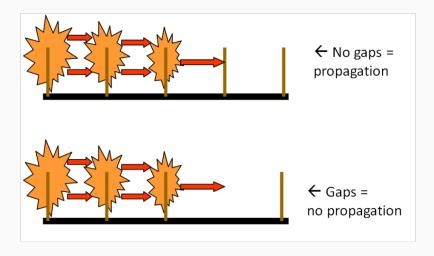
# The native, C<sub>3</sub> grass Festuca costata alters grassland fuels and fire spread in the Drakensberg

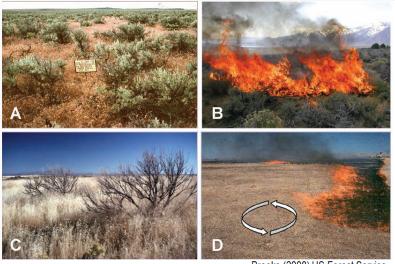
Devan Allen McGranahan<sup>1</sup>, Sally Archibald<sup>2</sup>, Kevin P. Kirkman<sup>3</sup>, Timothy G. O'Connor<sup>2,4</sup>

<sup>1</sup>School of Natural Resource Sciences—Range Science Program, North Dakota State University


<sup>2</sup>School of Animal, Plant, and Environmental Sciences, University of the Witwatersrand

<sup>3</sup>Grassland Science, University of KwaZulu-Natal, Pietermaritzburg

<sup>4</sup>South African Environmental Observation Network


#### Veld fire spread requires continuous fuels

- Fire spreads by heat transfer from one particle to the next
- Primarily convection by wind carries heat across gaps

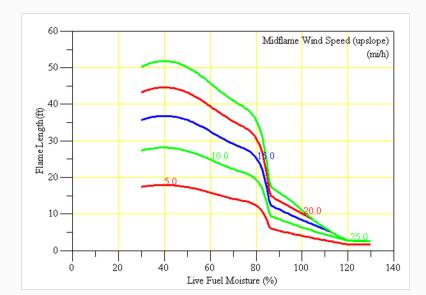


#### Cheatgrass: Classic example of the 'grass-fire cycle'

In terms of invasive species, most grasses reduce fuel gaps

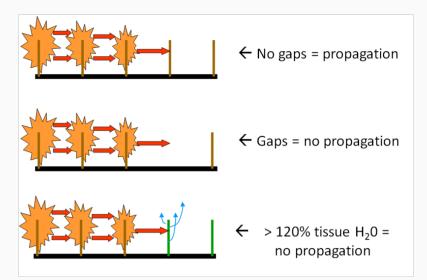


Brooks (2008) US Forest Service

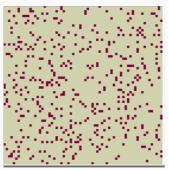

#### Spinning the grass-fire cycle the opposite direction

- Unseasonally high fuel moisture = reduced fire spread
- Novel example: tall fescue Festuca arundinacea in tallgrass prairie




#### Spinning the grass-fire cycle the opposite direction

Live fuel moisture greater than 120% = reduced fire spread

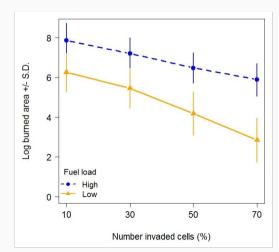



#### Spinning the grass-fire cycle the opposite direction

High-moisture fuel creates a gap that saps energy, prevents propagation



## Extent of tall fescue invasion 10% 60%



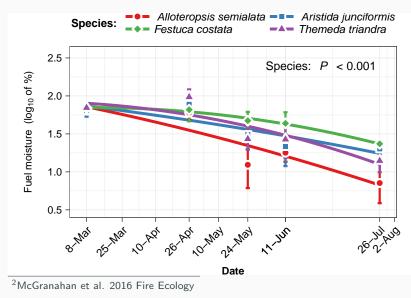



### FARSITE fire area simulations indicated:

- Greater number of invaded cells, less fire spread
- The effect was exacerbated by low fuel load (heavy stocking)
- Increased wind speed mitigated effect of high moisture

#### Fuels are still all "just grass"!




#### Festuca in South Africa

#### Novel example of native grass-fire cycle?



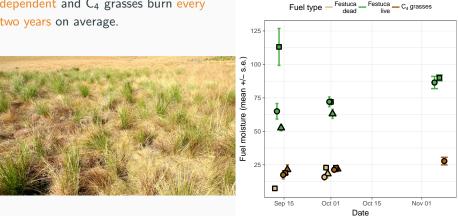
#### Fuel moisture variability in South Africa

 $C_3$  F. costata cures more slowly than  $C_4$  veld grasses<sup>2</sup>



Data for *F. costata* and C<sub>4</sub> veld grasses:

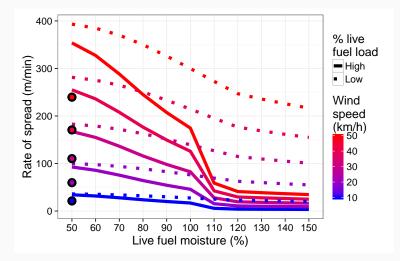
- Fuel load (one end-of-season clipping)
- Fuel moisture (samples before/after first spring rains)


Two fire spread models used:

- BehavePlus: Rothermel fire spread equation customised with above data
- FlamMap: spatial model that allows patches of *F. costata* in veld matrix

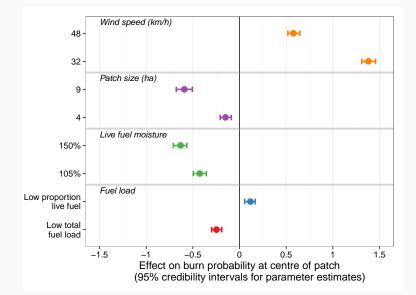
#### Festuca in South Africa<sup>3</sup>

Drakensberg grasslands are highly fire dependent and C<sub>4</sub> grasses burn every two years on average.


Festuca costata stays green year-long, but also increases fuel load



<sup>3</sup>McGranahan et al. in review


#### F. costata reduces fire spread in modeled grassland

- Slower rates of spread as F. costata tissue moisture increases
- Note effects of fuel load, wind



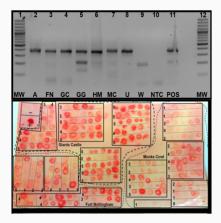
#### F. costata reduces burn probability in spatial models

Effect of each model variable on burn probability at patch centre



13

#### Anecdotal evidence of model results


- While effects are yet to be field-validated, anedcotal evidence supports models
- Here, flanking fires appear to have been impeded by *F. costata* (right) but spread well through C<sub>4</sub> stand (left)



- F. costata likely increases variability in fire behaviour, effects
  - Exacerbated by high live moisture, large patches, low fuels
  - Mitigated by wind, more fuel (longer time-since-fire)
- Dependent on fuelbed, slope, patch size, time-since-fire, wind
- *F. costata* could increase fire return interval at centre of large patches
- Potential community succession effects if low FRI allows woody establishment

#### Fescue, fungus, and fire<sup>4</sup>

- Some describe *F. costata* expansion at lower altitudes, contrary to how we expect C<sub>3</sub> grasses to move given global warming
- Epichloae endophytes often confer advantages like drought tolerance onto hosts, which include most *Festuca* species worldwide.
- We found the endophyte in *F.* costata throughout SA range<sup>5</sup>
- Endophytes might shape *Festuca* response to global change, exacerbate impact on fire regimes



<sup>&</sup>lt;sup>4</sup>McGranahan et al. 2015 Plant Biology

#### Any burning questions??

