidal activity against Aedes fluviatilis (Diptera: Culicidae). Mem Inst Oswaldo Cruz 92:565–570. https://doi.org/10.1590/S0074-02761997000400024

    Article  Google Scholar 

  • Mahmoud A, Ahmed A, Linuma M, Toshiyuki T (1998) Further monoterpene 4-methylcoumarins and an acetophenone derivative from Ethulia conyzoides. Phytochemistry 48:543–546

    Article  CAS  Google Scholar 

  • Mandel JR, Dikow RB, Siniscalchi CM et al (2019) A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications thoughout the history of Asteraceae. PNAS 116:14083–14088

    Article  CAS  PubMed Central  Google Scholar 

  • Martínez AL, Madariaga-Mazón A, Rivero-Cruz I et al (2017) Antidiabetic and antihyperalgesic effects of a decoction and compounds from Acourtia thurberi. Planta Med 83:534–544

    PubMed  Google Scholar 

  • Miyakado M, Ohno N, Yoshioka H, Mabry T (1978) Trichoclin, a new furocoumarin from Trichocline incana. Phytochemistry 17:143–144

    Article  CAS  Google Scholar 

  • Mohammadi M, Yousefi M, Habibi Z, Shafiee A (2010) Two new coumarins from the chloroform extract of Angelica urumiensis from Iran. Chem Pharm Bull 58:546–548

    Article  CAS  Google Scholar 

  • Monks NR, Bordignon SAL, Ferraz A et al (2002) Anti-tumour screening of Brazilian plants. Pharm Biol 40:603–616. https://doi.org/10.1076/phbi.40.8.603.14658

    Article  Google Scholar 

  • Morita H, Dota T, Kobayashi J (2004) Antimitotic activity of glaupalol-related coumarins from Glaucidium palmatum. Bioorganic Med Chem Lett 14:3665–3668. https://doi.org/10.1016/j.bmcl.2004.05.015

    Article  CAS  Google Scholar 

  • Mulholland D, Iourine SE, Taylor DA, Dean FM (1998) Coumarins from Ekebergia pterophylla. Phytochemistry 47:1641–1644

    Article  CAS  Google Scholar 

  • Nader M, Vicente G, Salvan J, Cardoso T (2014) Jungia sellowii suppresses the carrageenan-induced inflammatory response in the mouse model of pleurisy. Inflammopharmacology 22:351–365. https://doi.org/10.1007/s10787-014-0210-3

    Article  CAS  PubMed  Google Scholar 

  • Nagumo S, Imamura K, Inoue T, Nagai M (1985) Cyanogenic glycosides and 4-hydroxycoumarin glycosides from Gerbera jamesonii hybrida. Chem Pharm Bull 4803–4805

  • Nagumo S, Toyonaga T, Inoue T, Nagai M (1989) New glycoides of a 4-hydroxy-5-methylcoumarin and a dihydro-alpha-pyrone from Gerbera jamesonii hybrida. Chem Pharm Bull 37:2621–2623

    Article  CAS  Google Scholar 

  • Nahar L, Das Talukdar A, Nath D et al (2020) Naturally occurring calanolides: ocurrence, biosynthesis, and pharmacological properties including therapeutic potential. Molecules 25:1–23

    Article  Google Scholar 

  • Panero JL (2007) Calorezia, a new genus of the tribe Nassauvieae (Asteraceae, Mutisioideae). Phytologia 89:198–201

    Google Scholar 

  • Panero JL, Freire SE (2013) Paquirea, a new Andean genus for Chucoa lanceolata (Asteraceae, Mutisioideae, Onoserideae). Phytoneuron 11:1–5

    Google Scholar 

  • Pasini E, Funk VA, deDesouza-Chies TT, Miotto STS (2016) New insights into the phylogeny and biogeography of the Gerbera- Complex (Asteraceae: Mutisieae). Taxon 65:547–562. https://doi.org/10.12705/653.7

  • Perez F, Marin E, Adzet T (1995) The anti-inflammatory effect of several compositae from South America extracts in rats. Phyther Res 9:145–146. https://doi.org/10.1152/japplphysiol.00164.2004

