A CONTRIBUTION TO THE LEAF ANATOMY

 AND TAXONOMY OF APOCYNACEAE IN AFRICA

- The leaf anatomy of Apocynaceae in East Africa
- A monograph of Pleiocarpinae

Propositions (Stellingen)

1. We come to know our own minds only by explaining ourselves to others. Until we have to defend our opinions in public, they remain half-formed convictions based on random impressions.

Jean Bethke Elshtain, Democracy on Trial.
2. Apocynaceae leaves exhibit a wide range of variability in anatomical characters, some of which can be confidently used to distinguish the genera and the species.

This thesis.
3. The genus Pleiocarpa has proved to be extremely variable as a whole, and one cannot merely unravel this mystery based on morphology alone.

This thesis.
4. Pairs of related genera occurring in different continents will often prove to be congeneric.
F.J. Breteler, The boundary between Amherstieae and Detarieae (Caesalpinioideae). In: Adv. in Legume Syst. 7: 53-61, 1995.
5. Although the species may be defined as a group of similar organisms that interbreed or share a common lineage of descent, there is no universal agreement on how to define a species.
V.H. Heywood. In: Global Biodiversity assessment, UNEP 1995.
6. The measure of a truly great man is the courtesy with which he treats a little man.
7. After all the outcry on human rights and equality for women leading to the Beijing conference, the British High Commission cannot, surely, in this time and age equate the Kenyan women with children.

Recent requirement for all Kenyan women travelling to Britain to obtain written permission from their husbands when applying for a visa.
8. No matter how carefully we may strive to classify various entities of life, there will always be the odd man out.
9. Nothing is as easy as it looks, everything takes longer than you expect. And if anything can go wrong it will, at the worst possible moment.

Adapted from Murphy's Law.
Propositions belonging to the thesis entitled "A contribution to the leaf anatomy and taxonomy of Apocynaceae in Africa" by E. Omino.

Wageningen, April 22, 1996.

A contribution to the leaf anatomy and taxonomy of Apocynaceae in Africa

- The leaf anatomy of Apocynaceae in East Africa
- A monograph of Pleiocarpinae

Promotor: Dr.Ir. L.J.G. van der Maesen, hoogleraar in de plantentaxonomie
Co-promotor: Dr. A.J.M.Leeuwenberg, universitair hoofd-docent, vakgroep Plantentaxonomie

A contribution to the leaf anatomy and taxonomy of Apocynaceae in Africa

- The leaf anatomy of Apocynaceae in East Africa
- A monograph of Pleiocarpinae
(Series of revisions of Apocynaceae XLI)
Elizabeth Omino

PROEFSCHRIFT

ter verkrijging van de graad van doctor in de landbouw- en milieuwetenschappen op gezag van de rector magnificus, Dr C.M. Karssen, in het openbaar te verdedigen op maandag 22 april 1996 des namiddags te vier uur in de Aula van de Landbouwuniversiteit te Wageningen

CIP-gegevens Koninklijke Bibliotheek, Den Haag

Omino, Elizabeth
A contribution to the leaf anatomy and taxonomy of Apocynaceae in Africa: The leaf anatomy of Apocynaceae in East Africa: A monograph of Pleiocarpinae (Series of revisions of Apocynaceae XLI) / Elizabeth Omino. - Leiden : Backhuys Publishers. - Ill.
Thesis Landbouwuniversiteit Wageningen. - With index, ref. With summary in Dutch.
ISBN 90-73348-54-4
NUGI 835
Subject headings: leaf anatomy / Apocynaceae ; taxonomy.

TABLE OF CONTENTS

General Summary I
Samenvatting 2
I Leaf anatomy of Apocynaceae in East Africa 3
I.I Summary 3
1.2 Introduction 3
I. 3 Material and Methods 4
I. 4 Observations 4
1.5 Characteristics of the genera 10
I.5.I Acokanthera G.Don 10
1.5.2 Adenium R.Br. II
1.5.3 Alafia Thouars 12
1.5.4 Ancylobotrys Pierre 13
1.5.5 Baissea A.DC 14
I.5.6 Carissa L. I5
1.5.7 Carvalhoa K. Schum 16
1.5.8 Clitandra Benth 17
1.5.9 Dictyophleba Pierre 18
1.5.IO Diplorhynchus Welw. ex Fic. \& Hiern 18
I.5.I I Funtumia Stapf 19
1.5.12 Holarrhena R.Br. 20
1.5.13 Hunteria Roxb 21
1.5.14 Landolphia P.Beauv. 22
1.5.I5 Mascarenhasia A.DC 23
I.5.16 Motandra A.DC. 24
1.5.17 Oncinotis Benth 25
I.5.18 Picralima Pierre 26
1.5.19 Pleiocarpa Benth 26
I.5.20 Rauvolfia L. 28
1.5.2 I Saba (Pichon) Pichon 29
1.5.22 Schizozygia Baill. 30
1.5.23 Stephanostema K. Schum. 30
1.5.24 Strophanthus DC 31
1.5.25 Tabernaemontana L. 32
1.5.26 Voacanga Thouars 33
1.6 General discussion 34
I. 7 Conclusions 37

1. 8 Figures and tables 42
I. 9 Anatomy references 76
2 A monograph of Pleiocarpinae (Apocynaceae-Plumerioideae-Carisseae); Series of revisions of Apocynaceae XLI 8I
2.I Summary 8I
2.2 Introduction 8I
2.3 General part 82
2.3.I History of the subtribe Pleiocarpinae 82
2.3.2 History of the genera Hunteria Roxb., Pleiocarpa Benth. and Picralima Pierre 82
2.3.3 Geography and distribution 83
2.3.4 Morphology 83
2.3.5 General taxonomic references 86
2.4 Taxonomic part 87
2.4.I The subtribe Pleiocarpinae 87
2.4.2 Key to the genera of the subtribe Pleiocarpinae 87
2.5 Hunteria Roxb. 88
2.5.I Hunteria ballayi Hua 90
2.5.2 Hunteria camerunensis K. Schum. ex Hall 93
2.5.3 Hunteria congolana Pichon 96
2.5.4 Hunteria densiflora Pichon 99
2.5.5 Hunteria ghanensis Hall \& Leeuwenberg 102
2.5.6 Hunteria hexaloba (Pichon) Omino comb. nov. 104
2.5.7 Hunteria macrosiphon Omino sp. nov. 107
2.5.8 Hunteria myriantha Omino sp. nov 109
2.5.9 Hunteria oxyantha Omino sp. nov. II 2
2.5.10 Hunteria simii (Stapf) H. Huber II 5
2.5.11 Hunteria umbellata (K. Schum.) Hall I 18
2.5.12 Hunteria zeylanica (Retz.) Gard. ex Thw. I 22
2.6 Picralima Pierre I 28
2.6.I Picralima nitida (Stapf) Th. \& H.Dur. I 28
2.7 Pleiocarpa Benth. I 34
2.7.1 Pleiocarpa bicarpellata Stapf I 35
2.7.2 Pleiocarpa brevistyla Omino sp. nov. I 39
2.7.3 Pleiocarpa mutica Benth I 42
2.7.4 Pleiocarpa pycnantha (K.Schum.) Stapf 146
2.7.5 Pleiocarpa rostrata Benth I 52
2.8 Doubtful species I 56
2.9 Excluded species I 57
2.IO Index of exsiccatae 158
Index of scientific names 169
Curriculum Vitae 177
Acknowledgements 177

GENERAL SUMMARY

This publication comprises two main parts.
Part one (Chapter I) deals with the leaf anatomy of Apocynaceae in East Africa, where this family is represented by 77 species in 30 genera. Out of these, 37 species in 26 genera are examined and these exhibit a wide range of anatomical variations. Many species can be separated on the basis of their leaf anatomy and many genera are confirmed to be closely related. The most outstanding anatomical characters include the dorsiventral leaves, presence of laticifers, and bicollateral vascular bundles with intraxylary phloem.

Part two (Chapter 2) is a monograph of the apocynaceous subtribe Pleiocarpinae-Plumeriodeae-Carisseae, which comprises of three genera, Hunteria (12 spp .); Pleiocarpa (5 spp.) and Picralima (1 sp.). The subtribe Pleiocarpinae is restricted to Africa, although one species, Hunteria zeylanica, extends to Asia. It is easily distinguished from the other members of the tribe Carisseae by the presence of completely apocarpous ovaries, with $2-5$ carpels, which are a great exception in the family Apocynaceae.

The genus Picralima was first described by Pierre in 1896 and has since remained monotypic. Its only species, Picralima nitida, is not only exploited for its wood, but also used medicinally in its present distribution area and employed as well as an arrow and a fish poison.

In this publication, three new species are described in the genus Hunteria (Roxburgh, 1814,1824) and one new combination is made.

The genus Pleiocarpa (Bentham, 1876) has proved to be a very difficult subject due to insufficient collections and lack of sufficient information from the field. At present it has 5 species and one doubtful species of which the collections are all either sterile or only bearing fruits. One new species is described.

Parallel to the investigations reported here a taxonomic treatment was prepared for the Flora of Tropical East Africa. This contribution, covering all the mentioned 30 genera and 77 species, will be submitted to the editors in Kew shortly.

SAMENVATTING

Deze publicatie bestaat voornamelijk uit twee delen.
Hoofdstuk I behandelt de bladanatomie van vertegenwoordigers van de in Oost Afrika voorkomende Apocynaceae, een familie die daar 77 soorten in 30 genera telt. Hiervan werden 37 soorten van 36 genera bestudeerd en deze vertonen een grote variatie aan anatomische kenmerkstaten. Veel soorten kunnen worden onderscheiden aan de hand van de kenmerken van de bladanatomie, en de nauwe verwantschappen tussen vele genera kunnen er mee worden bevestigd. De meest opvallende anatomische kenmerken zijn de dorsiventrale bladeren, de aanwezigheid van melksapvaten, en bicollaterale vaatbundels met intraxylair floeem.

Hoofdstuk 2 is een monografie van de subtribus Pleiocarpinae, welke uit drie genera bestaat: Hunteria (met 12 soorten); Pleiocarpa (5 soorten) en Picralima (I soort). De subtribus Pleiocarpinae van de onderfamilie Plumerioideae, tribus Carisseae, is voornamelijk beperkt tot Afrika, maar één soort, Hunteria zeylanica, komt ook in Azië voor. De subtribus verschilt duidelijk van andere in de tribus Carisseae door de aanwezigheid van geheel apocarpe vruchtbeginsels met 2 tot 5 vruchtbladen, hetgeen een grote uitzondering is in de familie Apocynaceae.

Het genus Picralima werd door Pierre in 1896 beschreven en is sindsdien monotypisch gebleven. De enige soort, Picralima nitida, wordt niet alleen vanwege het hout geexploiteerd, maar ook medicinaal benut en bovendien zowel voor pijlgif als voor visvergift.

In Hunteria (Roxburgh, 1814, 1824) worden drie nieuwe soorten beschreven, en er is een nieuwe combinatie gemaakt.

Het genus Pleiocarpa (Bentham, i876) bleek een zeer lastig onderwerp, doordat er weinig materiaal verzameld is en veldgegevens nauwelijks beschikbaar waren. Er worden nu vijf soorten onderscheiden en er is een probleemgeval waarvan de belegexemplaren óf steriel waren óf alleen vruchten dragen. Er is één nieuwe soort beschreven.

Tijdens het onderzoek dat hier wordt gepubliceerd werd ook een taxonomische bewerking voorbereid voor de Flora van Tropisch Oost Afrika. Deze bijdrage die de genoemde 30 genera en 77 soorten omvat, zal binnenkort aan de redactie van de Flora of Tropical East Africa in Kew worden aangeboden.

1 LEAF ANATOMY OF APOCYNACEAE IN EAST AFRICA

I.I Summary

A study has been made of 37 species in 26 genera of the Apocynaceae in East Africa. The anatomical characters found to be useful in distinguishing taxa are: presence and absence of hairs/domatia, hair types and position on the leaf, cuticular architecture (SEM), stomatal outline, and occasionally density, their leaf venation; in transverse section: petiole/midrib outline, shape of vascular bundle, phloem arrangement, presence or absence of fibres in the petiole, and occasionally spongy mesophyll arrangement and presence or absence of foliar sclerids, arrangement of laticifers at the midrib, sclerenchymatous marginal veins and presence of papillose cells at the margin. The present study confirms a close relationship between the Pleiocarpinae (Hunteria, Picralima and Pleiocarpa); Motandra and Oncinotis; Mascarenhasia and Funtumia; Carissa, and Acokanthera and Tabernaemontana, Voacanga Schizozygia and Carvalhoa.
The most outstanding anatomical characters are the dorsiventral leaves; presence of lalicifers; typically bicollateral vascular bundle in petiole and leaf and presence of intraxylary phloem.

I. 2 Introduction

In East Africa, the plant family Apocynaceae is represented by 77 species in 30 general (Table 3). The family is usually subdivided into two subfamilies, Plumerioideae and Apocynoideae. The subfamilies are further subdivided into tribes and subtribes (Table 3). The earliest work on the general leaf anatomy was by Solereder (I899, 1908) followed by Poulsen (1917) and Metcalfe \& Chalk (1950). Other work on leaf anatomy includes Sayeed-ud-Din (1941) on Lochnera pusilla (now Catharanthus pusilla); Holm (1910) on Apocynum cannabinum; Ballard (1926), on trichomes in Apocynum, Ngan (1965) on the genus Wrightia; Newcombe \& Patel (1966) on Voacanga schweinfurthii (now V. africana); Fjell (1983) on Allamanda neriifolia (now A. schottii), Thevetia peruviana and Vinca minor; Araujo etal., (1984) on Plumeria rubra. Epidermal and venation studies have been carried out by Chandra et al., (1969, 1972); Kapoor et al., (1969); Sharma et al., (1970); Kapoor \& Mitra (1979). Extensive stomatal studies in West African species have been carried out by Nyawuame \& Gill (1991), other work on stomata include Karatela \& Gill (1983). Apart from the stomatal studies in West African species of Apocynaceae and a few remarks on some African genera by Metcalfe \& Chalk (1950), leaf anatomy especially of the East African species is hitherto unknown.

In the present paper leaf anatomical characters are described in detail for 26 of the

30 genera in East Africa and their effect on the current taxonomic relationships in the family is discussed at the end of the chapter.

All scientific authorities of the species names have been omitted, these are given in the final index.

I. 3 Material and methods

All living material was obtained from the field in Kenya, fixed in FAA and stored in 70% alcohol. Material from Uganda and Tanzania was obtained from Kew and East African herbaria (see appendix I).

Dried leaves were boiled for several minutes and stored in 70% alcohol. Petiole and leaves were sectioned at the approximate midpoint using a Reichert sliding microtome, cleared with parazone, and mounted in euparol after dehydration through an alcohol series. Technical methods for cuticular preparations, clearing leaves, stomatal counts and measurements for lamina thickness are adapted from Wilkinson (1989).

I. 4 Observations

Characteristics of the family Apocynaceae as a whole:

Leaves: opposite, rarely alternate or bunches set close together as in Adenium obesum, or whorled as in Rauvolfia, Pleiocarpa and Alstonia; petiolate, rarely sessile as in Voacanga africana, entire; texture varies from membranaceous as in Carvalhoa campanulata to coriaceous as in Carissa and Acokanthera, to succulent as in Adenium obesum; size ranges from 0.8-3.6 \times 0.3-1.4 cm in Strophanthus mirabilis to $1.8-50(-70) \times 0.8-19 \mathrm{~cm}$ in Rauvolfia caffra; petiole with colletors and axils of secondary veins with domatia as in Motandra, Baissea and Oncinotis; blade obovate to linear as in Adenium obesum to elliptic as in Clitandra cymulosa; completely glabrous as in Hunteria to densely short-pubescent as in Strophanthus hypoleucos.

Leaf venation: According to the terminology proposed by Hickey (1979) for the architecture of dicotyledonous leaves, all the species studied have camptodromous leaves, as the secondary veins do not terminate at the margin. The venation is either brochidodromous with secondaries joined together in a series of prominent arches (Figs:22A, B) or eucamptodromous with secondaries connected to superadjacent veins by a series of cross-veins without forming prominent marginal loop (Fig 22c).

Leaf surface

Hairs: present on the petiole as in Dictyophleba, Ancylobotrys and Carissa (Fig. IC, F); on both surfaces of midrib as in Baissea myrtifolia and Holarrhena pubescens (Fig. II, B); on adaxial midrib as in Carissa tetramera or on abaxial leaf surface as in H. pubescens and Stephanostema stenocarpum. Hairs simple, uniseriate, 1-20-
celled; thin-walled, short as in Mascarenhasia arborescens (Fig. IE); thick walled, long and straight as in Holarrhena pubescens (Fig. IB); thick-walled, curved, with very short cells as in Dictyophleba lucida (Fig. IF); thick-walled, hooked, but with longer basal cells and shorter terminal cells as in Baissea myrtifolia (Fig. II). Glandular hairs with three basal cells have been observed in the petiole of Motandra guineensis (Fig. ID). Tufts of hairs (domatia) are present in the axils of secondary veins e.g. in Baissea myrtifolia, with long curled hairs (Fig. 3E) and in Oncinotis tenuiloba with short straight hairs (Fig. 3 F).

Cuticular surface: smooth as in Diplorhynchus condylocarpon (Fig. 2A) and Carissa tetramera (Fig. 5C); with wings of striae across subsidiary cells as in T. stapfiana (Fig. 5B); with concentric rings of striae over subsidiary cells as in Strophanthus courmontii (Fig. 4 C); with ridges extending from the stomatal poles as in Stephanostema stenocarpum (Fig. 5A); with striations confined to each cell as in Schizozygia coffaeiodes (Fig. 2D) or striate over the whole surface as in Tabernaemontana stapfiana (Fig. 2C).

Stomata: distribution hypostomatic in almost all species examined except in Strophanthus courmontii (Fig. 6A), Schizozygia coffaeiodes, Voacanga africana and V. thouarsii where it is amphistomatic and in Carissa edulis where a few stomata overly the adaxial midrib. In this case the stomata found on the adaxial surface are very few and larger than the ones on the abaxial surface (Fig. 6A, B).

Stomata outline: broadly elliptic as in Carissa tetramera (Fig. 5C); narrowly elliptic as in Rauvolfia mannii (Fig. 7G); circular as in Ancylobotrys tayloris (Fig. 5E).

Density permm ${ }^{2}$: (Table 2): lowest inTabernaemontana pachysiphon (31-56-69) and highest in Dictyophleba lucida (700-825-925).

Stomatal size: (Table 2): ranging from 14.6-16.6 $\mu \mathrm{m}$ long in Landolphia watsoniana to 26.4-36.5 $\mu \mathrm{m}$ long in Tabernaemontana stapfiana.

Subsidiary cells: in most cases the subsidiary cells were readily distinguished from adjacent epidermal cells by their specially thin cuticle; paracytic (Fig. 7D, F, G), sometimes extending over one or both poles (laterocytic) as in Carvalhoa campanulata, Holarrhena pubescens (Fig. 6D) and Stephanostema stenocarpum; usually with one or two pairs of subsidiary cells, rarely 3 pairs as in Acokanthera oppositifolia (Fig. 6F); occasionally paracytic cells subdivided by radiating walls on one or both sides as in Strophanthus courmontii (Fig. 6B); anomocytic and anisocytic as in Hunteria congolana; anomocytic with 5-8 cells around the stoma as in Clitandra cymulosa and 3-6 cells as in Dictyophleba lucida (Fig. 6H); cyclocytic or cyclocytic-tetracytic with 3-4 subsidiary cells as in Pleiocarpa (fig ${ }_{7 B}$ B), with 7-8 subsidiary cells as in Carissa edulis; tetracytic with 4 subsidiary cells as in A. oppositifolia (Fig. 6F); occasionally complex as in A. oppositifolia. Primary stomata observed in several species of most genera (Fig. 4C); double stomata
present in several species (Fig. 6B); single guard cell observed in Holarrhena pubescens.

Anticlinal walls: (Table 2), \pm straight on both sides as in Acokanthera oppositifolia (Fig. 6E, F); very undulate on both sides as in Baissea myrtifolia (Fig. 7C, D); slightly undulate on both sides as in Rauvolfia mannii (Fig. 6E, F); adaxial straight, abaxial undulate as in Oncinotis tenuiloba and Rauvolfia mombasiana (Fig. 7G, H).

T.S. (Transverse Section) of leaf lamina (Figs. 13, 14)

Thickness: (Table 1), ranging from 82-1 10 $\mu \mathrm{m}$ in Baissea myrifolia to $384-458 \mu \mathrm{~m}$ Acokanthera oppositifolia.

Cuticle and outer periclinal walls: (Fig. 8, 9,) the outer cuticle is of even thickness along the lamina (Fig. 8A, K,W) and of even thickness to crenate at the midrib and margin (Fig. 9H, I, J, K, L, T); generally thicker at the midrib and margin in all species examined (Fig. 9A, B, G, M, P, T); ranging from $1 \mu \mathrm{~m}$ in Carvalhoa campanulata to 9.4-48 $\mu \mathrm{m}$ in Acokanthera oppositifolia.

Epidermal cells: (Fig 8, 9), more or less rectangular in most of the species examined (Fig. 8 A, B, O, S, T); Table I, to almost square or taller than wide as in Adenium obesum which has the largest epidermal cells (up to $68.4 \times 6 \mathrm{I} .8 \mu \mathrm{~m}$) (fig. 8C); adaxial epidermal cells generally larger than abaxial (Fig. 8C, D), occasionally of \pm the same size as in Diplorhynchus condylocarpon; usually smaller, taller than wide and with an obtuse apex at the midrib in Adenium obesum (Figs. 9C, D) and Oncinotis tenuiloba; with an acute apex as in Mascarenhasia arborescens (Figs. 9I, J). Adaxial epidermal cells I-layered in most species; 2-layered at the midrib and margin as in Mascarenhasia arboresens (Fig.9S); intermittently 2-layered with larger cells in the second layer in Ancylobotrys tayloris (Fig. 8E); irregularly 2-3-layered, sometimes with tangential divisions in Funtumia elastica and Tabernaemontana pachysiphon (Figs. 8M, U, W I8F); abaxial mostly I-layered; I-2-layered as in F. elastica and T. stapfiana (Figs. 8N, X).

Stomata T.S.: (Figs. 10 \& II), Stomata level with the cuticular surface as in Oncinotis tenuiloba (Fig. I ID), Adenium obesum or Alafia microstylis; raised on abaxial surface as in Strophanthus courmontii and Tabernaemontana pachysiphon (Figs. I IF, H); sunken on adaxial surface as in Strophanthus courmontii and abaxial surface Voacanga thouarsii (Figs. IIE, J); with a very thick cuticular ledge as in Acokanthera oppositifolia and Picralima nitida (Figs. IOA, I IA); with smaller cuticular ledges in several other species (Figs. i iB, C, I, IoB, C, F, H, I).

Mesophyll: (Table 2; Fig. 12), bifacial in all the species examined except in Saba comorensis (Fig. I2A) and where it is homogenous (the palisade and spongy tissue cannot be distinguished). In some species like Acokanthera oppositifolia there are 2-3 layers of poorly developed palisade-like cells above the lower epidermis (Fig.

12E), 3-rows in Carissa edulis, 2-rows in Clitandra cymulosa (tendency to be isobilateral).

Palisade tissue: (Table 1), the palisade tissue consists of 1-4 layers of regularly arranged cells elongated at right angles to the adaxial epidermis; it may extend to the midrib as in Tabernaemontana elegans (Fig. 15F) or leave a gap as in Saba comorensis (Fig 15D); it is I-layered in Holarrhena pubescens (Fig. 12B), Baissea myrtifolia and Carvalhoa campanulata; 2-layered as in Clitandra cymulosa and 3-4layered as in Strophanthus courmontii,Tabernaemontana elegans (Fig. 12D) and T. stapfiana. In the multiseriate palisade tissue the outermost cells are the longest, the innermost the shortest; palisade cells are characteristically short in Strophanthus courmontii and several times longer than wide as in Carissa tetramera (Fig. 16B), Rauvolfia caffra, Landolphia buchananii and Funtumia elastica (Fig. 17E).

Spongy mesophyll cells: (Fig. 12), appear less regular; transversely elongated and compact as in Hunteria congolana and H. pubescens (Fig. 12B), or less compact as in Tabernaemontana elegans (Fig. 12D) except in Saba comorensis where all the cells are vertically elongated and very compact (homogenous) (Fig. 12 A) and in Ancylobotrys tayloris where they are also more or less elongated perpendicular to the leaf surface, but very lacunate (Fig. 12C), and in Diplorhychus condylocarpon where they are less lacunate (Fig. 12F) and in Adenium obesum where they are more or less irregularly arranged.

Minor veins: embedded in most of the species examined, collateral, with xylem on adaxial and phloem on abaxial side; xylem vessels usually surrounded by thickwalled fibres as in Pleiocarpa bicarpellata (Fig. I6F), the larger veins of Acokanthera oppositifolia are bicollateral; transcurrent as in Diplorhynchus condylocarpon (Fig. 12F), Ancylobotrys petersiana and Saba comorenis (Fig. 12A) with girders towards one or both epidermis (Figs. I2A,F). Girders and bundle sheath cells composed of thin- to thick-walled parenchyma cells (Fig. I6F).

Midrib: (outlines illustrated in Figs. 13 \& 14).
Thickness: thickest in Tabernaemontana stapfiana (2013-2141 $\mu \mathrm{m}$) and thinnest in Baissea myrtifolia (20I-238 $\mu \mathrm{m}$); adaxial outline \pm straight as in Motandra guineensis (Fig. 14B) and Baissea myrtifolia (Fig. 13F); prominent as in Holarrhena pubescens and Tabernaemontana pachysiphon (Figs. 13N, 14N, 15B); abaxial \pm straight as in Ancylobotrys tayloris and Pleiocarpa pycnantha (Figs. I3E, 14E, 15E), very prominent as in Tabernaemontana elegans (Fig. 15 F); outline \pm straight on both sides as in Diplorhynchus condylocarpon and Landolphia watsoniana (Figs. I3L, R).

Vascular bundle bicollateral, usually consisting of one median crescentic bundle (Figs. 13, 14) but may have small accessory bundles as in Pleiocarpa pycnantha (14 E); usually in the form of a shallow arc as in Carissa edulis (Fig. 13G) although
it may rarely be crenate as in Pleiocarpa bicarpellata (Fig. 14D), comparatively deep as in Mascarenhasia arborescens (Fig. 14A) and v-shaped as in Tabernaemontana (Figs. 14M, N, O); ends of bundle in contact with one another, forming a cylindrical bundle as in Landolphia and Clitandra (Figs. I3J, Q), in this case the top part of the bundle is predominantly composed of fibres (Fig. 15C); with a lower crescentic bundle and five smaller ones at the top as in Saba comorensis (Fig. 15D); in Clitandra cymulosa the outer phloem is surrounded by lignified tissue.

Phloem: generally surrounds the xylem as in (Figs. 13, 14), but may extend across the bundle as in Ancylobotrys, Tabernaemontana and Landolphia (Figs. 13D, E, $14 \mathrm{~N}, \mathrm{O}$); may also form islands of phloem in the middle of the bundle as in Dictyophleba lucida and Tabernaemontana elegans (Figs. 13K, 14M, 15F); the islands of phloem may alternate with thick-walled mucilaginous fibres as in Oncinotis tenuiloba (Fig. 16A) and Motandra guineensis.

Fibres: mucilaginous fibres usually present in groups of 1-20 immediately below the vascular bundle (Fig. 16F), may extend to the abaxial side which usually has less fibres. Lignified, thick-walled fibres present on the adaxial side of the bundle in Carissa tetramera.

Laticifers: (Fig. 17) The laticifers are typically branching tubes with thin, smooth walls and no dividing transverse walls (Fig. 17B, C, E). The degree of branching varies from species to species and may be very branched as in Funtumia elastica, (Fig. 17E) to less branched as in Landolphia. The laticifers are mostly narrower than the surrounding cells ($6-13 \mu \mathrm{~m}$ diam.) but may be very wide as in Carissa and Acokanthera ($32 \mu \mathrm{~m}$ diam.) and become increasingly narrower towards the epidermis (Fig. 17B). They ramify throughout the mesophyll, commonly following the veins (Fig. 17A, D) and ramify outwards towards the epidermis as in Adenium obesum (Fig. 17B) or towards the palisade as in Holarrhena pubescens. Also observed adjacent to the inner periclinal walls of the adaxial epidermis, above the palisade tissue as in Strophanthus courmontii and Hunteria zeylanica; present in the ground tissue of the petiole ramifying towards the epidermis as in H. pubescens and Ancylobotrys petersiana (Fig 17C).

Crystals: (Fig. 18), clustered, solitary, small prismatic or rhomboidal crystals of calcium oxalate recorded. Clustered crystals occur in large idioblasts as in Hunteria zeylanica, mainly in the palisade tissue (Fig. ${ }_{17} \mathrm{E}, 18 \mathrm{~A}$); in enlarged cells in the first layer of the spongy mesophyll as in Holarrhena pubescens or in the entire mesophyll as in Funtumia elastica and Oncinotis tenuiloba (Fig. 18B); in layers of 2-4 crystals above the minor veins as in Rauvolfa caffra and R. mombasiana (Fig. 18E); in the ground tissue of the midrib especially in Schizozygia coffaeoides and Funtumia elastica. Smaller crystals common in the layer above the lower epidermis in most species. Solitary crystals occasional in both epidermis of Pleiocarpa bicarpellata and Hunteria; solitary and crystals of irregular shape frequently abundant in the in the phloem of most of the species investigated and in the ground tissue of the midrib
of Motandra guineensis alternating with clustered crystals; along the veins in Dictyophleba lucida (Fig. I8D).

Margin: (Fig. 19) usually straight as in Acokanthera oppositifolia (Fig. 19A) to revolute as in Schizozygia coffaeoides (19B); slightly revolute (downcurved) at the tip with a rounded apex as in Carissa tetramera (Fig. I9C). Epidermal cells may be small as in Diplorhynchus condylocarpon and Baissea myrtifolia (Fig. 9Q); extremely large and with an obtuse apex as in Adenium obesum (Fig. 9N, 19D), acute as in Carissa edulis to long, pointed and papillose as in Acokanthera oppositifolia (Fig. 9M, 19A). Marginal vein with a well developed sclerenchymatous bundle sheath of several layers in Carissa tetramera (Fig. 19C) and A. oppositifolia, and Dictyophleba lucida (Fig. 19C).

Petiole: (Figs. 20 \& 21), Outline varies from ridged on the abaxial and canaliculate on adaxial as in Funtumia elastica (Fig. 20G) or straight on adaxial as in Adenium obesum (Fig. 20B) to subglobose as in Schizozygia coffaeoides (Fig. 2 ID) to circular as in Dictyophleba lucida (Fig. 20F). Vascular bundle bicollateral, of one crescentic median bundle which may be shallow as in Adenium (Fig. 20B); deep and with incurved edges as in Hunteria and Pleiocarpa (Figs. 20H, 2 IC) to almost cylindrical as in Ancylobotrys, Dictyophleba or Motandra (Fig. 20C, F, 2 I A); to cylindrical but flattened on the adaxial side to form a semi-circle as in Clitandra cymulosa and Saba comorensis (Fig. 20D, 2 IB). Vascular strand strongly supported in the pericyclic region by thick-walled mucilaginous fibres in Hunteria, Pleiocarpa (Fig. I6C) and Picralima. Cluster crystals present in the ground tissue of the petiole in Funtumia elastica, Mascarenhasia arborescens (Fig. I8C), Schizozygia coffaeoides and in Motandra guineensis, styloids also present.

YOUNG STEM (Transverse section):

The stem of 20 species of Apocynaceae was examined. All had the similar type of arrangement in cross section (Figs. 22E,F), with the epidermis outermost; followed by the cortex, sometimes with solitary or grouped stone cells; then the pericycle with white, sometimes mucilaginous, unlignified fibres, mostly in groups; followed by the phloem; then the xylem which forms a continous cylinder traversed by narrow rays; all the species have an intraxylary phloem at the margin af the pith; pith frequently containing sclerosed elements as in Acokanthera, Carissa, Hunteria, Landolphia, Picralima, Pleiocarpa and Tabernaemontana (Figs. 22 D, F). According to Mecalfe and Chalk (1950), no pericyclic fibres were seen Rhazya orientalis (Dcne.) A. DC. Amsonia orientalis Dcne.Latifers are present in all the species examined and is generally situated in the primary cortex, pericycle, phloem and pith (Fig. ${ }_{17} \mathrm{~F}$).

I. 5 Characteristics of the genera

1.5.1 Acokanthera G. Don

(Figs. 3D, 6E, F, 8A, B, 9A, B, M, 10A, M, 12E, 13A, 17A, 19A, 20A; Tables i, 2, 3; Appendix I)

A genus of 5 species, mainly trees or shrubs from Yemen to South Africa. It is represented by three species in East Africa. A. oppositifolia is examined here.

Leaf surface

HAIRS: absent. CUTICULAR SURFACE (SEM): more or less smooth but very uneven on both surfaces. STOMATA (Table 2): hypostomatic; paracytic, with 2-3 pairs of subsidiary cells and cyclocytic-teracytic, sometimes with very complex subsidiary cells Figs. 6E, F). outline broadly elliptic to circular and rounded at the poles, with wide rims and a round aperture; subsidiary cells obscured by thick peristomatal rims; size $15-22 \times$ 11.5-16 $\mu \mathrm{m}$; density per $\mathrm{mm}^{2} 650-7$ 19. EPIDERMAL CELL OUTLINE: indistinctly visible as grooves. ANTICLINAL WALLS (LM): straight to slightly curved on both sides (Figs. 6E, F).

T.S. lamina

THICKNESS (Table 2) 384-458 $\mu \mathrm{m}$ thick. CUTICLE: adaxial 19-26.6 $\mu \mathrm{m}$ thick, abaxial 9.4-1 5μ m thick, very thick at the midrib, even thicker at the margin at 22-48 $\mu \mathrm{m}$. ADAXIAL EPIDERMAL CELLS: I-layered, rectangular, I I-I9 $\times 19-40 \mu \mathrm{~m}$, much smaller at the midrib. ABAXIAL EPIDERMAL CELLS: i-layered, in.4$19 \times 5.7-28.5 \mu \mathrm{~m}$, much smaller than adaxial, even smaller at the midrib, triangular and acute at the apex. STOMATA (T.S.) (Fig. IOA): with a very thick cuticular ledge and wide aperture. MESOPHYLL: bifacial; palisade extends to the midrib, in 2(-3) rows, with I-2 layers of poorly developed palisade on the abaxial side (Fig. 12 E); spongy mesophyll with somewhat horizontally elongated cells, with ample air spaces. MINOR VEINS: small veins collateral with xylem on the adaxial and phloem on the abaxial side; larger veins bicollateral, with a lot of fibres on the lateral and abaxial side of the xylem tissue. MIDRIB (Fig. 13A; Table i): $677-732 \mu \mathrm{~m}$ thick; abaxial outline almost flat to slightly curved; abaxial with a slight ridge. Vascular bundle bicollateral, forming a shallow arc, with 6-10 mucilaginous fibres on the adaxial side, xylem tissue with a lot of thick-walled, xylem fibres on the adaxial and lateral sides (Fig. 17A). Collenchyma on the adaxial periphery of the midrib. MARGIN: straight, with a marginal vein surrounded with several layers of sclerenchymatous tissue; cuticle very thick; epidermal cells papillose, pointed (Fig. 19A) CRYSTALS: cluster crystals (druses) present in the palisade layer, especially in the 2nd row and the layer immediately above the lower epidermis. LATICIFERS: always accompany the veins, quite prominent at the midrib (Fig. 17A), branching throughout the mesophyll towards the adaxial or abaxial epidermis, becoming increasingly narrower at the point of branching.

T.S. petiole

Vascular bundle bicollateral, forms a relatively deep arc with incurved edges (Fig. 20A), with small accessory bundles predominantly surrounded with thick-walled fibres; Laticifers observed along the veins as in the midrib; ground tissue predominantly parenchymatous, lignified, with pits.

Comments:

This species exibits various xeromorphic characters such as coriaceous leaves, thick cuticle and outer epidermal cell walls as well as a tendency towards being isobilateral. The stomata has a very thick cuticular ledge.

1.5.2 Adenium Roem. \& Schult.

(Figs. 8C, D, 9C, D, N, 10B, 13B, 17B, 19B, 20B; Tables I \& 2, 3; Appendix i)
A genus of 6 species, mainly succulent shrubs or trees up to 5 m tall in Africa from Senegal in the West to South Africa. Represented by Adenium obesum in East Africa which extends to Socotra and the extreme southern part of Arabia, and is examined here.

Leaf surface

HAIRS: absent. CUTICULAR SURFACE (SEM): adaxial surface smooth, abaxial striate over the whole surface. STOMATA: hypostomatic and paracytic, occasionally subsidiary cells subdivided by radiating walls on one or both sides or sometimes cyclocytic-staurocytic with 3-4 cells around the stomata; outline elliptic; size 23$33.5 \times$ 19-22.5 $\mu \mathrm{m}$; density per mm^{2} I 50-188. EPIDERMAL CELL OUTLINE (SEM): adaxial with cuticular ridges over anticlinal walls, smooth within the cells. ANTICLINAL WALLS (LM): adaxial straight angular, abaxial straight to very slightly curved.

T.S. Lamina

THICKNESS (Table 1, Fig. I3B): 403-439 $\mu \mathrm{m}$. CUTICLE: thickest on adaxial epidermis and leaf margin, thinnest on lower epidermis. ADAXIAL EPIDERMAL CELLS (Fig. 8C): regular, I -layered, very large, 43.7-68.4 $\times 28.5-6 \mathrm{I} .8 \mu \mathrm{~m}$, taller than wide, smaller at the midrib. ABAXIAL EPIDERMAL CELLS (Fig. 8D): irregular, 1 -layered, $19-28.5 \times$ 15.2-57 μ m, wider than tall. STOMATA (T.S.) (Fig. ioB): slightly raised and with a wide aperture. MESOPHYLL: bifacial; palisade layers $\mathrm{I}-2$, does not extend to the midrib; spongy mesophyll cells more or less irregularly arranged and quite compact. MINOR VEINS: collateral, with a parenchymatous sheath. MIDRIB (Fig. I3B; Table I): 1245-1263 $\mu \mathrm{m}$ thick, with a prominent abaxial ridge and a slight adaxial projection. Vascular bundle crescent-shaped, bicollateral; ground tissue of midrib collenchymatous towards the periphery, especially on the abaxial side. MARGIN: slightly revolute at the tip, with collenchyma at the acute tip; epidermal cells taller than wide with a rounded apex (Figs. 9N, 19D). CRYSTALS: none seen. LATICIFERS (Fig. I7B): many, branched throughout the mesophyll;
along the veins; branching below the palisade and epidermis; between the palisade and epidermal cells and towards the abaxial or adaxial epidermis.

T.S. petiole

Vascular bundle bicollateral, forming a shallow arc, with accessory bundles at the wings (20 B); collenchyma cells at the periphery; epidermal cells very small.

Comments: the leaves examined have no hairs, but the leaves of this genus are usually glabrous to hairy. Nyawuame \& Gill (1991) recorded anomocytic stomata in Adenium obesum with straight anticlinal walls on both leaf surfaces and the agenous type of stomatal development.

1.5.3 Alafia Thouars

(Fig. 90, 13C; Table 1, 2; Appendix 1)
A genus of 23 lianescent species in Africa. Represented by 5 species in East Africa. A. microstylis is examined here.

Leaf surface

HAIRS: absent. CUTICULAR SURFACE (SEM): smooth. STOMATA: hypostomatic; paracytic; outline elliptic, size $18-25 \times 19-20 \mu \mathrm{~m}$; density per mm^{2} I40-1 50. EPIDERMAL CELLOUTLINE (SEM): undulate ANTICLINAL WALLS (LM): both undulate.

T.S. lamina

THICKNESS (Table i) 256-302 $\mu \mathrm{m}$. CUTICLE: i.9-2.9 $\mu \mathrm{m}$ thick on both sides, 3.8-4.8 μ m thick around the midrib. ADAXIAL EPIDERMAL CELLS: i-layered, 13.3-18 \times 13.3-34.2 $\mu \mathrm{m}$, rectangular, 2-layered at the midrib and leaf margin, thickwalled. ABAXIAL EPIDERMAL CELLS: I-layered, 8.6-12.4 \times 13.3-32.3 $\mu \mathrm{m}$, narrower. STOMATA (T.S.): more or less level with the surface. MESOPHYLL: bifacial; palisade $15-36 \times 4-13 \mu \mathrm{~m}$, in I-2(-3) rows, extends to the midrib; spongy mesophyll with somewhat horizontally elongated cells, not compact. MINOR VEINS: embedded, collateral, with xylem surrounded with thick-walled fibres, phloem abaxial, with an outer parenchyma sheath; larger minor veins bicollateral. MIDRIB (Table I; Fig. I3C): 402-439 μ m thick; adaxial outline with a slight depression, abaxial slightly projecting. Vascular bundle bicollateral forming a shallow crescentic arc with islands of mucilaginous fibres below. Collenchyma present only on the adaxial periphery. MARGIN: straight, epidermal cells smaller (Fig. 90); cutin thick. CRYSTALS: a few large clustered crystals in the mesophyll, smaller ones on the row above lower epidermis; a few rhombohedra and many small clustered crystals in the phloem. LATICIFERS: accompany the veins; branching below the palisade; between epidermal cells towards both epidermis.

T.S. petiole

Vascular bundle bicollateral.
Comments: Nyawuame \& Gill (1991) reported paracytic stomata, with sinuous anticlinal walls on both surfaces and the eumesogenous ontogenetic type of development in Alafia barteri, A. multiflora and A. landolphioides (as A. scandens). Stomatal sizes ranged from 23.2-25.8 \times 13.6-19.8 $\mu \mathrm{m}$.

1.5.4 Ancylobotrys Pierre

(Figs. $1 \mathrm{C}, 4 \mathrm{D}, 5 \mathrm{E}, 8 \mathrm{E}, \mathrm{F}, 9 \mathrm{E}, \mathrm{F}, 10 \mathrm{C}, \mathrm{D}, 12 \mathrm{C}, 13 \mathrm{D}, \mathrm{E}, \mathrm{I}_{5} \mathrm{E}, 20 \mathrm{C}$; Tables 1 \& 2, 3; Appendix 1)

A genus of 7 species, mainly lianas or sarmentose shrubs restricted to Africa, with A. petersiana spreading to the Comoro Islands and Madagascar. It is represented by three species in E. Africa, A. petersiana and A. tayloris are observed here.

Leaf surface

HAIRS: present on the petiole of both species, 2-7-celled, thin-walled in both. CUTICULAR SURFACE (SEM): adaxial of A. tayloris with small bumps, abaxial smooth but with thick cuticular ridges over subsidiary cells (Fig. 5 E). STOMATA (Fig. 4D, 5E): hypostomatic, anomocytic in A. petersiana, outline circular in A. tayloris and with a round aperture. EPIDERMAL CELL OUTLINE (SEM): not visible on adaxial surface in A. tayloris. ANTICLINAL WALLS (LM): very undulate on both sides in A. petersiana, undulate on both sides in A. tayloris.

