Skip to main content
Log in

Phylogenetic position of Oxygyne shinzatoi (Burmanniaceae) inferred from 18S rDNA sequences

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

An Erratum to this article was published on 18 June 2008

Abstract

The genus Oxygyne comprises three species disjunctly distributed in Africa and Japan and is the least examined genus of the Burmanniaceae due to the scarcity of living material. We obtained living samples of Oxygyne shinzatoi and examined the phylogenetic position of this species on the basis on the 18S rDNA sequence. Oxygne shinzatoi was consistently found to belong to the monophyletic group of tribe Thismieae, but its position in the tribe differed depending on the criteria applied (maximum parsimony, maximum likelihood, Bayesian inference). Distance analysis from the most recent common ancestor indicated that O. shinzatoi had the lowest substitution rate among the species of tribe Thismieae. Combined with recent knowledge of basic chromosome numbers and substitution rate characteristics, O. shinzatoi can be considered to be one of the basal taxon of tribe Thismieae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe C, Akasawa Y (1989) A new species of Oxygyne (Burmanniaceae) found in Shikoku, Japan. J Jpn Bot 64:161–164

    Google Scholar 

  • Bousalem M, Arnau G, Houch I, Arnolin R, Viader V, Santoni S, David J (2006) Microsatellite segregation analysis and cytogenetic evidence for tetrasomic inheritance in the American yam Dioscorea trifida and a new basic chromosome number in the Dioscoreae. Theor Appl Genet 113:439–451

    Article  CAS  PubMed  Google Scholar 

  • Caddick LR, Rudall PJ, Wilkin P, Hedderson AJ, Chase MW (2002) Phylogenetics of Dioscoreales based on combined analyses of morphological and molecular data. Bot J Linn Soc 138:123–144

    Article  Google Scholar 

  • Chatterjee A, Ghosh S, Roy SC (1989) A cytological survey of eastern Himalayan plants III. Cell Chromosome Res 12:22–29

    Google Scholar 

  • Chin H, Chang M, Ling P, Ting C, Dou F (1985) A cytological study on Chinese Dioscorea L. – the chromosome numbers and their relation to the origin and evolution of the genus. Acta Phytotax Sin 23:11–18

    Google Scholar 

  • Essad S (1984) Variation géographique des nombres chromosomiques de base et polyploïdie dans le genre Dioscorea a propos du dénombrement des espèces transversa Brown, pilosiuscula Bert et trifida. Agronomie 4:611–617

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Hatusima S (1976) Two new species of Burmanniaceae from Japan. J Geobot 24:2–6

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES. Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Imhof S (1999) Anatomy and mycotrophy of the achlorophyllous Afrothismia winkleri. New Phytol 144:533–540

    Article  Google Scholar 

  • Kubitzki K (1998) Taccaceae. In: Kubitzki K (ed) The families and genera of vascular plants. III. Flowering plants. Monocotyledons. Lilianae (except Orchidaceae). Springer, Berlin, pp 425–428

    Google Scholar 

  • Maas-van de Kamer H (1998) Burmanniaceae. In: Kubitzki K (ed) The families and genera of vascular plants. III. Flowering plants. Monocotyledons. Lilianae (except Orchidaceae). Springer, Berlin, pp 154–164

    Google Scholar 

  • Maddison WP (1991) The discovery and importance of multiple islands of most-parsimonious trees. Syst Zool 40:315–328

    Article  Google Scholar 

  • Merckx V, Schols P, Maas-van de Kamer H, Maas P, Huysmans S, Smets E (2006) Phylogeny and evolution of Burmanniaceae (Dioscoreales) based on nuclear and mitochondrial data. Am J Bot 93:1684–1698

    Article  Google Scholar 

  • Nickrent DL, Duff RJ, Colwell AE, Wolfe AD, Young ND, Steiner KE, Depamphilis CW (1998) Molecular phylogenetic and evolutionary studies of parasitic plants. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II, DNA sequencing. Kluwer, New York, pp 211–241

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Schlechter R (1906) Burmanniaceae africanae. Bot Jahrb Syst 37:140–141

    Google Scholar 

  • Segarra-Moragues JG, Catalán P (2003) Life history variation between species of the relictual genus Borderea (Dioscoreaceae): phylogeography, genetic diversity, and population genetic structure assessed by RAPD markers. Biol J Linn Soc 80:483–498

    Article  Google Scholar 

  • Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer, Sunderland

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Tsukaya H, Yokota M, Okada H (2007) Chromosomal characteristics of Oxygyne shinzatoi (Hatus.) C. Abe et Akasawa (Burmanniaceae), and its phylogenetic significance. Acta Phytotax Geobot 58:100–106

    Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M et al. (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wilcox TP, Garcia de Leon FJ, Hendrickson DA, Hillis DM (2004) Convergence among cave catfishes: long-branch attraction and a Bayesian relative rates test. Mol Phylogenet Evol 31:1101–1113

    Article  CAS  PubMed  Google Scholar 

  • Woodward CL, Berry PE, Maas-van de Kamer H, Swing K (2007) Tiputinia foetida, a new mycoheterotrophic genus of Thismiaceae from Amazonian Ecuador, and a likely case of deceit pollination. Taxon 56:157–162

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to S. Higa, K. Shinjo, and K. Ishii for assistance in collecting the materials. This study was supported in part by Grants-in-Aid for Scientific Research (C) (no. 17570083) to M. Y. and the twenty-first century COE program of the University of the Ryukyus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Tsukaya.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10265-008-0175-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoyama, J., Koizumi, Y., Yokota, M. et al. Phylogenetic position of Oxygyne shinzatoi (Burmanniaceae) inferred from 18S rDNA sequences. J Plant Res 121, 27–32 (2008). https://doi.org/10.1007/s10265-007-0136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-007-0136-6

Keywords

Navigation