    Article  Google Scholar 

  • Pietiäinen M, Kontturi J, Paasela T et al (2016) Two polyketide synthases are necessary for 4-hydroxy-5-methylcoumarin biosynthesis in Gerbera hybrida. Plant J Cell Mol Biol 87:548–558. https://doi.org/10.1111/tpj.13216

    Article  CAS  Google Scholar 

  • Pritschow P, Jakupovic J, Bohlmann F et al (1991) Highly oxygenated sesquiterpenes from Polyachyrus sphaerocephalus and further constituents from Chilean Mutiseae. Phytochemistry 30:893–898

    Article  CAS  Google Scholar 

  • Qiang Y, Chen YJ, Li Y et al (2011) Coumarin derivatives from Gerbera saxatilis. Planta Med 77:175–178. https://doi.org/10.1055/s-0030-1250176

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro A, Pilo-Veloso D, Romanha AJ, Zani CL (1997) Trypanocidal flavonoids from Trixis vauthieri. J Nat Prod 60:836–838. https://doi.org/10.1021/np970196p

    Article  CAS  PubMed  Google Scholar 

  • Rocha-Garcia R, Hernández-Arroyo M, Zaraín P et al (2011) Antibacterial activity of crude extracts from Mexican plants against methicillin-resistant Staphylococcus. Af J Biotechnol 10:13202–13218

    Google Scholar 

  • Sales Junior PA, Zani CL, de Siqueira EP et al (2019) Trypanocidal trixikingolides from Trixis vauthieri. Nat Prod Res 35:1–9. https://doi.org/10.1080/14786419.2019.1663510

    Article  CAS  Google Scholar 

  • Sánchez-Chávez AC, Salazar-Gómez A, Zepeda-Vallejo LG et al (2019) Trixis angustifolia hexanic extract displays synergistic antibacterial activity against M. tuberculosis. Nat Prod Res 33:1477–1481. https://doi.org/10.1080/14786419.2017.1416381

    Article  CAS  PubMed  Google Scholar 

  • Simirgiotis MJ, Bórquez J, Neves-Vieira M et al (2015) Fast isolation of cytotoxic compounds from the native Chilean species Gypothamnium pinifolium Phil. collected in Atacama Desert, northern Chile. Ind Crops Prod 76:69–76

    Article  CAS  Google Scholar 

  • Stefanachi A, Leonetti F, Pisani L et al (2018) Coumarin: a natural, privileged and versatile scaffold for bioactive compounds. Molecules 23:250–284. https://doi.org/10.3390/molecules23020250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truiti MCT, Sarragioto MH (1998) Three 5-methylcoumarins from Chaptalia nutans. Phytochemistry 471:97–99

    Article  Google Scholar 

  • Truiti MDCT, Sarragiotto MH, De Abreu Filho BA et al (2003) In Vitro antibacterial activity of a 7-O-β-D- glucopyranosylnutanocoumarin from Chaptalia nutans (Asteraceae). Mem Inst Oswaldo Cruz 98:283–286. https://doi.org/10.1590/S0074-02762003000200020

    Article  CAS  PubMed  Google Scholar 

  • Vicente G, Jim Y, Moon K et al (2020) Anti-inflammatory profile of Jungia sellowii Less. by downregulation of proinflammatory mediators and inhibition of NF-κB and p38 pathways. Mediators Inflamm. https://doi.org/10.1155/2020/9078956

    Article  PubMed  PubMed Central  Google Scholar 

  • Viturro C, Molina A, Schmeda-Hirschmann G (1999) Free radical scavengers from Mutisia friesiana (Asteraceae) and Sanicula graveolens (Apiaceae). Phyther Res 13:422–424. https://doi.org/10.1002/(SICI)1099-1573(199908/09)13:5%3c422::AID-PTR462%3e3.0.CO;2-M