T.S. Lamina

THICKNESS (Table I): 229-300 $\mu \mathrm{m}$ in A. tayloris, 293-320 $\mu \mathrm{m}$ in A. petersiana. CUTICLE: thicker in A. tayloris, thickest on adaxial midrib in both. ADAXIAL EPIDERMAL CELLS (Figs. 8E, 9E): intermittently 2-layered in A. tayloris, second layer larger, thick-walled; i-layered in A. petersiana, 2-3-layered towards the margin and the midrib; outer periclinal wall of the first layer very thick in both. ABAXIAL EPIDERMAL CELLS (Figs. 8F, 9F): I-layered in both but with I-2 layers of short, compact cells above the lower epidermis. STOMATA (T.S.) (Figs. IOC, D): with a wider aperture in A. tayloris. MESOPHYLL: bifacial in both, but with a tendency towards being isobilateral in both; palisade 2(-3)-layered in both, does not extend to the midrib; spongy mesophyll composed of more or less vertically elongated cells with a lot of air spaces (Fig. 12C). MINOR VEINS: embedded or transcurrent and bicollateral in the larger veins in both species. MIDRIB (Figs. I3 D, E; Table i) 549$586 \mu \mathrm{~m}$ in A. tayloris, $714-750 \mu \mathrm{~m}$ in A. petersiana; outline almost straight on both sides in A. tayloris; adaxial gently curved, abaxial prominently ridged in A. petersiana. Vascular bundle bicollateral, forms a shallow arc in A. tayloris and a deeper one in A. petersiana; phloem extends across the vascular bundle and forms a semi-circle above it in both species (Figs. 13D, E, I5E) MARGIN: slightly revolute in both, with an acute tip in A. tayloris. CRYSTALS: solitary crystals in the
phloem and a few in the ground tissue below vascular bundle in A. petersiana. LATICIFERS: along veins; branching in the palisade towards both epidermis; below palisade tissue and epidermis in both species.

T.S. petiole

Ends of vascular bundle almost in contact with one another forming an almost cylindrical strand with accessory bundle in both (Fig. 20 C); laticifers branching between cells in the ground tissue.
Comments:
Both species have a very thick cuticle and outer epidermal cells and both have a tendency towards being isobilateral. A. tayloris can be distinguished from A. petersiana by its larger stomata with a wider, circular aperture; 2-layered epidermis and a midrib which is almost straight on both sides.
1.5.5 Baissea A. DC.
(Figs. II, 3E, 7C, D, 8G, H, 9Q, 13 F; Tables 1, 2, 3; Appendix 1)

A genus of 18 mainly lianescent species, mainly climbers or scandent shrubs restricted to Africa. Represented by five species in East Africa. B. myrtifolia is examined here.

Leaf surface

HAIRS: occur on adaxial surface of midrib and on petiole; multicellular, uniseriate, sometimes hooked with longer basal and shorter apical cells (Fig. II); domatia present in the axils of secondary veins (Fig. 3E). CUTICULAR SURFACE (SEM): more or less smooth but with uneven surface on both sides. STOMATA (Table 2; Figs. ${ }_{7 C} \mathrm{C}, \mathrm{D}$): hypostomatic and paracytic; outline elliptic; size $15-19.5 \times 8-13 \mu \mathrm{~m}$; density per mm^{2} 1 50-200. EPIDERMAL CELL OUTLINE (SEM): not visible. ANTICLINAL WALLS (LM): very undulate on both surfaces (Figs. 7C, D).

T.S. lamina

THICKNESS (Table I): 82-1 10 $\mu \mathrm{m}$. CUTICLE: $1-3 \mu \mathrm{~m}$ thick, thickest at the midrib. ADAXIAL EPIDERMAL CELLS (Fig. 8G): i-layered, rectangular, with an irregular in outline. ABAXIAL EPIDERMAL CELLS (Fig. 8H): i-layered, rectangular, with an irregular outline. STOMATA (T.S.): slightly raised. MESOPHYLL: bifacial; palisade I-layered, extends to the midrib; spongy mesophyll with more or less transversely elongated cells. MINOR VEINS: with a parenchyma sheath. MIDRIB (Fig. I3F): 20I-238 μ m thick; outline almost flat on adaxial surface; abaxial prominently ridged. Vascular bundle bicollateral, forming a shallow arc. Ground tissue of midrib collenchymatous towards the periphery. MARGIN: slightly revolute. CRYSTALS: cluster crystals present in the palisade layer; cluster and solitary crystals in the spongy mesophyll. LATICIFERS: along the veins; below the palisade; branching in the mesophyll towards both epidermises.

T.S. petiole

Vascular bundle u-shaped, bicollateral.

1.5.6 Carissa L.

(Figs. 4F, 5C, 9G, H, i0E, F, 13G, H, P, I6B, 17 D; Tables I \& 2, 3; Appendix 1)
A genus of about 20 species mainly shrubs or small trees in Africa, Asia and Madagascar. Represented by three species in East Africa, C. edulis and C. tetramera are investigated here.

Leaf surface

HAIRS: very few on adaxial midrib of C. tetramera and on petiole of both species; unicellular, simple and thin-walled. CUTICULAR SURFACE (SEM): smooth on both sides in C. tetramera and on abaxial surface of C. edulis. STOMATA: hypostomatic but in C. edulis a few stomata found on abaxial surface overlying the midrib and on adaxial surface of petiole; cyclocytic in C. edulis, paracytic in C. tetramera; outline broadly elliptic in both, and with a truncate pole in C. tetramera (Fig. 5C); size larger in C. edulis at $29-36 \times 23-32 \mu \mathrm{~m}$, sunken with a narrow aperture (Fig. 4 F); density per mm^{2} 500-572 in C. tetramera, $66-176 \mathrm{~mm}^{2}$ in C. edulis. EPIDERMAL CELL OUTLINE (SEM): outline obscurely visible on both sides. ANTICLINAL WALLS (LM) adaxial \pm straight, angular in C. tetramera, abaxial straight to slightly curved; straight to slightly curved on both surfaces in C. edulis.

T.S. lamina

THICKNESS (Table 1): 247-302 $\mu \mathrm{m}$ in C. edulis; 366-412 $\mu \mathrm{m}$ in C. tetramera. CUTICLE: thicker in C. tetramera on the adaxial midrib at 9-20 $\mu \mathrm{m}$. ADAXIAL EPIDERMAL CELLS (9G): i-layered in both, larger in C. tetramera, triangular and acute at the apex in C. edulis. ABAXIAL EPIDERMALCELLS (Fig. 9H): I-layered in both, rectangular in C. tetramera, smaller and triangular in C. edulis. STOMATA (T.S.) (Figs. IoE, F): raised, with a smaller aperture in C. edulis. MESOPHYLL: bifacial in both species, C. edulis with a tendency towards being isobilateral; palisade cells 2(-3)-layered, characteristically long, extends up to the midrib in both species; spongy mesophyll with transversely elongated cells in C. edulis; C. tetramera with shorter cells with arms; many transversely elongated thick-walled sclerids in the palisade and mesophyll of C. tetramera (Fig. I6 B). MINOR VEINS: smaller ones collateral with a parenchyma sheath; larger ones in C. tetramera with an outer parenchyma sheath and an inner sclerenchymatous sheath. MIDRIB (Fig. i3 G, H): almost flat on adaxial surface in both species, more ridged on abaxial surface in both. Vascular bundle bicollateral and forming a shallow arc in both species, with thick-walled lignified fibres above and below the bundle in C. tetramera. Collenchyma only on abaxial periphery of midrib. CRYSTALS: cluster crystals in the mesophyll of both; solitary crystals in the phloem and mesophyll of C. tetramera. LATICIFERS: along veins in the midrib (Fig. 17D) and mesophyll; be-
tween epidermal cells; below palisade; towards the upper and lower epidermis in both species; width decreasing at the point of branching. MARGIN: revolute in both species, apex bluntly obtuse in C. edulis and rounded in C. tetramera (Fig. 19C); epidermal cells triangular with acute apex in C. edulis (Fig. 9P); marginal bundle surrounded by a large amount of sclerenchyma in C. tetramera (Fig. 19C).

T.S. petiole

Vascular bundle forming a deeper and slightly incurved bundle in C. tetramera; epidermal cells small, triangular; laticifers observed along the veins in the midrib.

Comments: C. tetramera is easily distinguished by the foliar sclerids in the mesophyll of the leaves (Fig. 16B) and its venation with a strong marginal vein (Fig. 22 A). The stomata are smaller in C. tetramera which also has a higher density. Nyawuame \& Gill (1991) reported the paracytic type of stomata with straight anticlinal walls on both sides and eumesogenous type of stomatal development in C. edulis and size of $30.1 \times 17.4 \mu \mathrm{~m}$.

1.5.7 Carvalhoa K. Schum.

(Figs. 2E, 5F, 8I, J, 10G, 13I; Tables 1, 2, 3; Appendix 1)
A monotypic genus restricted to Eastern and South Eastern Africa. In East Africa it is restricted to Kenya and Tanzania. The only species, C. campanulata, is examined in the present study.

Leaf surface

HAIRS: absent. CUTICULAR SURFACE (SEM): adaxial with striations over the whole surface, striations crossing cell outlines (Fig. 2E); abaxial with concentric rings striae over subsidiary cells and with cuticular ridges on the rest of the surface (Fig. 5F). STOMATA (Fig. 5F; Table 2): hypostomatic; paracytic with one subsidiary cell on either side, subsidiary cells extending over one or both poles; outline elliptic; size $20-25 \times 13-19 \mu \mathrm{~m}$; density per $\mathrm{mm}^{2} 8 \mathrm{I}$-106-150. EPIDERMAL CELL OUTLINE (SEM): adaxial with cuticular ridges over anticlinal walls (Fig. 2E), abaxial with irregular cuticular ridges. ANTICLINAL WALLS (LM): adaxial straight to slightly curved, abaxial undulate.

T.S. lamina

THICKNESS (Table I; Fig 8I, J): $156-220 \mu \mathrm{~m}$. CUTICLE: very thin, c. I $\mu \mathrm{m}$. ADAXIAL EPIDERMAL CELLS (Fig. 81): regular, i-layered, wider than tall, collenchymatous at the midrib. ABAXIAL (Fig. 8J): I-layered. STOMATA (T.S.) (Fig. IoG): slightly raised. MESOPHYLL: bifacial; palisade, I-layered, extends to the midrib; spongy mesophyll with short transversely elongated cells. MINOR VEINS: collateral, with xylem on adaxial side. MDRIB (Fig. 13I; Table I): 1409$1446 \mu \mathrm{~m}$ thick; adaxial ridge small, less prominent, abaxial more prominent, ushaped. Vascular bundle bicollateral, forming a deep arc; collenchyma in 2-3 layers
on both surfaces. MARGIN: revolute, with 2-3 layers of collenchymatous cells; epidermal cells subglobose. CRYSTALS: cluster crystals in the palisade layer. LATICIFERS: along the veins; in the mesophyll and among parenchyma cells of ground tissue.

T.S. petiole

Vascular bundle bicollateral, u-shaped, with accessory bundles on the wings.

NOTES: The petioles and leaves of C. campanulata sometimes have some pubescence.

1.5.8 Clitandra Benth.

(Figs. 8K, L, 9R, 13J, 20D; Tables 1 \& 2, 3; Appendix 1)

A monotypic genus restricted in Africa from Guinea to Tanzania. C. cymulosa, a large liana, is examined.

Leaf surface

HAIRS: absent. CUTICULAR SURFACE (SEM): STOMATA: hypostomatic; anomocytic with 5-8 cells around the stomata; outline broadly elliptic to rounded; size $17-23 \times 15-19 \mu \mathrm{~m}$; density per mm^{2} 288-340. EPIDERMAL CELL OUTLINE: not visible. ANTICLINAL WALLS (LM): more or less straight to very slightly curved on both sides.

T.S. lamina

THICKNESS (Table I): 192-247 $\mu \mathrm{m}$. CUTICLE: thickest at the margin. ADAXIAL EPIDERMAL CELLS (Fig. 8K): \pm square, smaller at the midrib. ABAXIAL EPIDERMAL CELLS (Fig. 8L): rectangular in shape, much smaller at the midrib. STOMATA (T.S.): slightly sunken stop. MESOPHYLL: bifacial, but with two layers of vertically elongate short palisade-like cells above abaxial epidermis; palisade layer in 2 rows, does not extend to the midrib; spongy mesophyll with horizontally elongated cells, not compact. MINOR VEINS: smaller ones embedded, with a parenchyma sheath; larger ones transcurrent towards the adaxial side. MIDRIB: 640$659 \mu \mathrm{~m}$ thick; outline more or less straight on adaxial side, prominent on abaxial side, acute. Vascular bundle bicollateral, forming an oval shape. MARGIN: straight. CRYSTALS: none seen. LATICIFERS: branching in the mesophyll and palisade layers towards both epidermis.

T.S. petiole

Vascular bundle bicollateral, cylindrical and flattened on adaxial side forming a semi-circle (Fig. 20D).

1.5.9 Dictyophleba Pierre

(Figs. IF, 4A, 6G, H, 13K, 18 D, 19C, 20F; Tables 1, 2, 3; Appendix 1)
A genus of 5 species in Africa, all lianas with tendrils. Only one species, D. lucida, extends to East Africa: Tanzania and Kenya.

Leaf surface

HAIRS (Fig. IF): present on the petiole, up to 25-celled, cells short. CUTICULAR SURFACE (SEM) (Fig. 4A): smooth. STOMATA (Fig. 6 G, H; Table 2): hypostomatic and anomocytic with 3-6 cells around the guard cells; outline almost circular; size 14.6-16.6 \times 14.6-1 $6.6 \mu \mathrm{~m}$; density per $\mathrm{mm}^{2} 700-825-925$. EPIDERMAL CELL OUTLINE (SEM). cell outlines obscurely visible as wide grooves (Fig. 4A). ANTICLINAL WALLS (LM): undulate on both surfaces.

T.S. lamina

THICKNESS (Table i): 183-3 I $\mu \mathrm{m}$. CUTICLE: very thin, i-3 $\mu \mathrm{m}$. ADAXIAL EPIDERMAL CELLS: i-layered, much larger than abaxial ones. ABAXIAL EPIDERMAL CELLS: i-layered, rectangular in outline. STOMATA (T.S.): raised. MESOPHYLL: bifacial; palisade layer in 2-rows, extends to the midrib; spongy mesophyll with vertically elongated, lacunate cells. MINOR VEINS: transcurrent, with outer parenchyma sheath and inner sclerenchymatous sheath; bundle sheath extensions towards both epidermis. MIDRIB (Fig. I3K): 714-787 μ m thick; slightly concave on adaxial surface; abaxial ridge prominent, with an irregular outline. Vascular bundle forming a wide u-shape, bicollateral, with islands of phloem within the u-shape (Fig. I3K). Collenchyma in 3-4 layers on both sides of the midrib. MARGIN (Fig. 19C): revolute with an obtuse tip, marginal vein with sclerenchyma. CRYSTALS: solitary crystals arranged in a neat row along the veins in the mesophyll. LATICIFERS: many laticifers seen especially branching from the mesophyll to the palisade and to the upper epidermis and margin.

T.S. petiole

Outline of petiole circular; ends of vascular bundle almost in contact with one another forming an almost cylindrical strand with accessory bundles at the wings of the petiole (Fig. 20F).

1.5.10 Diplorhynchus Welw. ex Fic. \& Hiern

(Figs. 2A, 5D, 9K, L, 12F, 13L; Tables 1, 2, 3; Appendix 1)

A monotypic genus with its only species, D. condylocarpon, restricted to Africa, which has been examined.

Leaf surface

HAIRS: absent. CUTICULAR SURFACE (SEM): adaxial smooth with very fine
striations, abaxial smooth (Figs. 2A, 5D). STOMATA (Table 2): hypostomatic; type; outline broadly elliptic with peristomatal rims (Fig. 5D); size $16-18 \times 14-16 \mathrm{~mm}$; density per mm^{2} 260-340; EPIDERMAL CELL OUTLINE (SEM): not visible. ANTICLINAL WALLS (LM): slightly undulate.

T.S. lamina

THICKNESS (Table I): 256-275 $\mu \mathrm{m}$. CUTICLE: 2.9-5.7 $\mu \mathrm{m}$ on the upper epidermis; $1.9-5.7 \mu \mathrm{~m}$ in the lower epidermis; thickest at the margin. ADAXIAL EPIDERMAL CELLS: i-layered, rectangular in shape, $7.6-15.2 \times 7.6-28.5 \mu \mathrm{~m}$, smallest at the midrib, triangular. MESOPHYLL (Fig. 12F): bifacial; palisade in 2 (-3) rows, very narrow; mesophyll vertically elongated. MINOR VEINS: transcurrent with bundle sheath extensions reaching towards both epidermises. MIDRIB: 439-458 $\mu \mathrm{m}$ thick; outline more or less straight on both sides. Vascular bundle bicollateral, forming a wide arc with phloem across the arc and many fibres below the vascular bundle. MARGIN: more or less straight with much collenchyma at the tip; epidermal cells narrow, small, acute at the apex.

T.S. petiole

Vascular bundle bicollateral.

Comments: the leaves are normally glabrous to pubescent; petioles are glabrescent to puberulent.

1.5.11 Funtumia Stapf

(Figs. 8M, N, $13 \mathrm{M}, \mathrm{I}_{7} \mathrm{E}, 20 \mathrm{G}$; Tables I, 2, 3; Appendix I)

A genus of two tree species restricted to Africa. F. elastica was available for study.

Leaf surface

HAIRS: absent. CUTICULAR SURFACE (SEM): rough. STOMATA: hypostomatic; paracytic; outline narrowly elliptic; size $19-25 \times 10-15 \mu \mathrm{~m}$; density per mm^{2} 300-320. EPIDERMAL CELL OUTLINE: completely obscured. ANTICLINAL WALLS: straight to slightly undulate on both sides.

T.S. Lamina

THICKNESS (Table i): 3II-366 $\mu \mathrm{m}$. CUTICLE: thickest on adaxial midrib. ADAXIALEPIDERMALCELLS (Fig. 8M, 9I): irregularly 2-3-layered, sometimes with periclinal divisions, thick-walled, 7.6-24.7 \times 13.3-24.7 $\mu \mathrm{m}$. ABAXIAL EPIDERMAL CELLS (Fig. 8 N): i-2-layered, thick-walled, smaller, 7 -II. $4 \times$ IO$20 \mu \mathrm{~m}$, even smaller around midrib, acute at the apex. STOMATA (T.S.): level with the surface. MESOPHYLL: bifacial; palisade extends to the midrib, in 2-3-rows, characteristically long; spongy mesophyll with transversely elongated cells with air spaces. MINOR VEINS: embedded, larger ones bicollateral, smaller ones collateral, with a parenchyma sheath. MIDRIB (Fig. I3M): 586-768 μ m thick; adaxial outline
almost flat, abaxial ridged; Vascular bundle bicollateral, forming a wide shallow arc; pockets of phloem interspersed with mucilaginous fibres above the arc, few fibres below it. Ground tissue collenchymatous towards the periphery. MARGIN revolute with two layers of epidermal cells and collenchymatous cells. CRYSTALS: many cluster crystals present in the mesophyll and lower cortex of midrib and larger minor veins. LATICIFERS(Fig. 17 E): branching freely in the mesophyll and along the veins; branching just below the epidermis and palisade tissue into the epidermal cells.

T.S. petiole

The vascular bundle forms a deep arc with adaxial phloem extending across the bundle and has three accessory bundles on each side of the wings; numerous clustered crystals in the ground tissue of the petiole; outline deeply canaliculate on adaxial side (Fig. 20G).

Comments: Leaf may have a few hairs on midrib.

1.5.12 Holarrhena R.Br.

(Figs. 1B, 2F, 4E, 6C, D, 12B, $13 \mathrm{~N}, 15 \mathrm{~B}$)

A genus of 4 species in Africa, Southern Continental Asia and Sri Lanka. Represented by only one species, H. pubescens, confined to Kenya and Tanzania, which is examined here.

Leaf surface

HAIRS (Figs. IB, 4 E): present on petiole, abaxial leaf surface and on both surfaces of the midrib and at the margin; I-2 (-7)-celled, the basal cells are shorter and terminal cells longer and may be hooked. CUTICULAR SURFACE (SEM) (Fig. 2F): abaxial striate; abaxial smooth. STOMATA (Figs. 6C, D; Table 2): hypostomatic; paracytic with subsidiary cells extending over the poles, a few anisocytic stomata also seen; double stomata and stomata with single guard cell seen; outline rounded to elliptic, slightly raised; with double rims; aperture wide, elliptic; size 17-31 $\times 14$ $19 \mu \mathrm{~m}$; density per mm^{2} 250-289-3 I 2 . EPIDERMAL CELL OUT LINE (SEM): with cuticular ridges over anticlinal walls (Fig. 2F). ANTICLINAL WALLS (LM): \pm straight, angular on both surfaces.

T.S. lamina

THICKNESS: 20I-220 $\mu \mathrm{m}$. CUTICLE: $\mathrm{I}-3 \mu \mathrm{~m}$ thick. ADAXIAL EPIDERMAL CELLS: i-layered, at some points seen dividing periclinally, taller than wide or more or less square. ABAXIAL EPIDERMAL CELLS: I-layered, rectangular, taller than wide at the midrib. STOMATA (T.S.): slightly raised. MESOPHYLL (I2B): bifacial; palisade layer i-layered, extends to the midrib, but leaves a gap; spongy mesophyll cells transversely elongated, very compact. MINOR VEINS: embedded, with a thin-walled parenchyma sheath; older ones transcurrent towards adaxial epi-
dermis. MIDRIB (Figs. I3N, I 5B;Table I): 970-IO25 μ m thick; adaxial outline with a small ridge, abaxial more prominent, u-shaped. Vascular bundle forming a shallow arc. Collenchyma on the periphery of both ridges. MARGIN: revolute at the extreme tip or more or less straight. CRYSTALS: cluster crystals in large subglobose cells immediately below the palisade layer. LATICIFERS: in the mesophyll along veins; below the palisade eventually ending in the upper or lower epidermis.

T.S. petiole:

Vascular bundle forms a very wide and a shallow u-shape, with small accessory bundles; many laticifers seen between cortical parenchyma cells of the petiole eventually ending in the epidermis.

Comments: the stomata are also reported to be paracytic in H. pubescens by Nyawuame \& Gill (1991) and in H. antidysenterica (= H. pubescens) by Chandra et al., (I969), with eumesogenous type of stomatal development (Nyawuame \& Gill 1991).

1.5.13 Hunteria Roxb.

(Figs. 3A, 18A, $10 \mathrm{H}, \mathrm{I}, 13 \mathrm{O}, \mathrm{P}, 20 \mathrm{H}, 22 \mathrm{~A}$; Table I, 2, 3; Appendix I)
A genus of 12 species restricted to Africa, only H. zeylanica extends to South and South East Asia up to Sumatra. Represented by two species in East Africa, H. congolana and H. zeylanica, both examined here.

Leaf surface:

HAIRS: absent. CUTICULAR SURFACE (SEM): smooth on both sides in H. congolana, smooth with fine striations in H. zeylanica. STOMATA: hypostomatic; anomocytic and anisocytic in H. congolana, complex-cyclocytic with sunk subsidiary cells in H. zeylanica (Fig. 3 A); outline broadly elliptic to circular; larger in H. zeylanica; density per mm^{2} greater in H. zeylanica at 294-350. EPIDERMAL CELL OUTLINE: not visible in both. ANTICLINAL WALLS (LM): both walls straight to very slightly curved in both species.

T.S. lamina

Width 183-220 in H. congolana, and 266-348 $\mu \mathrm{m}$ in H. zeylanica. CUTICLE: thickest at the midrib and margin in both species. ADAXIAL EPIDERMAL CELLS: ilayered in both species, more or less rectangular in H. congolana, taller than wide in H. zeylanica. ABAXIAL EPIDERMAL CELLS: i-layered in both, rectangular, larger in H. zeylanica; epidermal cells papillose with acute apex around midrib in H. congolana. STOMATA (T.S.) ($1 \mathrm{oH}, \mathrm{I}$): raised in both species. MESOPHYLL: bifacial, H. zeylanica with two layers of short palisade-like cells above the lower epidermis; palisade 1-2-layered in H. congolana, extends to the midrib; 2-3(-4)-layered in H. zeylanica; spongy mesophyll with short horizontally elongated cells, very compact in both species. MINOR VEINS: embedded, with a parenchyma sheath, xylem
surrounded by fibres. MIDRIB (130 , P; Table 1): 915-951 μ m thick in H. zeylanica, 403-439 $\mu \mathrm{m}$ thick in H. congolana; adaxial outline more or less straight, abaxial ridged in both. Vascular bundle bicollateral, forming a wide shallow arc in both species; mucilaginous fibres present on lower side in H. congolana. Ground tissue collenchymatous especially on the abaxial side. MARGIN: slightly revolute in both, epidermal cells taller than wide, with acute apex in H. congolana. CRYSTALS: cluster crystals in the palisade layer in large subglobose idioblasts in both species, idioblasts extremely large in H. zeylanica (Fig. 18A); mesophyll with cluster crystals in enlarged cells in H . zeylanica; H. congolana with numerous druses in the ground tissue of midrib and mesophyll and many solitary crystals in the phloem (Fig. 18F); solitary crystals in both epidermis. LATICIFERS: common adjacent to the lower periclinal walls of the adaxial epidermis, and between palisade cells in H. zeylanica; along veins of midrib in H. congolana.

T.S. petiole

Vascular bundle bicollateral; forms a deep u-shape with incurved margins, in both species; strongly supported in the pericyclic region by thick-walled mucilaginous fibres in groups of 2-35 scattered sclerosed elements in the ground tissue of H. zeylanica (Fig.16E).

Comments: anisocytic stomata with straight anticlinal walls on both surfaces and hemimesogenous type of stomatal development have been reported in H. umbellata by Nyawuame \& Gill (1991), size $18.7 \times 14.6 \mu \mathrm{~m}$.

1.5.14 Landolphia P. Beauv.

(Figs. 13 Q, R, I5C, 20 E; Table I, 2, 3; Appendix I)
A genus of 51 species in Africa and ca. 8 species are endemic to Madagascar. Represented by 7 species in East Africa and two are examined here.

Leaf surface

HAIRS: absent. CUTICULAR SURFACE (SEM): smooth on abaxial epidermis in L. watsoniana. STOMATA: hypostomatic and anomocytic in L. watsoniana; outline circular in L. watsoniana, elliptic in L. buchananii; size $15-18 \times 15-16 \mu \mathrm{~m}$; density per mm^{2} 500-625 in L. watsoniana. EPIDERMAL CELL OUTLINE: obscurely visible as groves. ANTICLINAL WALLS (LM): undulate on both surfaces in both species.

T.S. lamina

THICKNESS: $256-311 \mu \mathrm{~m}$ in L. buchananii, 201-256 $\mu \mathrm{m}$ thick in L. watsoniana. CUTICLE: thickest at the margin in both species. ADAXIAL EPIDERMAL CELLS: I-layered on both species, rectangular, larger in L. buchananii. ABAXIAL EPIDERMALCELLS: I-layered, rectangular, smaller in L. watsoniana. STOMATA
(T.S.): slightly raised in L. buchananii; slightly sunk in L. watsoniana. MESOPHYLL: bifacial; palisade I-2-layered in L. watsoniana, extends to the midrib; 2(-3)-layered with much longer cells in L. buchananii, does not extend to midrib; spongy mesophyll cells horizontally elongated in both. MINOR VEINS: embedded, with outer parenchyma sheath and inner sclerenchyma sheath; larger ones transcurrent towards both epidermis. MIDRIB (Figs. I3Q,R): adaxial slightly prominent in L. watsoniana, more or less straight in L. buchananii; abaxial more or less straight in L. watsoniana, ridged in L. buchananii. Vascular bundle forming a cylindrical strand in L. buchananii, flattened on the adaxial side (Figs. 13Q, I5C) and an almost cylindrical strand in L. watsoniana (Fig. 13R). MARGIN: straight in both. CRYSTALS: L. watsoniana with a few cluster crystals above minor veins and solitary crystals in the parenchyma sheath and along the veins; L. buchananii with solitary crystals in the ground tissue of midrib and in the 2nd layer of palisade, small cluster crystals in the palisade. LATICIFERS: towards upper and lower epidermis; along veins; between palisade cells and in the mesophyll.

T.S. petiole

Vascular bundle cylindrical, forming an oval shape in L. watsoniana (13 E), flattened adaxially in L. buchananii; ground tissue with solitary crystals in L. buchananii.

Comments: anomocytic stomata with sinuous anticlinal walls on abaxial surface and agenous type of stomatal development reported in L. calabrica and L. dulcis var. barteri ($=$ L. dulcis) and paracytic stomata in L. owariensis with sinuous anticlinal walls on both surfaces and eumesogenous type of stomatal development by Nyawuame \& Gill (1991). Landolphia buchananii may sometimes have leaves with pubescence.

1.5.15 Mascarenhasia A. DC.

Figs. IE, 9I, J, S, 14A, 18C; Table 1, 2, 3; Appendix I)
A genus of 8 species, all distributed in Madagascar, one of which also occurs in East Africa: M. arborescens.

Leaf surface

HAIRS (Fig. IE): simple, unicellular hairs on abaxial petiole. CUTICULAR SURFACE (SEM): rough. STOMATA: hypostomatic, elliptic, outline; size 2I-3I \times IO$18 \mu \mathrm{~m}$; density per mm^{2} 200-2 13 ; EPIDERMAL CELL OUTLINE (SEM): obscured. ANTICLINAL WALLS: abaxial straight, adaxial undulate.

T.S. lamina

THICKNESS (Table I): 21 I-256 $\mu \mathrm{m}$. CUTICLE: thickest at the midrib at the midrib and margin. ADAXIAL EPIDERMAL CELLS: irregularly 1-2-layered, almost square to rectangular; smaller at the midrib, taller than wide with an acute apex (Fig. 9I). ABAXIAL EPIDERMAL CELLS: i-layered, rectangular; smaller around the
midrib and with a pointed apex (Fig. 9J). MESOPHYLL: bifacial; palisade 1-2-layered, extends to the midrib; spongy mesophyll with transversely elongated cells, compact. MINOR VEINS: embedded, collateral with an outer parenchyma and an inner sclerenchymatous sheath. MIDRIB (Fig. 14A): 750-787 $\mu \mathrm{m}$ thick; adaxial outline almost straight, abaxial prominently ridged. Vascular bundle bicollateral, forming a deep arc, with islands of phloem above the u-shape; mucilaginous fibres below the bundle, a few above it. Collenchyma in 3-4 layers on the periphery. MARGIN: revolute, epidermis 2-layered, collenchymatous. CRYSTALS: cluster crystals in the mesophyll and ground tissue of midrib; solitary crystals in the phloem. LATICIFERS: branched freely in the mesophyll; along the veins; below the palisade and epidermal cells towards both epidermis.

T.S. petiole:

Vascular bundle bicollateral, forms a u-shape, with numerous cluster crystals dispersed in the cortex.

1.5.16 Motandra A. DC.

(Figs. ID, H, 14B; Table 1, 2, 3; Appendix 1)
A genus of 3 species confined to Africa. M. guineensis is examined here.

Leaf surface

HAIRS: present on the petiole and midrib; simple, thick-walled, i-5-celled, with an acute apex (Fig. IH); few glandular hairs also observed on the petiole, with three short basal cell (Fig. ID). CUTICULAR SURFACE (SEM): smooth on both surfaces. STOMATA: hypostomatic anomocytic; type; outline elliptic, raised; size i5$19 \times 9-15 \mu \mathrm{~m}$; density per $\mathrm{mm}^{2} 70-160$. EPIDERMALCELLOUTLINE: featureless on both sides. ANTICLINAL WALLS: adaxial straight to slightly curved, abaxial undulate.

T.S. lamina

THICKNESS (Table i): 99-I Io $\mu \mathrm{m}$ thick. CUTICLE: adaxial 1.9-3.8 $\mu \mathrm{m}$ thick; abaxial 1.9-2.9 $\mu \mathrm{m}$, thickest at the midrib. ADAXIAL EPIDERMAL CELLS: $\mathrm{I}-$ layered, $9.5-13.3 \times 8.6-25.7 \mu \mathrm{~m}$. ABAXIAL EPIDERMAL CELLS: 1 -layered, smaller, 6.7-9.5 $\times 7.6-22.8 \mu \mathrm{~m}$. MESOPHYLL: palisade $\mathrm{I}(-2)$-layered; transversely elongated, compact. MINOR VEINS: embedded MIDRIB (14B): 513-549 μ m thick; adaxial outline straight, abaxial prominently ridged. Vascular bundle bicollateral, forming a deep arc with mucilaginous fibres interspersed with phloem within the arc and many pockets of mucilaginous fibres below the vascular bundle. CRYSTALS: numerous solitary crystals in the ground tissue below the vascular bundle and in enlarged cells in the palisade layer; many solitary crystals in the phloem.

T.S. petiole:

Vascular bundle bicollateral, oval shaped, ends of vascular bundle almost in contact with one another; phloem in the middle of the oval shape; numerous solitary and clustered crystals in the cortical region.

Comments: anomocytic stomata with sinuous anticlinal walls on both surfaces and the agenous type of stomatal development have been reported in M. guineensis by Nyawuame \& Gill (1991).

1.5.17 Oncinotis Benth.

(Figs. IG, 3C, 3F, 4C, IID, 14C, 16A, 18A; Table 1, 2, 3; Appendix 1)
A genus of 7 lianescent species confined to Africa. O. tenuiloba has been inspected here.

Leaf surface

HAIRS: present on adaxial surface of petiole; with short, thick-walled basal cells, terminal cell longer with an acute apex (Fig. IG) and in the axils of secondary veins as domatia (Fig. 3F). CUTICULAR SURFACE (SEM) (Fig. 3C): smooth on both surfaces. STOMATA: hypostomatic and paracytic; outline elliptic, slightly sunken; rim very narrow; aperture elliptic, wide; size $15-22.5 \times 10-14 \mu \mathrm{~m}$; density per mm^{2} 369-439; primary stomata observed. EPIDERMALCELL OUTLINE (SEM): cuticular ridges over anticlinal walls on both surfaces. ANTICLINAL WALLS (LM): adaxial straight to slightly curved, angular; abaxial undulate.

T.S. lamina

THICKNESS (Table 2) 147 -183 $\mu \mathrm{m}$. CUTICLE: very thin. ADAXIAL EPIDERMAL CELLS: i-layered, 2-layered towards the midrib, rectangular in outline. ABAXIAL EPIDERMALCELLS: smaller, rectangular to square. STOMATA (T.S.) (Fig. I ID): more or less level with the surface. MESOPHYLL: bifacial; palisade in I-2 rows; spongy mesophyll cells compact, transversely elongated. MINOR VEINS: embedded, collateral, with a parenchyma sheath. MIDRIB: abaxial prominently ridged, adaxial almost flat. Vascular bundle bicollateral, forming a deep arc with many fibres below and above interspersed with phloem tissue (Fig. I6A). Ground tissue collenchymatous at the periphery. CRYSTALS: numerous cluster crystals in the ground tissue of midrib and spongy mesophyll; solitary crystals and small cluster crystals in the phloem. LATICIFERS: occur along veins; branching below the epidermis and palisade towards both epidermis. MARGIN: slightly revolute.

T.S. petiole

Vascular bundle bicollateral, deeply curved with phloem in the middle of the arc; numerous crystals in the ground tissue (Fig. 18A).

Comments: paracytic stomata have also been reported in O. gracilis and O. nitida, with the eumesogenous type of stomatal development and anomocytic stomata with the agenous type of development in O. glabrata by Nyawuame \& Gill (1991).

1.5.18 Picralima Pierre

(Fig. II A; Table I, 3; Appendix I)
A monotypic genus restricted to Africa. The only species P. nitida is examined.

Leaf surface

HAIRS: absent. CUTICULAR SURFACE (SEM): rough. STOMATA: hypostomatic; anisocytic. Outline elliptic; size ; density per mm ${ }^{2}$. EPIDERMAL CELL OUTLINE: not visible. ANTICLINAL WALLS: more or less straight.

T.S. lamina

THICKNESS: $366-403 \mu \mathrm{~m}$. CUTICLE: thickest at the upper midrib region. ADAXIAL EPIDERMAL CELLS: I-layered, rectangular in shape, $13.3-19 \times 13.3-$ $25.7 \mu \mathrm{~m}$. ABAXIAL EPIDERMALCELLS: rectangular, $10.5-13.3 \times 1 \mathrm{I} .4-28.5 \mu \mathrm{~m}$, i-layered, smallest around the midrib and with an acute apex. STOMATA (T.S.) (Fig. II A). MESOPHYLL: bifacial; palisade does not extend to the midrib, ($\mathrm{I}-$)2-3layered; spongy mesophyll with horizontally elongated cells with ample air spaces. MINOR VEINS: with a parenchyma sheath. MIDRIB: $1208-1190 \mu \mathrm{~m}$; adaxial outline slightly concave, abaxial prominently ridged, acute; vascular bundle bicollateral, forming a deep arc, incurved at the edges, with many islands of fibres below the bundle. Ground tissue collenchymatous towards the periphery. MARGIN: revolute, epidermal cells smaller with a little collenchyma. CRYSTALS: druses in large idioblasts in palisade layer; numerous druses in the mesophyll especially in the layer above the lower epidermis; a few in the cortex below the vascular bundle, fewer above.

T.S. petiole

Vascular bundle bicollateral, forms a u-shape, with many fibres below the vascular bundle.

Comments: anomocytic stomata, with straight anticlinal walls on both sides and agenous type of stomata have been reported in P. nitida by Nyawuame \& Gill (1991).

1.5.19 Pleiocarpa Benth.

(Figs. 7A, B , 9T, IIB, C, 14D, E, 16C, E, F, 2 IB, 2 IC; Table 1, 2, 3; Appendix I)
A genus of 5 species restricted to Africa, mainly trees or shrubs. Represented in East Africa by two species, P. bicarpellata and P. pycnantha, and both are examined here.

HAIRS: absent. CUTICULAR SURFACE (SEM): adaxial rough in P. bicarpellata, smooth in P. pycnantha; abaxial smooth in both. STOMATA: hypostomatic in both species; cyclocytic with $3-4$ cells around the stomata (Fig. 7A); outline broadly elliptic; slightly raised with sunken subsidiary cells in both; aperture slit like with narrow rims in both; of \pm the same size $16-23 \times 14-20 \mu \mathrm{~m}$; density per mm^{2} 133-153 in P. bicarpellata, 200-238 in P. pycnantha. EPIDERMAL CELL OUTLINE: vaguely visible as wide ridges in P. bicarpellata and as round mounds in P. pycnantha. ANTICLINAL WALLS (LM): both walls more or less straight to very slightly curved in P. pycnantha (Fig. 7A), abaxial slightly undulate in P. bicarpellata.

T.S. lamina

THICKNESS (Table i): 293-348 $\mu \mathrm{m}$ in P. pycnantha and $275-329 \mu \mathrm{~m}$ in P. bicarpellata. CUTICLE: thickest at the margin and midrib in both species. ADAXIAL EPIDERMAL CELLS: I-layered, rectangular in both species, smaller and taller than wide at the midrib. ABAXIAL EPIDERMAL CELLS: i-layered, rectangular in both species, smaller and taller than wide at the midrib. STOMATA (T.S.) (Fig. IIB, C): slightly raised. MESOPHYLL (Table i): bifacial; palisade layer in $2(-3)$ rows, extends to the midrib in both species; mesophyll with transversely elongated cells in both species. MINOR VEINS (Fig. I6F): embedded and with a parenchyma sheath in both species. MIDRIB: 622-64I $\mu \mathrm{m}$ thick in P. bicarpellata, $750-767 \mu \mathrm{~m}$ thick in P. pycnantha, adaxial outline almost flat in P. bicarpellata, prominent in P. pycnantha, abaxial outline slightly prominent in both species. Vascular bundle bicollateral, forming an almost straight arc with accessory bundles in P. pycnantha and a crenate one in P. bicarpellata; abaxial side of vascular bundle with a few pockets of mucilaginous fibres and very few or none on the adaxial side. MARGIN: more or less straight to slightly revolute at the tip; epidermal cells taller than wide and papillose in P. pycnantha; marginal vein with a well developed sclerenchymatous bundle sheath in P. pycnantha. CRYSTALS: abaxial and adaxial epidermis with solitary crystals in both; phloem with solitary crystals and mesophyll with clustered crystals in P. pycnantha; palisade with clustered crystals in enlarged cells in both. LATICIFERS: branching in the mesophyll and also along the veins in both; immediately below the palisade tissue.

T.S. petiole

Vascular bundle bicollateral, forming a deep u-shape with incurved ends of bundles (Fig. 2 IC); strongly supported by thick-walled islands of mucilaginous fibres in groups of 2-35 in both (Fig. 16C); P. bicarpellata with accessory bundles in the wings of petiole also supported with mucilaginous fibres adaxially; P. pycnantha with thick-walled, sclerosed elements scattered in the ground tissue (Fig. 16 E).

Comments: in my study of stomata of 3 species of Pleiocarpa, all were found to have cyclocytic-staurocytic type of stomata (Fig. 7B). On the contrary, Nyawuame
\& Gill (1991) record anomocytic stomata in P. mutica, P. pycnantha var. tubicina (now P. pycnantha) and P. talbotii (now P. rostrata).

1.5.20 Rauvolfia L.

(Figs. 7E, F, G, H, 8 O, P, 14F, G, H, 15A, 18E, Tables 1, 2, 3; Appendix 1)
A pantropical genus of about 60 species, 7 restricted to Africa and 3 to Madagascar. Represented by 5 species in East Africa and 3 of them are examined here: R. caffra, R. mannii, and R. mombasiana.

Leaf surface

HAIRS: absent. CUTICULAR SURFACE (SEM): with fine striae across subsidiary cells and over the whole surface on both sides in R. mannii. STOMATA (Figs. 7 F , G): hypostomatic and paracytic in all, sometimes with subsidiary cells subdivided by radiating walls on one or both sides; outline elliptic; aperture long, slit-like; size ranges from 19-32 \times 10-18 $\mu \mathrm{m}$; density per mm^{2} 125-1 38-175 in Rauvolfia mombasiana. EPIDERMAL CELL OUTLINE (SEM): cuticular ridges over anticlinal walls on both surfaces in R. mannii. ANTICLINAL WALLS (LM) (Figs. 7E, H): adaxial straight in R. mombasiana, undulate on both sides in the other two species and on abaxial side of R. mombasiana.

T.S. lamina

THICKNESS (Table I): $165-183 \mu \mathrm{~m}$ thick in R. mannii, 20I-275 $\mu \mathrm{m}$ thick in R. mombasiana and 183-238 $\mu \mathrm{m}$ thick in R. caffra. CUTICLE: thickest at the margin R. manii. ADAXIAL EPIDERMALCELLS (Fig. 80): larger than abaxial, rectangular, I -layered, 2 -layered at the margin with periclinal divisions at some points in R. caffra, much smaller around at the midrib area. ABAXIAL EPIDERMAL CELLS (Fig. 8P): I -layered in all species, smaller. MESOPHYLL: bifacial in all species; palisade layer in a single row in R. mannii and R. caffra; in I (-2) rows in R. mombasiana, extends to the midrib in all but leaves a small gap; spongy mesophyll with somewhat horizontally elongated cells, not so compact. MINOR VEINS: embedded, with a parenchyma sheath. MIDRIB (Figs. I4F, G, H): 567-604 $\mu \mathrm{m}$ thick in R. caffra; $695-714 \mu \mathrm{~m}$ thick in R. mannii, 714-732 $\mu \mathrm{m}$ thick in R. mombasiana; outline more or less straight in R. mombasiana on both sides, with a small abaxial ridge and a prominent adaxial ridge in R. mannii, with ridges on both sides in R. caffra. (Fig. I4F). Vascular bundle bicollateral, forms a shallow arc in all species but widest in R. mombasiana (Fig. 15A). Ground tissue collenchymatous for 3-4 layers on both sides. MARGIN: more or less straight to very slightly curved in R. mannii and revolute in the other two; epidermal cells 2 -layered in R. caffra, thick-walled. CRYSTALS: in subglobose idioblasts in the palisade in R. mannii and R. mombasiana; 2-4 druses present above minor veins in a single or double file in the palisade tissue in R. caffra and R. mombasiana (Fig. 18E); clustered crystals in the ground tissue of midrib in R. mombasiana. LATICIFERS: along veins; in the mesophyll and towards both epidermis.

T.S. petiole

Vascular bundle bicollateral and forms a shallow arc in both but wider in R. mombasiana; with accessory bundles in R. mannii and R. mombasiana. Clustered crystals present in ground tissue and solitary crystals in the phloem parenchyma of R. mombasiana. Ground tissue collenchymatous towards the periphery.

Comments: paracytic stomata are characteristic of the genus. Also reported in R. vomitoria, by Nyawuame \& Gill (1991). Eumesogenous and eumesoperigenous type of stomatal ontogeny have been reported in R. caffra and R. mannii respectively by Karatela (1983) and Gill (1988).

1.5.21 Saba (Pichon) Pichon

(Figs. 4B, 8B, 8Q, R, 10J, 12A, 14I, 15D, 2 IB; Tables I, 2; Appendix 1)
A genus of three species restricted to Africa. Only one species, Saba comorensis is represented in East Africa and is examined here.

Leaf surface

HAIRS: absent. CUTICULAR SURFACE (SEM): smooth. STOMATA (Fig. 4B): hypostomatic and anomocytic; outline broadly elliptic to circular, sunken; rims very narrow, aperture short, circular; size 13-18 \times II-I $6 \mu \mathrm{~m}$; density per mm ${ }^{2} 850-856$. EPIDERMAL CELL OUTLINE (SEM): cell outlines visible as round mounds. ANTICLINAL WALLS: straight to slightly curved on both sides.

T.S. lamina

THICKNESS (Table I): $165-183 \mu \mathrm{~m}$. CUTICLE: thickest on adaxial midrib at $10-$ I $5 \mu \mathrm{~m}$. ADAXIAL EPIDERMAL CELLS (Fig. 8Q): i-layered, taller than wide. ABAXIAL EPIDERMAL CELLS: i-layered, rectangular. STOMATA (T.S.) (Fig. IOJ): slightly sunken: MESOPHYLL (Fig. I2A): homogenous with 5-6 (-7) layers of vertically elongated cells, taller than wide, longest in the first row. MINOR VEINS: smaller veins collateral, embedded, larger ones transcurrent towards the adaxial epidermis; girders with lignified parenchyma cells. MIDRIB (Fig. I4I; Table I): 878-924 $\mu \mathrm{m}$ thick; adaxial outline ridged, more prominently ridged on abaxial surface. Vascular bundle bicollateral and forms an oval shape with a shallow abaxial bundle and 5-6 adaxial bundles (Figs. 15D, 14I). Ground tissue with 3-4 layers of collenchyma on the periphery. MARGIN: more or less straight, with an acute apex; epidermal cells taller than wide but with a rounded apex. CRYSTALS: a few styloids present in the mesophyll. LATICIFERS: a few noted, branching between palisade cells.

[^0](Figs. 2D, 14J, 19B, 2ID; Tables 1, 2, 3; Appendix I)
A genus in Central and East Africa and Comoro Islands. The only species S. coffaeoides is investigated here.

Leaf surface

HAIRS: absent. CUTICULAR SURFACE (SEM) (Fig. 2D): adaxial with striations confined to antepericlinal wall of each cell; abaxial more or less smooth. STOMATA: hypostomatic; paracytic; outline elliptic; rim narrow, aperture slit like, sometimes closed; size 27-31 \times 16.6-20.3 $\mu \mathrm{m}$; density per $\mathrm{mm}^{2} 63$-106. EPIDERMAL CELL OUTLINE: adaxial surface with thick, wide ridges of cuticle over anticlinal walls (Fig. 2D). ANTICLINAL WALLS (SEM): adaxial straight, abaxial straight to slightly curved.

T.S. lamina

THICKNESS (Table 1): 256-275 μ m thick. CUTICLE: not very thick. ADAXIAL EPIDERMAL CELLS: i-layered, 2-3-layered towards the midrib, larger than abaxial. ABAXIAL EPIDERMAL CELLS: i-layered, wider than tall. MESOPHYLL: bifacial; palisade in I-2 rows, extends to the midrib; spongy mesophyll with somewhat transversely elongated cells but with many air spaces. MINOR VEINS: with a parenchymatous sheath. MIDRIB (Fig. I4J): 1437-I473 $\mu \mathrm{m}$ thick; adaxial outline very slight, abaxial very prominent. Vascular bundle bicollateral, forming a u-shape with a few pockets of fibres on the lower side, fewer above. Collenchyma, adaxial ridge with 5-6 layers, abaxial with 3-4 layers. MARGIN: revolute. CRYSTALS: present in enlarged cells in the palisade layer and in the cortex of the midrib. LATICIFERS: along veins; branching in the mesophyll towards both epidermis.

T.S. petiole

Vascular bundle bicollateral, forms a wide u-shaped arc (Fig. 21D); with crystals in the ground tissue and collenchyma on the periphery.

Comments: Can be distinguished from Tabernaemontana by cuticular ornamentation

1.5.23 Stephanostema K. Schum.

(Figs. IA, 5A, 8S, T i4K; Table I, 2,3; Appendix I)
A monotypic genus known from only one locality in Tanzania. The only species S. stenocarpum is examined here.

Leaf surface

HAIRS: present on abaxial epidermis near the midrib and on the petiole; simple, uniseriate, with I-5 cells, thick-walled (Fig. IA) CUTICULAR SURFACE (SEM):
abaxial with thick ridges extending from the pole, across subsidiary cells and on the rest of the surface (Fig. 5A). STOMATA: hypostomatic; paracytic, with subsidiary cells over the poles; outline elliptic; size 15-2I $\times 9$-1 $3 \mu \mathrm{~m}$; density per mm^{2} 132-264. EPIDERMAL CELL OUTLINE: with wide ridges over anticlinal walls on both surfaces. ANTICLINAL WALLS (LM): adaxial slightly undulate, abaxial more undulate.

T.S. lamina

THICKNESS: 229-256 $\mu \mathrm{m}$. CUTICLE: thickest at the midrib. ADAXIAL EPIDERMAL CELLS (Fig. 8S): rectangular, i-layered, $19-28.5 \times 32.3-72 \mu \mathrm{~m}$. ABAXIAL EPIDERMAL CELLS (Fig. 8T): i-layered, smaller, $15.2-20.9 \times 24.7-49.4 \mu \mathrm{~m}$. MESOPHYLL: bifacial; palisade extends to the midrib, I-3-layered; spongy mesophyll with transversely elongated cells, not compact. MINOR VEINS: embedded, with a parenchyma sheath. MIDRIB (Fig. I4K): $787-823.5 \mu$ m thick; adaxial outline with a slight projection, abaxial prominently ridged. Vascular bundle bicollateral, with a shallow arc. Collenchyma with 5-6 layers on adaxial ridge and 2-3 layers on abaxial side. MARGIN: straight. CRYSTALS: none observed.

T.S. petiole

Vascular bundle bicollateral, forms a u-shape. Ground tissue collenchymatous.

1.5.24 Strophanthus DC.

(Figs. 4C, 6A, B, I IE, F, 14L; Tables 1, 2, 3; Appendix I)

Strophanthus is a genus of 38 species occurring in Africa including Madagascar and South Asia. It is represented by II species in East Africa. S. courmontii is examined here.

Leaf surface

HAIRS: absent. CUTICULAR SURFACE (SEM) (Fig. 4C): abaxial surface with concentric rings of striae around subsidiary cells, finer striae on the rest of the surface; adaxial surface with wide ridges. STOMATA: amphistomatic (Fig. 6A); paracytic with a few anomocytic-actinocytic stomata (Fig. 6B); outline elliptic, slightly raised; rim wide; aperture narrow, slit-like; size 24-33 \times 17-29 $\mu \mathrm{m}$; density per mm^{2} 63-144. EPIDERMAL CELL OUTLINE: with wide ridges over anticlinal walls. ANTICLINAL WALLS (LM): adaxial straight to slightly curved, abaxial undulate.

T.S. lamina

THICKNESS: $192-238 \mu \mathrm{~m}$ thick. CUTICLE: $1-2 \mu \mathrm{~m}$. ADAXIAL EPIDERMAL CELLS: i-layered, taller than wide. ABAXIAL EPIDERMAL CELLS: i-layered rectangular to square smaller at the midrib. STOMATA (T.S.) (Figs. I IE, F): abaxial epidermis raised, adaxial sunk, larger. MESOPHYLL: bifacial; palisade layer in $3(-4)$ rows, extends to the midrib but leaves a very small gap; spongy mesophyll
with somewhat horizontally elongated cells, but not compact.
MINOR VEINS: embedded, with a parenchyma sheath; larger ones transcurrent towards adaxial side. MIDRIB; 970-988 $\mu \mathrm{m}$ thick, abaxial outline with a slight ridge, adaxial prominently ridged (Fig. 14L). Vascular bundle bicollateral, forms a shallow median crescentic arc, with thin-walled mucilaginous fibres above and below the bundle. Collenchyma 3-4 layers on both sides. MARGIN: slightly revolute at the tip. CRYSTALS: clustered and solitary crystals in the ground tissue of the abaxial ridge. LATICIFERS: common adjacent to the inner periclinal walls of the epidermis; between the palisade cells and along the veins.

T.S. petiole

Vascular bundle bicollateral, forms a curved arc; numerous crystals in the ground tissue especially below the vascular bundle; thin-walled mucilaginous fibres above and below the bundle. Collenchyma on the periphery.

Comments: stomata reported to be paracytic in S. barteri and S. gracilis, with eumesogenous development and anomocytic in S. hispidus (also amphistomatic) and S. preussii, with agenous type of development by Nyawuame \& Gill (1991).

1.5.25 Tabernaemontana L.

(Figs. 2B, C, 3B, 5B, 8U, V,W, X, inG, H, I, 12D, 14M, N, O, P, 15F, 16D, 17F, 18F, 2 IE , F; Table I, 2, 3; Appendix I)

Tabernaemontana is a genus of about 99 species, 18 in Africa, 15 in Madagascar, I on the Mascarene Islands, 21 in Asia, Oceania and Australia and 44 in Tropical America. In East Africa it is represented by 5 species, four of which are examined here:T. elegans, T. pachysiphon, T. stapfiana and T. ventricosa.

Leaf surface

HAIRS: absent. CUTICULAR SURFACE (SEM) (Fig. 3B, 5B): abaxial surface with wings of striae across slightly sunken subsidiary cells in T. stapfiana, otherwise with thick ridges on the rest of the surface; a few striae across subsidiary cells of T. elegans, thicker ones from the poles and the rest of surface striate; striate over the whole surface and across the poles in T. pachysiphon; adaxial surface with very fine striae in T. elegans, striate in T. stapfiana and T. pachysiphon (Figs. 2B, C). STOMATA: hypostomatic and paracytic with I or 2 pairs on both sides in all species examined; outline elliptic in all, slightly raised; rims very narrow in T. elegans and T. pachysiphon; narrow in the others; aperture very wide in T. elegans; size largest in T. stapfiana; density per mm^{2} highest in T. stapfiana at $99-\mathrm{I} 23$, lowest in T. pachysiphon at 3I-69. EPIDERMAL CELL OUTLINE (SEM): adaxial indistinct as very shallow grooves in T. elegans, abaxial obscure in all. ANTICLINAL WALLS: adaxial straight, angular in all; abaxial straight to slightly curved; slightly undulate in T. elegans.

T.S. lamina

THICKNESS: $165-384 \mu \mathrm{~m}$, thickest in T. stapfiana at 329-384 $\mu \mathrm{m}$. CUTICLE:thickest at the upper midrib in almost all. ADAXIAL EPIDERMAL CELLS (Figs. 8U,W): i-layered in T. elegans and T. ventricosa, towards the margin or midrib, 2-layered; irregularly 2(-3)-layered in T. stapfiana and T. pachysiphon. ABAXIAL EPIDERMAL CELLS (Figs. 8V, X): i-layered in T. ventricosa; ilayered in T. elegans except at some points near the margin, 2-layered; irregularly 2-layered in T. pachysiphon and T. stapfiana. STOMATA (T.S.) (Figs. i iG, H, I): with a wide aperture in T. elegans, a narrow one in T. pachysiphon and with a cuticular ridge in T. stapfiana. MESOPHYLL: bifacial in all species; palisade 2-3(-4)-layered in T. stapfiana and T. elegans (Fig. I2D); I-2(-3)-layered in T. pachysiphon and T. ventricosa, extends to the midrib in all species; spongy mesophyll cells transversely elongated with numerous air spaces in all species. MINOR VEINS: collateral, embedded and with a parenchyma sheath in all; each supported by one large sclerid in T. pachysiphon (Fig. I6D). MIDRIB (Figs. 14M, $\mathrm{N}, \mathrm{O}, \mathrm{P}$): 604-2 $14 \mathrm{I} \mu \mathrm{m}$ thick, thickest inT. pachysiphon at 2013-2141 $\mu \mathrm{m}$; midrib outline forms a slight adaxial ridge and a prominent abaxial ridge in all species. Vascular bundle deep v-shaped in all species; islands of phloem in the middle of the vascular bundle in T. elegans (Figs. $14 \mathrm{M}, 15 \mathrm{~F}$): phloem extending across the bundle on the adaxial side in the rest of the species (Figs. $14 \mathrm{~N}, \mathrm{O}, \mathrm{P}$). Ground tissue of midrib collenchymatous towards the periphery. MARGIN: revolute in T. ventricosa and T. pachysiphon; slightly revolute in T. elegans. CRYSTALS: T. pachysiphon with many single crystals in lower epidermis and with star-like crystals in the palisade layer and in large cells in the layer immediately below it, few in spongy mesophyll; T. stapfiana with many small star-like crystals in palisade layer and phloem parenchyma, very large star-like crystals in the layer above the lower epidermis and in the ground tissue of midrib; T. ventricosa with clustered crystals in enlarged cells of the mesophyll, in the ground tissue of midrib and in both epidermis. LATICIFERS: in the spongy mesophyll; below the palisade and epidermis; between palisade and epidermal cells and towards both epidermis.

T.S. petiole

Vascular bundle deep u-shaped in T. elegans and T. stapfiana, numerous crystals in the u-shape and some in the cortical region.

Comments: paracytic stomata are characteristic of this genus. Stomata are also reported to be paracytic in T. eglandulosa,T. pachysiphon and T. penduliflora, and with eumesogenous type of stomatal development by Nyawuame \& Gill (1991). Hairs are sometimes present on T. elegans leaves.

1.5.26 Voacanga Thouars.

(Figs. IIJ, 14Q, R, 22C; Tables I, 2, 3; Appendix I)

A genus of 12 species, 7 of which occur in Africa, and 5 in Asia. Two species are examined here: V. africana and V. thouarsii.

Leaf surface

HAIRS: absent. CUTICULAR SURFACE (SEM): with striae across subsidiary cells. STOMATA: amphistomatic; outline elliptic; size larger in V. thouarsii; density per mm^{2}; EPIDERMAL CELL OUTLINE (SEM): not visible. ANTICLINAL WALLS (LM): adaxial straight, abaxial undulate.

T.S. lamina

THICKNESS: CUTICLE: thickest in V.africana ADAXIALEPIDERMALCELLS: I-layered, 2-layered at the margin in V. thouarsii. ABAXIAL EPIDERMAL CELLS: i-layered, smaller. STOMATA (T.S.) (Fig. IIJ): sunken in the abaxial epidermis of V. thouarsii MESOPHYLL: bifacial; palisade in I-2-layered in V. africana, 2-3(-4)-layered in V. thouarsii, extends to the midrib; spongy mesophyll with somewhat horizontally elongated cells. MINOR VEINS: embedded. MIDRIB (Figs. I4Q, R): thicker in V. thouarsii at $476-550 \mu \mathrm{~m}$ thick; outline curved on abaxial, ridged on adaxial side. Vascular bundle bicollateral, v-shaped in V. africana, wider in V. thouarsii. Ground tissue collenchymatous towards adaxial side. MARGIN: revolute on both sides.

T.S. petiole

Vascular bundle bicollateral, forms a shallow v in V. thouarsii and a deeper one in V. africana.

Comments: paracytic stomata have been reported by Nyawuame \& Gill (1991) in V. africana, with hemimesogenous type of development.

i. 6 General discussion

Leaves

The results of the present study and the information from previous studies carried out by various authors on the leaf anatomy of Apocynaceae species clearly indicate that the leaves are dorsiventral (bifacial) except in a few cases where they have been described as isobilateral such as in Wrightia saligna (Ngan 1965), Aspidosperma quebracho and Nerium oleander (Metcalfe and Chalk 1950). The leaves of Nerium oleander are not always isobilateral as shown by Esau (1965) in Fig. 16.2, a fact which could be controlled by the environment. Some leaves have a tendency towards being isobilateral e.g. in the genera Carissa, Acokanthera and Ancylobotrys. All the species examined in these genera show xeromorphic characteristics such as thick cuticle (Figs. 8A, 12C), papillose marginal cells (Fig. 19A) and marginal veins strongly supported by sclerenchymatous cells (Fig. 19C). Saba comorensis has been shown to have homogenous leaves in the present study (Fig. 12A).

Hairs

Five basic types are recognised:
(i) Unicellular: may be only $10 \mu \mathrm{~m}$ long as in Carissa to $247 \mu \mathrm{~m}$ long in Holarrhena pubescens, or even up to $850 \mu \mathrm{~m}$ long as reported in Allamanda violacea (now A. blanchetii) by Chandra et al. (1972). (ii) Multicellular: vary from $57 \mu \mathrm{~m}$ in Ancylobotrys to $304 \mu \mathrm{~m}$ in Dictyophleba but longer lengths of $800 \mu \mathrm{~m}$ have been recorded in Ichnocarpus frutescens by Chandra et al. (1972). (iii) Multicellular hairs with compressed basal cells embedded in the epidermis: reported in Echites peltata (now Peltastes peltata) by Metcalfe and Chalk (i950) (iv) Variously branched hairs, shaped like antlers: recorded in Oncinotis hirta by Solereder (1908) and de Kruif (1985), also recorded in O. gracilis and O. tomentella (de Kruif 1985) (v): Glandular hairs: present in Motandra guineensis (Fig. IC) and Clitandra cymulosa (Leeuwenberg \& Berndsen 1988).

Cuticular ornamentation

Apocynaceae leaves show a wide range of variation of the cuticular surface which can be smooth as in Carissa tetramera to striate over the whole surface as in Holarrhena pubescens.Tabernaemontana stapfiana can be distinguished fromT. pachysiphon by its wholly striate cuticle (Compare Figs 2B \& 2C). Kurer (1917), as seen in Wilkinson (1979), was able to distinguish adulterants from official leaves of certain compounds based on presence, absence or positon of striae and granules on the leaf. According to Paganelli Cappelletti (1975), after his study of Atropa belladona under the s.e.m, cuticular striations are of great usefulness for diagnostic purposes and enable one to distinguish even small samples of species from adulterants.

Stomata

Stomata are recorded on both surfaces in only 5 of the 37 species studied. Stomata on both leaf surfaces have also been reported in Lochnera pusilla (now Catharanthus pusillus by Sayeed-ud-Din (194I) and Chandra et al. (1972); Ervatamia coronaria (now Tabernaemontana divaricata) by Kapoor et al. (1969); Plumeria rubra, Wrightia tinctoria, Wrightia tomentosa (now W. arborea) by Chandra et al. (1969); Wrightia saligna and Wrightia laevis by Ngan (1965); Carissa hirsuta (now C. spinarum), by Kapoor \& Mitra (1979); Landolphia owariensis, L. dulcis var. barteri (now L. dulcis), Strophanthus hispidus and Isonema bulcholzii by Nyawuame and Gill (1991).

Subsidiary cells

May not always fit exactly in the types described by Wilkinson (1979) and I have indeed experienced some difficulty in describing some arrangements in Acokanthera oppositifolia, Hunteria zeylanica and Carissa tetramera. Jansen and Baas (1973), Baas (1975) and Hartog and Baas (1979) have used the term "complex" for several intermediate types like complex-anisocytic and complex-laterocytic. It is also sometimes difficult to decide whether surrounding cells are truly anomocytic or somewhat anisocytic (Wilkinson 1979) and this problem is experienced in Strophanthus cormontii.

Stomatal size

Ranges from $13 \mu \mathrm{~m}-36.5 \mu \mathrm{~m}$ long (Table 2). An extensive survey of stomata of West African Apocynaceae by Nyawuame and Gill (1991), resulted in stomatal sizes between $16-35.5 \mu \mathrm{~m}$ long. On the contray Chandra et al. (1972) recorded unusually large sizes in Allamanda violacea (now A. macrocarpa) ($15-45 \mu \mathrm{~m}$ long), Carissa grandiflora (now A. blanchetii) (25-45 $\mu \mathrm{m}$ long) and Catharanthus pusillus (25-68 $\mu \mathrm{m}$ long). Sizes are dependent on position of stomata on the leaf surface and whether the sizes of primary stomata are recorded or not.

Anticlinal walls

Differences in waviness between sun and shade leaves were first reported by Areshong (1897) and confirmed by Anheisser (1900). They found that undulations are consistently more pronounced in shade leaves and this fact is confirmed by numerous other investigators. According to Haberlandt (1934) and Watson (1942) the epidermal cell wall undulation is affected by light intensity which inhibits the genes for waviness. Baissea myrtifolia has very undulate walls on both sides, a fact explained by its habitat in the forest understorey which lacks light. On the contrary, Ancylobotrys petersiana also has very undulate walls, although the specimen analysed was from a very dry forest and not in a shaded area. On the contrary, Sharma and Dunn (ig68) found that undulations were always markedly reduced in xeric habitats in Kalanchoë fedschenkoi.

Stomatal abnormalities

Single guard cells are observed in Holarrhena pubescens and were also reported in Trachelospermum jasminoides by Chandra et al. (1972). Aborted stomata and stomata with single guard cells are reported in Allamanda cathartica, Vinca rosea (now Catharanthus roseus) and Thevetia peruviana by Nyawuame \& Gill (1991). Single guard cells and giant stomata with aborted guard cells are reported in Rauvolfia mannii and R. caffra (Karatella and Gill 1983). Giant stomata were recorded in many species, as in Strophanthus courmontii, Carvalhoa campanulata etc, also frequent in Rauvolfia mannii (Karatella and Gill 1983).

Lamina thickness

The lamina is thickest in Adenium obesum, Acokanthera oppositifolia, Carissa tetramera, Picralima nitida and Tabernaemontana pachysiphon.T. pachysiphon has a thick lamina because it has very large leaves. Adenium obesum has a very thick lamina because of the succulent nature of the leaves and the other three species always have thick coriaceous leaves due to the nature of the environment in Carissa tetramera, but the habitat of A. oppositifolia and P. nitida are quite diversified. Baissea myrtifolia has a very thin lamina ($82-\mathrm{IIO} \mu \mathrm{m}$) because it is usually found growing in the forest understorey where light is minimal. The rest of the species have a lamina thickness below $350 \mu \mathrm{~m}$ and cannot be separated on the basis of this character.

I. 7 Conclusions

The present study carried out on the leaf anatomy of Apocynaceae is not very conclusive as only 37 of the 77 species in East Africa were examined. The results, however, show that the leaves exhibit a wide range of variability in anatomical characters, some of which can be confidently used to distinguish the genera or species. The present conclusions are based on limited material available for examination and in situations where I felt more material of the same species should be examined, I have indicated so and intend to do so in future. Listed below are some of the leaf anatomical characters which are either characteristic to the family or genera or useful in distinguishing the taxa. Conclusions about close relationships are also mentioned and the most outstanding anatomical characters are listed.

Leaves

are typically dorsiventral (bifacial) except in very few instances where they may be isobilateral depending on their environment as observed in Nerium oleander (Metcalfe \& Chalk 1950; Esau 1965) or have a tendency towards being isobilateral as observed in some xeric species. Truly isobilateral leaves in Apocynaceae have been recorded by Ngan (1965), in Wrightia saligna.

Hairs

are simple, rarely glandular and uniseriate, rarely branched. May be uni- or muticellular, sometimes with compressed basal cells. The number of cells and the size is variable. The hairs of both Baissea myrtifolia and Oncinotis tenuiloba are terete (Figs. 3E, F), whereas those of Holarrhena pubescens are flattened with a widened base (Fig. 4 E). More specimens should be examined under s.e.m. to find out whether the hairs are always terete or not.

Cuticular surface

highly variable and in many instances diagnostic. More material need to be examined as striations may be of great taxonomic value in some groups. (Stace (i965): genus Macropteranthes (Combretaceae); Wilkinson (1971): Anacardiaceae; van Staveren \& Baas (1973): Icacinaceae) or may show considerable variation in degree of development in some groups as seen in the genus Combretum (Stace 1965), or in Pistacia terebinthus, which shows a wide range of cuticular ornamentation from coarsely striate to smooth (Wilkinson I97I).

Stomata

have been reported on adaxial surface in only Io genera of Apocynaceae. In this case they are usually larger and scattered (Figs. 6A, B; Chandra et al. 1969) and appear to be of no taxonomic value. Only Wrightia saligna which is endemic to Australia can be said to be truly amphistomatic as stomata are reported to occur in equal numbers on both surfaces by Ngan (i965).

Outline
variable from narrowly to broadly elliptic to circular. Can be used to distinguish most species, especially if the width of the rim and type of aperture are also taken into consideration, e.g. the narrow rim and wide, elliptic aperture of Tabernaemontana elegans compared to the wider rim and circular aperture of Ancylobotrys tayloris (Figs. 3B, 5E).

Density per mm

This is inversely proportional to size and is only useful in extreme cases. Generally higher in the lianas and not useful in the intermediate cases.

Stomatal size

rarely exceeds $45 \mu \mathrm{~m}$. Those species considered to have large stomata show measurements between $30-36 \mu \mathrm{~m}$.

Subsidiary cells

four basic types of subsidiary cells are recognised in the family Apocynaceae: (i) paracytic, sometimes laterocytic: very common. Characteristic of the genera Rauvolfia, Tabernaemontana and Voacanga. (ii) anomocytic, fairly common and may sometimes occur together with anisocytic type in the same species; anisocytic type of stomata was never recorded on its own in the present study. (iii) Cyclocytic: rather uncommon except in Pleiocarpa, Carissa and Acokanthera. (iv) Actinocytic: very rare but seen in Strophanthus courmontii in the present study and recorded in Catharanthus pusillus by Chandra et al. (1972). According to Poulsen (1917) stomata are surrounded by several rings of radially arranged subsidiary cells in Acokanthera spectabilis (now A. oblongifolia).

Anticlinal walls

a situation was never found where the abaxial walls are straight and the adaxial undulate, it was always vice versa: abaxial walls undulate, adaxial straight or both walls straight or both undulate (see Table 2). Only useful in extreme cases and more specimens should be examined as some variaton in wall undulation of different leaves of the same species is to be expected, according to Wilkinson (1979) and this fact was not investigated in the present paper.

Lamina thickness

has not proved to be reliable in distinguishing the species as it is also dependent on the environment, texture and size of the leaves. Thirty-one of the 37 examined species have a lamina thickness below $350 \mu \mathrm{~m}$ and cannot be easily separated.

Cuticle and outer periclinal walls

only useful in extreme cases and quite dependent on the environment and age of the leaf. More specimens from different localities need to be examined.

Epidermal cells

size and shape useful in distinguishing species e.g. the large more or less square cells of Adenium obesum from the small rectangular shaped ones of Baissea myrtifolia. I-2 layered species also easily distinguished from the I layered species.

Stomata t.s.

useful in distinguishing species with thick cuticular ledges (Acokanthera and Picralima), or in distingushing those with wide apertures (Tabernaemomtana elegans) and sunken (Voacanga thouarsii) or raised stomata.

Palisade cells

continuity or discontinuity of chlorenchyma across the adaxial side of the midrib vascular tissue is too variable to be useful.

Spongy mesophyll
very compact in Hunteria, Saba and Holarrhena and very lacunate in Ancylobotrys and Dictyophleba, not markedly different in the rest. More specimens need to be examined.

Minor veins

embedded or transcurrent, not very useful in distinguishing species, except in Dictyophleba, Diplorhynchus, Ancylobotrys and Saba where they are transcurrent and easily distinguishable.

Midrib outline and thickness

can be substantially used to distinguish taxa (see Figs. 13, 14)

Vascular bundle

typically bicollateral in petiole and leaves of all specimens examined. The shape of the bundle is of some diagnostic value, i.e. the v-shaped bundles of the tribe Tabernaemontaneae from the cylindrical bundles of Landolphia and Clitandra.

Phloem

arrangement in the midrib and petiole can be used in distinguishing some species.

Laticifers

recorded in all the species examined. Variable in diameter, position and degree of branching.

Crystals
calcium oxalate, abundant in all parts of the leaf and petiole; druses are the most common, followed by solitary crystals in the phloem. No crystals were observed in Adenium obesum, Clitandra cymulosa and Stephanostema stenocarpum.

Leaf margin

has not proved to be a useful character in distinguishing most of the species, except in extreme cases. The leaf margin in Apocynaceae is usually entire, although it may be straight to revolute on section, with an obtuse to almost rounded apex (Figs. I9 A-D). The rest of the species did not show very marked differences.

Petiole

outline, size and shape of vascular bundle can be used to distinguish species (see Figs. 20, 21)

A. The following species can be easily distinguished from all the others:

1. Acokanthera oppositifolia: by its thickly coriaceous leaves with a very thick cuticle and outer periclinal walls; leaf margin with papillose cells (Fig. I6A); stomata in transverse section with a very thick cuticular ledge (Fig. IOA)
2. Baissea myrtifolia and Ancylobotrys petersiana: by the presence of very undulate anticlinal walls on both leaf surfaces and from each other by paracytic stomata in the former and anomocytic in the latter. More specimens from different localities need to be exmined to ascertain that the anticlinal walls are always undulate.
3. Carissa tetramera: by the leaf mesophyll which has numerous sclerids; the marginal vein which is surrounded by a large amount of schlerenchymatous tissue and the leaves which have one strong marginal vein (Fig. 22A) as opposed to all the other species studied, which are eucamptodromous or have a submarginal vein (Fig. 22 A, D).
4. Dictyophleba lucida: by its hairs with numerous, short cells; leaf margin acutely obtuse with schlerenchymatous marginal vein and solitary crystals neatly arranged along the vascular bundle in the mesophyll.
5. Oncinotis hirta: sterile specimens can be easily distinguished from all other East African Apocynaceae species by presence of many branched hairs in the leaf and petiole.
6. Tabernaemontana pachysiphon: can be distinguished from others species by its minor veins that are supported with one large sclerid. More specimens from different localities need to be examined.

B. The present survey confirms a close relationship between the following:

(i) The genera Carissa and Acokanthera

Both comprise the subtribe Carissinae (Table 3) and have coriaceous leaves with laticifers prominently following the midrib vascular bundle, a situation never
occuring so clearly in all the other species (Figs. 14 A \& D). Both genera have leaves with a tendency towards being isobilateral.
(ii) Motandra and Oncinotis

Both have phloem above the midrib bundle, clearly interspersed with mucilaginous fibres (Fig. I6A)
(iii) Dictyophleba and Ancylobotrys

Although the three species studied from the above genera were from three different localities in the Kenyan coast, they all exhibited the same type of spongy mesophyll arrangement which is highly lacunate (Fig. I2C).
(iv) Mascarenhasia and Funtumia

Both have characteristically long palisade cells; similar types of vascular bundle arrangement; repeatedly branched laticifers and similar type of vascular bundle in the petiole with many druses in the ground tissue.

(v) Hunteria, Picralima and Pleiocarpa

These three genera comprise the subtribe Pleiocarpinae and have 2-5 completely apocarpous carpels; the petiolar vascular bundle is strongly supported in the pericyclic region by mucilaginous fibres with very thick walls (fig. 16C). This is very evident in my present study of the Pleiocarpinae where all the ten species examined exhibited this character. The palisade layer also has large subglobose idioblasts with druses.
(vi) Clitandra and Landolphia

Both have a cylindrical vascular bundle in the petiole and midrib and a spongy mesophyll with horizontally elongated cells.

C. The most outstanding anatomical characters include:

The dorsiventral leaves, presence of laticifers, bicollateral vascular bundle and intraxylary phloem.

The present investigation was carried out as a preliminary survey of the leaf anatomy of Apocynaceae in East Africa. The results show more diversity in anatomical characters in the leaves than in the stem. The results also confirm that many species can be identified using leaf venation, surface characters or leaf transverse section. It is hoped that all the information gathered will stimulate further research.

i. 8 Figures and tables

Figure I. A-I. Hairs. A. Stephanostema stenocarpum; adaxial epidermis, curved 5-celled. B. Holarrhena pubescens; adaxial epidermis, unicellular, straight. C. Ancylobotrys petersiana; petiole, short hairs. D. Motandra guineensis; petiole, glandular hairs. E. Mascarenhasia arborescens; petiole, unicellular, thin walled. F. Dictyophleba lucida; petiole, cells small, numerous. G. Oncinotis tenuiloba; petiole, short basal cells, terminal cells longer. H. Motandra guineensis; midrib, straight hair, short basal cells and long terminal cells. I. Baissea myrtifolia; adaxial midrib, basal cells long, terminal cells short, hooked at the apex. $A-I=$ mag. $\times 25$.

Figure 2. A-F. Adaxial leaf surfaces. A. Diplorhynchus condylocarpon; smooth surface with very fine striae. B. Tabernaemontana elegans; surface with fine striae, cell outline indistinct as shallow groves. C. T. stapfiana; whole cuticle striate, obscuring cell outlines. D. Schizozygia coffaeiodes; ridges of cuticle over anticlinal walls; striations confined to antepericlinal wall of each cell. E. Carvalhoa campanulata; cuticular ridges over anticlinal walls, striations over cell outlines. F. Holarrhena pubescens; cuticular ridges over undulate, anticlinal walls, striations crossing cell outlines. The cells exhibit some inward collapse of the outer periclinal walls, due to drying. $\mathrm{A}, \mathrm{E}=$ mag. $\times 1000 ; \mathrm{B}=$ mag. $\times 1250 ; \mathrm{C}=$ mag. $\times 2000 ; D=$ mag. $\times 1500 ; F=$ mag. $\times 2060$.

Figure 3. A-F. Abaxial leaf surfaces. A. Hunteria zeylanica; surface smooth, stoma circular, slightly raised with sunken subsidiary cells. B. Tabernaemontana elegans; wide, elliptic aperture and narrow rims, pore closed, striations across subsidiary cells and ridges extending at polar ends. C. Oncinotis tenuiloba; stoma with paracytic subsidiary cells, surface smooth. D. Acokanthera oppositifolia; circular stoma, round aperture and wide rims. E. Baissea myrtifolia; domatia in the axils of secondary veins, hairs long, curled, extending to the midrib. F. Oncinotis tenuiloba; domatia in the axils of secondary veins, hairs straight erect. $A=$ mag. $\times 3080 ; B=$ mag. $\times 1640 ; C=$ mag. $\times 2730 ; D=\operatorname{mag} . \times 2800 ; E=$ mag. $\times 10 \mathrm{I} ; \mathrm{F}=$ mag. $\times 185$.

Figure 4. A-F. Abaxial leaf surfaces. A. Dictyophleba lucida; stomata and subsidiary cells raised, surface smooth, with shallow grooves over cell outlines. B. Saba comorensis; sunken stomata; cells outlines visible as tiny mounds. C. Strophanthus courmontii; primary stoma at top right, concentric rings of striae around subsidiary cells. D. Ancylobotrys petersiana; circular stoma, pore narrow, slit, cuticular surface ornamented. E. Holarrhena pubescens; flattened multicellular hairs with a wide base, tapering at the apex; whole cuticle striate. F. Carissa edulis; broadly elliptic stomata, sunken; ridges over subsidiary cells and partly obscuring stomata. $A, B=$ mag. $\times 2000 ; C, D=$ mag. $\times 1000 ; E=$ mag. $\times 366 ; F=$ mag. $\times 1520$.

Fig 5. A-F. Abaxial leaf surfaces and stomata. A. Stephanostema stenocarpum; thick cuticular ridges extend from the poles and across subsidiary cells. B. Tabernaemontana stapfiana; wings of striae across slightly sunken subsidiary cells; C. Carissa tetramera; broadly elliptic stoma with wide rims, truncate at the poles, surface smooth. D. Diplorhynchus condylocarpon; broadly elliptic stoma with narrow pore and peristomatal rims. E. Ancylobotrys tayloris; circular stoma with a circular aperture, ridges over sunken subsidiary cells. F. Carvalhoa campanulata; concentric rings of striae around subsidiary cells, stomata narrowly elliptic, cuticular surface ridged, otherwise smooth. A, B, D, E $=$ mag. $\times 2000$; $\mathrm{C}=$ mag. $\times 3500$; $F=$ mag. $\times 1000$.

Figure 6 A-H. Adaxial and Abaxial leaf surfaces showing stomata and anticlinal walls. A,C,E,G, adaxial; B,D,F,H, abaxial. A,B. Strophanthus courmontii; amphistomatic. C,D. Holarrhena pubescens; with paracytic cells extending over the poles (laterocytic). E,F. Acokanthera oppositifolia; paracytic and cyclocytic-tetracytic. G,H. Dictyophleba lucida. anomocytic stomata. $\mathrm{T}=$ trichome, A-H $=$ mag. $\times 200$.

Figure 7 A-H. Adaxial and Abaxial leaf surfaces showing stomata and anticlinal walls. A,C,E,H, adaxial; B,D,F,G, abaxial. A,B. Pleiocarpa pycnantha; cylocytic and tetracytic. C,D. Baissea myrtifolia; paracytic stomata, anticlinal walls very undulate on both sides. E,F. Rauvolfia mannii; paracytic, anticlinal walls undulate on both sides. G,H. R. mombasiana; abaxial undulate, adaxial straight. A-H $=$ mag. $\times 200$.
A

B

D

Q 000000000006
E

$\mathrm{F}: \infty$
R Moncoras

G Pox,00000003

H2x Par

к,0ycyong
Cosccess
4 ancrule

Figure 8 A-X. Adaxial and abaxial epidermis of various Apocynaceae. A,C,E,G,I,K,M,O,Q,S,U,W, adaxial. B,D,F,H,J,L,N,P,R,T,V,X, abaxial. A,B. Acokanthera oppositifolia. C,D. Adenium obesum. E,F. Ancylobotrys tayloris. G,H. Baissea myrtifolia. I,J. Carvalhoa campanulata. K,L. Clitandra cymulosa. M,N. Funtumia elastica. O,P. Rauvolfia caffra. Q,R. Saba comorensis. S,T. Stephanostema stenocarpum. U,V.Tabernaemontana pachysiphon. W,X.T. stapfiana. A-X = mag. $\times 25$.

B

C

D

F jo00000000000
G

02

$\mathrm{H} \mathrm{BOOOOO}_{0} 00000000000^{\circ}$

KOOOOOOOQOQ
11000000000000000

Figure 9 A-T. Adaxial and abaxial epidermis. A, C, E, G, I, K, adaxial midrib. B, D, F, H, J, L, abaxial midrib. M-T, margin. A,B. Acokanthera oppositifolia. C,D. Adenium obesum. E,F. Ancylobotrys petersiana. G,H. Carissa edulis. I,J. Mascarenhasia arborescens. K,L. Diplorhynchus condylocarpon. M. Acokanthera oppositifolia. N. Adenium obesum. O. Alafia microstylis. P. Carissa edulis Q. Baissea myrtifolia. R. Clitandra cymulosa. S. Mascarenhasia arborescens. T. Pleiocarpa pycnantha. A-T = mag. $\times 25$.

Figure 10. A-J. Stomata in transverse section. A. Acokanthera oppositifolia; thick cuticular ledge. B. Adenium obesum; slightly raised. C. Ancylobotrys petersiana; narrower aperture. D. A. tayloris; wider aperture. E. Carrisa tetramera: wider aperture. F. C. edulis; very narrow aperture. G. Carvalhoa campanulata; more or less level with the surface. H. Hunteria congolana; stoma raised. I. H. zeylanica. J. Saba comorensis; stoma sunken. A-J= mag. $\times 400$.

A

C

E

G

F

H

Figure 1 I. Stomata in transverse section. A. Picralima nitida; thick cuticular ledge. B. Pleiocarpa pycnantha; C. P. bicarpellata D. Oncinotis tenuiloba; more or less level with the surface. E, F. Strophanthus courmontii; E. adaxial, very wide aperture; F. abaxial raised. G.Tabernaemontana elegans; very wide aperture. H.T. pachysiphon; narrow aperture. I. T. stapfiana; J. Voacanga thouarsii; abaxial, sunken stomata. A-J $=$ mag. $\times 400$.

Figure 12. A-F. Mesophyll. A. Saba comorensis; homogenous. B. Holarrhena pubescens; I-layered palisade, transversely elongated spongy mesophyll cells, compact. C. Ancylobotrys tayloris; vertically elongated spongy mesophyll cells, lacunate, note thick cuticle and outer periclinal walls. D. Tabernaemontana elegans; 3-4 layered palisade, transversely elongated spongy mesophyll cells, less compact. E. Acokanthera oppositifolia; mesophyll with tendency towards being isobilateral. F. Diplorhynchus condylocarpon; vertically elongated spongy mesophyll cells, less lacunate with transcurrent veins towards both epidermis. $\mathrm{A}, \mathrm{B}=$ mag. $\times 200 ; \mathrm{C}=$ mag. $\times 312 ; \mathrm{D}=$ mag. $\times 125 ; \mathrm{E}=$ mag. $\times 160 ; F=$ mag. $\times 312$.