    Article  CAS  Google Scholar 

  • Viturro CI, De La Fuente JR, Maier MS (2003) Antifungal methylphenone derivatives and 5-methylcoumarins from Mutisia friesiana. Zeitschrift Fur Naturforsch - Sect C J Biosci 58:533–540. https://doi.org/10.1515/znc-2003-7-815

    Article  CAS  Google Scholar 

  • Wang J, Petrova V, Wu SB et al (2014) Antioxidants from Gerbera piloselloides: An ethnomedicinal plant from southwestern China. Nat Prod Res 28:2072–2075. https://doi.org/10.1080/14786419.2014.924000

    Article  CAS  PubMed  Google Scholar 

  • Wilches I, Tobar V, Peñaherrera E et al (2015) Evaluation of anti-inflammatory activity of the methanolic extract from Jungia rugosa leaves in rodents. J Ethnopharmacol 173:166–171

    Article  PubMed  Google Scholar 

  • Xao Y, Li J-B, Ding Y (2002) Studies on the chemical constituents from the roots and rhizomes of Gerbera piloselloides. Zhongguo Zhongyi Yanjiuyuan 27:595–596

    Google Scholar 

  • Xiao Y, Ding Y, Li JB et al (2004) Two novel dicoumaro-p-menthanes from Gerbera piloselloides (L.) Cass. Chem Pharm Bull 52:1362–1364. https://doi.org/10.1248/cpb.52.1362

    Article  CAS  Google Scholar 

  • Zdero C, Bohlamnn F, King RM, Robinson H (1986a) Alfa-isocedrene derivatives, 5-methylcoumarins and other constituents from the subtribe Nassauviinae of the Compositae. Phytochemistry 25:2873–2882

    Article  CAS  Google Scholar 

  • Zdero C, Bohlmann F, King RM, Robinson H (1986b) Further 5-methyl coumarins and other constituents from the subtribe Mutisiinae. Phytochemistry 25:509–516. https://doi.org/10.1016/S0031-9422(00)85512-0

    Article  CAS  Google Scholar 

  • Zdero C, Bohlmann F, Nieme, (1988a) 5-methylcoumarin derivatives from Aphyllocladus denticulatus. Phytochemistry 27:1821–1825

    Article  CAS  Google Scholar 

  • Zdero C, Bohlmann F, Niemeyer HM (1988b) Diterpenes and 5-methylcoumarin derivatives from Gypothamnium pinifolium and Plazia daphanoides. Phytochemisty 27:2953–2959

    Article  CAS  Google Scholar 

  • Zdero C, Bohlmann F, Solomon J (1988c) Further 5-methylcoumarin derivatives from Mutisia orbignyana. Phytochem Anal 27:891–897

    Article  CAS  Google Scholar 

  • Zdero C, Bohlmann F (1990) Systematics and evolution within the Compositae seen with the eyes of a chemist. Plant Syst Evol 171:1–14

    Article  Google Scholar 

  • Zhang J, De J, Fu A-L, Chen D-F, Lu Y (2019) Anticomplementary and anti-oxidant activities of constituents from Juniperus convallium. Chin Tradit Herb Drugs 50:3008–3016

    Google Scholar 

  • Zottis A, Vidotti GJ, Sarragiotto MH (2001) Coumarins from Chaptalia integerrima (Asteraceae). Biochem Syst Ecol 29:755–757

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by financial contributions of Brazilian agencies FAPERGS, CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Contributions

Angelica Signor Vestena and Gabriela de Carvalho Meirelles contributed to literature searching and data collection in addition to the manuscript preparation and revision. José Angelo Zuanazzi and Gilsane Lino von Poser contributed to the study concepts and design, as well as to manuscript preparation and revision. All the authors discussed, edited and approved the final version.

Corresponding author

Correspondence to Gilsane Lino von Poser.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vestena, A.S., Meirelles, G.d.C., Zuanazzi, J.A. et al. Taxonomic significance of coumarins in species from the subfamily Mutisioideae, Asteraceae. Phytochem Rev 22, 85–112 (2023). https://doi.org/10.1007/s11101-022-09828-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-022-09828-x

Keywords

Navigation