Figure 13. A-S. Midrib outline: A. Acokanthera oppositifolia. B. Adenium obesum. C. Alafia microstylis. D. Ancylobotrys petersiana. E. A. tayloris. F. Baissea myrtifolia. G. Carissa edulis. H. C. tetramera. I. Carvalhoa campanulata. J. Clitandra cymulosa. K. Dictyophleba lucida. L. Diplorhynchus condylocarpon. M. Funtumia elastica. N. Holarrhena pubescens. O. Hunteria congolana. P. H. zeylanica. Q. Landolphia buchananii. R. L. watsoniana. A-R = mag. $\times 25$.

Figure 14. A-S. Midrib outline. A. Mascarenhasia arborescens. B. Motandra guineensis. C. Oncinotis tenuiloba. D. Pleiocarpa bicarpellata. E. P. pycnantha. F. Rauvolfia caffra. G. R. mannii. H. R. mombasiana. I. Saba comorensis. J. Schizozygia coffaeiodes. K. Stephanostema stenocarpum. L. Strophanthus courmontii. M. Tabernaemontana elegans. N. T. pachysiphon. O. T. stapfiana. P. T. ventricosa. Q. Voacanga africana. R. V. thouarsii. A-R $=$ mag. $\times 25$.

Figure 15. A-F. Midrib. A. Rauvolfia mombasiana; midrib outline straight on both sides, vascular bundle shallow arc. B. Holarrhena pubescens; midrib outline, I-layered palisade. C. Landolphia buchananii; vascular bundle with schrenchymatous tissue on adaxial side. D. Saba comorensis. E. Ancylobotrys tayloris; phloem extends across the top of bundle. F.Tabernaemontana elegans; phloem forms islands in the middle of the bundle, palisade extends to the midrib (arrow). $\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{F}=\operatorname{mag} \times 50 ; \mathrm{C}, \mathrm{E}=$ mag. $\times 125$.

Figure 16. A-F. Fibres. A. Oncinotis tenuiloba; Mucilaginous fibres above vascular bundle interspersed with phloem. B. Carissa tetramera; sclerids among palisade and spongy palisade tissue. C. Pleiocarpa bicarpellata; petiolar vascular bundle strongly supported by mucilaginous fibres. D. Tabernaemontana pachysiphon; sclerid supporting each minor bundle; cork wart. E. Pleiocarpa pycnantha; sclerosed elements in ground tissue of petiole; mucilaginous fibres along petiolar vascular bundle. F. Pleiocarpa bicarpellata; embedded and collateral minor bundle with outer parenchyma sheath and xylem vessels surrounded with fibres. A, E $=$ mag. $\times 125 ; B, C, D, F=\operatorname{mag} . \times 312$.

Figure 17. A-E. Laticifers. A. Acokanthera oppositifolia; Laticifers along the midrib veins. B. Adenium obesum; laticifer branching below epidermis. C. Ancylobotrys petersiana; laticifers in ground tissue of petiole. D. Carissa edulis; laticifers along midrib veins. E. Funtumia elastica; laticifer branching in the palisade; crystals in mesophyll. F. Tabernaemontana elegans, two laticifers along the stem. $A, D=$ mag. $\times 125 ; B=$ mag. $\times 312 ; C=$ mag. $\times 500 ; E=$ mag. $\times 200 ; F=$ mag. $\times 160$.

Figure 18. A-D. Crystals. A. Hunteria zeylanica; idioblast with cluster crystal (druse) in palisade. B. Oncinotis tenuiloba; cluster crystals in spongy mesophyll. C. Mascarenhasia arborescens; cluster crystals in the ground tissue petiole. D. Dictyophleba lucida; solitary cystals along veins in the mesophyll E. Rauvolfia mombasiana. cluster crystals (druses) in two layers above minor vein. F. Tabernaemontana stapfiana; crystals in palisade; 2-layered epidermis. $\mathrm{A}=$ mag. $\times 787 ; \mathrm{B}, \mathrm{F}=$ mag. $\times 312 ; \mathrm{C}=$ mag. $\times 320$; $D, E=$ mag. $\times 400$.

Figure 19. A-D. Leaf margin: A. Acokanthera oppositifolia; straight margin with papillose epidermal cells. B. Schizozygia coffaeiodes; revolute leaf margin. C. Carissa tetramera; marginal vein with layers of schlerenchymatous tissue. D. Adenium obesum; obtusely acute margin, slightly revolute at the tip. A, B, $\mathrm{C}=$ mag. $\times 125 ; \mathrm{D}=$ mag. $\times 250$.

Figure 20. A-I. Petiole outline. A. Acokanthera oppositifolia. B. Adenium obesum. C. Ancylobotrys petersiana. D. Clitandra cymulosa. E. Landolphia watsoniana. F. Dictyophleba lucida. G. Funtumia elastica. H. Hunteria zeylanica. I. Mascarenhasia arboresens. A-D = mag. $\times 25$.

Figure 21. A-F. Petiole outlines. A. Oncinotis tenuiloba. B. Saba comorensis. C. Pleiocarpa pycnantha. D. Schizozygia coffaeiodes. E. Tabernaemontana elegans. F. T. pachysiphon. A-F $=$ mag. $\times 25$.

Figure 22. A-F. A. Carissa tetramera; leaf venation with a very strong marginal vein. B. Pleiocarpa pycnantha; leaf venation with a submarginal vein. C. Voacanga africana; leaf venation without prominent marginal loops (eucamptodromous). D. Tabernaemontana elegans; stem (L.S.), sclerosed element in pith. E. Carvalhoa campanulata; stem, (T.S.), to show arrangement of cells. F. Hunteria zeylanica; stem, (T.S.), to show arrangement of cells, note the sclerosed elements in the pith. A, B, C, D $=$ mag. $\times 160 ; \mathrm{E}=$ mag. $\times 125 ; \mathrm{F}=$ mag. $\times 100$.

Table I. Leaf anatomical characters of some East African Apocynaceae species.

Species *	Cuticle size in $\mu \mathrm{m}$	Epidermal cells, size in $\mu \mathrm{m}$.	Palisade, number of rows and sizes of $\mathrm{I} / 2$ row	Midrib thickness ($\mu \mathrm{m}$)	Lamina thickness ($\mu \mathrm{m}$)
I. Acokanthera oppositifolia	$\begin{aligned} & 19-26.6^{a} \\ & 9.4-15^{b} \\ & 2 \mathrm{I}-28.5^{\mathrm{x}} \\ & 2 \mathrm{I}-23.8^{y} \\ & 22-48^{\mathrm{z}} \end{aligned}$	$\begin{aligned} & \text { II I-19 } \times 19.40^{\mathrm{a}} \\ & \text { II } 1.4-19 \times 5.7-28.5^{\mathrm{b}} \\ & \text { I2.4-22.8 } \times \text { II } .4-27^{\mathrm{x}} \\ & \text { II } 1.4-\mathrm{I} 7 \times 2.9-15.2^{\mathrm{y}} \\ & 30.4-40 \times 5.7-11.4^{\mathrm{z}} \end{aligned}$	$\begin{aligned} & 2-3 \text { rows } \\ & 32.3-59 \times 8-13^{1} \\ & 30-44 \times 6-12^{2} \end{aligned}$	677-732	384-458
2. Adenium obesum	$\begin{aligned} & 1.9-9.5^{a} \\ & 1.9-3.8^{b} \\ & 1.9-5 \cdot 7^{x} \\ & 1.9-5.7^{y} \\ & 5.7-9.5^{z} \end{aligned}$	$\begin{aligned} & 43.7-68.4 \times 28.5-6 \mathrm{I} .8^{\mathrm{a}} \\ & 19-28.5 \times 15-57^{\mathrm{b}} \\ & 12.4-20.9 \times 7.6-17^{\mathrm{x}} \\ & 13.3-19 \times 9.5-18^{\mathrm{y}} \\ & 22.8-36.6 \times 9.5-26.6^{\mathrm{a}} \end{aligned}$	$\begin{aligned} & \text { I-2 rows } \\ & 51-67 \times 6-13^{1} \\ & 32-38 \times 10-15^{2} \end{aligned}$	$\begin{aligned} & 1245 \\ & 1263 \end{aligned}$	403-439
3. Alafia microstylis	$\begin{aligned} & 1.9-2.9^{\mathrm{a}} \\ & 1.9-2.9^{\mathrm{b}} \\ & 3.8-4.8^{\mathrm{x}} \\ & 1.9-2.9^{\mathrm{y}} \\ & 2.9-4.8^{\mathrm{z}} \end{aligned}$	$\begin{aligned} & 13.3-18 \times 13.3 .34 .2^{\mathrm{a}} \\ & 8.6-12.4 \times 13.3-34.2^{\mathrm{b}} \\ & 9.5-11.4 \times 9.5-17^{\mathrm{x}} \\ & 5.7-9.5 \times 3.8-7.6^{\mathrm{y}} \\ & 7.6-13 \times 7.6-9.5^{2} \end{aligned}$	$\begin{aligned} & \mathrm{I}-2(-3) \text { rows } \\ & 15-29 \times 4-13^{1} \\ & 27-36 \times 6-13^{2} \end{aligned}$	402-439	256-302
4. Ancylobotrys petersiana	$\begin{aligned} & 3-7 \cdot 5^{a} \\ & 3-6^{b} \\ & 5-8^{x} \\ & 3-6 \cdot 5^{y} \end{aligned}$	$\begin{aligned} & 5-10 \times 7-33^{a} \\ & 3.5-5 \times 9-19^{b} \\ & 6-8 \times 5-9^{x} \\ & 4-6 \times 5-9^{y} \\ & 7-9 \times 4-8^{z} \end{aligned}$	$\begin{aligned} & 1-2(-3) \text { rows } \\ & 29-45 \times 7-15^{1} \\ & 28-42 \times 8-15^{2} \end{aligned}$	714-750	293-320
5. Ancylobotrys tayloris	$\begin{aligned} & 6-1 I^{a} \\ & 3-9^{b} \\ & 2-6^{\mathrm{x}} \\ & 4-4 \cdot 5^{\mathrm{y}} \\ & 3 \cdot 5-5 \cdot 5^{z} \end{aligned}$	$\begin{aligned} & 4-8 \times 8.24^{a} \\ & 3-5 \times 9.23^{b} \\ & 5-7 \times 5-8.5^{x} \\ & 3-6 \times 4-7^{y} \\ & 7-11 \times 4-7^{2} \end{aligned}$	$\begin{aligned} & 2-(3) \text { rows } \\ & 30-92 \times 6-13^{1} \\ & 19-27 \times 6-13^{2} \end{aligned}$	549-586	229-300
6. Baissea myrtifolia	$\begin{aligned} & 1^{a} \\ & 1^{b} \\ & 3^{x} \\ & 3^{y} \\ & 2^{z} \end{aligned}$	$\begin{aligned} & 4.5-8 \times 5-20^{\mathrm{a}} \\ & 4-6 \times 5-28^{\mathrm{b}} \\ & 13-19 \times 5-16^{\mathrm{x}} \\ & 6-12 \times 4-13^{\mathrm{y}} \\ & 3.8-7.6 \times 7.6-9.5^{\mathrm{z}} \end{aligned}$	$\begin{aligned} & \text { I row } \\ & 15-28 \times 4.7^{1} \end{aligned}$	201-238	82-110
7. Carissa edulis	$\begin{aligned} & 8-13^{a} \\ & 4-5^{b} \\ & 8-17^{x} \\ & 3-5^{y} \\ & 3-8^{z} \end{aligned}$	$\begin{aligned} & 9-12 \times 13-27^{a} \\ & 7-11 \times 5-12^{b} \\ & 10-18 \times 6-17^{x} \\ & 8-11 \times 5-9^{y} \\ & 9-15 \times 5-10^{z} \end{aligned}$	$\begin{aligned} & 2(-3) \text { rows } \\ & 40-86 \times 6-15^{1} \\ & 25-35 \times 6-10^{2} \end{aligned}$	439-458	247-302

Species	Cuticle size in $\mu \mathrm{m}$	Epidermal cells, size in $\mu \mathrm{m}$.	Palisade, number of rows and sizes of $\mathrm{I} / 2$ row	Midrib thickness ($\mu \mathrm{m}$)	Lamina thickness ($\mu \mathrm{m}$)
8. Carissa tetrameta	$\begin{aligned} & 12-16^{a} \\ & 3-6^{\mathrm{a}} \\ & 9-20^{x} \\ & 3-9^{y} \\ & 13-15^{2} \end{aligned}$	$\begin{aligned} & 13-17 \times 13-25^{\mathrm{a}} \\ & 5-12 \times 7-24^{\mathrm{b}} \\ & 13-19 \times 14-27^{\mathrm{x}} \\ & 4-6 \times 4-8^{y} \\ & 8-11 \times 7-20^{2} \end{aligned}$	$\begin{aligned} & 2(-3) \text { rows } \\ & 45-65 \times 7-15^{1} \\ & 30-50 \times 5-15^{2} \end{aligned}$	494-549	366-412
9. Carvalhoa campanulata	$\begin{aligned} & \mathrm{I}^{\mathrm{a}} \\ & \mathrm{I}^{\mathrm{b}} \\ & \mathrm{I}^{\mathrm{x}} \\ & \mathrm{I}^{\mathrm{y}} \\ & \mathrm{I}^{\mathrm{a}} \end{aligned}$	$\begin{aligned} & 14-21 \times 16-38^{a} \\ & 10-20 \times 11-29^{b} \\ & 12-14 \times 10-16^{x} \\ & 10-12 \times 8-14^{y} \\ & 10-13 \times 7-16^{z} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { I row } \\ 25-35 \times 8-14^{1} \end{array}$	$\begin{aligned} & 1409- \\ & 1446 \end{aligned}$	156-220
10. Clitandra cymulosa	$\begin{aligned} & 1-2^{a} \\ & 1.9^{b} \\ & 1-2.8^{x} \\ & 1-3.8^{y} \end{aligned}$	$\begin{aligned} & 8-13 \times 8-15^{\mathrm{a}} \\ & 5.7-9.5 \times 11.5-22.8^{\mathrm{b}} \\ & 7.6-11.5 \times 3.8-15.2^{\mathrm{x}} \\ & 5.7-9.5 \times 3.8-9.5^{\mathrm{y}} \\ & 7.6-11.5 \times 3.8-11.4^{\mathrm{z}} \end{aligned}$	$\begin{aligned} & 2 \text { rows } \\ & 25-32 \times 8-12^{1} \\ & 17-23 \times 8-12^{2} \end{aligned}$	640-659	192-247
II. Dictyophleba lucida	$\begin{aligned} & 1-2^{a} \\ & 2-2 \cdot 5^{b} \\ & 2-3^{x} \\ & 2-3^{y} \end{aligned}$	$\begin{aligned} & 10-12 \times 7-20^{a} \\ & 4-6 \times 7-14^{b} \\ & 8-12 \times 3-11^{x} \\ & 4-7 \times 3-7^{y} \\ & 3-10 \times 3-5^{2} \end{aligned}$	$\begin{aligned} & 2 \text { rows } \\ & 32-42 \times 6-13.5^{1} \\ & 23-31 \times 10-21^{2} \end{aligned}$	714-787	183-311
12. Diplorhynchus condylocarpon	$\begin{aligned} & 2 \cdot 9-5 \cdot 7^{\mathrm{a}} \\ & 1.9-5 \cdot 7^{\mathrm{b}} \\ & 3.8-7.6^{\mathrm{x}} \\ & 3.8-7 \cdot 6^{\mathrm{y}} \\ & 7 \cdot 6-10 \cdot 5^{\mathrm{z}} \end{aligned}$	$\begin{aligned} & 8.6-17 \times 9.5-32.3^{\mathrm{a}} \\ & 7.6-15.2 \times 7.6-28.5^{\mathrm{b}} \\ & 7.6-9.5 \times 2.9-15.2^{\mathrm{x}} \\ & 7.6-12.4 \times 3.8-7.6^{4} \\ & 12-14 \times 4-5^{2} \end{aligned}$	$\begin{aligned} & 2-3 \text { rows } \\ & 34-42 \times 6-7.5^{1} \\ & 21-36 \times 38.7^{2} \end{aligned}$	439-458	256-275
13. Funtumia elastica	$\begin{aligned} & 3.8-5 \cdot 7^{\mathrm{a}} \\ & 1.9-3.8^{\mathrm{b}} \\ & 4 \cdot 5-7^{\mathrm{x}} \\ & 3.8-5 \cdot 7^{\mathrm{y}} \\ & 3.8-6^{2} \end{aligned}$	$\begin{aligned} & 7.6-24.7 \times 13.3-24.7^{\mathrm{a}} \\ & 7-11.4 \times 10-20^{\mathrm{b}} \\ & 7-12 \times 5-10^{\mathrm{x}} \\ & 8-12 \times 8-13^{y} \\ & 9.5-19 \times 3.8-13^{2} \end{aligned}$	$\begin{aligned} & 2-3 \text { rows } \\ & 55-80 \times 6-10^{1} \\ & 44-67 \times 8-15^{2} \end{aligned}$	586-768	311-366
14. Holarrhena pubescens	$\begin{aligned} & \mathrm{I}-\mathrm{D}^{\mathrm{a}} \\ & \mathrm{I}-\mathrm{D}^{\mathrm{b}} \\ & \mathrm{I}-2^{\mathrm{x}} \\ & \mathrm{I}^{\mathrm{y}} \\ & 2-3^{\mathrm{a}} \end{aligned}$	$\begin{aligned} & 12-26 \times 7-26^{a} \\ & 10-24 \times 11-30^{b} \\ & 16-21 \times 8-17^{x} \\ & 12-20 \times 10-17^{y} \\ & 18-22 \times 9-18^{z} \end{aligned}$	$\begin{aligned} & \text { I row } \\ & 30-37 \times 5-9^{1} \end{aligned}$	970-1025	201-220

Species	Cuticle size in $\mu \mathrm{m}$	Epidermal cells, size in $\mu \mathrm{m}$.	Palisade, number of rows and sizes of $1 / 2$ row	Midrib thickness ($\mu \mathrm{m}$)	Lamina thickness ($\mu \mathrm{m}$)
15. Hunteria congolana	$\begin{aligned} & 8-9^{a} \\ & 4-7^{b} \\ & 10-14^{y} \\ & 13-15^{z} \end{aligned}$	$\begin{aligned} & 8-12 \times 7-20^{a} \\ & 5-8 \times 8-18^{b} \\ & 10-15 \times 10-20^{x} \\ & 7-12 \times 5-9^{y} \\ & 7-11 \times 4-11^{z} \end{aligned}$	1-2 rows $\begin{aligned} & 14-26 \times 5-9^{1} \\ & 8-13 \times 6-8^{2} \end{aligned}$	403-439	183-220
16. Hunteria zeylanica	$\begin{aligned} & 9-10^{a} \\ & 5-7^{b} \\ & 10-13.5^{x} \\ & 10-12.5^{y} \\ & 9-13^{z} \end{aligned}$	$\begin{aligned} & 12-19 \times 6-20^{a} \\ & 10-12.8 \times 9-29^{b} \\ & 16-17 \times 15-16^{x} \\ & 14-16 \times 11-15^{y} \\ & 10-15 \times 9-12^{2} \end{aligned}$	2-3 rows $16-31 \times 5-9^{1}$ $14-30 \times 5-10^{2}$	915-951	266-348
17. Landolphia buchananii	$\begin{aligned} & 2-3 \cdot 5^{\mathrm{a}} \\ & 1-3^{\mathrm{b}} \\ & 2 \cdot 5 \cdot 5 \cdot 5^{\mathrm{x}} \\ & 3-5 \cdot 5^{\mathrm{y}} \\ & 5 \cdot 5-9^{\mathrm{z}} \end{aligned}$	$\begin{aligned} & 6-9 \times 4.8-18^{a} \\ & 6-8 \times 9-25^{b} \\ & 7-10 \times 4.5-14.5^{x} \\ & 4-9 \times 2.8^{y} \\ & 6-9 \times 3.5-11^{z} \end{aligned}$	$\begin{aligned} & \text { I-2 }(-3) \text { rows } \\ & 57-90 \times 7-10^{1} \end{aligned}$	586-622	256-311
18. Landolphia watsoniana	$\begin{aligned} & 4-5 \cdot 8^{a} \\ & 2.5-3^{b} \\ & 4-5 \cdot 5^{x} \\ & 3-5 \cdot 5^{y} \\ & 5-7 \cdot 5^{z} \end{aligned}$	$\begin{aligned} & 3.5-5 \times 8.5-18^{a} \\ & 3-5 \times 6-15^{b} \\ & 5-7.5 \times 12-15^{x} \\ & 4-5 \times 6-8^{y} \\ & 6-8.5 \times 6-10^{z} \end{aligned}$	$\begin{aligned} & \mathrm{I}-2 \text { rows } \\ & 25-30 \times 6-12^{1} \\ & 24-27 \times 11-19^{2} \end{aligned}$	586-604	201-256
19. Mascarenhasia arborescens	$\begin{aligned} & \mathrm{I} .9-3.8^{\mathrm{a}} \\ & 1.9-3.8^{\mathrm{b}} \\ & 3.8-5.7^{\mathrm{x}} \\ & 1.9-5 \cdot 7^{\mathrm{y}} \\ & 3.8-5.7^{z} \end{aligned}$	$\begin{aligned} & 17-24.7 \times 13.3-34.2^{\mathrm{a}} \\ & 19-24.7 \times 20.9-38^{\mathrm{b}} \\ & 13.3-19 \times 5.7-9.5^{\mathrm{x}} \\ & 7.6-13.3 \times 3.8-10.5^{\mathrm{y}} \\ & 13-21 \times 9.5-13.3^{2} \end{aligned}$	I-2 rows $50-60 \times 9.5-15^{1}$ $29-38 \times 9.5-19^{2}$	750-787	211-256
20. Motandra guinensis	$\begin{aligned} & 1.9-3.8^{a} \\ & 1.9-2.9^{b} \\ & 1.9-3.8^{x} \\ & 1.9-2.9^{y} \\ & 1.9-3.8^{z} \end{aligned}$	$\begin{aligned} & 9.5-13.3 \times 8.6-25.7^{\mathrm{a}} \\ & 6.7-9.5 \times 7.6-22.8^{\mathrm{b}} \\ & 3.8-1 \mathrm{I} .4 \times 2.9-8.6^{\mathrm{x}} \\ & 4-10.5 \times 2.6-7^{\mathrm{y}} \\ & 4-5 \times 6-10^{z} \end{aligned}$	$\begin{aligned} & 1-2 \text { rows } \\ & 20-30 \times 7-12^{1} \\ & 15-20 \times 8-13^{2} \end{aligned}$	513-549	99-1 10
21. Oncinotis tenuiloba	$\begin{aligned} & I-2^{a} \\ & I-2^{b} \\ & I-2^{x} \\ & I-2^{y} \\ & I-2.5^{z} \end{aligned}$	$\begin{aligned} & 11-17 \times 13-22^{a} \\ & 4-7 \times 7-16^{b} \\ & 4-9 \times 3-9^{x} \\ & 6-8 \times 6-10^{y} \\ & 5-8 \times 5-9^{z} \end{aligned}$	$\begin{aligned} & \mathrm{I}-2 \text { rows } \\ & 25-40 \times 5-9^{1} \\ & 24-35 \times 5-12^{2} \end{aligned}$	723-732	147-183
22. Picralima nitida	$\begin{aligned} & 5.7-9.5^{\mathrm{a}} \\ & 3.8-6.7^{\mathrm{b}} \\ & 7-11.4^{\mathrm{x}} \\ & 3.8-7.6^{\mathrm{y}} \\ & 9-24.6^{\mathrm{z}} \end{aligned}$	$\begin{aligned} & 13.3-19 \times 13.3-25.7^{\mathrm{a}} \\ & 10.5-13.3 \times 11.4-28.5^{\mathrm{b}} \\ & 13.3-29 \times 9.5-20.9^{\mathrm{x}} \\ & 9.5-17.1 \times 5.7-13.3^{y} \\ & 8-25 \times 4-16.5^{z} \end{aligned}$	$\begin{aligned} & 1-2(-3) \text { rows } \\ & 15-45 \times 8-14^{1} \\ & 15-30 \times 8-15^{2} \end{aligned}$	$\begin{aligned} & \text { I } 190- \\ & \text { I } 208 \end{aligned}$	366-403

Species	Cuticle size in $\mu \mathrm{m}$	Epidermal cells, size in $\mu \mathrm{m}$.	Palisade, number of rows and sizes of $1 / 2$ row	Midrib thickness ($\mu \mathrm{m}$)	Lamina thickness ($\mu \mathrm{m}$)
23. Pleiocarpa bicarpellata	$\begin{aligned} & 3-5 \cdot 5^{a} \\ & 3-4^{b} \\ & 8-10^{x} \\ & 5-6^{y} \\ & 6-10^{z} \end{aligned}$	$\begin{aligned} & 20.9-30.4 \times 19-51.3^{\mathrm{a}} \\ & 17-24.7 \times 19-57^{\mathrm{b}} \\ & 15.2-28.5 \times 13.3-30.4^{\mathrm{x}} \\ & 19-36 \times 13.3-30.4^{\mathrm{y}} \\ & 19-30.4 \times 9.5-19^{2} \end{aligned}$	$\begin{aligned} & 2(-3) \text { rows } \\ & 15-27 \times 9-15^{1} \\ & 15-20 \times 9-15^{2} \end{aligned}$	622-641	275-329
24. Pleiocarpa pycnantha	$\begin{aligned} & 3-5.6^{a} \\ & 3-4^{b} \\ & 8-10^{x} \\ & 10-13^{y} \\ & 10-11^{z} \end{aligned}$	$\begin{aligned} & 15.2-28.5 \times 26.6-58.9^{a} \\ & 15.2-24.7 \times 19-55^{b} \\ & 26.6-36 \times 19-30.4^{x} \\ & 19-34 \times 15.2-28.5^{y} \\ & 19-28.5 \times 7.6-19^{z} \end{aligned}$	$\begin{aligned} & 2(-3) \text { rows } \\ & 10-31 \times 8-15^{1} \\ & 10-15 \times 9-14^{2} \end{aligned}$	768-787	293-348
25. Rauvolfia caffra	$\begin{aligned} & 1.9-3.8^{\mathrm{a}} \\ & 0.9-3.8^{\mathrm{b}} \\ & 1.9-2.9^{\mathrm{x}} \\ & 1-1.9^{\mathrm{y}} \\ & 1.9-3.8^{\mathrm{a}} \end{aligned}$	$\begin{aligned} & 11.4-20.9 \times 19-41^{\mathrm{a}} \\ & 3.3-15.2 \times 7.6-34.2^{\mathrm{b}} \\ & 11.4-17.1 \times 7.6-11.4^{\mathrm{x}} \\ & 7.6-11.4 \times 3.8-7.6^{\mathrm{y}} \\ & 9.5-13.3 \times 5.7-11.4^{\mathrm{z}} \end{aligned}$	$\begin{aligned} & 1 \text { row } \\ & 67-93 \times 9.5-25^{1} \end{aligned}$	567-604	183-238
26. Rauvolfia mannii	$\begin{aligned} & 1-2^{a} \\ & 1^{b} \\ & 1.8-3^{x} \\ & 1.5-3^{y} \\ & 1.9-4^{2} \end{aligned}$	$\begin{aligned} & 16-21 \times 3.5-3^{\mathrm{a}} \\ & 6-13 \times 5-26^{\mathrm{b}} \\ & 9-12 \times 5-7.5^{\mathrm{x}} \\ & 6.5-12.5 \times 6-11.8^{y} \\ & 11.3-14 \times 15.5-19^{\mathrm{z}} \end{aligned}$	$\begin{aligned} & 1 \text { row } \\ & 30-40 \times 11.5- \\ & 17^{1} \end{aligned}$	695-714	165-183
27. Rauvolfia mombasiana	$\begin{aligned} & 1-1 \cdot 5^{a} \\ & 1^{b} \\ & I-3^{x} \\ & 1-2^{y} \\ & 1-3^{z} \end{aligned}$	$\begin{aligned} & 23.30 \times 17.5-38^{\mathrm{a}} \\ & 5.5-9.8 \times 4-20^{\mathrm{b}} \\ & 10-15.5 \times 6.5-15^{\mathrm{x}} \\ & 4-9.5 \times 3.6 .9^{\mathrm{y}} \\ & 5-10 \times 5.5-13.3^{\mathrm{z}} \end{aligned}$	$\begin{aligned} & \mathrm{I}-2 \text { rows } \\ & 58-67 \times 8.5-14^{1} \end{aligned}$	714-732	201-275
28. Saba comorensis	$\begin{aligned} & 4-6^{a} \\ & 2-4^{b} \\ & 10-15^{x} \\ & 3-4^{y} \\ & 4-6.5^{2} \end{aligned}$	$\begin{aligned} & 15.2-20.9 \times 8.6-24.7^{\mathrm{a}} \\ & 9.5-19 \times 13.3-34^{\mathrm{b}} \\ & 19-26.5 \times 6.5-23^{\mathrm{x}} \\ & 17-28.5 \times 9.5-15.2^{y} \\ & 17-24.7 \times 9.5-19^{2} \end{aligned}$	$\begin{aligned} & \text { homogenous } \\ & 38-42 \times 7-10^{1} \\ & 14-20 \times 6-8^{2} \end{aligned}$	878-924	165-183
29. Schizozygia coffaeiodes	$\begin{aligned} & 2-3^{a} \\ & 1-1.5^{b} \\ & 1-1.8^{x} \\ & 2.6-4^{y} \\ & 1-2^{x} \end{aligned}$	$\begin{aligned} & 22-29 \times 18-40^{\mathrm{a}} \\ & 15-19 \times 16-4 \mathrm{~b}^{\mathrm{b}} \\ & 6-13 \times 6-12^{\mathrm{x}} \\ & 5-\mathrm{II} .8 \times 3-12^{\mathrm{y}} \\ & 7.6-17.1 \times 11.4-28.5^{\mathrm{z}} \end{aligned}$	$\begin{aligned} & 1-2 \text { rows } \\ & 31-38 \times 6-15^{1} \\ & 17-31 \times 7-9^{2} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 1437- \\ 1473 \end{array}$	256-275
30. Stephanostema stenocarpum	$\begin{aligned} & I-2^{a} \\ & 1^{b} \\ & I-3^{x} \\ & I-3^{y} \\ & I-2.5^{z} \end{aligned}$	$\begin{aligned} & 19-28.5 \times 32.3-72^{\mathrm{a}} \\ & 15.2-20.9 \times 24.7-49.4^{\mathrm{b}} \\ & 4.5-10 \times 2-9^{\mathrm{x}} \\ & 7.5-10 \times 6-8^{\mathrm{y}} \\ & 7.6-17 \times 11-28^{2} \end{aligned}$	$\begin{aligned} & \text { I-3 rows } \\ & 40-67 \times 8-13.5^{1} \\ & 23-38 \times 9.5-15^{2} \end{aligned}$	787-824	229-256

Species	Cuticle size in $\mu \mathrm{m}$	Epidermal cells, size in $\mu \mathrm{m}$.	Palisade, number of rows and sizes of $1 / 2$ row	Midrib thickness ($\mu \mathrm{m}$)	Lamina thickness ($\mu \mathrm{m}$)
31. Strophanthus courmotii	$\begin{aligned} & I^{a} \\ & I^{b} \\ & I^{x} \\ & 2^{y} \end{aligned}$	$\begin{aligned} & 20-33 \times 11-33^{\mathrm{a}} \\ & 19-28 \times 15-35^{\mathrm{b}} \\ & 15.2-26.6 \times 7.6-24.7^{x} \\ & 15.2-20.9 \times 13.3-24.7^{y} \\ & 15.2-24.7 \times 9.5-20.9^{z} \end{aligned}$	$\begin{aligned} & 3(-4) \text { rows } \\ & 9-26 \times 8-10^{1} \\ & 10-15 \times 5-10^{2} \end{aligned}$	970-988	192-238
32. Tabernaemontana elegans	$\begin{aligned} & 2.5-4 \cdot 5^{\mathrm{a}} \\ & 2.5-3 \cdot 2^{\mathrm{b}} \\ & 2.5-3 \cdot 5^{\mathrm{x}} \\ & 2.5-3 \cdot 5^{\mathrm{y}} \\ & 2.5-4.5^{\mathrm{z}} \end{aligned}$	$\begin{aligned} & 14-34 \times 23-4 I^{a} \\ & 6-36 \times 24-43^{b} \\ & 9-I I \times 6.5-13^{x} \\ & 4.5-I I \times 2.5^{-8.5} 5^{y} \\ & 7-I I \times 5.5-10^{z} \end{aligned}$	$\begin{aligned} & 2-3(-4) \text { rows } \\ & 14-44 \times 6.5-1 I^{1} \\ & 10-35 \times 6-12^{2} \end{aligned}$	$\begin{aligned} & \text { I28 I- } \\ & \text { I318 } \end{aligned}$	266-3 I I
33. Tabernaemontana pachysiphon	$\begin{aligned} & 3-5^{a} \\ & 1-2^{b} \\ & 7 \cdot 2-8^{x} \\ & 3-5^{y} \\ & 7-8^{z} \end{aligned}$	$\begin{aligned} & 15-26 \times 11-29^{a} \\ & 12-23 \times 9-25^{b} \\ & 11-14 \times 8-11^{x} \\ & 8-13 \times 6-9.5^{y} \\ & 7-11 \times 5.5-10^{z} \end{aligned}$	$\begin{aligned} & \mathrm{I}-2(-3) \text { rows } \\ & 25-39 \times 8-12^{1} \\ & 19-26 \times 8-11^{2} \end{aligned}$	$\begin{aligned} & 203 \mathrm{I} \\ & 2105 \end{aligned}$	329-403
34. Tabernaemontana stapfiana	$\begin{aligned} & 3-7^{a} \\ & 3-4 \cdot 5^{b} \\ & 5-6 \cdot 5^{x} \\ & 5-6^{y} \\ & 7 \cdot 5-9^{z} \end{aligned}$	$\begin{aligned} & 6-25 \times 9.35^{a} \\ & 8-18 \times 16-27^{b} \\ & 11.5-14.5 \times 5-11.5^{x} \\ & 5-10 \times 3-13^{y} \\ & 9-10 \times 7-13.5^{z} \end{aligned}$	$\begin{aligned} & 2-3(-4) \text { rows } \\ & 31-40 \times 9-14^{1} \\ & 22-28 \times 10-13^{2} \end{aligned}$	$\begin{aligned} & 2013- \\ & 2141 \end{aligned}$	329-384
35. Tabernaemontana ventricosa	$\begin{aligned} & 1.9-3.8^{\mathrm{a}} \\ & 1.9^{\mathrm{b}} \\ & 3.8-7.6^{\mathrm{x}} \\ & 3.8-5.7^{\mathrm{y}} \\ & 3.8-5 \cdot 7^{\mathrm{y}} \end{aligned}$	$\begin{aligned} & 19.5-2.8 \times 11.4-32^{\mathrm{a}} \\ & 11.4-15 \times 15 \times 26.6^{\mathrm{b}} \\ & 9.5-19 \times 7.6-17^{\mathrm{x}} \\ & 7.6-13.3 \times 5.7-9.5^{\mathrm{y}} \\ & 13.3-20.9 \times 7.6-15.2^{\mathrm{z}} \end{aligned}$	$\begin{aligned} & 1-2(-3) \text { rows } \\ & 25-35 \times 9-14^{1} \\ & 22-30 \times 20-14^{2} \end{aligned}$	604-64I	165-220
36. Voacanga africana	$\begin{aligned} & 1.9-3.8^{\mathrm{a}} \\ & 1.9-4.3^{\mathrm{b}} \\ & 3.8-6.5^{\mathrm{x}} \\ & 1.9-3.8^{\mathrm{y}} \\ & 3.8-5.7 \end{aligned}$	$\begin{aligned} & 11.4-13.3 \times 15-44^{a} \\ & 5-18 \times 9-36^{b} \\ & 11-17 \times 10-20^{x} \\ & 7-13 \times 4-8^{y} \\ & 11-22 \times 9-18^{z} \end{aligned}$	$\begin{aligned} & 2-3(-4) \text { rows } \\ & 2 \mathrm{I}-25 \times 8-13^{1} \end{aligned}$	439-476	146-220
37. Voacanga thouarsii	$\begin{aligned} & 1.9-3.8^{a} \\ & 1.9^{b} \\ & 1.9-3.8^{x} \\ & 1.9-3.8^{y} \\ & 2.5-3.8^{z} \end{aligned}$	$\begin{aligned} & 13.3-19 \times 11.4-30.5^{\mathrm{a}} \\ & 5.7-19 \times 9.5-36^{\mathrm{b}} \\ & 11.4-17 \times 11.4-22.8^{\mathrm{x}} \\ & 7.6-13.3 \times 3.8-9.5^{\mathrm{y}} \\ & 11.4-22.8 \times 9.5-19^{\mathrm{z}} \end{aligned}$	$\begin{aligned} & 2-3(-4) \text { rows } \\ & 29-44 \times 9.5-19^{1} \end{aligned}$	476-550	238-293

[^1]Table 2. Stomatal size, density and type of some East African Apocynaceae.

Species	Stomatal length in $\mu \mathrm{m}$	Stomatal width in $\mu \mathrm{m}$	Density per mm	Subsidiary cells, surface	Anticlinal walls adaxial	Anticlinal walls abaxial
I. Acokanthera oppositifolia	15-19-22	11.5-13-16	650-663-719	Hypostomatic cyclocytic and paracytic	\pm straight angular	\pm straight angular
2. Adenium obesum	23-30-33.5	19-20-22.5	150-169-188	hypostomatic cyclocytic and staurocytic	straight, angular	slightly curved
3. Alafia microstylis	18-20-25	19-20-20	140-150	hypostomatic paracytic	undulate	undulate
4. Ancylobotrys petersiana	21-23-25	20-21-23.5	400-500	hypostomatic amomocytic	very undulate	very undulate
5. Ancylobotrys tayloris	27-29-31	24-27-29	200-300	anomocytic	undulate	undulate
6. Baissea myrtifolia	15-16-19.5	8-11-13	150-172-200	hypostomatic paracytic	very undulate	very undulate
7. Carissa edulis	29-30-36	23-28-32	66-132-176	hypostomatic cyclocytic	straight to slightiy curved	straight to slightly curved
8. Carissa tetramera	17-19.5-22	14-17-19.5	418-534-572	hypostomatic paracytic	straight angular	straight to slightly curved
9. Carvalhoa campanulata	20-21-25	13-15-19	81-150-220	hypostomatic paracytic	straight to slightly curved	undulate
10. Clitandra cymulosa	17-20-23	15-16-19	288-340	hypostomatic anomocytic	\pm straight to slightly curved	straight to slightly curved
II. Dictyophleba lucida	14.6-16.6	14.6-16.6	700-825-925	hypostomatic anomocytic	slightly undulate	slightly undulate

Species	Stomatal length in $\mu \mathrm{m}$	Stomatal width in $\mu \mathrm{m}$	Density per mm	Subsidiary cells, surface	Anticlinal walls adaxial	Anticlinal walls abaxial
12. Diplorhynchus condylocarpon	16-18	14-16	260-340	hypostomatic paracytic	straight	straight
$13 .$ Funtumia elastica	19-22-25	10-13-15	300-320	hypostomatic paracytic	straight to slightly undulate	slightly undulate
14. Holarrhena pubescens	17-26-31	14-16-19	250-289-312	hypostomatic paracytic anomocytic	straight angular	slightly curved angular
15. Hunteria congolana	17-19-22	16-17-19	266-280	hypostomatic anomocytic anisocytic	straight to very slightly curved	slightly curved
16. Hunteria zeylanica	21-24-25.7	22-24.7	294-338-350	hypostomatic anomocytic anisocytic	straight to slightly curved	slightly curved
17. Landolphia buchananii	15-18	13-15-16	400-450	hypostomatic anomocytic	undulate	undulate
I8. Landolphia watsoniana	I5-16	13-15-16	500-525-625	hypostomatic anomocytic	undulate	undulate
19. Mascarenhasia arborescens	2 I-25-3I	10-15-18	200-219-213	hypostomatic paracytic	slightly undulate	slightly undulate
20. Motandra guineensis	15-18-19	9-10-15	168-200-370	hypostomatic anomocytic	slightly curved	undulate
21. Oncinotis tenuiloba	15-2 I-22.5	10-12.5-14	369-406-439	hypostomatic paracytic	slightly curved angular	undulate
22. Pleiocarpa bicarpellata	16-20-22	14-15-20	I33-148-153	hypostomatic cyclocytic	slightly curved	angular slightly undulate

Species	Stomatal length in $\mu \mathrm{m}$	Stomatal width in $\mu \mathrm{m}$	Density per mm	Subsidiary cells, surface	Anticlinal walls adaxial	Anticlinal walls abaxial
23. Pleiocarpa pycnantha	16-20.8-23	15-16.6-19	200-219-238	hypostomatic cyclocytic	slightly curved	slightly curved
24. Rauvolfia caffra	21-25-31	10-15-18	100-130-160	hypostomatic paracytic	undulate	undulate
25. Rauvolfia mannii	19-20.9-32	11-16-18	63-81-125	hypostomatic paracytic	undulate	undulate
26 Rauvolfia mombasiana	20.8-27-29	11.5-14-17	125-138-175	hypostomatic paracytic	straight	undulate
27. Saba comorensis	13-15-18	11-16	850-856	hypostomatic anomocytic	slightly curved	slightly curved
28. Schizozygia coffaeiodes	27-28.5-31	16-18-20.3	63-88-106	amphistomatic paracytic	straight angular	slightly curved
29. Stephanostma stenocarpum	15-18-21	9-10-13	132-220-264	hypostomatic paracytic	slightly undulate	undulate
30. Strophanthus courmontii	24-27-33	17-19-29	63-100-144	amphistomatic paracytic anomocyticactinocytic	slightly curved angular	undulate
31. Tabernaemon- tana elegans	30.6-34.8	25-27.8	31-56-81	hypostomatic paracytic	straight angular	slightly curved angular
32. Tabernaemon- tana pachysiphon	29-32-33.4	21-22-23.6	31-56-69	hypostomatic paracytic	straight angular	\pm straight angular
33. Tabernaemon- tana stapfiana	26-28-36.5	19.5-21-25	99-109-123	hypostomatic paracytic	straight angular	\pm straight angular

Species	Stomatal length in $\mu \mathrm{m}$	Stomatal width in $\mu \mathrm{m}$	Density per mm	Subsidiary cells, surface	Anticlinal walls adaxial	Anticlinal walls abaxial
34. Tabernaemon- tana ventricosa	$26-29-32$	$20-23-25$	$30-60-88$	hypostomatic paracytic	\pm straight angular	\pm straight angular
35. Voacanga africana	$26-28$	$18-20$	$60-80-120$	amphistomatic paracytic	\pm straight angular	\pm straight angular
36. Voacanga thouarsii	$25-28-30$	$20-23-25$	$80-90-140$	amphistomatic paracytic	\pm straight angular	\pm straight angular

Table 3. A summary of Apocynaceae species in East Africa, including their sub-division into tribes and subtribes. Tribes are in bold face, subtribes in italics, $*=$ species examined, Afr $=$ Africa, As $=$ Asia.

Subfamily Plumeriodeae

1.Carisseae

1.I Carissinae
I. Carissa $20 \mathrm{Afr}+\mathrm{As}$
I. C. bispinosa
2. C. edulis*
3. C. tetramera*
2. Acokanthera 5 Afr
4. A. laevigata
5. A. oppositifolia
6. A. schimperi

1. 2 Landolphiinae
2. Landolphia 60 Afr
3. L. buchananii*
4. L. eminiana
5. L. kirkii
6. L. landolphiodes

I I. L. owariensis
12. L. parvifolia
13. L. watsoniana*
4. Clitandra I Afr
14. C. cymulosa*
5. Dictyophleba 5 Afr
15. D. lucida*
6. Ancylobotrys 7 Afr

I6. A. amoena
17. A. petersiana*

I8. A. tayloris*
7. Saba 3 Afr
19. Saba comorensis*
I. 3 Pleiocarpinae
8. Picralima I Afr
20. P. nitida*
9. Hunteria $12 \mathrm{Afr}+\mathrm{As}$
21. H. congolana*
22. H. zeylanica*
10. Pleiocarpa 5 Afr
23. P. bicarpellata*
24. P. pycnantha*

2. Tabernaemontaneae

iI. Voacanga $12 \mathrm{Afr}+\mathrm{As}$
25. V. africana*
26. V. thouarsii*
12. Tabernaemontana 99 tro
27. T. elegans*
28. T. odoratissima
29. T. pachysiphon*
30. T. stapfiana*

3I. T. ventricosa*
13. Carvalhoa I Afr
32. C. campanulata*
14. Schizozygia I Afr
33. S. coffaeiodes*

3. Plumerieae

3.I Aspidospermatinae
15. Diplorhynchus I Afr
34. D. condylocarpon*
3.2 Alstoniinae
16. Alstonia 40 trop
35. A. boonei
4. Alyxieae
4.1 Rauvolfinae
17. Rauvolfia 60 trop
36. R. caffra*
37. R. mannii*
38. R. mombasiana*
39. R. volkensii
40. R. vormitoria
5. Cerbereae
18. Cerbera 7 Seych-Oc

4I. C. manghas
Subfamily Apocynoideae
6. Wrighteae
6.1 Neriinae
19. Adenium 5 Afr
42. A. obesum*

6.2	Wrightiinae	27.	Alafia 23 Afr
	20. Wrightia 23 A		6i. A. erythrophthalma
			62. A. caudata
	21. Pleioceras 5 Afr		63. A. lucida
	44. P. orientale		64. A. microstylis*
	22. Stephanostema I Afr		65. A. orientalis
	45. S. stenocarpum*		66. A. schumanii
	23. Strophanthus 38 Afr + As		67. A. zambesiaca
	46. S. courmontii*	7. Apocy	neae
	47. S. eminii	7.1 Ichn	ocarpinae
	48. S. hispidus	28.	Motandra 3 Afr
	49. S. hypoleucus		68. M. guinensis*
	50. S. kombe	29.	Baissea 18 Afr
	51. S. mirabilis		69. B. leonensis
	52. S. petersianus		70. B. leontonori
	53. S. preusii		71. B. major
	54. S. sarmentosus		72. B. myrtifolia*
	55. S. welwitschii		73. B. viridifolia
	56. S. zimmermannianus	30.	Oncinotis 7 Afr
6.3	Malouetiinae		74. O. glabrata
	24. Funtumia 2 Afr		75. O. hirta
	57. F. africana*		76. O. pontyi
	58. F. elastica*		77. O. tenuiloba*
	25. Mascarenhasia 8 Afr		
	59. M. arborescens*		
6.4	Alafinae		
	26. Holarrhena 4 Afr + As 60. H. pubescens*		

I. 9 Anatomy references

Araujo, R.R. de, da Silva, A.M., \& Gill, F.S., i984. Plumeria rubra L. var. alba Apocynaceae. Anatomia foliar Rodriguésia 36 (5a): 67-72.
Anheisser, R., 1900. Über die aruncoide Blattspreite. Flora 87: 64-94.
Areschoug, F.W.C., 1897. Über die physiologischen Leistungen und die Entwickelung des Grundgewebes des Blattes. Lunds Univ. Arsskr. 33, 2: 1-46.
Baas, P., 1975. Vegetative anatomy and the affinities of Aquifoliaceae, Sphenostemon, Phelline, and Oncotheca. Blumea 22, 31 1-407.
Ballard, C.W., 1926. Taxonomy and pharmacognosy of the genus Apocynum. Proc. Internat. Cong. Plant. Sci. 2: 1406-12.
Chandra, V., Kapoor, S.L., Sharma, P.C., \& Kapoor, L.D., 1969. Epidermal and venation studies in Apocynaceae I. Bull. Bot. Surv. India I I: 286-9.
Chandra, V., Kapoor, S.L., Sharma, P.C., \& Kapoor, L.D., 1972. Epidermal and venation studies in Apocynaceae. Bull. Bot. Surv. India.
De Kruif, A.P.M., 1985. A revision of Oncinotis Benth. In: Leeuwenberg, A.J.M. (ed.), Series of revisions of Apocynaceae XVI-XVIII. Wageningen Agricultural University Papers 85, 2: 5-45.
Fjell, I., 1983. Anatomy of the xeromorphic leaves of Allamandra neriifolia, Thevetia peruviana and Vinca minor (Apocynaceae). Nord. J. Bot. 3: 383-392, struct. 027.
Esau, K., 1965. Plant anatomy, ed. 2. John, Wiley, New York.
Haberlandt, G., 1934. Über die Sonnen und Schattenblätter der Crataegomesplili und ihrer Eltern. Sitz. Preuss. Akad. Wiss., Phys-Math. KL (20): 363-76.
Hartog van ter Tholen, R.M., \& Baas, P. (1979). Epidermal characters of the Celastraceae (sensu-lato). Act. Bot. Neerl. 27: 355-8.
Hickey, L.J., I979. A revised classification of the architecture of dicotyledonous leaves. In: Metcalfe, C.R., \& Chalk, L., (eds), Anatomy of the dicotyledons ed. 2, Vol. I: 25-39. Oxford, Clarendon Press.
Holm, T., i910. Apocynum cannabinum L. Merck's Pep. 19, 277-80.
Jansen, W.T., \& Baas, P., 1973. Comparative leaf anatomy of Kokoona and Lophopetalum (Celastraceae). Blumea 2 I: 153-78.
Kapoor, S.L., Sharma, P.C., Chandra, V., \& Kapoor, L.D., I969. Epidermal and venation studies in Apocynaceae II. Bull. Bot. Surv. India II: 372-6.
Kapoor, S.L., \& Mitra, R., 1979. Epidermal and venation studies of Apocynaceae VI. Bull. Bot. Surv. Ind. 2 I: 68-80.

Karatela, Y.Y., \& Gill, L.S., i983. Leaf epidermal features of two species of Rauvolfia (Apocynaceae) from Nigeria. Philip. J. Biol. I2: I86-189.
Karatela, Y.Y., \& Gill, L.S., i988. Observations on leaf epidermal features of some medicinal plants from Nigeria. Herba Hungarica 27: 7-18.
Leeuwenberg, A.J.M., \& Berndsen, M., 1988. Clitandra Benth. and Chamaeclitandra (Stapf) Pichon. Series of Revision of Apocynaceae XXV. Bull. Jard. Bot. Nat. Belg. 58: $159-168$.
Metcalfe, C.R., \& Chalk, L., 1950. Anatomy of the dicotyledons. Vol. II: 904-917. Oxford, Clarendon Press.

Newcombe, F., \& Patel, B.A., i966. Comparative anatomy of the leaves of V. schweinfurthii and V. africana. J. Pharmacy Pharmacol. I8, supp. 133-141.
Ngan, P.T., 1965. A revision of the Wrightia (Apocynaceae). Ann. Miss. Not. Gard. 52: I14-175.
Nyawuame, H.G.K., \& Gill, L.S., I991. Cuticular studies of some West African species of the Apocynaceae of medicinal value. Feddes Repertorium 102, 1-2:87104.

Paganelli Cappeletti, E.M., 1975. Studio morfologico al microscopio elletronico a scansione di foglie di Atropa belladonna L. Bot. Ital. 7: 24-25.
Poulsen, V.A., 1917. Plantenanatomiske Bidrag, Anatomiske Bemaerk-ninger om Bladbygningen hos nogle Apocynaceer. Vidensk Medd. naturh. Foren. Kbh. 68: 299-307.
Sayeedud-Din, M., 1941. Some common Indian herbs with notes in their anatomical characters. J. Bombay Nat. Hist. Soc. 42: 280-282.
Sharma, G.K, \& Dunn, D.B., 1968. Effect of environment on the cuticular features in Kelanchoë fedschenkoi. Bull. Torrey Bot. Cl. 95: 464-73.
Sharma, P.C., Chandra, V., Kapoor, S.L., \& Kapoor, L.D., 1970. Epidermal and venation studies in Apocynaceae - III. Bull. Bot. Surv. India 12, 1-4: 92-96.
Solereder, H., 1908. Systematic anatomy of the dicotyledons, Vol. I, 2 (Translated by L.A. Boodle \& E. Frisch, revised by D.H. Scott). Oxford, Clarendon press.
Stace, C.A., 1965. Cuticular studies as an aid to plant taxonomy. Bull. Br. Mus. Nat. Hist. Bot. 4 (I): I-78.
Van Staveren, M.G.C., \& Baas, P., i973. Epidermal leaf characters in the Malesian Icacinaceae. Acta bot. neerl. 22: 329-59.
Watson, R.W., 1942. Effect of cuticular hardening on the form of epidermal cells. New Phytol. 4I: 223-9.
Wilkinson, H.P., 197I. Leaf anatomy of the various Anacardiaceae with special reference to the epidermis and some contribution to the taxonomy of the genus Dracontomelon Blume. Thesis, University of London.
Wilkinson, H.P., 1979. The plant surface (mainly leaf). In: Metcalfe, C.R., \& Chalk, L. (eds), Anatomy of the Dicotyledons, ed. 2, vol. I: 97-165. Oxford, Clarendon Press.
Wilkinson, H.P., 1989. Leaf anatomy of the Menispermaceae, tribe Tiliacoreae Miers. Botanical Journal of the Linnaean Society, 99: 125-174.

APPENDIX 1

List of Material examined:

1. Acokanthera oppositifolia (Lam.) Codd, Kenya, Sagalla Mts., E.A. Omino 133, (EA, WAG).
2. Adenium obesum (Forssk.) Roem. \& Schult., Kenya, Silaloi, E.A. Omino 123, (EA, WAG).
3. Alafia microstylis K.Schum, Kenya, Luke \& Robertson 2298, (K).
4. Ancylobotrys petersiana (Kl.) Pierre, Kenya, Arabuko Sokoke Forest, E.A. Omino 213 (EA, WAG).
5. A. tayloris (Stapf) Pichon, Kenya, Buda mafisini, E.A. Omino 199, (EA, WAG).
6. Baissea myrtifolia A.DC., Kenya, Makadara Forest, E.A. Omino 174, (EA, WAG).
7. Carissa edulis (Forssk.) Vahl, Kenya, Sagalla mts, E.A. Omino 13I, (EA, WAG).
8. C. tetramera (Sacl.) Stapf, Kenya, Arabuko Sokoke Forest, E.A. Omino 2I2, (EA, WAG); Kenya, Galana Ranch, Bally 16743 (K).
9. Carvalhoa campanulata K. Schum., Kenya, Makadara Forest, E.A. Omino 175 (EA, WAG).
10. Clitandra cymulosa Benth., Uganda, Sese Islands, Maitland 339 (K).

I I . Dictyophleba lucida (K. Schum) Pierre, Kenya, Shimba Lodge, E.A. Omino I66, (EA, WAG); Kenya, Makadara Forest, E.A. Omino 181 (EA, WAG).
12. Diplorhynchus condylocarpon (Muell. Arg.) Pichon, Tanzania, Lovett \& Congdon 1933, (EA, WAG).
13. Funtumia elastica (Preuss) Stapf, Uganda, Mengo, B. styles 228 (K).
14. Holarrhena pubescens (Buch.-Ham) Wall. ex G.Don, Kenya, Musau-Ronge Rd., E.A. Omino 124, (EA, WAG).
15. Hunteria congolana Kenya, Mt. Kulal, Bally 3960 (K).
16. H. zeylanica Kenya, Shimba Lodge, E.A. Omino 163, (EA, WAG).
17. Landolphia buchananii (Hall.f.) Stapf, Kenya, Ngangao Forest, Beentje 2192 (K).
18. L. watsoniana Romburgh, Kenya, E.A. Omino 173 B, E.A. Omino 21 I B, (EA, WAG).
19. Mascarenhasia arborescens A.DC., Kenya, Marere Waterworks, Perdue \& Kibuwa 10220 (K).
20. Motandra guineensis (Schum. \& Thonn.) A.DC., Uganda, Synnot 725, (EA).

2 I. Oncinotis tenuiloba Stapf, Kenya, Mkomba River, E.A. Omino 192, (EA, WAG).
22. Picralima nitida Cultivated, Wageningen Bot. Garden, The Netherlands.
23. Pleiocarpa bicarpellata Stapf, Kenya, Chawia forest, E.A. Omino 157, 158, (EA, WAG).
24. P. pycnantha (K.Schum.) Stapf, Kenya, Mwele Mdogo Forest, E.A. Omino 187, (EA, WAG); Kenya, Meru Nat. Park, Ament \& Magogo 169 (EA).
25. Rauvolfia caffra Sond., Kenya, Meru National Park, Gillet 2080 I (K).
26. R. mannii Stapf, Kenya Chawia Forest, E.A. Omino I54, (EA, WAG).
27. R. mombasiana Stapf, Kenya, E.A. Omino I62 B, (EA, WAG); Kenya, Marere, E.A. Omino 170 , (EA, WAG).
28. Saba comorensis (Bojer) Pichon, Kenya, Ukunda, E.A. Omino i6I B (EA, WAG).
29. Schizozygia coffaeoides Baill., Kenya, Marere, E.A. Omino 168, (EA, WAG).
30. Stephanostema steonocarpum Tanzania, J \& J Lovett 500, (K); Tanzania Luke et al 3754 (EA).
31. Strophanthus courmontii Kenya, Ramisi Mrima Rd, E.A. Omino 211 (EA, WAG).
32. Tabernaemontana elegans Kenya, Shimba Lodge, E.A. Omino 167 (EA, WAG).
33. T. pachysiphon Kenya, Buda Mafisini E.A. Omino IO7 (EA, WAG),.
34. T. stapfiana Kenya, E.A. Omino 127. (EA, WAG).
35. T. ventricosa Tanzania, Lumi Forest, Gardner 2956 (K).
36. Voacanga africana Tanzania, P. Cribb \& G. Wilson 10693 (K); Tanzania, Pocs 6277/B (EA).
37. V. thouarsii, Tanzania, TG, Ruffo 1533.

2 A MONOGRAPH OF THE SUBTRIBE PLEIOCARPINAE

(APOCYNACEAE-PLUMERIOIDEAE-CARISSEAE)

Series of revisions of Apocynaceae XLI

2.I Summary

The subtribe Pleiocarpinae, belonging in the tribe Carisseae of the subfamily Plumerioideae has been revised and comprises three genera: Pleiocarpa, Hunteria and Picralima, with 5, I2 and I species respectively. All species are restricted to continental Africa, but for Hunteria zeylanica.

Pleiocarpa has five species, including a newly described one: P. brevistyla. A new combination for a probable sixth species, P. picralimoides, was made for Carpodinopsis (?) picralimoides, but due to a scarcity of material this species remains doubtful.

Three new Hunteria species were described: H. macrosiphon, H. myriantha and H. oxyantha, while a new combination H. hexaloba was made, as the genus name Tetradoa falls into synonymy with Hunteria.

The monotypic genus Picralima remained as such.
Of all Pleiocarpinae typification, full synonymy and literature references are given, and a key provides the means to identify the species. Detailed descriptions are accompanied with illustrations, and the distributions are mapped. Notes present further information where relevant.

2.2 Introduction

The present chapter is a monographic revision of the subtribe Pleiocarpinae of the Plumeriodeae-Carisseae (Apocynaceae), represented by 3 genera and 18 species in continental Africa. This monograph is mainly based on study of herbarium specimens, in addition the author has had the opportunity of studying 6 species in the field and in cultivation at Wageningen. The subtribe Pleiocarpinae comprises 3 genera, Pleiocarpa Benth (5 spp.); Hunteria Roxb. (12 spp.) and Picralima Pierre (I sp.). One of the species, Hunteria zeylanica, extends to Asia.

Most of the type material could be traced, a few lectotypes were designated here, while only one neotype was chosen.

All measurements are from dried material. The uses of the plants were compiled from herbarium sheets and the available literature. Local names were not recorded, as most of them proved to be unreliable. The source on information from herbarium sheets is arranged systematically, e.g (Scott Elliot 5690, K, I892, Sierra Leone), where Scott Elliot is the collector, 5690 the collection number, K, the herbarium Kew lodging the specimen, I892 the year of collection and Sierra Leone the country of collection.

2.3 General part

2.3.1 History of the subtribe

The subtribe Pleiocarpinae was first described by K. Schumann in 1895 as a tribe based on three genera Notonerium, Lepinia and Pleiocarpa. Lepinia currently belongs to the subtribe Alyxiinae although it has multicarpellate fruits, but these are drupaceous and not baccate. Pichon (1948) first described it as a subtribe basing it on 5 genera, Polyadoa, reduced to synonymy by him in 1953 under Hunteria; Tetradoa, reduced to synonymy by Huber (1963) under Hunteria; Pleiocarpa, Picralima and Hunteria. In the last complete revision of the subtribe Pleiocarpinae in 1953 Pichon recognised 18 species in 7 genera, Pleuranthemum (1 sp .), Comularia (2 sp.) and Tetradoa (2 sp .) (all currently synonyms of Hunteria); Hunteria (6 sp.), Carpodinopsis (3 sp.), currently a synonym of Pleiocarpa (3 sp.) and Picralima (I sp.).

2.3.2 History of the genera Hunteria Roxb., Pleiocarpa Benth. and Picralima Pierre

The genus Hunteria was first proposed as Apocyno-Nerium by Linnaeus in 1747 based on one species H. zeylanica. The name was later rejected by Roxburgh in 1814 when he merely listed it as Hunteria. He later described the genus in 1824 basing it on Hunteria corymbosa, a synonym of H. zeylanica, which had already been described by Retzius in Cameraria in 1786. The genus is named after Dr. William Hunter of the Bengal Medical Establishment, an eminent botanist and author of various Asiatic Researches of the history of Pegu. G.Don (i837) enumerated 5 species, 4 later attributed to the genera Wrightia, Alyxia and Chilocarpus and A. De Candolle (1844) included 7 species in the genus, 3 later attributed to the genus Alyxia and 2 to Melodinus and Chilocarpus. F. Miquel (1856) enumerated 4 species, 2 later attributed to the genera Rauvolfia and Alyxia. Pichon (1948) enumerated 7 species which he placed under two sections, section Euhunteria with five species, 3 later attributed to the genera Alyxia, Wrightia and Rauvolfia and section Pleuranthemum with two species from Africa. In the most recent revision of Hunteria in West Africa by Huber (1963), 5 species were recognised.

The genus Pleiocarpa was first described by Bentham in 1876 , based on P. mutica (the lectotype of the genus) and P. rostrata. The name comes from the Greek words Pleios, more and carpos, fruits, referring to the fruits with more than two carpels. P. bicarpellata was first described by Stapf in 1894. K. Schumann (1895) enumerated 3 species, and Stapf (1902) distinguished 9 species, 4 were later reduced to synonymy under P. pycnantha and I reduced to synonymy under P. mutica. Pichon (1953) recognised 3 species, P. pycnantha with two varieties and Huber (1963) recognised 4 species, P. pycnantha with two varieties.

Pierre (1896) first described the genus Picralima basing it on P. klaineana, a synonym of P. nitida, the only species of the genus which had already been described by Stapf (1895) in Tabernaemontana. The name Picralima comes from the Greek word pikros which means bitter, probably referring to the bitter seeds. The genus has since remained monotypic.

2.3.3 Geographical distribution

Hunteria zeylanica is the most widely distributed species which extends to Asia, from Sri-Lanka, India to S. China (Hainan) including Malaysia and Indonesia. In Africa, its distribution is restricted to Somalia, Kenya, Tanzania (including Pemba and Zanzibar) and Mozambique, mainly along the Zanzibar-Inhambane regional mosaic (sensu White 1979). It also extends to Zambezian and Somalia-Masai regional centres of endemism in Kenya and Somalia.

Four species are found West to East of the Dahomey gap and these include Pleiocarpa pycnantha, the most widely distributed of the African species, which covers 8 phytochoria sensu White (1979). H. umbellata is also widely distributed from Senegal to Zaire and Angola but restricted to only two phytochoria. Pleiocarpa mutica extends from Sierra Leone to Gabon and Picralima nitida from Ivory Coast to Congo and Zaire, including Uganda.

Two species of Hunteria, H. ghanensis and H. simii are restricted to the Western centre of Endemism, West of the Dahomey gap. H. ghanensis is found only in Ghana and Ivory Coast, whereas the later extends from Guinea to Ivory Coast.

The rest of the species is restricted to the Eastern centre of endemism, East of the Dahomey gap. H. camerunensis in Cameroun and Gabon; H. congolana in Zaire and Kenya, in two phytochoria; H. macrosiphon in Gabon and Congo; H. oxyantha in Gabon, Congo and Zaire; Pleiocarpa bicarpellata extends further East to Kenya from Cameroun. P. rostrata is restricted to Nigeria, Cameroun and Gabon.

The remaining four species are endemic. Hunteria hexaloba and Pleiocarpa brevistyla are locally endemic to Gabon and H. myriantha and H. densiflora is found only in Zaire.

Two species, Pleiocarpa bicarpellata and Hunteria congolana, show disjunctions in their current distribution areas.

2.3.4 Morphology

Habit

The members of the subtribe Pleiocarpinae are usually small trees or shrubs, rarely lianescent. They are completely glabrous in all parts except inside the corolla tube, below or above the stamens. Predominantly shrubby species up to 5 m high include Pleiocarpa rostrata and P. brevistyla; Hunteria ballayi, H. camerunensis, H. hexaloba and H. macrosiphon. The rest of the species rarely exceed a height of 20 m . Pleiocarpa pycnantha may attain a height of 30 m and Picralima nitida, a height of 35 m .

Bark

The bark of most species is thin, smooth and pale to dark grey or brown. In some species like Picralima nitida and Hunteria oxyantha the bark may be rough, hard and brittle or it may be longitudinally fissured with straight horizontal cracks in Pleiocarpa pycnantha. The inner bark is usually cream, pale yellowish-brown or orange.

Wood

The wood of the species attaining exploitable height is very hard, dense and durable, shiny dark brown or pale yellow to orange, and is used to make small sundry objects or sometimes used for local construction.

Leaves

The leaves are opposite and decussate, rarely in whorls of 3-5 as in Pleiocarpa pycnantha and sometimes ternate as in P. mutica. The blade is papery to coriaceous when fresh, elliptic to oblong with an acuminate apex except in Hunteria zeylanica where the apex is variable especially in specimens from Asia. The smallest leaves are found in Hunteria oxyantha and H. ghanensis (up to $13.5 \times 4.6 \mathrm{~cm}$) and the largest in Pleiocarpa mutica (up to $29.5 \times$ II. 4 cm long). According to the terminology proposed by Hickey (1979) for the architecture of dicotyledonous leaves, all the leaves in Pleiocarpinae are camptodromous as the secondary veins do not terminate at the margin. The venation is either brachidodromous with secondaries joined together in a series of prominent arches or eucamptodromous with secondaries connected to superadjacent veins by a series of cross-veins without forming prominent marginal loops. All the species have the brachidodromous type of venation except Hunteria myriantha which is eucamptodromous. H. simii, H. hexaloba, H. camerunensis and Pleiocarpa rostrata have leaves which are entirely brachidodromous or brachidodromous in the upper 0.5-0.75 and eucamptodromous in the lower part.

Inflorescence

The inflorescence in Pleiocarpa is predominantly axillary and sometimes also terminal, sessile, ramiflorous, and when many-flowered, fasciculate. In Hunteria and Picralima the inflorescences are predominantly terminal, sometimes at the same time axillary, few- to many-flowered cymes except in H. ballayi where inflorescences are axillary, sessile and ramiflorous. The bracts are usually sepal-to scale-like. The peduncle size is highly variable in most species and ranges from 0 to 6 mm long in H. camerunensis to 15 to 40 mm long in Hunteria densiflora. The peduncle and pedicel base and inflorescence axes in Hunteria umbellata may appear swollen due to exudation of resin from the colleters and young buds. The inflorescences in H. zeylanica, H. ghanensis and H. myriantha are lax and many flowered. The number of flowers is also very variable and may be as low as $1(-4)$ in Pleiocarpa rostrata and P. brevistyla to as high as 160 in Hunteria myriantha.

Flowers

The subtribe Pleiocarpinae is distinguished from the rest of the members of the Carisseae by the ovary which is completely apocarpous with $2-5$ carpels and the flowers which are completely glabrous except inside below or above the insertion of the stamens.

Calyx

The calyx consists of five (sub)equal sepals which are almost free, completely glabrous on both sides in Pleiocarpa, with colleters inside up to 0.75 of their length in Hunteria (except in H. myriantha) and in I-4 rows at the extreme base in Picralima. The sepals are tightly clasped to the base of the corolla tube in Hunteria and Picralima due to the exudation of resin from the colleters and is persistent in fruit in all genera. The size varies from 0.6-4.5 $\times 0.3-3 \mathrm{~mm}$ in Hunteria and Pleiocarpa to $5.5-7.5 \times 3.5-5 \mathrm{~mm}$ long in Picralima. The texture is variable and may be membranaceous as in Hunteria myriantha, to thick and coriaceous as in Picralima. The calyx lobes are always imbricate in bud, but are strongly imbricate even at anthesis in Picralima and rarely also in Pleiocarpa rostrata.

Corolla

Salverform, sympetalous, with five lobes, contorted in bud. The colour is pure white in Pleiocarpa except in P. pycnantha where it may vary from white via yellow to orange; white to lime-yellow in Picralima and white, cream, to yellow or even red in Hunteria. The corolla head is usually oblong with an obtuse apex in mature bud in Pleiocarpa and Picralima and mostly ovoid with an acute apex in Hunteria except H. ghanensis where it is globose and with a rounded apex. The tube is more or less cylindrical, widened at the base and at the insertion of the stamens. The tube is always thick and fleshy in Picralima, sometimes thick in Pleiocarpa rostrata and in some species of Hunteria as in H. zeylanica; it is very constricted at the orifice in H. camerunensis. The length varies from 3-4 mm in H. camerunensis to $12-32 \mathrm{~mm}$ long in Pleiocarpa rostrata. There is a belt of pubescence below the insertion of the stamens which may continue up to the mouth of the tube as in H. congolana, or may be reduced to minute tufts of hairs at the base of each filament as in H. camerunensis. The corolla lobes overlap to the left in bud, are twisted in bud in some species of Hunteria and are always shorter than the tube in Pleiocarpa and shorter or longer than the tube in Hunteria and Picralima. The shape is ovate in Picralima, ovate to oblong in Hunteria and variable in Pleiocarpa where it is obovate in P. rostrata. The apex is acute to obtuse in all species except in H. ghanensis and P. rostrata where it is rounded and is spreading to recurved at anthesis.

Fruits

The fruits are composed of two to five separate, indehiscent mericarps. The mericarps are generally smooth except in H. ballayi (slightly rough and warty) and in some specimens of P. rostrata (partly or wholly rugose). They are mostly subglobose to obovoid except in Hunteria simii where they are oblong. The fruits are divergent at an angle of 180° except in H.ghanensis, 90° and usually turn yellow
and finally orange when ripe. The smallest fruits are those of H . ghanensis, 10-15× 9-12 mm followed by those of H. macrosiphon, H. zeylanica, H. densiflora, H. ballayi, H. congolana, and H. hexaloba which are $15-28 \times 20-21 \mathrm{~mm}$, while those of H. oxyantha measure $28-35 \times 20-26 \mathrm{~mm}$. The largest fruits are those of H. umbellata: 31-60 $\times 40-50 \mathrm{~mm}$. The fruits of H . simii measure $37-60.5 \times 10-18 \mathrm{~mm}$ but are usually clearly longer than wide.

The seeds of Hunteria ballayi are swallowed together with the sweet mesocarp to act as a fertility drug in Central African Republic, and the pulp and seeds of Picralima nitida are used as an arrow and fish poison.

2.3.5 General taxonomic references

Bentham, G. \& J.D. Hooker, 1876. Genera Plantarum 2: 699.
De Candolle, A., 1844. Prodromus systematis naturalis regni vegetabilis 8: 349-35I.
Don, G., 1837. A general system of gardening and botany 4: 105. Rivington et al., London.
Hickey, L. J. i979. A revised classification of the architecture of dicotyledonous leaves. In: Metcalfe, C. R., L. Chalk, C.Fagette \& R.A. Howard (eds). Anatomy of Dicotyledons, ed. 2, I: 25-39. Clarendon Press. Oxford.
Huber, H., 1963. Apocynaceae. In: Hepper, F.N. (ed). Flora of West Tropical Africa ed. 2, 2: 62-64.
Linnaeus, C., 1747. Flora zeylanica, 404.
Miquel, F., 1856. Apocyneae. Flora Indae Batavae 2 / Flora van Nederlandsch Indië 2: 384-459.
Pichon, M., 1948. Classification des Apocynacées I, Carissées et Ambelaniées. Mémoires du Muséum National d'Histoire Naturelle, série 2, 24: il i-I8i.
Pichon, M., 1953. Classification des Apocynacées: XXXVI, Révision des Pléiocarpinées. Boletim da Sociedade Broteriana 2a série, 27: 73-1 53.
Pierre, L., I896. Plantes du Gabon. Bulletin Mensuel de la Société Linnéenne de Paris 2: 127-I 279
Retzius, A. J., I786. In Fasciculus Observationum Botanicarum 4: 24.
Roxburgh, W., I814. Hortus Bengalensis. Serampore: 84.
Roxburgh, W., I824. Flora Indica, ed. Carey. Serampore vol. 2: 53 I-533.
Schumann, K., I895. Apocynaceae. In: Engler and Prantl (eds), Die Natürlichen Pflanzenfamilien 4, 2: 133-135.
Stapf, O., 1894. Apocynaceae, Diagnoses Africanae I. Kew Bulletin 1894: 19-25.
Stapf, O., 1902. Apocynaceae. In: W.T. Thiselton-Dyer (ed.), Flora of Tropical Africa 4, I: 96-105. Reeve \& Co., London.
White, F., 1979. The vegetation of Africa. A descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. UNESCO.

2.4.1 The subtribe Pleiocarpinae

Subtribe Pleiocarpinae (K. Schum.) Pichon in Mém. Mus. Natn. Hist. Nat. sér. 2, 24: 158 (1948), Leeuwenberg in Wageningen Agr. Univ. Pap. 94, 3: 53 (1994). Type genus: Pleiocarpa Benth.

Basionym: Pleiocarpeae K. Schum. in Engler \& Prantl, Nat. Pflanzenf. 4, 2: 133 (1895), partly as for Pleiocarpa.

Unarmed trees or shrubs, sometimes lianescent; branchlets glabrous. Leaves opposite, or less often in whorls of 3-5, petiolate; petiole glabrous; blade mostly elliptic, entire and glabrous on both sides. Inflorescence in dense fascicles or in lax to dense cymes, terminal and/or axillary, sometimes ramiflorous, glabrous. Bracts small. Flowers actinomorphic, 5-merous. Sepals subequal, free or connate at the extreme base, persistent in fruit, glabrous or with colleters inside on the inner side, not ciliate. Corolla salverform, white to yellow, rarely also red; tube nearly cylindrical, widened at the insertion of the stamens, not twisted; lobes overlapping to the left in bud, spreading and often recurved later. Stamens free from each other, included, inserted at or above the middle of the corolla tube; anthers introrse, ovate or oblong, cordate or saggitate at the base, of two parallel cells, entirely fertile or with a small sterile acumen, glabrous. Pistil glabrous; ovary superior, of 2-5 separate carpels, united at the extreme base by a disk-like thickening; pistil head subglobose to oblong and with a pronounced stigmoid apex in Hunteria and Pleiocarpa; ovules 1-30 (-1 50) in each carpel. Fruit of 2-5 fleshy, indehiscent mericarps; mericarps globose to oblong, I100 seeded; wall thin to thick, fleshy or fibrous. Seeds variously shaped, hilum basal, endosperm rather hard, starchy, leaving a cavity around the radicle base; embryo straight, spathulate; testa thin to thick, membranaceous to coriaceous.

Three genera in tropical Africa. One species, Hunteria zeylanica, extends into Asia.

2.4.2 Key to the genera of the subtribe Pleiocarpinae

I. Sepals completely glabrous on both sides; pistil head subglobose to oblong; inflo-
rescence sessile, predominantly axillary and ramiflorous; bracts less than 0.4
mm long . 3. Pleiocarpa
Sepals glabrous outside, with colleters inside; pistil head with a stigmatic oblong
to subglobose basal part and a stigmoid apex up to 1.5 mm long; inflorescence
predominantly terminal and sometimes axillary (except in H. ballayi); bracts
at least 0.5 mm long . 2
2. Sepals imbricate even at anthesis, (3.5-)5.5-7.5 mm long, with colleters up to 0.18 of their length; testa coriaceous; cotyledons with secondary nerves; fruits II$20 \times 8-15 \mathrm{~cm}$, wall very hard and very fibrous
2. Picralima

Sepals imbricate in bud, 0.7-2.5 mm long, with colleters covering at least 0.4 of the sepal length; testa membranaceous; cotyledons without visible secondary nerves; fruits $2-5 \times 1-5 \mathrm{~cm}$, wall mostly fleshy
I. Hunteria

2.5 Hunteria roxb.

Hunteria Roxb. in Fl. Ind. Seramp. ed. Carey \& Wall. 2: 531 (1824) \& ed. 2, 1: 695 (1832); G.Don in Gen. Syst. 4: 105 (1837); Thwaites in Enum. Pl. Zeyl. 191 (1860); Bentham in Bentham \& Hooker f., Gen. Pl. 2: 698 (1876); Hooker, J.D. in Fl. Brit. Ind. 3: 637 (1882); K. Schumann in Engler Pflanzenw. Ost.-Afr. C: 317 (i895); Stapf in Fl. Trop. Afr. 4, I: 104 (1902); O. Kuntze in Post \& O. Kuntze, Lexicon 288 (1904); Pichon in Mém. Mus. Natn. Hist. Nat. 24: 160 (1948) \& in Bol. Soc. Brot. sér. 2, 27: 88 (1953); H. Huber in Fl. W. Trop. Afr. ed. 2, 2: 62 (1963); Huber in Rev. Handb. Fl. Ceylon I: 10 (1973); Tsiang Ying in Fl. Rep. Pop. Sin. 63: 15 (1977); Markgraf in Blumea 30: 169 (1984); Kupicha in Fl. Zamb. 7, 2: 430 (1985). -Type species: Hunteria corymbosa Roxb. (=H. zeylanica (Retz) Gardn. ex Thw.).

Heterotypic synonyms:
Polyadoa Stapf in op. cit: 103; Pichon in Mem. Mus. Natn. Hist. Nat. 24: 159 (1948). Lectotype species: P. umbellata (K. Schum.) Stapf (=H. umbellata (K. Schum.) Hall. f.), designated here.
Tetradoa Pichon in Bull. Soc. Bot. France 93, 7-8: 251 (1946) \& in Mém. Mus. Natn. Hist. Nat. 24: 160 (1948) \& in Bull. Soc. Brot. sér. 2, 27: i 19 (1953). Type species: Tetradoa hexaloba Pichon, designated by Pichon in 1953 (= H. hexaloba (Pichon) Omino.
Hunteria sect. Euhunteria Pichon in Mém. Mus. Nat. Hist. Nat. 24: 16i (1948), partly. -Type species: Hunteria zeylanica (Retz.) Gard. ex Thw., designated here.
Hunteria sect. Pleuranthemum Pichon, l.c. - Lectotype species: H. ballayi, designated here.
Pleuranthemum Pichon in Bol. Soc. Brot. sér. 2, 27: 112 (1953). - Type species: P. ballayi (Hua) Pichon (= H. ballayi Hua), designated by Pichon in 1953.
Comularia Pichon op. cit. II4 (1953). - Type species: C. camerunensis (K.Schum. ex Hall. f.) Pichon (= Hunteria camerunensis K. Schum. ex Hall. f.).

Shrubs or trees, rarely lianescent with white latex or occasionally colourless (in H. zeylanica) in all parts; branchlets glabrous. Leaves opposite, petiolate, those of a pair equal or subequal; blade mostly elliptic, entire and glabrous on both sides. Inflorescence mostly terminal, sometimes also axillary, few-to many-flowered, dense to lax, pedunculate; peduncle $2-45 \mathrm{~mm}$ long, glabrous. Flowers fragrant, actinomorphic except for the subequal sepals. Sepals light green, thin to thick and coriaceous, free or connate at the extreme base, membranaceous at the edge, glabrous outside, and with colleters inside up to 0.9 of their length. Corolla white to yellow to red, tube greenish in bud, with a belt of pubescence up to 3 mm wide inside just below the
insertion of the stamens, sometimes extending to the mouth or reduced to minute tufts of hairs below each filament; tube much longer than the calyx, almost cylindrical, narrowed below the insertion of the stamens; lobes overlapping to the left in bud, sometimes twisted, shorter or longer than the tube, spreading and often recurved later. Stamens included, inserted at or above the middle of the corolla tube; anthers ovate, obtuse to acuminate at the apex, cordate at the base, glabrous, of two parallel cells longitudinally dehiscent. Pistil glabrous; ovary subglobose to oblong, composed of 2 separate carpels, united at the extreme base by a disk-like thickening; pistil head composed of a stigmatic subglobose basal part and a stigmoid apex up to I mm long; ovules I-6(-30) in each carpel. Fruits yellow to orange, smooth or warty, composed of two separate mericarps divergent at $90-180^{\circ}$; mericarps subglobose to obovoid, with a rounded to beaked apex, 1-9 (-26)-seeded; wall 2-12 mm thick, fleshy to fibrous. Seeds brown, variously shaped, somewhat angular, smooth. Embryo straight, spathulate, surrounded by thick rather starchy and hard endosperm, leaving a hole around the radicle base; cotyledons thin, leafy; radicle almost cylindrical, flattened and narrowed at the apex, widened towards the base.

Distribution. All i2 species occur in Africa. One species, Hunteria zeylanica, is also widely spread in S and SE Asia.

Key to the species of Hunteria

1. Corolla lobes wider than long, $1.3-2 \times 1.7-2.8 \mathrm{~mm}$, broadly ovate with a rounded apex; corolla head globose in mature bud, 0.22-0.24 of the bud length
2. H. ghanensis

Corolla lobes longer than wide, $2.6-12 \times 0.5-3.9 \mathrm{~mm}$, ovate, elliptic to oblong with an acute to obtuse apex; corolla head ovoid in mature bud, 0.25-0.68 of the bud length

2
2. Corolla tube I.3-2.I \times as long as the calyx, $3-4 \mathrm{~mm}$ long, inside with or without minute tufts of hairs below each filament; stamens inserted $1.7-2 \mathrm{~mm}$ from the base of the corolla tube 2. H. camerunenis
Corolla tube 2.9-18 \times as long as the calyx, $4-\mathrm{I} 8.5 \mathrm{~mm}$ long, inside with a belt of pubescence 0.8-2.0 (-3.5) mm below the stamens and sometimes up to the mouth of the tube; stamens inserted $2.6-9.8 \mathrm{~mm}$ from the base3
3. Stamens with apex $2.5-3.7 \mathrm{~mm}$ below the mouth of the corolla tube 4

Stamens with apex 0.2-I.2 mm below the mouth of the corolla tube 5
4. Corolla tube $13-18 \times$ as long as the calyx, $12.5-18.5 \mathrm{~mm}$ long; stamens with apex 3.2-3.7 mm below the mouth of the corolla tube, inserted $6-8 \mathrm{~mm}$ from the base of the tube; mericarps oblong with a long slender beak; Sierra Leone to Ivory Coast

Io. H. simii
Corolla tube $4.6 \times$ as long as the calyx, $6.5-7 \mathrm{~mm}$ long; stamens with apex 2.5 mm below the mouth of the corolla tube, inserted $2.6-2.8 \mathrm{~mm}$ from the base of the tube; mericarps ellipsoid with an acuminate beak;
Gabon
6. H. hexaloba
5. Inflorescence predominantly axillary, sessile, ramiflorus, I-I.2 \times I-1.5 cm; fruit warted, beaked . H. ballayi
Inflorescence terminal and sometimes at the same time axillary, $1.5-7.5 \times$ I8.5 cm , fruits smooth, rounded to obtuse at the apex 6
6. Secondary veins oblique, in 7-12 pairs, reaching the margin without looping to join their neighbours, forming an angle of $50-60^{\circ}$ with the midrib; inflorescence, lax, in dense, umbellate cymes up to 160 -flowered
8. H. myriantha

Secondary veins more or less straight, in 9-30 pairs, forming a submarginal vein and an angle of (55-) $65-80^{\circ}$ with the midrib; inflorescence, contracted or lax, up to 150 -flowered

7
7. Leaf acumen indistinct; inflorescence lax, up to 96 -flowered, Eastern Coast from Somalia to Mozambique . 12. H. zeylanica
Leaf acumen distinct; Inflorescence few-flowered or contracted, Western Coast from Senegal to Zaire and Mt. Kulal in Northern Kenya 8
8. Corolla tube 9-1 3 mm long; stamens inserted at 7-9.8 mm from the corolla base

Corolla tube 4-8.2 mm long; stamens inserted at 2.5-6.2 mm from the corolla base 10
9. Secondary veins in 9-14 pairs, 8 - I 3 mm apart at the cental part of the leaf; sepals membranaceous, colleters sparsely distributed within; ovary with I ovule per carpel
7. H. macrosiphon

Secondary veins in $\mathbf{2 0 - 2 5}$ pairs, $3-6 \mathrm{~mm}$ apart at the central part of the leaf; sepals thick towards the middle, coriaceous with colleters up to 0.75 of their length; ovary with 6-7 ovules per carpel
9. H. oxyantha
10. Corolla lobes $0.4-0.5 \times$ as long as the tube, $2.6-3 \mathrm{~mm}$ long; ovules 2 per carpel
4. H. densiflora

Corolla lobes 0.8-2.7 \times as long as the tube, $4-12 \mathrm{~mm}$ long; ovules 6-30 per carpel

II
II. Ovary gradually narrowed into style, I.5-2 mm long, with 5-6 ovules per carpel; fruit 20-26 \times II-18 cm; Zaire and Kenya 3. H. congolana
Ovary abruptly narrowed into style, o.6-I.I mm long, with 14-30 ovules per carpel; fruit 3I-60 $\times 40-50 \mathrm{~cm}$; Senegal to Zaire $\ldots .$. . . II. H. umbellata

2.5.1 Hunteria ballayi Hua

in Bull. Mus. Hist. Paris 7: 281 (1902). - Type: Cultivated in greenhouse at Paris from seeds collected in Gabon by Ballay in May 1906 (holotype P).

Fig. 23, p. 91; map 1, p. 92
Homotypic synonym:
Pleuranthemum ballayi (Hua) Pichon in Bull. Soc. Brot. sér 2, 27: I13, plate II, fig
7-10, map A, p. 85 (1953).

Figure 23. Hunteria ballayi. 1, habit $(\times 2 / 3) ; 2$, flower bud $(\times 4) ; 3$, opened corolla $(\times 4) ; 4$, pistil $(\times 4)$; 5, fruiting branch ($\times 2 / 3$); 6, fruit ($\times 2$); 7, embryo ($\times 4$). I from Le Testu 8558; 2-4 from van der Maesen et al. 5579; 5 from Wilks 1453; 6-7 from Schlott II .

Map 1. Hunteria ballayi.
Shrub I-3 m high, sometimes lianescent and up to 5 m high with white latex. Trunk slender; inner bark yellowish; wood very hard. Branchlets drying greyish green. Leaves opposite; petiole 3-7 mm; blade papery when dried, elliptic to slightly obovate, $2.2-3 . \mathrm{I} \times$ as long as wide, $6.7-20.3 \times 2.2-8.1 \mathrm{~cm}$, acuminate at the apex, acumen obtuse, $7-14 \times 2 \mathrm{~mm}$, acute at the base; midrib prominent beneath in dried leaves, drying brownish orange; secondary veins straight, in 20-30 pairs, forming a submarginal vein and an angle of $65-70^{\circ}$ with the costa, $5-6 \mathrm{~mm}$ apart at the approximate centre of the leaf. Inflorescence predominantly axillary and terminal, fasciculate, ramiflorous, I-I. $2 \times 1-1.5 \mathrm{~cm}$, about 10 -flowered; peduncle $0-2 \mathrm{~mm}$. Pedicels $0.5-2 \mathrm{~mm}$. Bracts $0.5-0.7 \times 0.4-0.5 \mathrm{~mm}$, acuminate. Flowers: Sepals light green, free, membranaceous at the edge, thicker towards the middle and at the base, erect, ovate, $\mathrm{I} .3-3 \times$ as long as wide, I-I. $5 \times 0.5-0.8 \mathrm{~mm}$, obtuse to acute at the apex, with rows of colleters inside up to 0.4 of their length, colleters very small. Corolla dirty white, pale yellow in bud, 7.I-I I. 2 mm long in mature bud and forming a comparatively small ovoid head $0.36-0.39$ of the bud length, $2.8-4 \times 0.9-1.6 \mathrm{~mm}$, with an obtuse to rounded apex, with a belt of pubescence I mm wide inside just below the insertion of the stamens, with a few hairs around the stamens, tube 3.3-6 \times as long as the calyx, 1.7-2.4 \times as long as the lobes, $5-7.2 \mathrm{~mm}$ long, almost cylindrical, o.92 mm wide above the base, narrowed below the insertion of the stamens to o.8-1. 6 mm wide, again widened around the anthers to $\mathrm{I} .3-\mathrm{I} .8 \mathrm{~mm}$ wide; lobes not twisted in bud, ovate, $0.4-0.6 \times$ as long as the tube, 1.9-2.3 \times as long as wide, $2.7-3.5 \times$ 1.31.5 mm , obtuse at the apex, entire, spreading or erect. Stamens with apex $0.2-0.3 \mathrm{~mm}$ below the mouth of the corolla tube, inserted $0.69-0.79$ of the length of the corolla tube at $3.5-5.5 \mathrm{~mm}$ from the base; filaments short, filiform, $0.3-0.6 \mathrm{~mm}$ long; anthers narrowly ovate, $3.5-4.5 \times$ as long as wide, $0.9-1.4 \times 0.3-0.4 \mathrm{~mm}$, acuminate at the apex, acumen $0.2-0.3 \mathrm{~mm}$, cordate at the base. Pistil $4.6-5.6 \mathrm{~mm}$ long; ovary narrowly oblong, I-1. $2 \times 0.4-0.8 \times 0.3-0.6 \mathrm{~mm}$, abruptly narrowed into the style, with
a disk-like thickening uniting the carpels at the base, about 0.2 of the length, 0.2 mm high, of two separate carpels; style $2.8-3.7 \mathrm{~mm}$ long; pistil head composed of a globose stigmatic basal part 0.4-0.5 $\times 0.15-0.3 \mathrm{~mm}$ and a filiform stigmoid apex 0.2-0.6 $\times 0.1-0.15 \mathrm{~mm}$. Ovules 2 in each carpel. Fruits pale yellow, rough, warty to smooth, of two separate mericarps, mericarps obovoid or ellipsoid, $15-28 \times 9-15 \times 6$-I I mm, with a short beak at the apex, beak $2-6 \mathrm{~mm}$, 2 -seeded, wall about $\mathrm{I}-2 \mathrm{~mm}$; pulp smooth or slightly fibrous. Seeds ellipsoid or subglobose, $8-13 \times 5-9 \times 3-7 \mathrm{~mm}$. Embryo 4.3-9 mm long; cotyledons ovate, $1.2-2 \times$ as long as wide 2.3-5 \times I. $8-4 \mathrm{~mm}$, obtuse at the apex, rounded at the base; radicle $0.7-\mathrm{I} \times$ as long as cotyledons, 2-4 $\times 0.5-2 \mathrm{~mm}$.

Distribution. Cameroun, Central African Republic, Gabon and Congo.
Ecology. Old secondary forest, flood plain forest and drier forest with scattered trees and numerous gaps dominated by Marantaceae. Alt. 350-500 m. Flowering in April in Central African Republic, April and November in Gabon, and fruiting around July to September in all countries.

Uses. Used as a fertility drug, women swallow the seed together with the sweet mesocarp; chimps suck the sweet mesocarp (Fay 8127, MO, 1987, RCA); used as a fertility drug and also found in gorilla droppings, but never in high density (Harris \& Fay 63, MO, I988, RCA).

Specimens examined:
Cameroun. Est: 65 km NNE of Moloundou, Letouzey \& Villiers 10568 (P); 85 Km N of Molundou, Letouzey \& Villiers 10383 (P); Ndankan, D. W. Thomas 7202 (WAG); Moloundou, Mildbraed 4038 (HBG). Ngongondje Hill, Koufani 143 (P); Nyabessan, Mezili 120 (P).

Central African Republic. Sangha: Ndankan Gorilla Study area, Harris \& Fay 63 (MO), Harris \& Fay 547 (WAG), Fay 8127 (MO), Fay \& Harris 8782 (MO), 8835 (MO); 45 km S of Lidjombo, Schlott II (WAG).

Gabon. Haut Ogoué: Ngounie, Le Testu 8558 (BM, BR, P). Ogooué-Ivindo: 40 km N of Koumameyong, Wilks 1453 (WAG). Ogooué-Lolo: 10 km from Lastoursville, Van der Maesen et al. 5579 (WAG). Estuaire: Libreville, Klaine 3077 (P); Ballay May 1906 (P, type).

Congo: Ngoko, Bouquet 1629 (P); Sembe Forest, Sita 3373 (WAG); near N'gbal, Sita 345I (BR).

2.5.2 Hunteria camerunensis K. Schum. ex Hall f.

in Jahrb. Hamb. Wiss. Anst., 17 Beih. 3: 187 (1899); Pichon in Mém. Mus. Natn. Hist. Nat. 24: I6I, 179 t. 3 fig. 20 (1948). - Type: Cameroun, Bipindi, Zenker 1620 (lectotype P, designated by Pichon in 1953, isolectotypes B, BP, BR, E, G, HBG, L, M, NY S, W, WAG, WU, Z).

Fig. 24, p. 94; map 2, p. 95
Homotypic synonyms:
Pleiocarpa camerunensis (K. Schum. ex Hall. f.) Stapf in Fl. Trop. Afr. 4, I: 102 (1902). Polyadoa camerunensis (K. Schum. ex Hall. f.) Brenan in Kew Bull.

Figure 24. Hunteria camerunensis. 1, habit ($\times 2 / 3$); 2, flower bud ($\times 1.4$); 3, flower ($\times 10$); 4, opened corolla ($\times 10$); 5, sepal inside (\times 1.4); 6, pistil (\times I.4). I-6 from Zenker 121 1. 7. Fruit is Tabernaemontana letestui.

Map 2. Hunteria camerunensis.

1952: 451 (1952). Comularia camerunensis (K. Schum. ex Hall. f.) Pichon in Bol. Soc. Brot. sér. 2, 27: i16, II7 t. 3, fig I-3, map A, p. 85 (1953).

Shrub I-3 m high. Trunk slender, green up to 1.5 cm in diameter. Branches dark green, drying grey to black; branchlets quadrangular to slightly four-ribbed, green, even when dried. Leaves opposite; petiole $4-10 \mathrm{~mm}$; blade thinly leathery when fresh, elliptic, oblong to obovate, 2-3.3(-5) \times as long as wide, $6-18.8(-24.7) \times$ 1.4-8 cm , acuminate at the apex, acumen obtuse, $5-20 \times 2-4 \mathrm{~mm}$, acute, obtuse to cuneate at the base, smooth, glossy above; midrib prominent beneath and drying light orange; secondary veins more or less straight to slightly curved, in II-I 3 pairs, forming an angle of $60-75^{\circ}$ with the midrib, 6-18 mm apart at the approximate centre of the leaf. Inflorescence terminal, rarely axillary, in compact clusters, $0.5-\mathrm{I} .5 \times 0.5-$ 2.3 cm , about 5-12-flowered, sessile or with a peduncle I-6 mm long. Pedicels $0.5-$ 2 mm . Bracteoles, three at the base of each pedicel, $0.5-1.5 \times 0.2-1 \mathrm{~mm}$, acuminate at the apex. Flowers: Sepals pale green, free, erect, covered by a little resin on the inner side, membranaceous for about 0.2 mm of their edge, ovate, $1.9-3.6 \times$ as long as wide, $\mathrm{I} .5-2.5 \times 0.6-\mathrm{I} .2 \mathrm{~mm}$, acuminate to acute at the apex, acumen $0.5-\mathrm{I} \mathrm{mm}$, with rows of colleters up to one 0.4 of their length inside, colleters very small $0.2 \times$ 0.05 mm . Corolla creamy to white, light green in bud, 4.3-8 mm long in mature bud and forming a comparatively large ovoid or triangular head 0.44-0.63 of the bud length, 2.3-3.7 $\times 0.5-0.9 \mathrm{~mm}$, with an acute apex, with minute tufts of hairs at the base of each filament inside, tube I.3-2.I \times as long as the calyx, $0.6-0.9(-I .2) \times$ as long as the lobes, $3-4 \mathrm{~mm}$ long, almost cylindrical, $0.7-1.8 \mathrm{~mm}$ wide above the base, narrowed below the insertion of the stamens to $0.6-1.2 \mathrm{~mm}$ wide, again widened around the anthers to $0.8-1.5 \mathrm{~mm}$ wide, thickened and very constricted at the throat; lobes pale pink, twisted in bud, narrowly oblong to ovate, (0.9-) I.I-I. $6 \times$ as long as the tube, $2.4-5.9(-10) \times$ as long as wide, $2.8-5.5 \times 0.5-2 \mathrm{~mm}$, obtuse at the apex, entire, spreading to erect. Stamens with apex $0.2-0.8 \mathrm{~mm}$ below the mouth of the corolla tube, inserted 0.43-0.67 of the length of the corolla tube, at $1.7-2 \mathrm{~mm}$ from the base; filaments $0.2-0.5 \mathrm{~mm}$ long; anthers narrowly ovate to oblong, $4-6 \times$ as long as wide, $0.8-\mathrm{I} .2 \times 0.2-0.3 \mathrm{~mm}$, obtuse at the apex, subcordate at the base. Pistil $1.9-$
3.1 mm long, ovary subglobose, 0.6-1.0 $\times 0.4-0.7 \times 0.2-0.5 \mathrm{~mm}$, distinctly narrowed into the style, with a disk-like thickening uniting the carpels at the base, about 0.250.33 of the length, 0.2 mm high, of two separate carpels; style $0.5-0.8 \mathrm{~mm}$ long; pistil head composed of a subglobose to oblong stigmatic basal part 0.3-0.8 $\times 0.15 \times$ 0.2 mm and a cylindrical stigmoid apex 0.3-0.9 $\times 0.1 \mathrm{~mm}$. Ovules 6.8 in each carpel. Fruits orange, smooth, of two separate mericarps, mericarps divergent at an angle of 180°, ovoid to subglobose, $28-47 \times 15-25 \times 10-18 \mathrm{~mm}$, bluntly acuminate at the apex, $6-8$-seeded; wall about 2 mm ; pulp smooth or slightly fibrous. Seeds subglobose to ellipsoid, $7-14 \times 5.5-10 \times 3.4 \mathrm{~mm}$. Embryo $5.5-9 \mathrm{~mm}$ long; cotyledons ovate, $1.2-2.5 \times$ as long as wide $3-4.2 \times 2-2.5 \mathrm{~mm}$, obtuse at the apex, rounded at the base; radicle $0.75-0.83(-1.2) \times$ as long as cotyledons, $2.5-4.8 \times 0.5-0.9 \mathrm{~mm}$.

Distribution. Cameroun and Gabon.
Ecology. Primary or secondary forest along small creeks, or stream gullies on forest border or in rain forest. Alt. 50-650 m. Flowering and fruiting all the year round.

Geographical selection of the approximately 40 specimens examined:
Cameroun. Sud-Ouest: Limbe, Mildbraed 10716 (A); S Bakundu Forest Reserve, Beentje 1450 (WAG), Brenan 9401 (FHO, K, P), Binuyo \& Daramola FHI 35090 (K, P). Centre-Sud: 8 km N of Kribi, De Wilde \& De Wilde-Duyfjes 2901 (WAG); 60 km NNW of Eseka, De Wilde \& De Wilde-Duyfjes 2195 (WAG); Bipindi, Zenker 1211 (E, G, HBG, L, M, P, S, W, Z), 1620 (B, BP, BR, E, G, HBG, L, M, NY, P, W, WAG, WU, Z, type of H. camerunensis), 2311 (BR, E, HBG, L, M, P, S, W, WU, Z), 3163 (BP, BR, E, G, HBG, K, L, M, P, S, W, WAG, WU), 36 II (BP, BR, E, G, HBG, K, L, M, MA, P, S, US, W, Z), 4113 (BP, BR, E, G, HBG, K, L, M, MA, P, S, W, Z); Mimfia, Zenker II I63 (B, C, FT, G, UC, US, U, WAG); 25 km NW of Eseka, De Wilde \& De Wilde-Duyfies 1442 (BR, K, P, WAG); Nkoemvone, Raynal 9606 (P); 15 km S of Ebolowa, De Wilde \& De Wilde-Duyfjes 1974 (BR, K, P, WAG).

Gabon. Woleu-Ntem: 29 km ESE of Medouneu, Reitsma 1858 (NY, WAG). Ogooué-Ivindo: ca. 20-40 km NNE of Koumémayong, Breteler et al. 8654 (WAG); 10 km S of Makokou, Florence 154 (P), 566 (P, WAG). Ogooué-Lolo: 16 km on Lastoursville-Moanda Rd., Breteler \& de Wilde 748/78 (WAG); 28 km NE of Lastoursville, Wieringa \& Van der Poll 1479 (WAG).

2.5.3 Hunteria congolana Pichon

in Bol. Soc. Brot. sér 2, 27: 101, t.I fig. 9-I 3; map A p. 85 (1953). - Type: Zaire, Haut-Zaire, 10 km East of Yangambi, J. Louis 1083 (holotype BR; isotypes K, P, S).

Fig. 25, p. 97; map 3, p. 98
Shrub or small tree 1.7-20 m high with white to yellow latex in all parts. Trunk 5-30 cm in diameter; wood yellow and hard. Bark of branches thin, smooth, finely fissured. Leaves opposite; petiole $8-18 \mathrm{~mm}$ long; blade thin, papery when dried, elliptic to oblong, $2.4-4 \times$ as long as wide, $6.3-18.4 \times 1.5-5.9 \mathrm{~cm}$, acuminate at the apex, acumen obtuse, $10-18 \times 2-4 \mathrm{~mm}$, acute to obtuse at the base; midrib pale yellow, prominent beneath; secondary veins slightly prominent beneath, in II-I 6 pairs, more or less straight, forming an angle of $70-80^{\circ}$ with the midrib, $6-14 \mathrm{~mm}$ apart at the approximate centre of the leaf. Inflorescence terminal or axillary, $3-3.5 \times 3-5 \mathrm{~cm}$, I-

Figure 25. Hunteria congolana. 1, habit ($\times 2 / 3$); 2, calyx $(\times 6) ; 3$, corolla $(\times 6) ; 4$, opened corolla $(\times 6)$; 5 , sepal inside ($\times 14$); 6, pistil ($\times 10$); 7, dried immature fruit $(\times 2 / 3) ; 8$, dried fruit $(\times 2 / 3) ; 9$, dried part of fruit wall ($\times 1$); 10, opened dried fruit (x_{1}); 11, seed ($\times 2$); 12, longitudinal section of seed ($\times 2$); seed ($\times 2$). I from J. Louis 6489; 2-6 from J. Léonard 1445; 7 from Nsola 1261; 8-13 from J. Louis 6328.

Map 3. Hunteria congolana.
$2 \times$ branched, about 7-18 (-45)-flowered; peduncle 2-14 mm long, primary branches 3-IO mm long, secondary branches $2-4 \mathrm{~mm}$ long; pedicels $2-5 \mathrm{~mm}$ long. Bracts sepal-like, 1-1.5 $\times 0.5-0.7 \mathrm{~mm}$, with colleters inside. Flowers: Sepals pale green, coriaceous, almost free, erect, membranaceous at the edge and the apex, thicker towards the middle and at the base, with much white to clear resin within, broadly to narrowly ovate, 1.I-2.7 \times as long as wide, $0.8-1.5 \times 0.3-0.8 \mathrm{~mm}$, acuminate to acute at the apex, with rows of colleters inside up to 0.9 of their length, colleters very small $0.2 \times 0.05 \mathrm{~mm}$. Corolla white or yellow, creamy-pink in bud, 6.6-1 I. 6 mm long in mature bud and forming a comparatively wide ovoid head 0.38-0.55 of the bud length $2.2-6 \times 0.9-\mathrm{I} .7 \mathrm{~mm}$, with an obtuse apex; with a belt of pubescence I-I. 5 mm wide inside just below the insertion of the stamens and up to the mouth of the tube, tube 3.7-6.3 \times as long as the calyx, $0.7-\mathrm{I} .3 \times$ as long as the lobes, $4.8-$ 5.5 mm long, almost cylindrical, I-1.8 mm wide above the base, narrowed below the insertion of the stamens to $0.8-1.3 \mathrm{~mm}$ wide, again widened around the anthers to I-2 mm wide; lobes narrowly ovate to oblong, o.8-I. $5 \times$ as long as the tube, I.7-4 \times as long as wide, 4-8 \times I.5-2.8 mm, obtuse at the apex, spreading. Stamens with apex $0.2-1 \mathrm{~mm}$ below the mouth of the corolla tube, inserted $0.63-0.73$ of the length of the corolla tube, at $3-4.7 \mathrm{~mm}$ from the base; filaments $0.2-0.5 \mathrm{~mm}$ long; anthers narrowly ovate 3.7-7.5 \times as long as wide, I.I-I. $5 \times 0.2-0.3 \mathrm{~mm}$, obtusely acuminate at the apex, acumen up to 0.4 mm , cordate at the base. Pistil 3.4-4.8 mm long; ovary oblong, $1.5-2 \times 0.6-\mathrm{I} \times 0.3-0.8 \mathrm{~mm}$, gradually narrowed into the style, with a disklike thickening uniting the carpels at the base, about 0.I-0.2 of the length, 0.2 mm high, of two separate carpels; style $0.8-2.1 \times 0.2-0.4 \mathrm{~mm}$; pistil head composed of a subglobose stigmatic basal part 0.2-0.8 $\times 0.2-0.5 \mathrm{~mm}$ and an conical stigmoid apex $0.4-\mathrm{I} .0 \times$ I-0.2 mm. Ovules 5-6 in each carpel at the extreme base. Fruits yellow to bright orange, smooth, dull; mericarps ellipsoid to subglobose, somewhat flattened,
$20-26 \times$ II-I $8 \times$ II-I 6 mm , rounded to obtuse at the apex; I-3-seeded; wall about I- 3 mm thick, slightly fibrous within. Seeds ovoid to ellipsoid, 7-1 $3 \times 5-7.5 \times 3$ 4 mm . Embryo 6.3-8.7 mm long; cotyledons ovate to elliptic, $1.5-2.6(-5.7) \times$ as long as wide, 2.3-4.2 $\times 0.7-2 \mathrm{~mm}$, obtuse at the apex and the base; radicle $0.7-\mathrm{I} .7 \times$ as long as cotyledons, $3-4.7 \times 0.5-0.8 \mathrm{~mm}$.

Distribution. Zaire and Kenya.
Ecology. Dense understorey of primary, rarely secondary forest or gallery forest on plateau. Alt. 470-1700 m. Flowering and fruiting all the year round.

Geographical selection of the approximately 48 specimens examined:
Zaire. Equateur: Boende, L. Dubois 651 (BR); Yalifake, Evrard 6270 (BR); between Yokolo and Mondombe, Evrard 4354 (BR). Haut-Zaire: Mobwasa, Reygaert 884 (BR); Esabo Island, Germain 4957 (BR, M); near Yangambi, J. Léonard 1445 (BR); ibid., J. Louis 1083 (BR, K, P, S, type), 3809 (B, BR, FT, K, NY), 6328 (BR), 6489 (BR, C, NY); ibid., Menavanza 143 (BR, K, WAG). Kasai-Oriental: Mukumari, Germain 7998 (BR, K, P). Kivu: Kampala, Pierlot 950 (BR); Kabunga, A. Léonard 1831 (BR, MO, P, WAG); near Irangi, Troupin 12151 (BR); Masanga, A. Léonard 5879 (BR, MO, WAG); km 89 ShabundaKasese Road, Michelson 914 (BR).

Kenya. Kı: Northern Frontier Distr., Mt. Kulal, Adamson II 5 (EA, K); North of Gatab, sin. coll. 178 (EA, K).

Note. The corolla of this species always falls off leaving only the pistil, therefore it probably flowers during the night. It can be clearly distinguished from the other Hunteria species by the ovary which gradually narrows into the style. Collected twice in Kenya, in Mt. Kulal where lobes are much longer and leaves much smaller. Fruits not known from Kenya.

2.5.4 Hunteria densiflora Pichon

in Bull. Jard. Bot. Brux. 23: 392, fig 38 (1953), partly excluding of Michelson 85.Type: Zaire, Maniema, 22 km on Elila-Kailo road, Michelson 92 I (holotype BR; isotype P).

Fig. 26, p. 100; map 4, p. 101

Tree up to 18 m high; trunk up to 55 cm in diameter; bark smooth, dark greenishbrown; inner bark brown; wood not differentiated, hard, yellowish-orange. Leaves opposite, occasionally ternate, petiolate; petiole $\mathbf{1 2 - 2 0} \mathrm{mm}$ long; blade coriaceous, elliptic, $2.8-2.9 \times$ as long as wide, $6.5-15.3 \times 3.5-6.5 \mathrm{~cm}$, acuminate at the apex, acumen acute, $10-22 \times 3.4 \mathrm{~mm}$, acute to obtuse at the base; midrib prominent beneath; secondary veins prominent above and beneath, in 22-30 pairs, forming an angle of $70-80^{\circ}$ with the midrib and a neat submarginal vein, $4-6 \mathrm{~mm}$ apart at the approximate centre of the leaf, tertiary veins more or less parallel. Inflorescence terminal, dense, $2 \times$ branched, in umbellate cymes, 60-120-flowered; peduncle 15 40 mm , branches $2-8 \mathrm{~mm}$ long; pedicels $2-3 \mathrm{~mm}$ long. Flowers very fragrant. Sepals pale green, free, erect, membranaceous at the edge, thick towards the middle and the base, ovate $\mathrm{I} .4-\mathrm{I} .7 \times$ as long as wide, $\mathrm{I}-\mathrm{I} .2 \times 0.7 \mathrm{~mm}$, acuminate at the apex, with

Figure 26. Hunteria densifiora. 1, habit ($\times 2 / 3$); 2, section of corolla ($\times 5$); 3, pistil ($\times 10$). 1-3 from Michelson 941. adapted from Pichon, 1953.

Map 4. Hunteria densiflora.
resin within and colleters inside up to 0.5 of the length. Corolla white, 10 mm long in mature bud and forming a comparatively small ovoid head 0.35 of the bud length, $3.2 \times 1 \mathrm{~mm}$, with an obtuse apex, with a belt of pubescence I-1.3 m wide inside, just below the insertion of the stamens and up to the mouth of the corolla tube; tube 5 $5.5 \times$ as long as the calyx, i.8-2.3 \times as long as the lobes, $5.5-6 \mathrm{~mm}$ long, almost cylindrical, $0.8-1.5 \mathrm{~mm}$ wide above the base, narrowed below the insertion of the stamens to $0.6-0.8 \mathrm{~mm}$ wide, again widened around the anthers to $1.2-\mathrm{I} .3 \mathrm{~mm}$ wide; lobes ovate, $0.4-0.5 \times$ as long as the tube, I.3-I. $4 \times$ as long as wide; $2.6-3 \mathrm{~mm}$ long, obtuse at the apex, entire, spreading. Stamens with apex 0.4 mm below the mouth of the corolla tube, inserted 0.87 of the length of the corolla tube at 4.8 m from the base; filaments 0.5 mm long; anthers ovate, $3.5-4 \times$ as long as wide, $0.6-0.7 \times 0.15-$ 0.2 mm , obtuse at the apex and sterile for 0.2 mm , cordate at the base. Pistil 5.5^{-} 6.2 mm long; ovary subglobose, $0.7-\mathrm{I} \times 0.6-0.7 \times 0.4-0.5 \mathrm{~mm}$, abruptly narrowed into the style, with a disk-like thickening uniting the carpels at the base, about 0.3 of the length, $0.2-0.3 \mathrm{~mm}$ high, of two separate carpels; style $3.8-4.3 \mathrm{~mm}$ long; pistil head with a stigmatic ellipsoid basal part 0.3-0.5 $\times 0.3$ and a conical stigmoid apex $0.5 \times 0.15-0.2 \mathrm{~mm}$. Ovules two in each carpel. Fruits immature, green, of two separate mericarps; mericarps subglobose with an obtuse apex, 2 -seeded.

Distribution. Zaire.
Ecology. Semi-deciduous forest. Alt. 500 m . Flowering in February and fruiting in March-April.

Specimens examined:
Zaire. Equateur: Bokata, Territory Bokungu Evrard, 5675 (BR, WAG); Maniema, 22 km on ElilaKilo Road, Michelson 921 (BR, P, type).

Notes. Mature fruits unknown. The immature fruits of Michelson 85 cited by Pichon (1953), were analyzed and found to have 7 seeds, meaning that the ovaries have at least 7 ovules. H. densiflora has only two ovules per carpel and immature fruits of Michelson 92 I have 2 seeds only. Michelson 85 matches the new species, Hunteria oxyantha Omino, from Gabon.

2.5.5 Hunteria ghanensis Hall \& Leeuwenberg

in Bull. Jard. Bot. Nat. Belg. 49: 422, 423, fig. I (1979). - Type: Ghana, Apam junction, J. B. Hall GC 47044 (holotype WAG; isotypes B, BR, K, P).

Fig. 27, p. 103; map 5, p. 104

Tree I-12 m high. Trunk $20-25 \mathrm{~cm}$ in diameter; bark pale grey, shallowly fissured, dark brown on section; wood ochraceous. Branches pale grey, with small lenticels; branchlets thin, smooth. Leaves opposite; petiole 5-10 mmlong; blade subcoriaceous when fresh, narrowly elliptic (2-) 2.7-5.I \times as long as wide, $3.5-13.5 \times 0.8-3.4 \mathrm{~cm}$, abruptly acuminate at the apex, acumen 12-15 $\times 2-4 \mathrm{~mm}$, acute, cuneate at the base; midrib prominent beneath; secondary veins straight, inconspicuous above, slightly prominent beneath, in 15-20 pairs, forming a submarginal vein and an angle of 60$72^{\circ}$ with the costa, 6-10 mm apart at the approximate centre of the leaf; tertiary venation parallel to the secondary veins. Inflorescence terminal, almost compound umbellate, $2 \times$ branched, $2-4 \times 2.5-4 \mathrm{~cm}, 30-\mathrm{I} 50$-flowered; peduncle $3-18 \mathrm{~mm}$ long, branches 5-18 mm long; pedicels 2-4 mm long. Bracts very small. Flowers: Sepals almost free, erect, with a little resin within, ovate to narrowly triangular, acute to acuminate at the apex, 1.7-3.4 \times as long as wide, I-I. $2 \times 0.35-0.6 \mathrm{~mm}$, with rows of colleters inside up to 0.5 of their length, colleters very small, scale-like. Corolla cream to pale yellow, $5.5-8.5 \mathrm{~mm}$ long in mature bud and forming a comparatively small, globose head $0.22-0.24$ of the bud length, $\mathrm{I} .2-2 \times \mathrm{I} \mathrm{mm}$, with a rounded apex, with a belt of pubescence $2.5-3.5 \mathrm{~mm}$ wide inside just below the insertion of the stamens, and around the stamens; tube $3.6-6.2 \times$ as long as the calyx, $2.7-4.8 \times$ as long as the lobes, 4.3-6.2 mm long, almost cylindrical, o.6-1.5 mm wide above the base, narrowed below the insertion of the stamens to $0.5-0.8 \mathrm{~mm}$ wide, again widened around the anthers to $0.7-\mathrm{I} .5 \mathrm{~mm}$ wide; lobes broadly ovate, $0.2-0.35 \times$ as long as the tube, 0.7-0.9 \times as long as wide, $1.3-2 \times 1.7-2.8 \mathrm{~mm}$, rounded at the apex, entire, spreading to slightly recurved. Stamens with apex $0.3-0.5 \mathrm{~mm}$ below the mouth of the corolla tube, inserted 0.77-0.93 of the length of the corolla tube, at 45.2 mm from the base; filaments $0.3-0.5 \mathrm{~mm}$ long; anthers ovate to oblong, 2.6-3.5 \times as long as wide, $0.6-0.8 \times 0.2-0.3 \mathrm{~mm}$, obtuse at the apex, subcordate at the base. Pistil 4.6-6.0 mm long, with apex approximately halfway along the anthers; ovary subglobose, $0.6-0.9 \times 0.5-0.6 \times 0.3-0.5 \mathrm{~mm}$, abruptly narrowed into the style, with a disk-like thickening uniting the carpels at the base, about 0.22-0.25 of the length, $0.1-0.2 \mathrm{~mm}$ high, of two separate carpels; style $3-4.5 \times 0.15-0.2 \mathrm{~mm}$; pistil head composed of a subglobose, stigmatic basal part, $0.2-0.4 \times 0.2 \times 0.25 \mathrm{~mm}$ and a conical stigmoid apex $0.3-0.5 \times 0.1 \mathrm{~mm}$, sometimes with a bilobed apex. Ovules $\mathrm{I}(-2)$ in each carpel. Fruits orange, smooth; mericarps diverging at an angle of 90°, ob-

Figure 27. Hunteria ghanensis. 1, habit ($\times 2 / 3$); 2, branch $(\times 2 / 3)$; 3, flower bud ($\times 8$); 4, flower $(\times 8)$; 5, opened corolla ($\times 8$); 6, sepal inside ($\times 16$); 7, pistil ($\times 8$); 8-9, fruits ($\times 2 / 3$); 10, seed ($\times 2$);11, transverse section of seed ($\times 2$); 12, longitudinal section of seed ($\times 2$); 13, embryo ($\times 6$). 1-3 from Leeuwenberg et al. 11208; 4-7 from Hall \& Swain 43741; 8-1 3 from Hall GC 47044.

Map 5. Hunteria ghanensis.
ovoid, $10-15 \times 10-12 \times 9$-I I mm, rounded at the apex, stipitate; I-2-seeded; wall about I-2 mm thick, slightly fibrous within. Seeds bean-shaped or ellipsoid, coated with a sticky mucilage when fresh, olive green and tinged with brown, pale-veined, smooth, 7-10 $\times 5-8 \times 3-5 \mathrm{~mm}$, testa smooth orange. Embryo 6-6.4 mm long; cotyledons ovate, $2-2.3 \times$ as long as wide, $2.8-3 \times$ I.2-I. 5 mm , obtuse at the apex, rounded at the base; radicle $0.8-\mathrm{I} \times$ as long as cotyledons, $2.5-3 \times 0.5-0.6 \mathrm{~mm}$.

Distribution. Ivory Coast and Ghana.
Ecology. Dry forest or light secondary forest with an annual rainfall of io001200 mm . Alt. $50-100 \mathrm{~m}$. Flowering and fruiting between December and July in both countries.

Uses. Bark together with that of Croton zambesicus Muell. Arg. and Nauclea latifolia Sm. taken as a medicine for stomach ache and difficult urination (Leeuwenberg 1979).

Specimens examined:
Ivory Coast. Abongoua Forest, Aké Assi il 222 (WAG).
Ghana. Central: Apam Junction, Hall GC 47044 (BR, K, MO, P, WAG, type); Hall GC 47045 (B, BR, K, MO, P, WAG); 2 km E of Apam Junction, Leeuwenberg 11164 (BR, MO, P, WAG); 1.7 km E of Apam Junction, Hall \& Swain 43741 (K, MO, WAG). Eastern: near harbour of Akosombo, Leeuwenberg et al., I 1208 (B, BR, MO, P, WAG).

Cultivated. Ivory Coast: Adiopodoume Bot. Garden, Aké Assi 7478 (WAG), 13763 (WAG).
2.5.6 Hunteria hexaloba (Pichon) Omino, comb. nov.

Fig. 28, p. 105; map 6, p. 106
Basionym:
Tetradoa hexaloba Pichon in Bull. Soc. Bot. France 93, 7-8: 252 (1946) \& in Bull. Soc. Brot. sér. 2, 27: 122, t. III fig. 7, p.117; map C, p. 121 (1953). - Type: Gabon, Klaine 3158 (holotype P; isotype BR).

Shrub i. 6 m high. Trunk slender. Branchlets drying dark brown to greyish-black. Leaves: petiole 7 -10 mm long; blade elliptic, $1.8-2.5 \times$ as long as wide, $10.3-2 \mathrm{I} \times$ $4.5-\mathrm{II} .3 \mathrm{~cm}$, acuminate at the apex, acumen acute or obtuse, $6-13 \times 4-6 \mathrm{~mm}$, acute to obtuse at the base; midrib prominent beneath; secondary veins very prominent

Figure 28. Hunteria hexaloba. 1, habit ($\times 2 / 3$); 2, flower bud ($\times 4$); 3, sepal inside ($\times 30$); 4, opened corolla ($\times 4$); 5, pistil ($\times 4$); 6, pistil with opened ovary ($\times 30$); 7, infructescence ($\times 2 / 3$). I-6 from Klaine 3158; 7 from Trilles 118 .

Map 6. Hunteria hexaloba.
beneath in dried leaves, curved, in 7-10 pairs, the lower veins reaching the margin without looping to join their neighbours, forming an angle of $55-65^{\circ}$ with the costa, $13-30 \mathrm{~mm}$ apart at the approximate centre of the leaf. Inflorescence terminal, rarely axillary, $1.5-2 \times 3-3.5 \mathrm{~cm}$, about 10 -20-flowered; peduncle $2-3 \mathrm{~mm}$ long; pedicels $3-6 \mathrm{~mm}$ long. Bracts very small. Flowers: Sepals pale green, free or connate at the base for about 0.2 of their length, membranaceous at the edge and the tip, thicker towards the middle and the base, erect and with resin within, ovate, $2.3 \times$ as long as wide, $1.3-1.5 \times 0.6-0.7 \mathrm{~mm}$, acute at the apex, with rows of colleters inside up to 0.75 of their length; colleters small. Corolla reddish, 16-16.4 mm long in mature bud and forming a comparatively big ovoid head 0.56-0.57 of the bud length, 9-9.4 \times I2 mm , with an obtuse apex, with a belt of pubescence I-I. 5 mm wide inside just below the insertion of the stamens and up to the mouth of the corolla tube, tube $4.6 \times$ as long as the calyx, $0.9 \times$ as long as the lobes, $6.5-7 \mathrm{~mm}$ long, almost cylindrical, 1 mm wide above the base, narrowed below the insertion of the stamens to 0.8 mm wide, again widened around the anthers to 1 mm wide; lobes narrowly oblong, twisted in mature bud, $1.2 \times$ as long as the tube, $4.2 \times$ as long as wide, $7.5 \times 1.8 \mathrm{~mm}$, obtuse at the apex, spreading and recurved later. Stamens with apex 2.5 mm below the mouth of the corolla tube, inserted 0.45 of the length of the corolla tube at 2.6 2.8 mm from the base; filaments $0.3-0.5 \mathrm{~mm}$ long; anthers narrowly ovate to oblong, $5.6 \times$ as long as wide, I. $4-\mathrm{I} .5 \times 0.25-0.5 \mathrm{~mm}$, obtuse at the apex, cordate at the base. Pistil $2.5-2.8 \mathrm{~mm}$ long; ovary subglobose, $0.3-0.5 \times 0.3-0.5 \times 0.2 \mathrm{~mm}$, abruptly narrowed into the style, with a disk-like thickening uniting the carpels at the base, about 0.2 of the length, 0.1 mm high, of two separate carpels; style $1.7-1.8 \mathrm{~mm}$ long; pistil head composed of a subglobose stigmatic basal part $0.4 \times 0.2 \mathrm{~mm}$ and conical stigmoid apex $0.2 \times 0.1 \mathrm{~mm}$. Ovules 6 in each carpel. Fruits red, smooth, of two separate mericarps; mericarps ellipsoid, $25-27 \times 18-20 \times 8-10 \mathrm{~mm}$, acuminate at the apex, acumen $6 \times 4 \mathrm{~mm}$, about 4 -seeded; wall about 4 mm thick; pulp fibrous. Seeds obovate to oblong, $16-17 \times 1$ I-12 $\times 6-7 \mathrm{~mm}$, testa smooth, orange. Embryo 9.5 mm long; cotyledons obovate, 1.4-1. $7 \times$ as long as wide, $3.5-5 \times 2.5-3 \mathrm{~mm}$, rounded at the apex, rounded to obtuse at the base; radicle $0.8-0.9 \times$ as long as cotyledons, 3-4 $\times 0.8 \mathrm{~mm}$.

Distribution. Gabon.
Ecology. Forest. Alt. o- 100 m . Flowering in November.

Specimens examined:
Gabon. Estuaire: near Libreville, Klaine 3158 (holotype P, isotype BR), Trilles 118 (P, paratype).

2.5.7 Hunteria macrosiphon Omino, sp. nov.

Arbuscula gracilis foliis laminis anguste ellipticis papyraceis apice caudatis venis submarginalis. Inflorescentia terminalis vel rariter axillaris. Flores odorantes. Sepala libera erecta ovata vel triangularia. Corolla laete lutea extus glabra intus pro parte pubescens tubo angusto lobis patentibus. Stamina inclusa filamentis brevisbus filiformis glabris antheris ovatis vel oblongis apice obtusis basi subcordatis glabris. Ovarium ovoideum carpellis duabis separatis. Fructus luteus laevis mericarpiis duabus obovatus divaricatus. Semina ellipsoidea. - Type: Gabon, near Lastoursville, Le Testu 7085 (holotype BR, isotypes B, M, P, LISC).

Fig. 29, p. 108; map. 7 p. 109

Etymology: $\because \alpha x \varrho o ́ s=$ long, oí $\phi \omega v=$ siphon, referring to the long corolla tube.
Slender erect shrub I-4 mhigh, with a little white latex. Trunk slender. Branchlets quadrangular, green. Leaves opposite; petiole $5-8 \mathrm{~mm}$ long; blade papery when fresh, elliptic to oblong, $2.4-3.2 \times$ as long as wide, $5.6-19.5 \times 1.8-6.4 \mathrm{~mm}$, caudate at the apex, acumen obtuse, $13-25 \times 2.3 \mathrm{~mm}$, acute to obtuse at the base; midrib prominent beneath; secondary veins prominent beneath in dried leaves, slightly curved, in 9-I 4 pairs, forming a submarginal vein and an angle of $65-75^{\circ}$ with the midrib, $8-13 \mathrm{~mm}$ apart at the approximate centre of the leaf. Inflorescence in $\mathrm{I}(-3)$ terminal, umbellate cymes, $1.5-3 \times 1-3.5 \mathrm{~mm}$, each $6-15$-flowered; sessile or with a peduncle $2-9 \mathrm{~mm}$ long; pedicels $\mathrm{I}-4 \mathrm{~mm}$ long. Bracts very small, sepal-like. Flowers fragrant. Sepals free, erect, membranaceous, ovate to triangular, I-2.5 \times as long as wide, $0.7-\mathrm{I}$. I $\times 0.3-0.7 \mathrm{~mm}$, acute at the apex, with colleters sparsely distributed inside on the side; colleters small. Corolla bright yellow, II.7-14.3 mm long in mature bud and forming a comparatively small ovoid head $0.25-0.36 \mathrm{~mm}$ of the bud length, 2.9-6 $\times 0.7-1.8 \mathrm{~mm}$, with an acute apex, with a belt of pubescence $1.2-3.5$ mm wide inside just below the insertion of the stamens and up to the mouth of the tube; tube $10-13 \times$ as long as the calyx, $1.8-3.9 \times$ as long as the lobes, $9-13 \mathrm{~mm}$ long, almost cylindrical, $0.7-1.1 \mathrm{~mm}$ wide above the base, narrowed below the insertion of the stamens to $0.7-1.5 \mathrm{~mm}$ wide, again widened around the anthers to $1-2 \mathrm{~mm}$ wide; lobes ovate, not twisted in bud, 0.3-0.6 \times as long as the tube, $1.6-2.5 \times$ as long as wide, 2.8-6.5 $\times 1.8-3 \mathrm{~mm}$, obtuse at the apex, entire, spreading and recurved later. Stamens with apex 0.5-1.2 mm below the mouth of the corolla tube, inserted 0.750.85 mm of the length of the corolla tube, at $7-9.8 \mathrm{~mm}$ from the base; filaments $0.4-$ 0.6 mm long; anthers ovate $4-5.7 \times$ as long as wide, $\mathrm{I}-\mathrm{I} .9 \times 0.2-0.3 \mathrm{~mm}$, obtuse, cordate at the base. Pistil $8.8-\mathrm{I} 0.8 \mathrm{~mm}$ long; ovary ovoid, $0.8-\mathrm{I} .4 \times 0.5-\mathrm{I} \times 0.3-0.7$ mm , abruptly narrowed into the style, with a disk-like thickening uniting the carpels at the base, about 0.2-0.3 of the length, 0.2 mm high, of two separate carpels; style $5.5-8 \times 0.2 \mathrm{~mm}$; pistil head composed of a subglobose stigmatic basal part, o.2-0.5 $\times 0.2-0.3 \mathrm{~mm}$ and a conical stigmoid apex $0.3-0.7 \times 0.1-0.2 \mathrm{~mm}$. Ovule I in each

Figure 29. Hunteria macrosiphon. 1, habit ($\times 2 / 3$); 2, sepal inside $(\times 30)$; 3, flower above $(\times 4)$; 4, flower bud ($\times 4$); 5, opened corolla ($\times 4$); 6, pistil with opened ovary $(\times 4) ; 7$, fruit $(\times 2) ; 8$, longitudinal section of seed ($\times 4$); 8, embryo ($\times 4$). 1-6 from Breteler et al. 9934; 7-9 from Breyne 4131 .

Map 7. Hunteria macrosiphon.
carpel. Fruits yellow, smooth, of two divaricate mericarps, divergent at an angle of 180°, mericarps obovate or ellipsoid, slightly stipitate, $15-20 \times 9-12 \times 5-10 \mathrm{~mm}$, with an obtuse apex, I-seeded; wall about 2 mm thick; pulp smooth. Seeds ellipsoid, II \times 5-6 $\times 4-5 \mathrm{~mm}$. Embryo $6.8-7 \mathrm{~mm}$ long; cotyledons obovate, $1.9-2.7 \times$ as long as wide, $3.5-4 \times 1.5-1.8 \mathrm{~mm}$, rounded at the apex and at the base; radicle $0.8-0.9 \times$ as long as cotyledons, $3.3 .3 \times 0.5-0.6 \mathrm{~mm}$.

Distribution. Gabon and Congo.

Ecology. In rain forest and secondary forest in Congo. Flowering in MarchApril and fruiting between November to July.

Specimens examined:

Ga bon. Ogooué-Lolo: 30 km NE of Lastoursville, Breteler 9920 (WAG), 9934 (WAG), 9867 (WAG); 30 km E of Lastoursville, Breteler et al. 11267 (WAG), 11351 (WAG); 6 km E of Lastoursville, Van der Maesen et al. 5534 (WAG); Lastoursville, Le Testu 7085 (BM, BR, P, LISC, type), 24-2-1930 (BR, BM, MO), 4.3.193I (BM, BR, LISC). Woleu Ntem: 35 km on road from Lebamba to Yeno, J. de Wilde \& Sosef 10454 (WAG).

Congo. Komono. Breyne 4131 (BR); 25 km W of Sibiti, Farron 4362 (P); Loundji, Attims 98 (P); Mbaya Forest, Sita 4048 (P).

Note. The sepals are membranaceous and colleters are sparsely distributed on the inner side as opposed to the other species where the colleters cover at least half of the lower part of the sepals.

2.5.8 Hunteria myriantha Omino, sp. nov.

Frutex vel arbor parva. Folia opposita petiolata laminis ellipticis breviter acuminatis. Inflorescentia terminalis laxa. Sepala pallide viridia libera triangularia apice acute usque ad acuminata. Corolla rubra tubo lobis ovatis longiore. Stamina inclusa antheris anguste ovatis apice obtusis basi cordatis. Pistillum ovario carpellis duabus separatis. Fructus ignotus. - Type: Zaire, Kasai-Occidental, Kakenge, Dechamps 5 (holotype BR; isotypes MO, WAG).

Fig. 30, p. 110; map 8, p. 111

Figure 30. Hunteria myriantha. 1, habit ($\times 2 / 3$); 2, leaf beneath $(\times 2 / 3) ; 3$, flower bud $(\times 4) ; 4$, opened corolla ($\times 12$); 5, pistil with opened ovary ($\times 12$). I from Dechamps 5; 2 from Dechamps 242; 3-5 from Declercq 32.

Map 8. Hunteria myriantha.

Etymology: $\mu v \varrho$ ios, myrios, very many; $\alpha v \theta o \varsigma$, anthos= flower, referring to the many flowered inflorescence.

Shrub or small tree 2-14 m high with scanty, white, sticky latex. Trunk straight, 2125 cm in diameter; outer bark greyish black, patched pale brownish yellow, I mm thick; inner bark orange brown, 4 mm thick. Leaves opposite; petiole $10-13 \mathrm{~mm}$ long; blade elliptic, $\mathrm{I} .7-3.2 \times$ as long as wide, $6-20 \times 3.2-8.3$ shortly acuminate at the apex, acumen obtuse, $5-14 \times 2-5 \mathrm{~mm}$, acute at the base; midrib prominent below in dried leaves; secondary veins oblique, obscure above, in 7-12 pairs, reaching the margin without looping to join their neighbours and forming an angle of $50-60^{\circ}$ with the midrib, $10-18 \mathrm{~mm}$ apart at the approximate centre of the leaf. Inforescence terminal, lax, in umbellate cymes, i or $2 \times$ branched, $4.5-6.5 \times 4-7 \mathrm{~cm}, 30-\mathrm{I} 60$-flowered; peduncle $13-32 \mathrm{~mm}$; branches $5-18 \mathrm{~mm}$; pedicels $2-3 \mathrm{~mm}$. Flowers: Sepals pale green, free, erect, triangular, membranaceous, I.I-2.2 \times as long as wide, o.7I.I $\times 0.4-0.5 \mathrm{~mm}$, acute to acuminate at the apex and without colleters inside. Corolla red, $7.7-8.3 \mathrm{~mm}$ long in mature bud and forming a comparatively small ovoid head 0.3-0.4 of the bud length, $2.5 \times 0.8 \mathrm{~mm}$, with an obtuse apex, with a belt of pubescence $1.2-2 \mathrm{~mm}$ wide inside just below the insertion of the stamens and sometimes up to the mouth of the corolla tube; tube 4.7-7.9 \times as long as the calyx, 1.4-2 \times as long as the lobes, $5.2-5.8 \mathrm{~mm}$ long, almost cylindrical, $0.8-\mathrm{I} \mathrm{mm}$ wide above the base, narrowed below the insertion of the stamens to $0.7-0.9 \mathrm{~mm}$ wide, again widened around the anthers to $\mathrm{I}-\mathrm{I} .3 \mathrm{~mm}$ wide; lobes ovate, $0.6-0.7 \times$ as long as the tube, I.7-2.4 \times as long as wide, $2.8-3.9 \mathrm{~mm}$, obtuse at the apex, entire and spreading. Stamens with apex 0.2-0.5 mm below the mouth of the corolla tube, inserted 0.770.82 of the length of the corolla tube at $4-4.5 \mathrm{~mm}$ from the base; filaments $0.4-$ 0.5 mm long; anthers narrowly ovate, $2-4 \times$ as long as wide, $0.6-\mathrm{I} \times 0.2-0.3 \mathrm{~mm}$, obtuse at the apex, cordate at the base. Pistil $4.8-5.5 \mathrm{~mm}$ long; ovary subglobose $0.5-$ $0.8 \times 0.4-0.7 \times 0.25-0.4 \mathrm{~mm}$, abruptly narrowed into the style, with a disk-like thickening uniting the carpels at the base, about 0.3 of the length, 0.4 mm high, of two separate carpels; style 3.2-4 mm long; pistil head with a stigmatic ellipsoid basal part
$0.4-0.6 \times 0.2 \mathrm{~mm}$ and a stigmoid apex $0.4-0.6 \times 0.15 \mathrm{~mm}$. Ovule I in each carpel. Fruits unknown.

Distribution. Zaire.
Ecology. Secondary forest. Alt. 520 m. Flowering between January and April.
Specimens examined:
Zaire. Kasai-Occidental: Benalongo, Declerq 32 (BR); Kakenge, Dechamps 5 (BR,WAG), I 39 (BR), 242 (BR, MO, WAG).

Note. This species is very close to H. densiflora and H. ghanensis, and can be differentiated as follows:
I. Corolla lobes wider than long
H. ghanensis
Corolla lobes longer than wide 2
2. Secondary veins oblique, in 7-12 pairs, reaching the margin without looping to join their neighbours, forming an angle of $50-60^{\circ}$ with the costa; sepals without colleters; inflorescence lax
H. myriantha Secondary veins straight, closely spaced, in 22-30 pairs, forming an angle of 70 80° with the costa; sepals with colleters within; inflorescence dense
H. densiflora

2.5.9 Hunteria oxyantha Omino, sp. nov.

Arbuscula rarius scandens. Folia laminis papyraceis ellipticis vel oblongis apice acuminatis. Inflorescentia terminalis vel axillaris pauciflora. Sepala pallide viridia basi connata erecta ovata vel elliptica margine mebranacea apice rotundata vel obtusa. Corolla sordide alba extus glabra intus pro parte pubescens tubo cylindraceo lobis erectis. Stamina inclusa filamentis brevibus filiformibus glabris antheris fere ellipticis glabris. Ovarium subglobosum carpellis duabus. Fructus luteus vel aurantiacus laevis mericarpiis duabus divaricatis ellipsoideis. Semina ellipsoidea. Type: Gabon, Ogooué-Lolo, 40-50 km SEE of Lastoursville, Breteler et al. I 1299 (holotype WAG).

Fig. 31, p. 113; map 9, p. 114
 of the flower bud.

Tree or shrub i.5-18 m high, rarely a climber. Trunk up to 30 cm in diameter; bark rough, green grey with white spots of lichen, 8 mm thick, hard, brittle, bright yellow underneath; wood hard, dense, very brittle, with twisted fibres, lemon-yellow. Branches greyish-black, finely striate. Leaves opposite; petiole 4-6 mm long; blade papery to coriaceous when fresh, elliptic to oblong, 2.3-3 \times as long as wide, 3.7$12.8 \times 1.3-4.6 \mathrm{~cm}$, acuminate at the apex, acumen obtuse, $4-19 \times 2-3 \mathrm{~mm}$, acute to obtuse at the base; midrib slightly prominent beneath; secondary veins straight,

Figure 31. Hunteria oxyantha. 1, habit ($\times 2 / 3$); 2, leaf beneath ($\times 2 / 3$); 3, sepal inside ($\times 30$); 4, opened corolla ($\times 4$); 5, stamen outside ($\times 30$); 6, pistil ($\times 4$); fruiting branch ($\times 2 / 3$). 1-7 from Breteler et al. 11299.

Map 9. Hunteria oxyantha.
slightly prominent beneath, in 15-25 pairs, forming a submarginal vein and an angle of $75-80^{\circ}$ with the midrib, 3-6 mm apart at the approximate centre of the leaf. Inflorescence terminal or axillary, $2-3 \times 1-2 \mathrm{~cm}, \mathrm{I} \times$ branched, 6 -10-flowered; peduncle I-II mm long; primary branches, 2-10 mm long; pedicels $4-6 \mathrm{~mm}$ long. Bracts sepal-like, 0.5-I $\times 0.4-0.5 \mathrm{~mm}$. Flowers: Sepals pale green, free, erect, membranaceous at the edge and the apex, thicker towards the middle and at the base, with much resin within, ovate, I-2.I \times as long as wide, $\mathrm{I}-\mathrm{I} .3 \times 0.6-\mathrm{I} . \mathrm{I} \mathrm{mm}$, obtuse to acute at the apex, with rows of colleters inside up to 0.75 of their length; colleters very small $0.2 \times 0.1 \mathrm{~mm}$. Corolla white to dirty white, red in bud, $15-15.5 \mathrm{~mm}$ long in mature bud and forming a comparatively small ovoid head, $0.35-0.43$ of the bud length, $5.5-6.5 \times 0.7-1.6 \mathrm{~mm}$, with an acute apex, with a belt of pubescence $1.5-2$ mm wide inside just below the insertion of the stamens, tube 8.6-9.5 \times as long as the calyx, $1.5 \times$ as long as the lobes, $9.5-12 \mathrm{~mm}$ long, almost cylindrical, $0.8-1.5 \mathrm{~mm}$ wide above the base, narrowed below the insertion of the stamens to $0.7-0.9 \mathrm{~mm}$ wide, again widened around the anthers to $1.5-2 \mathrm{~mm}$ wide; lobes oblong, $0.7 \times$ as long as the tube, 2.9-3.8 \times as long as wide, $7.5-7.9 \times 2-2.7 \mathrm{~mm}$, obtuse at the apex, spreading and recurved later. Stamens with apex I mm below the mouth of the corolla tube, inserted 0.73 mm of the length of the corolla tube, at 8.8 mm from the base; filaments $0.4-0.5 \mathrm{~mm}$ long; anthers almost elliptic, $4-4.5 \times$ as long as wide, I. $8-2 \times 0.4-0.5 \mathrm{~mm}$, obtuse at the apex cordate at the base. Pistil $7.3-8.5 \mathrm{~mm}$ long, with apex halfway along the anthers; ovary subglobose, $\mathrm{I}-\mathrm{I} .4 \times 0.6-0.7 \times 0.3$ 0.7 mm , gradually narrowed into the style, with a disk-like thickening uniting the carpels at the base, about 0.3 of the length, $0.2-0.4$ mm high; of two separate carpels; style $5.3-6 \mathrm{~mm}$; pistil head composed of a globose to ellipsoid stigmatic basal part $0.5-0.7 \times 0.3-0.4$ and a bifid stigmoid apex $0.4-0.5 \times 0.15-0.2 \mathrm{~mm}$. Ovules 6-7 in each carpel. Fruits yellow to orange, smooth, mericarps ellipsoid, $28-35 \times 20-26 \times$ 15-20 mm , bluntly acuminate to rounded at the apex, acumen 4-6 mm, 3-7-seeded; wall about I mm thick; pulp slightly fibrous. Seeds oblong or ellipsoid, 12-I4 $\times 8$ -
$10 \times 4.6 \mathrm{~mm}$, testa smooth, orange. Embryo 7.5 mm long; cotyledons ovate, $1.5-$ I $6 \times$ as long as wide, $3.8-4 \times 2.5 \mathrm{~mm}$, obtuse at the apex, rounded at the base; radicle $0.9-\mathrm{I} \times$ as long as cotyledons, $3.5-3.7 \times 0.8-\mathrm{I} \mathrm{mm}$.

Distribution. Gabon, Congo and Zaire.
Ecology. Old secondary forest or forest bordering savannah on humid rocks or river banks. Flowering and fruiting between May and September. Alt. 480 m .

Specimens examined:
Gabon. Woleu-Ntem: Chantier Oveng, A. M. Louis 2101 (WAG). Ogooué-Ivindo: Mpassa Field Station, Florence 584 (P), 614 (P), Caballé 365 (WAG), near Makokou, Gentry 33027 (MO), 33177 (MO), 33264 (MO): 33506 (MO, WAG), Gentry \& Emmons 33736 (MO). Ogooué-Lolo: 9 km E of Ndambi, Breteler et al. 13233 (WAG); $40-50 \mathrm{~km}$ SEE of Lastoursville, Breteler et al. 11229 (WAG, type). Nyanga: 25 km SSW of Doussala, Reitsma et al. 976 (WAG).

Congo. Kouilou: Les Saras, Sita 1361 (P).
Zaire. Kivu: Maniema, Pangi, Michelson 85 (BR).

2.5.10 Hunteria simii (Stapf) H. Huber

in Kew Bull. 15: 437 (1962) \& in Fl. W. Trop. Afr. ed. 2, 2: 62 (1963). Type: Liberia, Sino District, Sim 16 (holotype, K).

Fig. 32, p. 116; map 10, p. 117
Basionym and homotypic synonyms:
Polyadoa (?) simii Stapf in H.H. Johnstone, Liberia, 2: 624 (1906). Pleiocarpa simii (Stapf) Hutch. \& Dalz. in Fl. W. Trop. Afr. ed. 1, 2: 38 (1931); Tetradoa simii (Stapf) Pichon in Bol. Soc. Brot. sér. 2: 120; p. 117 t. 3, fig 4-6; map C, p. 2 I (1953).

Tree or shrub $0.3-8 \mathrm{~m}$ high, rarely climber I m high with white sticky latex. Trunk slender, slash creamish-yellow; branches greenish grey, branchlets greyish-brown to green, with a few lenticels. Leaves opposite; petiole $4-9 \mathrm{~mm}$ long; blade coriaceous or papery when fresh, smooth, ovate to elliptic, 2.2-2.8 \times as long as wide, $5.5-19.2 \times(1.8-) 3.8-7.4 \mathrm{~cm}$, acuminate at the apex, acumen obtuse, $6-23 \times 2-3 \mathrm{~mm}$, acute at the base; midrib prominent beneath, slightly channelled above, secondary veins oblique, slightly prominent beneath, in 7-9 pairs, forming an angle of $55-56^{\circ}$ with the midrib, $18-30 \mathrm{~mm}$ apart at the central part of the leaf. Inflorescence terminal or axillary, $2-4.5 \times 0.5-3 \mathrm{~cm}$, I-10 flowered; peduncle 2-10 mm, primary branches 2-10 mm; pedicels $5-6 \mathrm{~mm}$ long. Bracts $0.7-\mathrm{I} .3 \mathrm{~mm}$. Flowers: Sepals pale green, almost free, erect, membranaceous at the edge, thicker towards the middle and at the base, coated with resin within, ovate $1.4-\mathrm{I} .6 \times$ as long as wide, $\mathrm{I}-\mathrm{I} .3 \times 0.7-0.4 \mathrm{~mm}$, acuminate at the apex, with rows of colleters inside up to 0.8 of their length; colleters very small $0.2 \times 0.1 \mathrm{~mm}$. Corolla cream-coloured, $16-23.7 \mathrm{~mm}$ long in mature bud and forming a comparatively large ovoid, sometimes falcate head, 0.38 0.5 of the bud length, $7-11.2 \times 1.3 \mathrm{~mm}$, with an acute apex; with a belt of pubes-

Figure 32. Hunteria simii. 1-2, habit ($\times 2 / 3$); 3, flower ($\times 4$); 4, opened flower $(\times 4)$; 5, sepal inside $(\times 20)$; 6-7, stamen in- and outside ($\times 20$); 8, pistil ($\times 20$); 10, fruit $(\times 2 / 3) ; 11$, seed ($\times 2$); 12, longitudinal section of seed ($\times 2$); 13, embryo ($\times 4$). 1-2 and 10-1 3 from Breteler 7388; 3-9 from Van Meer 464 .

Map 1o. Hunteria simii.
cence $\mathrm{I}-\mathrm{I} .2 \mathrm{~mm}$ wide inside just below the insertion of the stamens, tube greenishwhite, $13-18 \times$ as long as the calyx, $\mathrm{I}-2.3 \times$ as long as the lobes, $12.5-18.5 \mathrm{~mm}$ long, almost cylindrical, $0.8-1.7 \mathrm{~mm}$ wide above the base, narrowed below the insertion of the stamens to $0.5-1.3 \mathrm{~mm}$ wide, again widened around the anthers to $\mathrm{I}-\mathrm{I} .8 \mathrm{~mm}$ wide; lobes narrowly ovate to oblong, $0.4-1 \times$ as long as the tube, 3.6-6.7 \times as long as wide, 7-12 \times I. 8 mm , obtuse at the apex, entire, spreading. Stamens with apex $3.2-3.7 \mathrm{~mm}$ below the mouth of the corolla tube, inserted $0.48-0.62$ of the length of the corolla tube, at $6-8 \mathrm{~mm}$ from the base; filaments $0.4-0.5 \mathrm{~mm}$ long; anthers narrowly ovate to oblong, $4.8-5.3 \times$ as long as wide, $1.6-\mathrm{I} .9 \times 0.3-0.4 \mathrm{~mm}$, obtuse at the apex subcordate at the base. Pistil $6.5-7.8 \mathrm{~mm}$ long; ovary subglobose, $1.0 \times 0.5-$ $0.7 \times 0.3-0.4 \mathrm{~mm}$, abruptly narrowed into the style, with a disk-like thickening uniting the carpels at the base, about 0.2 of the length, $0.2-0.3 \mathrm{~mm}$ high; of two separate carpels; style $6-7 \times 0.25 \mathrm{~mm}$; pistil head composed of an ellipsoid stigmatic basal part 0.5-8 $\times 0.2-0.3 \mathrm{~mm}$ and a bifid stigmoid apex $0.4-0.6 \times 0.1-0.2 \mathrm{~mm}$. Ovules 6 in each carpel. Fruits yellow to orange, smooth, of two divaricate follicles, oblong, $37-60.5 \times 10-18 \times 10-13 \mathrm{~mm}$, produced into a long slender beak at the apex, beak 6 -1 $5 \times 2-3 \mathrm{~mm}, 5-6$-seeded; wall about I mm thick; pulp smooth. Seeds oblong or ellipsoid, II.5-1 $5 \times 6.5-8.5 \times 5.5-6.5 \mathrm{~mm}$, testa smooth, orange. Embryo $6-8.5 \mathrm{~mm}$ long; cotyledons ovate, thin and leafy, 2.2-4 \times as long as wide, $3-4 \times$ I-I. 8 mm , obtuse at the apex, rounded at the base; radicle 0.8-1.1 \times as long as cotyledons, $3-$ $4.5 \times 0.5-0.6 \mathrm{~mm}$.

Distribution. Guinea, Sierra Leone, Liberia and Ivory Coast.
Ecology. Dense forest or old secondary forest. Flowering from February to July and fruiting all the year round in all four countries. Alt. 0-450 m.

Geographical selection of the approximately 40 specimens examined:
Guinea. Nzérékoré: Macenta, Koyama, Adam 59 (MO).
Sierra Leone. Yonibana, N. W. Thomas 4764 (K); Gola Forest, block III, Small 539 (K), 649 (K); Kambui Forest Reserve, Jordan 2037 (K).

Liberia. Genna Tanyehun, Baldwin Jr. 10736 (K); Mecca, Baldwin Jr. 10443 (K); 8 km N of Bomi Hills, Jansen 2282 (WAG): Dukwia R., Cooper 169 (K); Firestone Plantations, S of Kakata, Stoop-van de Kasteele 38 (WAG); Harbel Forest, Bos 2028 (WAG); Belafani, Daniel 238 (MO); Ganta, Baldwin Jr. 12561 (K, MO); 10 km N of Tappeta, Van Meer 464 (WAG); Yeképa, Mt. Nimba, Adam 21 395 (MO,

UPS); Sanikwele (= Sanniquellie), Baldwin Jr. 9460 (K); Tappeta, Adam 30299 (MO); sin. loc., Sim 16 (K, holotype).

Ivory Coast. 13 km NW of Tabou, Breteler 7388 (WAG); 14 km NW of Tabou, Breteler 7398 (WAG); Fort Binger (= Djiroubou), Chevalier 19535 (P); Tä̈ Forest, De Namur 1423 (WAG); Kéeta, Chevalier 1931 I (P, K), Chevalier 19367 (P); Zozoro R., Chevalier 19036 (P); Téké Forest, Bamps 2304 (BR, P), 2388 (BR, P).

Cultivated. Nigeria: Akampa Rubber Estate, Latilo 196 (K) (= FHI 40918 (A)).

2.5.11 Hunteria umbellata (K. Schum.) Hall. f.

in Jahrb. Hamb. Wiss. Anst. 17, 3 Beih., 190 (1900); Pichon in Bull. Soc. Brot. sér. 2, 27: 99, t. fig. map A, p. 85 (1953). - Type: Cameroun, Lolodorf, Staudt 130, (holotype $\mathrm{B} \dagger$; lectotype K , designated here; isotypes, $\mathrm{A}, \mathrm{COI}, \mathrm{E}, \mathrm{P}, \mathrm{PRE}, \mathrm{Z}$).

Fig. 33, p. 119; map 11, p. 120
Basionym and homotypic synonyms:

Carpodinus umbellata K. Schum. in Engler, Bot. Jahrb. 23: 22 I (I 896); Pierre in Bull. Soc. Linn. Paris 38, (1898). Polyadoa umbellata (K. Schum.) Stapf in Fl. Trop. Afr. 4, I: 103 (1902). Picralima umbellata (K.Schum.) Stapf in Kew Bull. 1908: 302 (1908).

Heterotypic synonyms:
Polyadoa elliotii Stapf in op. cit. 104; Pichon in Mem. Mus. Natn. Hist. Nat. sér. 2, 24: 174 (1948). Picralima elliotii (Stapf) Stapf in Kew Bull. 1908: 302 (1908). Hunteria elliotii (Stapf) Pichon in Bol. Soc. Brot. sér. 2, 27: 97, t. I fig. 5-8; map A, p. 85 (1953), syn. nov. - Type: Sierra Leone, near Makunde, Limba, Scott Elliot 5690 (lectotype K, designated by Pichon in 1953).
Hunteria eburnea Pichon in Bol. Soc. Brot. sér. 2, 27: 91, t.I fig i; map A (1953), syn. nov. - Type: Ivory Coast, Danir, between Yaou and Ayiame, Chevalier 17766, (holotype P; isotypes K, P, MO, WAG).
Hunteria mayumbensis Pichon in Bol. Soc. Brot. sér. 2, 27: 95, t. I fig. 2-4; map A (1953), syn. nov. - Type: Gabon, Mayumbe Bayaka, Inganga, Le Testu 1744 (holotype P; isotypes BR, K, NY, L).

Tree or shrub $1.5-22 \mathrm{~m}$ high, with a dense leafy crown. Trunk sinuous or straight, fluted, (3-) $10-40 \mathrm{~cm}$ in diameter; outer bark grey to dirty brown, rough or smooth, I mm thick; inner bark 3-4 mm thick, white with orange stripes or spots; wood very hard, creamy, brown to yellow or orange. Branches greyish to dark brown; branchlets pale green, smooth. Leaves opposite; petiole $8-25 \mathrm{~mm}$ long; blade, thin, soft, leathery, subcoriaceous when dried, elliptic to oblong, I.9-3.4 \times as long as wide, $5.8-22.5 \times 2-$ II cm, obtuse to acuminate at the apex, acumen obtuse or acute, $5-18 \times 3-7 \mathrm{~mm}$, acute to obtuse at the base or decurrent into the petiole, midrib deeply channelled above, prominent beneath; secondary veins prominent beneath, more or less straight, in 13-25 pairs, forming a submarginal vein and an angle of 65-

Figure 33. Hunteria umbellata. 1, habit ($\times 2 / 3$); 2, leaf beneath $(\times 2 / 3)$; 3, flower bud ($\times 4$); 4, flowers (x 4); 5, opened corolla ($\times 6$); 6, sepal inside ($\times 14$); 7, pistil ($\times 10$); 8, open fruit ($\times 2 / 3$); 9, seed with pulp ($\times 2$); 10, seed ($\times 2$); 11, longitudinal section of seed ($\times 2$); 12, embryo ($\times 6$). 1-7 from Espirito Santo 3001; 8-12 from Jansen 2147.

Map iI. Hunteria umbellata.
75° with the midrib, 4-23 mm apart at the central part of the leaf. Inflorescence ter minal, rarely axillary, $1.5-5 \times 1.3-5 \mathrm{~cm}$, dense to lax, about $10-20(-80)$-flowered; peduncle sometimes covered with resin at the base, 2-13 mm long, primary branches 3-10 mm long; pedicels sometimes covered with resin at the base, $3-7 \mathrm{~mm}$ long; bracts very small, $0.8 \times 0.5 \mathrm{~mm}$, without colleters. Flowers very fragrant. Sepals pale green, almost free, thicker towards the middle and at the base, erect and stuck to the corolla tube with thick resinous substance, membranaceous for about 0.2-0.3 mm of their edge, broadly ovate to triangular, 0.7-2.6 \times as long as wide, $0.6-\mathrm{I} .8 \times$ $0.5-1.6 \mathrm{~mm}$, acute to obtuse at the apex, with rows of colleters inside up to 0.75 of their length; colleters very small $0.2 \times 0.1 \mathrm{~mm}$. Corolla white, creamy or pale yellow, $8.5-17.5 \mathrm{~mm}$ long in mature bud and forming a comparatively narrow ovoid head ($0.45-$) $0.5-0.68$ of the bud length, $5.5-9.5 \times 0.5-2.5 \mathrm{~mm}$, with an acute apex; with a belt of pubescence $0.8-1.7 \mathrm{~mm}$ wide inside just below the insertion of the stamens, sometimes with a few hairs around the stamens, tube 2.9-12 \times as long as the calyx, $0.4-\mathrm{I}(-\mathrm{I} .2) \times$ as long as the lobes, $4-8.2 \mathrm{~mm}$ long, almost cylindrical, 0.91.8 mm wide above the base, narrowed below the insertion of the stamens to 0.5^{-} 2.2 mm wide, again widened around the anthers to $0.7-2.0 \mathrm{~mm}$ wide; lobes creamy, slightly pinkish, narrowly ovate to oblong and falcate, twisted in bud, (0.8-)1.2-2.7 \times as long as the tube, $2.5-7.5 \times$ as long as wide, $6.2-12 \times 1.3-3.5 \mathrm{~mm}$, obtuse at the apex, entire, spreading and recurved later. Stamens with apex 0.3-1.0 mm below the
mouth of the corolla tube, inserted $0.54-0.86 \mathrm{~mm}$ of the length of the corolla tube, at $2.5-6.2 \mathrm{~mm}$ from the base; filaments $0.2-0.8 \mathrm{~mm}$ long; anthers narrowly ovate $2.7-$ $5.5 \times$ as long as wide, $0.8-1.4 \times 0.2-0.3 \mathrm{~mm}$, obtuse at the apex cordate at the base. Pistil 2.5-6.4 mm long; ovary subglobose, 0.6-1.I $\times 0.5-\mathrm{I} .0 \times 0.3-0.8 \mathrm{~mm}$, abruptly narrowed into the style, with a disk-like thickening uniting the carpels at the base, about $0.25-0.4$ of the length, $0.2-0.3 \mathrm{~mm}$ high, of two separate carpels; style $0.7-$ 4.8 mm long; pistil head composed of a stigmatic ellipsoid basal part $0.3-\mathrm{I} .0 \times 0.2-$ 0.4 mm and a bilobed stigmoid apex $0.2-0.7 \times 0.1 \mathrm{~mm}$. Ovules $12-30$ in each carpel. Fruits yellow, smooth of two separate mericarps, mericarps subglobose, 31-60 $\times 40-$ $50 \times 30-40 \mathrm{~mm}, 8-26$-seeded; wall about $5-12 \mathrm{~mm}$ thick, slightly fibrous. Seeds oblong to ellipsoid, flattened at the side adjacent to one another, II-I7 $\times 5-11 \times 4$ 7 mm . Embryo $6-10 \mathrm{~mm}$ long; cotyledons elliptic to obovate, $1.3-2.4 \times$ as long as wide, $3-5.5 \times 1.7-3.5 \mathrm{~mm}$, obtuse to rounded at the apex and at the base, radicle $0.7-$ $1.4 \times$ as long as cotyledons, $3-4.5 \times 0.5-0.8 \mathrm{~mm}$.

Distribution. Senegal to Zaire and Angola.
Ecology. Secondary forest, rain forest and gallery forest. Alt. o- 600 m . Flowering and fruiting all the year round.

UsES. The wood is cream-coloured or deep brown to yellow-orange, fine grained and very hard (Punch 138, E, K, I900, Nigeria; Onochie FHI 4936, FHO, i945, Nigeria; Bakare et al. FHI 22857, K, 1948, Nigeria; Letouzey 5477, BR, K, P, 1963, Cameroun; Burt \& Hoyle 1937), used locally for carving combs, spoons, carpenters planes and weavers shuttles (Dalziel 1937; Causdale 166, FHO, 1944, Ghana); for making shuttles for weaving Native cloth (Mc Ainsh 890, Nigeria) and for making combs (Scott Elliot 5690, K, I892, Sierra Leone; Mc Ainsh 890, Nigeria; Chevalier 19706, P, 1907, Ivory Coast). The forked stems are used as house posts and are considered very durable and immune to termites (Dalziel I937). Fruits are consumed by ants (Oldeman 642, BR, K, P, WAG, I963, Ivory Coast). Root are used as a bitter tonic (Akpabla $110, \mathrm{~K}, \mathrm{P}, 1948$, Nigeria). Bark and fruit are taken locally against belly ache (Bos 3065 , WAG, P, Cameroun).

Geographical selection of the approximately 200 specimens examined:
Senegal. Catió, Espírito Santo 3001 (BR, MO, P); Catanhez, Pereira 3163 (K, MA); Chitole Cusselinta, Espírito Santo 3187 (MO, P, WAG). Oriental: Gouloumbo, Berhaut 2082 (BR, P); Berge du Nieriko, Berhaut 1669 (BR, P); Ouassadou, Trochain 3467 (P). Casamance: Kayanga R., Monsier 2594 (P).

Guinea Bissau. Canchungo, Espírito Santo 1940 (K, MO, P, WAG).
Guinea. Bóke, Pobéguin 2015 (P); Mt. Nimba, Adam 28738 (MO).
Sierra Leone.. Mafinta, Pyne 115 (K, P); near Makundi, Scott Elliot 5690 (K, type of H. elliotii); Batkanu, N. W. Thomas 19 (K); Kasewe, King 231 (K), Lane-Poole 129 (K); Mano, N. W. Thomas 10102 (K); Kambui Forest Reserve, Jordan 2120 (K), Samai 522 (K); Gola Forest, Small 402 (K); Njala, Deighton 5010 (B, P, K).

Liberia. Mt. Huelliton, Jaeger 10019 (G); Bomi Hill-Mano Rd., Van Meer 380 (WAG); Gola National Forest, Voorhoeve 36 (BR,WAG), Voorhoeve 853 (WAG); Saniquellie, Georges 27814 (M); Mt. Tokadeh, Adam 21414 (MO, P, UPS); 29 km S of Tchien, Jansen 2147 (WAG).

Ivory Coast. Sassandra R. basin, Chevalier 16373 (P); Cavally R. basin, Chevalier 19706 (P); near

Tabou \& Béréby, Chevalier 19975 (P); Béréby, Oldeman 642 (BR, K, P, WAG); Soubré, Aké Assi 11578 (B); Monogaga, Geerling \& Bokdam 2419 (BR, MO, WAG); 21 km on Rd. to Monogaga, Leeuwenberg 1211 (WAG); Mafia, Garnier 653 E (P); Agnieby, Chevalier 17043 (P); Bouroukrou, Chevalier 16519 (P, WAG); 36 km NE of Sassandra, Breteler 6102 (BR, K, P, US, WAG); Banco Forest, Aké Assi 15904 (BR, WAG); Sofalco Plantations, Leeuwenberg 10722 (WAG); Aboubou Forest, Leeuwenberg 2386 (B, BR, FHO, K, LISC, P, WAG, Z); 20 km SW of Abengourou (BR, WAG); Borobo, Chevalier 17659 (MO, P, WAG); between Yaou \& Ayiame, Chevalier 17766 (K, P, MO, WAG, type of H. eburnea); Assinie, Chevalier 17865 (P); Aboisso, Chevalier 16310 A (K, P, WAG).

Ghana. Western: Ankasa Forest Reserve, Enti R 973 (MO); near Simpa, Enti 6920 (B, BR, K, P); Benoo, Andoh FHI 547 I (BR, K, US, WAG); Subri R., Hall \& Abbiw 45134 (MO, WAG). Eastern: AbuaKwa, Causdale 166 (FHO); Essuboni (=Asuboni) Forest Reserve, Juma 1 (FHO); Kumasi, Vigne 2701 (FHO, US); Brong-Ahafo: Bia National Park, Short GC 47008 (MO).

Nigeria. Ogun: Olokomeji Forest Reserve, Gentry \& Pilz 32674 (US, WAG); Omo Forest Reserve, Gentry \& Pilz 32810 (BR, MO, WAG). Erin, Ross 126 (K). Lagos: Lagos, Foster 5 (K, P, W). Oyo: Gambari, Van Eijnatten 1266 (WAG); Ibadan South Forest Reserve, Keay FHI 25705 (B, K, P); Ago-Owu Forest Reserve, Wit \& Geerling 1260 (K, MO); Shasha Forest Reserve, Ross 8 (MO, S); Bendel State: Okomu Forest Reserve, Akpabla 110 (K, P). Cross River: North Forest Reserve, Latilo FHI 31840 (K); Ogoja, Keay FHI 28250 (K).

Cameroun. Sud-Ouest: Korup National Park, D. W. Thomas 3207 (K, MO, P, WAG); Masore, D. W. Thomas 4178 B (K); Kumba, D. W. Thomas 4195 (BR, K, MO, P, WAG); Abonando, Rudatis 59 (G, K, P, W, Z); Weme village, Nemba et al. 582 (MO, WAG). Centre Sud: Bafia-Ndikimeki Rd., Benoit 382 (P); 50 km NW of Eseka, J. de Wilde 1272 (P, WAG); Bank of Nyong R. near the new bridge, J. de Wilde 2863 (WAG); Lolodorf, Staudt 130 (A, COI, E, K, P, PRE, S, Z, type); 9 km N of Kribi, Bos 4978 (K, M, P, WAG); 2 km S of Kribi on Grand Batanga Road, Bos 3065 (WAG, P); 12 km on Grand Batanga to Campo, Wieringa \& Haegens 2156 (WAG); 60 km on Kribi-Edea Rd., Bos 7106 (P, WAG); near Kribi, Mildbraed 6098 (B, HBG); 10 km N of Kribi, J. de Wilde 2922 (P, WAG); Bipindi, Zenker 1707 (BP, BR, COI, E, F, G, HBG, K, L, NY, P, S, W, WAG, Z.), 1729 (BP, BR, E, G, HBG, K, L, MO, P, S, W, WAG), 3705 (BR, E, G, HBG, K, L, MO, P, S, US, W, Z), 4488 (B, BR, E, G, HBG, K, L, MO, P, S, W, WU, Z), II 287 (B, BR, C, G, GH, LD, P, UC, US, WAG); Akoakas rock, J. de Wilde 837I (MO, P, WAG). Est: near Kolembong, Letouzey 5477 (BR, K, P).

Gabon. Estuaire: 100 km S of Libreville, J. de Wilde et al. 812/83 (MO, WAG). Ogooué-Maritime: Gamba, Wieringa \& Haegens 2524 (WAG); Mossomala, Wieringa 1285 (WAG); Doudou Mts., Reitsma 1952 (NY, WAG). Nyanga: Tchibanga, Le Testu 1744 (BR, K, NY, P, type of H. mayumbensis); MoyenOgooué: 7 km on Ndjole-Bijoun Rd., Leeuwenberg 12464 (MO,WAG). Ngounié: Maghounga, Le Testu 6408 (B, BR, K, MO, P). Nyanga: Mayombe, Le Testu 8025 (BR, P). Ogooué-Lolo: 30 km NE of Lastoursville, Breteler 9993 (WAG).

Congo. Kouilou: Kakamoéka, Sita 1345 (P); Dimonika, Groulez 12.10.1954 (P); Mayombe, DowsettLemaire 1447 (WAG); Kouilou, Sargos 75 (P).

Zaire. Equateur: Bosawa, Evrard 1614 (BR). Haut-Zaire: Yangambi, Germain 279 (BR, C, K, NY, WAG); Ile Tutuku, Germain 357 (BR, K).

Angola. Cabinda: Chiluango, Gossweiler 7764 (BM, K, MO).
Cultivated. Netherlands: Wageningen Bot. Gardens, Van Setten 179 (WAG). Ivory Coast: Adiopodoumé Bot. Garden, Garnier 653 A (P); Adiopodoumé, Leeuwenberg 12026 (WAG).

Notes. Hardly open and open flowers are present on the tree itself, but abundant on the forest floor. Probably night flowering (Wieringa \& Haegens 2524, WAG, 1994, Gabon).

2.5.12 Hunteria zeylanica (Retz.) Gard. ex Thw.

in Enum. Pl. Zeyl. 191 (1860); Tsiang Ying in Sunyatsenia 3: 135 (1936); Pichon in Bull. Soc. Brot. sér 2, 27: 104 (1953); Wyatt-Smith \& Kochummen in Mal. For. Rec.

17: 72 (1965); Huber in Handb. Fl. Ceylon I: 10 (1973); Tsiang Ying in Fl. Reip. Pop. Sin. 63: 15-17, fig. 4 (1977); Markgraf in Blumea 30: 169 (1984)). - Type: SriLanka, Koenig s.n. (holotype C, isotypes BM, K-W 1608 C, MO).

Fig. 34, p. 124; map 12, p. 125
Basionym and homotypic synonym:
Cameraria zeylanica Retz. in Obs. Bot. 4: 24 (1786); A.DC., Prod. 8: 389 (1844). Hunteria corymbosa var. zeylanica (Retz) Hall. f., Jahrb. Hamb. Wiss. Anst. XVII, Beih. 3: 195 (1900).

Heterotypic synonyms:
Hunteria corymbosa Roxb., Hort. Beng. 84 (1814) nomen \& Fl. Ind. ed. Carey et Wall., 2: 53 I (1824) \& ed. 2: 695 (I832); Wight Ic. 2 t. 428 (1843); A. DC., op. cit. 350 (1844); Hooker f. in Fl. Brit. Ind. 3: 637 (1882); Boerlage, in Bull. Inst. Bot. Btzg 5: 13 (1900); Hallier f. in op. cit. 195 (1900); Boerlage, Handl. 2: 93 (1907); Hunter in J. Str. Br. R. As. Soc. 53: 80 (1909); Rendle in J. Bot. 63 suppl. 67 (1925); Burkill \& Hend. in Gard. Bull. Str. Settl. 3: 396 (1925); Pitard in Fl. Indo-Chine II29 (1933); Sealy in Kew. Bull. 1956348 (1956); Gamble in Fl. Madras 568 (1957); Desch in Man. Mal. Timb. 39, t. 6 (1957); Whitmore in Tree Fl. Mal. 2: 15 (1973). - Type: India, Bengal, sin. loc., Hunter July (holotype BM). H. corymbosa var. genuina Hall f. op. cit. 195.

Tabernaemontana salcifolia Wall. in Bot. Reg, 15: sub t. 1273 (1829); A. De Candolle, Prodr. 8: 376 (1844). T. parviflora Heyne ex Wall. Cat. 1580 \& ex Hook. f., Fl. Brit. Ind. 3: 637 (1882), in syn., non Poiret (1817), nor Roxburg (1832), nor Decaisne (1834), nor Bojer (1837), nor Heyne ex Wallich Cat. 4453 A. H. corymbosa var. salcifolia (Wall.) Hall f. in op. cit. 195; H. zeylanica var. salicifolia (Wall.) Pichon in op. cit. I I I. - Type: India, sin. loc., Heyne in Wallich I 580 a (holotype K-W; isotype BM).
Hunteria lanceolata Wall. ex A. DC. op. cit. 350. - Type: Burma, Tavoy, Gomez in Wallich 161I (holotype G-DC, isotype K-W). Gynopogon lanceolatum (Wall. ex A. DC.) Kurz, For. Fl. Brit. Burma II: 177 (1877).

Hunteria roxburghiana Wight, Ic. Pl. Ind. Or. 4, 2: 2, t. 1294 (1850); Thwaites, Enum. Pl. Zeyl. 192 (1860), H. corymbosa var. roxburghiana (Wight) Trimen ex J. Gamble, Fl. Pres. Madras II: 808 (1923). - Type: India, Tamil Nadu: Courtallum (= Kuttalam), Wight 1874 (lectotype G, designated here; isolectotypes GH, L, M, P, S, W).
Hunteria africana K. Schum. in Engler Pflanzenw. Ost-Afr. C: 317 (1895). Hunteria zeylanica var. africana (K. Schum.) Pichon in op. cit. I 12, syn. nov. - Syntypes: Tanzania, T3, Pangani, Stuhlmann 77 (B †); Bagamoyo Stuhlmann 206 (B †). Neotype: Tanzania, T3, Tanga Distr., Sawa, Faulkner 1626 (neotype K, designated here; isoneotypes B, BR, FT, P).
Hunteria legocii Livera, Ann. Roy. Bot. Gard. Peradeniya 10: 140 (1926). - Type: Sri-Lanka, Paradeniya, Thwaites C.P. 2518 (holotype PDA, not seen; isotypes G, K, P, W).

Figure 34. Hunteria zeylanica. 1, habit ($\times 2 / 3$); 2, sepal inside ($\times 30$); 3, opened corolla ($\times 4$); 4, pistil (x 6); 5, opened ovary ($\times 30$); 6 , fruiting branch ($\times 2 / 3$). I from Maxwell 85-675 (L), Thailand: 2-5 from Mycologist Bot. Garden Peradeniya, Sri Lanka 2I Nov. 1921 (A); 6 from Matuol F.D. 22004, Selangor, Malaysia (FHO).

Map 12. Hunteria zeylanica, African part of area of distribution.
Tree or shrub I-I 5 (-40?) m high, with colourless to milky latex in all parts. Trunk $2-30 \mathrm{~cm}$ in diameter; bark pale to dark grey to dark brownish-yellow, smooth or rough, shallowly fissured; inner bark cream, yellow to bright orange; wood very hard, dense, whitish to yellow. Branches brownish-grey, lenticellate; branchlets thin. Leaves: petiole $6-17 \mathrm{~mm}$ long; blade coriaceous, elliptic or oblong to obovate, i.4$5.7 \times$ as long as wide, $2-20.7 \times 0.9-6.7 \mathrm{~cm}$, rounded to acuminate at the apex, acumen $4-17 \times 2-3 \mathrm{~mm}$, cuneate to acute to rounded at the base, glossy and very dark green above, dull and pale green beneath; midrib prominent beneath; secondary veins straight to very slightly curved, in 12-30 pairs, forming a submarginal vein and an angle of $50-77^{\circ}$ with the midrib, 3-15 mm apart at the central part of the leaf. Inflorescence a compound dichasial cyme, lax, terminal, rarely also axillary and sometimes overtopped by a later axillary vegetative branch, $3.2-7.5 \times 2.5-8.5 \mathrm{~cm}, 3^{-}$ $4 \times$ branched, $10-65(-96)$-flowered; peduncle, (5 -) $10-40 \mathrm{~mm}$ long; primary branches $6-20 \mathrm{~mm}$ long; secondary branches $4-10 \mathrm{~mm}$ long, tertiary branches $5-7 \mathrm{~mm}$; pedicels $3.8-10 \mathrm{~mm}$ long. Bracts ovate to triangular, $0.7-\mathrm{I} .3 \times 0.5-\mathrm{I} \mathrm{mm}$. Flowers fragrant. Sepals green, thicker towards the base and at the middle, erect, with a little resin within, membranaceous at the edge and the apex, ovate to triangular or elliptic, obtuse to shortly acuminate at the apex, 1.2-3 \times as long as wide, $1.0-2.5 \times 0.5-$
I. 4 mm , with rows of colleters inside up to 0.7 of their length; colleters very small $0.2-0.4 \times 0.1 \mathrm{~mm}$. Corolla white to pale yellow, $10-17.3 \mathrm{~mm}$ long in the mature bud and forming a comparatively wide ovoid head $0.35-0.53 \mathrm{~mm}$ of the bud length, 4-7 \times I-2.5 mm, with an obtuse apex, with a belt of pubescence I-3 mm wide inside just below the insertion of the stamens, sometimes with a few hairs around the stamens and up to the throat; tube creamy-green, 3.7-7.7 \times as long as the calyx, I.I-2.2 \times as long as the lobes, $6-10 \mathrm{~mm}$ long, almost cylindrical, $0.8-1.8 \mathrm{~mm}$ wide above the base, narrowed below the insertion of the stamens to $0.7-1.5 \mathrm{~mm}$ wide, again widened around the anthers to $1.2-2.0 \mathrm{~mm}$ wide; lobes pure white, ovate, $0.5-0.9 \times$ as long as the tube, 1.4-3.2 \times as long as wide, 3.7-8.8 \times I.8-3.5 mm, obtuse at the apex, spreading or recurved later. Stamens with apex $0.2-0.8 \mathrm{~mm}$ below the mouth of the corolla tube, inserted $0.67-0.83$ of the length of the corolla tube, at $4.5-8 \mathrm{~mm}$ from the base; filaments $0.3-0.9 \mathrm{~mm}$ long; anthers narrowly ovate to oblong, $3.0-8 \times$ as long as wide, ($\mathrm{I}-$) I. $3-\mathrm{I} .5 \times 0.2-0.5 \mathrm{~mm}$, obtuse at the apex, subcordate at the base. Pistil 5.5-9.5 mm long; ovary oblong, 0.9-1.8 $\times 0.6-1 \times 0.4-0.6 \mathrm{~mm}$, gradually narrowed into the style, with a disk-like thickening uniting the carpels at the base, about 0.3-0.4 of the length, $0.2-0.4 \mathrm{~mm}$ high, of two separate carpels; style 3.5-7.2 $\times 0.1$ 0.3 mm ; pistil head composed of a subglobose stigmatic basal part, $0.3-0.7 \times 0.25$ $\times 0.5 \mathrm{~mm}$ and a conical stigmoid apex $0.3-0.8 \times 0.2 \mathrm{~mm}$. Ovules 2 at the extreme base in each carpel. Fruits yellow to orange, smooth, of two separate mericarps; mericarps obovoid to globose, $13-30 \times 10-15 \times 7-9 \mathrm{~mm}$, rounded at the apex, sometimes stipitate at the base; stipe $4-8 \mathrm{~mm}$ long, 2 -seeded; wall about $2-4 \mathrm{~mm}$ thick; pulp smooth. Seeds oblong or ellipsoid, 8.5-15 $\times 6-10 \times 4-6 \mathrm{~mm}$, testa smooth, orange. Embryo 3.8 mm long; cotyledons ovate, $2 \times$ as long as wide, $2 \times$ I mm, obtuse at the apex, rounded at the base; radicle $0.9 \times$ as long as cotyledons, $1.8 \times 0.4 \mathrm{~mm}$.

Distribution. Somali, Kenya, Tanzania, and Mozambique, India, Sri-Lanka, Burma, Thailand, Cambodia, Laos, Vietnam, S.China(Hainan), Malaysia, Indonesia.

Ecology. Dry coastal forest, mixed evergreen forest gallery forest, or thick wooded bushland on sandy soil or coral rock along the coast and on sandy gravelly soils on rocky river banks, inland. Alt. 0-335 m. Flowering in January and February in Mozambique, in September to January in Kenya and fruiting in March-April and flowering all the year round in Tanzania.

Uses. Wood used to make combs (Kimberly-Medley 231, K7, Kenya, 1987), as boxwood (Bally $16718, \mathrm{~K} 7$, Kenya) and to make bows for hunting (Burstyn 75/83A, K7, Kenya, 1975). Wood yellow, dense and not attacked by termites (Poilane 6774, P, i923, Vietnam), used to make axe handles (Poilane 6721, P, 1923, Vietnam).

Geographical selection of the approximately 200 specimens examined:
Somalia. Bibahal, Paoli 850 (FT); Shooto Forest, Synnot 1949 (EA, K); Uabi, Scassellati 56 (FT); Jess, Hemming \& Deskmukh s.n., (EA); Giuba, Paoli 478 (FT); 73 km N of Bardera, Tardelli 434 (WAG); Bardera, Paoli 815 (FT); 25 miles N of Gelib, Mooney 7666 (EA, FT, K, S).

Kenya. K i: Nothern Frontier Distr., Chebele, Bally 6068 (K). Meru Distr., Meru National Park, Masanduku Camp, Hamilton 93 (EA); Rojweru R., Gillett 18905 (BR, EA, P); Bank of Ura R., Ament \& Magogo 388 (EA, K). Kı/7: Nothern Frontier/Tana Tiver: Garissa, Greenway 8860 (EA, K, NY); 2 km

ESE of Mararani, Kuchar 13478 (EA). K 4: Kitui Distr., Ukassi, Edwards ıoı (EA); Endau Hill, Gatheri et al. 79/67 (EA, K). K 7: Lamu Distr., Mangai-Kiunga Rd., Gilbert \& Kuchar 5860 (EA, K, UPS); Witu, Rawlins Jan. 1957 (EA, K). Tana River Distr., Tana R., Battiscombe K 226 (EA); Mchelelo Forest, Luke et al. TPR 31 (EA, K). Kilifi Distr., near Adu (= Hadu), Dale 1077 (EA, FHO); Marafa, Polhill \& Paulo 818 (B, BR, EA, FT, K, P, UPS); 6.4 km N of Malindi, Polhill \& Paulo 755 (B, BR. EA, FT, K, P, UPS); Arabuko Sokoke Forest, Graham 1976 (EA, FHO, K, NY); 9 km E of Bamba, Reitsma 144 (EA, WAG); Vipingo, Bally 4712 (EA, K). Taita Distr., Bura, Bally 2042 (EA, K). Kwale Distr., Kaya Waa, Robertson 3506 (E, K, MO, WAG); Shimba Lodge, Omino 64 (EA, WAG), 89 (EA, WAG); Diani Forest, Robertson \& Coverdale 3668 (EA, K, MO, WAG); Likoni, Jex-Blake 4641 (EA, K): Diani Beach. Hiepko 2663 (B, EA); Mwele Mdogo Forest, Spjut 2745 (BR, EA, K, UC); 35 km S of Mombasa, Leeuwenberg 10800 (EA, WAG); Marenje Forest, Faden \& Faden $74 / 321$ (EA, K, MO, WAG); Vanga, Graham 2205 (EA, FHO, K, P, NY); Galana Ranch, Bally 16718 (EA, K). K 4/7: Kitui/Kilifi Distr., Lali Hills, Adamson 34 (EA).

Tanzania. T 3: Tanga Distr., 13 km S of Moa, Drummond \& Hemsley 3655 (B, BR, K, S); 8 km SE of Ngomeni, Drummond \& Hemsley 3563 (B, BR, EA, FT, K, S); Sawa, Faulkner 1626 (B, BR, FT, K, P); Kumbatoni, Tanner 2463 (BR, K). Lushoto Distr., Sangarawe (= Sangerawe), Zimmermann 23.3.1917 (K). Pangani Distr., Msumbugwe Forest Reserve, Hawthorne 812 (K); Mkaramo Parish, Tanner 3366 (BR, K, NY, UC, WAG); Mkwapa (= Mkwaja), Tanner 3722 (BR, K, NY, UC). T 6: Bagamoyo Distr., Bagamoyo, Sacleux 482 (P); Kikoka Forest Reserve, Semsei 3723 (BR, EA, K); near Kawe (= Kawi). Uzaramo Distr., Harris 2828 (EA, K, WAG); Dar-es-Salaam, Kirk March 1968 (K); Vikindu Forest Reserve, Paulo 133 (EA, K). Rufiji Distr., Uranzi, Greenway 5077 (EA, K). P: Msitu Mkuu, Beentje 4381 (WAG); Pemba, Vaughan 2078 (EA, FHO), 2729 (EA). Z: Zanzibar, Vaughan 885 (EA, FHO).

Mozambique. Zambezia, Mopeia, Bowbrick JCio (LISC, SRGH). Sofala: Maringuè, Bond 9837 (LISC, SRGH); Villa Fontes (= Caia), Greenwood 12 (LISC, SRGH); 25 km from Lacerdónia, Müller \& Pope 1926 (K, LISC, PRE, SRGH); 5 km E of Inhamitanga, Müller \& Pope 1865 (K, LISC, SRGH); Gorongasa National Park, Macedo 1258 (WAG); Sangarassa Forest, Tinley 2369 (HBG, K, M, MO, P, SRGH, WAG). Manica: Chimoi, Simāo 273/48 (LISC).

Notes. Pichon (1953) divided H. zeylanica into 3 varieties as follows: var. zeylanica, leaves over 2.5 cm wide and with a well defined acumen. var. salicifolia (Wall ex A.DC.) Pichon, leaves rarely more than 2.3 cm wide and without a distinct acumen.
var. africana (K. Schum.) Pichon, leaves mostly over 2.5 cm , but without a distinct acumen.

In my opinion, this species cannot be divided into varieties on the basis of the width of the leaves which proved to be very variable over the whole distribution range, e.g.Tardelli 434, Somalia ($0.9-2 \mathrm{~cm}$ wide); Reitsma 144, Kenya (2-4.2 cm); Drummond \& Hemsley 3563, Tanzania (1.4-4.I cm); Forbes 2722, Sumatra (0.9-3.2 cm); Poilane 5562, N. Vietnam (2.1-3.7 cm) and Van Steenis 870, Anambas Islands $(5.4-6.7 \mathrm{~cm})$. In Africa the leaves are mostly rounded (Gardner 2205, Kenya; Greenway 8860, Kenya; Tanner 3366, Tanzania) to obtuse at the apex (Robertson 3506 Kenya), although they may sometimes be bluntly acute to acuminate with a blunt acumen (Beentje 4381). The leaf is very variable in size, shape and apex in Asia. The largest leaves are found in Malaysia (up to $20.7 \times 5 \mathrm{~cm}$) and the smallest in Sri Lanka ($5.5 \times 1.6 \mathrm{~cm}$). In a majority of the Asian specimens, the leaf apex is very distinct but there are also many examples of specimens without a distinct acumen, especially from Hainan and Vietnam (How 71618, Hainan; Poilane 3002 and 6774, Vietnam). The leaf acumen of all the specimens formerly placed under var. salicifolia is also very variable and may be bluntly acuminate (Wight 543, India) to
distinctly acuminate (Alston 262 , Sri Lanka). I have therefore not maintained the varieties proposed by Pichon (1953) in the current taxonomic treatment.

In herb. Simão 273/48 (LISC) the ovary exists of 3 separate carpels.

2.6 Picralima pierre

Picralima Pierre in Bull. Soc. Linn. Paris 2, 1278 (1896); Stapf in Fl. Trop. Afr. 4, I: 96 (1902); Pichon in Mém. Mus. Nat Hist. Nat. 24: 158 (I948) \& in Bol. Soc. Brot. sér 2, 27: 81 (1953); H. Huber in Fl. W.Trop. Afr. ed. 2, 2: 62 (1963). - Type species: Picralima klaineana (= P. nitida (Stapf) Th. \& H. Dur.).

Tree or shrub with white latex in all parts; branchlets glabrous. Leaves opposite, petiolate, those of a pair equal or subequal; petiole glabrous; blade elliptic to oblong, entire and glabrous on both sides. Inflorescence a compound, umbellate cyme, terminal or sometimes axillary, pedunculate; peduncle glabrous. Flowers fragrant or not, actinomorphic except for the subequal sepals. Sepals pale green, imbricate even at anthesis, connate at the extreme base, glabrous outside, not ciliate and with 2-4 rows of colleters at the extreme base. Corolla white to yellow, tube often greenish, with a belt of pubescence up to 7.3 mm wide inside just below the insertion of the stamens; tube almost cylindrical, thick and fleshy, narrowed below the insertion of the stamens, glabrous outside; lobes overlapping to the left in bud, not ciliate, glabrous, entire, spreading and recurved later. Stamens included, inserted above the middle of the corolla tube; filaments short, filiform, glabrous; anthers ovate, cordate at the base, glabrous, of two parallel cells longitudinally dehiscent. Pistil glabrous; ovary composed of two separate carpels, united at the extreme base by a disk-like thickening; pistil head composed of a stigmatic oblong basal part and a filiform stigmoid apex up to 1.5 mm . long. Ovules numerous in each carpel. Fruits yellow to orange, smooth, composed of two separate divaricate mericarps; mericarps obovoid to ellipsoid, with a rounded apex, up to 80 -seeded; wall very thick and fibrous. Seeds brown, variously shaped, somewhat angular smooth; testa hard brown. Embryo straight, spathulate, surrounded by thick rather hard and starchy endosperm leaving a hole around the radicle apex; cotyledons thick; radicle almost cylindrical, flattened and narrow at the apex, widened towards the base.

2.6.1 Picralima nitida (Stapf) Th. \& H. Dur.

in Bull. Jard. Bot. Etat. Brux. 2: 338 (1910); Pichon in Bol. Soc. Brot. sér. 2, 27: 82, map A p. 85 (1953) \& in Mém. Mus. Natn. Hist. Nat. 24: 158 (1948); H. Huber in Fl. W. Trop. Afr. ed. 2, 2: 62 (1963). - Type: Cameroun, Ambas Bay, Mann 710 (holotype K; isotypes GH, P).

Fig. 35, p. 129; map 13, p. 130

Figure 35. Picralima nitida. 1, habit ($\times 2 / 3$); 2, branchlet $(\times 2 / 3) ;$ 3, flower bud $(\times 1) ; 4$, flower $(\times 1) ; 5-6$, flower above (\times I); 7, corolla beneath ($\times 1$); 8, sepal inside $(\times 2) ; 9$, opened corolla ($\times 2$); 10, pistil ($\times 4.6$); 11-13, stamens ($\times 6.4$). 1-2 from W. de Wilde et al. 1952; 3-1 3 from Reitsma 899.

Map 13. Picralima nitida.
Basionym:
Tabernaemontana nitida Stapf in Kew Bull. 1894: 22 (1894); De Wildeman \& Durand in Ann. Mus. Congo Bot. sér. 2, vol. 1, I: 39 (1899) \& sér. 3, vol. 1, 2: I 53 (1901).

Heterotypic synonym:
Picralima klaineana Pierre in Bull. Soc. Linn. Paris, 2: 1279 (1896); Stapf in Hooker, Ic. Pl. 28: t. 2745-2746 (1902). - Type: Gabon, Libreville, Klaine 299 of I I.9.I896 (lectotype P, designated here).

Tree or shrub 4-35 m high with very dense crown. Trunk $5-60 \mathrm{~cm}$ in diameter, cylindrical; bark hard, brittle, pale to dark greyish black to brown, smooth to slightly rough to finely striate, sometimes lenticellate, very bitter; inner bark 6-1 2 mm thick, brown to yellow with orange-brown spots, granular, fibrous; wood very hard, resistant, whitish-yellow to pale brown or orange. Branches dark green, smooth; branchlets, smooth, dark green to dark brownish black. Leaves opposite; petiole io22 mm long; blade thickly papery to thinly leathery, papery to coriaceous when dried, ovate, broadly to narrowly elliptic or oblong, 2.1-4.3 \times as long as wide, (5) $10.8-26.6 \times 1.9-13 \mathrm{~cm}$, abruptly acuminate at the apex, acumen acute, $6-14 \times 2 \mathrm{~mm}$, cuneate, acute or rarely rounded to obtuse at the base, glossy and dark green above, dull and paler beneath; midrib impressed above, vividly shiny and pale green beneath; secondary veins more or less straight, curved towards the margin, in 14-23
pairs, forming a submarginal vein and an angle of $70-72^{\circ}$ with the midrib, $8-16 \mathrm{~mm}$ apart at the central part of the leaf; tertiary veins obscure below. Inflorescence 6-10 $\times 7.5-9 \mathrm{~cm}, 12-36$-flowered, $\mathrm{I} \times$ branched; peduncle medium to pale green, 2-37 mm long, with 3 primary branches each bearing 6-12 flowers; branches $3-15 \mathrm{~mm}$; pedicels medium to pale green, 2-20 mm long. Bracts very small. Sepals vividly pale to medium green, fleshy, coriaceous when dried, free or connate at the base for 0.080.18 of their length, $0.5-\mathrm{I}$ mm thick at the base, erect, membranaceous for about 0.3 mm of the extreme edge, broadly ovate to suborbicular, (0.9-) I.I-I. $6 \times$ as long as wide, (3.5-) $5.5-7.5 \times 3.5-5 \mathrm{~mm}$, obtuse to rounded at the apex, and with $2-4$ rows of colleters inside at the extreme base, colleters small 0.7-I $\times 0.1-0.2 \mathrm{~mm}$. Corolla white to lime-yellow, coriaceous when dried, $25.3-47 \mathrm{~mm}$ long in mature bud and forming a comparatively large ovoid head 0.47-0.7 of the bud length, 14.3-33 \times 3-7 mm , with an obtuse apex, glabrous outside, not ciliate at lobes, with a belt of pubescence 3-7.3 mm wide inside, just below the insertion of the stamens, sometimes with a few hairs around the stamens; tube pale green, fleshy, coriaceous, 2-3.5(-6) \times as long as the calyx, 0.6-1.2 \times as long as the lobes, $14.5-21 \mathrm{~mm}$ long, almost cylindrical, 3-6 mm wide above the base, narrowed below the insertion of the stamens to 24.5 mm wide, again widened around the anthers to $3-5 \mathrm{~mm}$ wide; lobes pale green to yellow in bud, creamy at anthesis, ovate, not twisted in bud, $0.8-1.57 \times$ as long as the tube, $1.9-3 \times$ as long as wide, $13.5-29.8 \times 5.5-10 \mathrm{~mm}$, obtuse at the apex, entire, spreading or erect. Stamens with apex 1.2-4 mm below the mouth of the corolla tube, inserted $0.58-0.71$ of the length of the corolla tube, at $9.5-15 \mathrm{~mm}$ from the base; filaments $0.7-\mathrm{I} .4 \times 0.1-0.2 \mathrm{~mm}$ long; anthers ovate, $3.4-6.4 \times$ as long as wide, 2.8$3.7 \times 0.5-\mathrm{I} \mathrm{mm}$, obtuse or acuminate at the apex, acumen 0.3 mm , sterile. Pistil 9.712.5 mm long; ovary ovoid, $2-3 \times 1-2.5 \times 0.5-1.8 \mathrm{~mm}$, with a disk-like thickening $0.2-0.3$ of the length, $0.5-0.6 \mathrm{~mm}$ high; style $5-7.3 \times 0.3-0.4 \mathrm{~mm}$; pistil head with apex 2 mm below stamens, I.6-3.1 $\times 0.5-\mathrm{I} \mathrm{mm}$, stigmoid apex $0.6-\mathrm{I} .5 \times 0.1-0.15$ mm. Ovules 120-1 50 in each carpel. Fruits: mericarps irregularly pyriform or obovoid to ellipsoid, laterally compressed, with an adaxial line of dehiscence, I I-20 \times 8 -15 \times 13-14 cm, rounded at the apex; many-seeded; wall very hard, white to creamy on section, $4-8 \mathrm{~mm}$ thick, inside with a layer of large fibres like in the coconut. Seeds embedded in a soft white or orange pulp orange or brown, smooth, flat, obliquely ovate, obovate to oblong, flattened and more or less angular, $24-44 \times 15$ $27 \times 5-8 \mathrm{~mm}$, testa smooth, coriaceous. Embryo straight, $16.5-22 \mathrm{~mm}$ long, endosperm excessively bitter; cotyledons ovate to obovate to oblong, thick and leafy, 1.4$3.3 \times$ as long as wide $10.5-13 \times 4-8 \mathrm{~mm}$, obtuse to rounded at the apex, subcordate to rounded at the base; radicle $0.6-0.8 \times$ as long as cotyledons, $6.5-9.5 \times 1.5-2 \mathrm{~mm}$.

Distribution. Ivory Coast, Ghana, Nigeria, Cameroun, Gabon, Congo and Zaire and Uganda.

Ecology. Understorey tree in rain forest or mature old secondary forest, remnant forest on plateaux in Zaire, and semi-deciduous forests by river banks or roadside growing on sandy clay soil. Alt. 20-900 m. Flowering and fruiting all the year round.

Uses. All parts of the plant are bitter (Burkill 1985). The wood is pale yellow, fine grained, hard and elastic, finishes and polishes well (Dalziel 1937; Irvine 1961); used to make paddles (Flamigni 71 16, BR, 1944, Zaire; Dewèvre 847, BR, Zaire); bows (De Wilde 393, BR, MO, WAG, Zaire; Bates 142 I, MO, Z, 1919, Cameroun; Harris \& Fay 504, MO, 1988, Central African Republic); shuttles for weaving clothes, dolls and combs (Vigne 864, K, 1922, Ghana; Dalziel I937); walking sticks in Ghana (Dalziel 1937; Irvine 1961); pestle and Mortar (Gille IOO, BR, C, MO, P, WAG, i938, Zaire); in Gabon the wood is used for carvings, paddles, incense holders (Walker \& Sillans 1965); spade handles (N. W Thomas 2061, 2101, K, 1912, Nigeria; Dalziel 1937); arrows and spoons (Benoit 235, P, 1956, Cameroun).

Immature fruits pounded and thrown into water to act as a fish poison (Michelson 231, BR, Zaire; Dewèvre 945, BR, Zaire; Irvine 196I, Ghana). Pulp which separates the grain is used in the composition of arrow poison (Dewèvre III3, BR, Zaire). Seeds are intensely bitter (Dalziel 1937) and are extensively used by the natives in place of Quinine (Oppenheimer, son \& Co. s.n., K); crushed and eaten for chest complaints, pneumonia and acute stomach ache without being regarded as a purgative (Dalziel 1937; Irvine 1961); decoction of seeds is used as an enema in Ghana (Dalziel 1937; Irvine 1961). Fruit used to cure cough (Benoit 235, P, 1956, Cameroun); eaten by elephants (Harris \& Fay 504, MO, 1988, Central African Republic); used to poison arrows for hunting Monkeys (Tisserant 509, P, 1952, Central African Republic). Small dippers or spoons made from the hard shell of the fruit (Dalziel 1937); the fruit contents are removed and the shell filled with palm wine which is drunk when it has absorbed the bitter principle (Irvine 1961). In Gabon the Pahouin chew a little of the fruit and bark to allay hunger while on long marches in the bush (Raymond-Hamet 1951). In Gabon the seeds are recognised as toxic and use appears to be restricted for external treatment for ancesses (Aubreville 1959).

The bitter bark is boiled in a pot with two teaspoons of sugar and the decoction is drunk against food/drink poisoning (A.M.Louis 1844,WAG, I985, Gabon); used against stomach ache (J. M. Reitsma et al. 1866, NY, WAG, 1986, Gabon; Benoit 232, P, 1956, Cameroun); chewed by the Bunyoro as a vermifuge (Dawe 707, K, Uganda; Eggeling \& Dale 1952); used as a febrifuge (Howes II57, FHO, 1926, Ghana; Dalziel 1937, Aubreville 1959); used in Gabon against venereal disease (Walker 1953; Walker \& Sillans 1961); bark decoction taken in Congo as an anthelmintic and purgative, to treat hernia, with other drug plants to relieve blennorrhoea (Bouquet 1969), in Ivory Coast against jaundice and yellow fever (Kerharo \& Bouquet 1950) and also in Nigeria (Ainslie 1937).

The roots and bark are used to ease chest complaints and combat fever with mild jaundice, popularly called 'yellow fever' (Dalziel 1937); the roots are used as a vermifuge in Gabon (Walker 1953; Walker \& Sillans 1961) and against fevers and pneumonia (Ainslie 1937, Aubreville 1959).

Leaf-sap is dripped into ears for otitis in Congo (Bouquet 1969). A cooled decoction of leaves and bark is used against ascaris (Floret et al. I633, WAG, 1983, Gabon).

Seeds have been found to contain about 10 alkaloids, seven of which have been crystallized; on trial alkaloids are ineffective on bird malaria; bark and leaves yield
only amorphous alkaloids (Henry \& Sharp 1927, 1932). Akuammine is the principal alkaloid from the seeds, is a powerful sympathicostenic and has a local anaesthetic action equal to that of cocaine. Akuammadine is hypotensive, and weaker but longer lasting in effect than Yohimbine (Burkill 1985).

Geographical selection of the approximately 200 specimens examined:
Ivory Coast. Near Bingerville, Chevalier 15600 (P); Anoumabo, Chevalier 22391B (B, LG, P, WAG), 22440 (P).

Ghana. Western: near Tarkwa, Vigne 208 (FHO). Ashanti: Obuasi, Seward 65 (K); Adiembra, Vigne 864 (K); Kumasi, Vigne 3956 (K, P).

Nigeria. Ogun: Agege, E. W. Forster 220 (K). Oyo: Gambari, Van Eijnatten 1526 (WAG): Ibadan. Onyeachusim FHI 48005 (K, MO); Shasha F.R., Ossevemeh 3341 (BR, MO, S); ibid., Ross 7 (BR, MO, S). Ondo: Akwe F.R., Van Meer 792 (WAG); Okeluse F.R., Onochie FHI 33370 (K, MO). Bendel: Oshi, Kennedy 2056 (FHO, K); 15 km SW of Ekenwan, Leeuwenberg 11348 (WAG); Okomu F. R., Brenan \& Richards 8910 (K): Sapoba, Kennedy 212 (FHO); Ogwashi, N. W. Thomas 2061 (K); Onicha Olona, N. W. Thomas 1941 (K). Benue: Jones 982 (FHO). Cross River: sin. loc., Talbot 219 (BM, K); Eket, Talbot 3146 (BM, K, Z); Eket District, Talbot 3256 (BM, K, Z), s.n. (BM, K); Oban, Talbot 169o (B, BM, Z); Oban District, Talbot s.n. (BM. K); lyamoyong, Binuyo FHI 4 I 297 (BR, FHO, K. WAG); km 114 CalabarMamfe Road, Latilo FHI 53997 (K, P, WAG).

Cameroun. Sud-Ouest: Victoria ($=$ Limbe), Maitland 284 (B, K); Ambas Bay, Mann 710 (GH, K, P, type); Ikilliwindi, 20 km N of Kumba, Etuge \& D. W. Thomas 499 (MO, NY, WAG); near Kumba, D. W. Thomas 4684 (BR, MO, P, WAG); NE comer of Korup Nat. Park, D. W. Thomas 3313 (MO, WAG). Ouest: Wum District, Ujor FHI 29271 (K). Littoral: near Maleke. Benoist 326 (P);: near Nkongsamba. Benoist 256 (P). Centre-Sud: Nkolbewa, near Kribi, Benoist 232 (P); Bipindi, Zenker 3028 (B, BM, BP, BR, E, G, HBG, K, L, MO, P, S, W, WAG, WU), II 283 (B, BR, C, F, G, GH, MO, NY, P, U, UC, US, WAG); Melen, km 27 on Kribi-Ebolowa Road, Bos 6373 (WAG); Mvimi, 35 km E of Campo, Kaji 50 (P); Ebolowa, W. de Wilde 1952 (B, BR, K, MO, P. WAG, Z); Koumou Forest, Benoist 149 (P); between Zoetele and Nkolebang, Asonganyi 128 (P, WAG): near Yaoundé, Letouzey 1110 (P); Bitye, ca 60 km ENE of Sangmélima, Bates 142 I (BM, MO, Z); near Nanga Eboko, Mildbraed 8285 (HBG, K). Est: near Ndjangani, 46 km NW of Bertoua, Breteler 1358 (BR, P, WAG); 2 I km S of Mboy I, Letouzey 5069 (K, P); 19 km W of Yokadouma, 5 km W of Mbol, Leeuwenberg 6176 (BR, K, MO, P, WAG); 70 km E of Djoum, Letouzey 11804 (BR, HBG, K, P, WAG); 5 km W of Bateka Malemba, Villiers 652 (K, P); Nginda, 2I km N of Moloundou, Mildbraed 4138 (HBG).

Central African Republic. Sangha: Harris \& Fay 504 (MO). Ombella-Mpoko: Boukoko, Tisserant 509 (K, P).

Gabon. Estuaire: near Libreville, Klaine 106 (P), 299 of 11 Sept. 1896 (P, lectotype; possible isolectotypes BR, K), 299 of 9 Aug. 1896 (K, P, paratype). Woleu-Ntem: Oveng, A. M. Louis 2114 (WAG); near Abanga, Reitsma et al. 1866 (NY,WAG); Otuoma, Dibata 956 (BR); Ovengi, Reitsma et al. 899 (NY, WAG); Mindoumo, A. M. Louis 1884 (WAG). Moyen-Ogooué: Onangé Lake, Pobéguin 45 (P). Nyanga: Dibilila, Le Testu 1223 (BM, BR, G, P); Tchibanga, Le Testu 1841 (BM, BR, E, K, P, US, WAG). OgoouéIvindo: $10-15 \mathrm{~km}$ W of Akouba, Floret et al. 1633 (P, WAG): M'passa Field Station, Gentry 33512 (MO); Makokou, Hladik 1314, 2098, (P); near Ekobakoba, Reitsma 3132 (NY, WAG); Belinga, Hallé \& Le Thomas 641 (P); Booué, Vadon s.n. (P). Ngounié: SE of Sindara, Leeuwenberg \& Persoon 13695 (WAG); Gnyoungou, Le Testu 6035 (B, BR, K, P); Mimongo, Le Testu 5898 (B, BR, HBG, MO, P). Ogooué-Lolo: Poungui, Le Testu 7429 (P).

Congo. Kouilou: Pointe Noire, Farron 4828 (P); Kouilou, Sargos I80 (BR, K, P, US); Region du Kouilou, Moutsamboté, 4-9-1990, (BR). Bouenza: Loubofo, Bouquet 672 (P); Massia, Bouquet 819 (P). Le Koumou: West of Sibiti, Farron 4247 (P). Pool: Mayombe, les Saras, Bouquet 1917 (P). Cuvette: Odzala, Dowsett-Lemaire 1833 (B). Sangha: Ouesso, Hanie 74 (P).

Zaire. Bas-Zaire: Boma, Luki, Hombert 556 (BR, K); Luki, Maudoux 17 (BR, MO, P); Kimbuya, Donis 165 (BR); Kinshasha, Claessens 66 (BR). Bandundu: Lac Leopold II (= Lac Tumba). Claessens 756 (BR); Bolobo Waterfall, Flamigni 7116 (BR); Ganya, Flamigni 10383(BR,WAG); Ilongonga, Sapin Dec. 1907 (BR); Ipamu, Vanderyst 11997 (BR). Equateur: Lukolela, Toka 57 (BR); Eala, Corbisier 103 (BR,

Angola. Cabinda: Maiombe, Gossweiler 6258 (LISU), 6258 B (LISU); Buco Zau, Gossweiler 7232 (LISU).

Uganda. Bunyoro Distr., Bugoma, Dawe 707 (K); Budongo Forest, Eggeling 3972 (BR, K), 4042 (K); Bunyoro, Katende 2127 (K). Toro Distr., Semliki Valley, Dawe 719 (K).

Cultivated. Netherlands: Wageningen Bot. Garden, Leeuwenberg 10779 (MO,WAG). Ivory Coast: Abidjan University Bot. Garden, Aké Assi 15143 (WAG); Adiopodoumé, Leeuwenberg 12025 (WAG). Ghana: Kumasi, Irvine 2817 (E); Aburi Gardens, Howes 1157 (FHO). Cameroun: Victoria (= Limbe) Botanic Garden, Winkler 660 (A). Hawaii: Homaluhia Botanic Garden, Miller \& Merello 7893 (MO).

2.7 Pleiocarpa benth.

Pleiocarpa Benth. in Benth. \& Hook. f. Gen. Pl. 2: 699, (1876); in Hooker, Ic. Pl. 12: 71 , (1876); K. Schumann in Engler \& Prantl Nat. Pflanzenf. 4, 2: 134 (1895); De Wildeman \& Durand In Ann. Mus. Congo Bot. sér. 2 vol. I, i: 37 (1899) \& sér. 3 vol. I, 2: 150 (1901); Stapf in Fl. Trop. Afr. 4, I: 97 (1902); Pichon in Mém. Mus. Natn. Hist Nat. 24: 161 (1948) \& in Bol. Soc. Brot. sér. 2, 27: 123 (1953); Hutchinson \& Dalziel in Fl. W. Trop. Afr. ed. 1, 2: 37 (1931); H. Huber in Fl. W. Trop. Afr. ed. 2, 2: 63 (1963); Kupicha in Fl. Zamb. 7, 2: 432 (1985). - Lectotype species: P. mutica Benth. (designated by Pichon in Bol. Soc. Brot. sér. 2, 27: 123 (1953).

Heterotypic synonym:

Carpodinopsis Pichon in Bol. Soc. Brot. sér. 2, 27: 142 (1953). - Type species: C. rostrata (Benth.) Pichon ($=$ P. rostrata Benth.), designated by Pichon 1953.

Shrubs or small trees, rarely lianescent, with white latex in all parts; branchlets glabrous. Leaves opposite or in whorls of 3-5, petiolate, those of a pair equal or subequal; blade mostly elliptic, entire and glabrous on both sides. Inflorescence predominantly axillary, sometimes at the same time terminal, ramiflorous, usually fasciculate; sessile. Flowers usually fragrant, rarely malodorous (in P. pycnantha), actinomorphic except for the subequal sepals. Sepals pale green, mostly thin, rarely coriaceous, free or connate at the extreme base, membranaceous at the edge, completely glabrous on both sides, without colleters. Corolla pure white to yellow, tube often greenish in bud, with a belt of pubescence up to 10.5 mm wide inside just below the insertion of the stamens; lobes overlapping to the left in bud, always shorter than the tube, spreading and often recurved later. Stamens included, inserted at or above the middle of the corolla tube; anthers ovate, obtuse to acuminate at the
apex, cordate at the base, glabrous, of two parallel cells, longitudinally dehiscent. Pistil glabrous; ovary composed of 2-5 separate carpels, united at the extreme base by a disk-like thickening; pistil head oblong or ellipsoid; ovules $1-4(-6)$ in each carpel. Fruit yellow to bright orange, smooth or rugose, composed of $2-5$ separate mericarps; mericarps variously shaped, with a rounded to hook-shaped apex, i-6seeded; wall $2-4 \mathrm{~mm}$ thick, fleshy and sometimes slightly fibrous. Seeds brown, variously shaped, somewhat angular. Embryo straight, spathulate, surrounded by a thick, rather starchy and hard endosperm, leaving a hole around the radicle base; cotyledons elliptic, thin and leafy; radicle almost cylindrical, flattened and narrower at the apex, widened towards the base.

Key to the species of Pleiocarpa

1. Leaves ternate or on the same branch both opposite and ternate, occasionally in whorls of 4-5
Leaves opposite
2. Mature bud $8-13 \mathrm{~mm}$ long (rarely up to 15 mm long in Zaire); corolla lobes 1.3-4.8 mm long; ovary 2-carpellate; secondary veins usually more than 12 pairs; leaves in whorls of $3-5$ in the whole distribution range
3. P. pyenantha

Mature bud 14-26.6 mm long; corolla lobes (5-)6-1 3 mm long; secondary veins in 9-12 pairs; ovary (3-) 5 carpellate; leaves ternate only in specimens from Liberia and Ivory Coast 3. P. mutica
3. Stamens inserted c. 0.5 of the length of the corolla tube at $4.3-5.5 \mathrm{~mm}$ from the base; style 1.2-1.5 mm long
2. P. brevistyla

Stamens inserted 0.58-0.92 of the length of the corolla tube at $6.7-18 \mathrm{~mm}$ from the base; style 5.5-16 mm long4
4. Stamens with apex $3^{-8} \mathrm{~mm}$ below the mouth of the corolla tube; secondary veins oblique, very prominent beneath, in 6-9(-12) pairs; inflorescence 1-4flowered, fruits smooth to rugose with a rounded to beaked apex
5. P. rostrata

Stamens with apex 0.2-I.3 mm below the mouth of the corolla tube; secondary veins in 9-30 pairs; inflorescence 10-15(-35) flowered; fruits smooth with a rounded apex 5
5. Secondary veins in 9-12 pairs, $8-20 \mathrm{~mm}$ at the central part of the leaf; ovary 3-5-carpellate with I ovule per carpel 3. P. mutica
Secondary veins numerous, in 19-25 pairs, 4-9 mm at the central part of the leaf; ovary 2 -carpellate with 2 ovules per carpel I. P. bicarpellata

2.7.1 Pleiocarpa bicarpellata Stapf

in Kew Bull. 1894: 2 I (1894), partly as for the lectotype \& in Fl. Trop. Afr. 4, 1: 99 (1902); Pichon in Bol. Soc. Brot. sér. 2, 27: 125, p. 117 t.3, fig. 8-10, (1953); Hutchinson \& Dalziel in Fl. W. Trop. Afr. ed. 1, 2: 38 (193I); H. Huber in Fl. W. Trop. Afr. ed. 2, 2: 63 (1963). - Type: Cameroun Mountain, 200 m, Mann 12 I 3
(lectotype K, designated by Pichon in 1953; isolectotype, P).
Fig. 36, p. 137: map 14, p. 138
Heterotypic synonym:

Hunteria ambiens K. Schum. in Engler, Bot. Jahrb. 23: 223 (1896); Hallier f. in Jahrb. Hamb. Wiss. Anst. 17 Beih 3: 191 (1899). Type: Cameroun, Lolodorf, Staudt 93 (lectotype K, designated here; isolectotypes A, E, G, Z).

Shrub or small tree $1.5-8 \mathrm{~m}$ high with white latex in all parts. Trunk very slender, smooth; bark and branches very pale brownish-grey to pale silvery grey, smooth; branchlets thin, quadrangular when young, later terete, very pale to dark brown. Leaves opposite; petiole 4-I I (-14) mm long, glaucous green; blade papery to thinly leathery in fresh leaves, narrowly elliptic to oblong, (i.6-)2.0-3.8 \times as long as wide, $5.1-16.8 \times 1.8-7.2 \mathrm{~cm}$, acuminate at the apex, acumen obtuse to acute, $10-22 \times 2$ 4 mm , acute or cuneate at the base and decurrent into the petiole, midrib prominent in fresh leaves; secondary veins straight, in 19-30 pairs, obscure beneath, forming a neat submarginal vein and an angle of $65-80^{\circ}$ with the midrib, $4-9 \mathrm{~mm}$ apart at the approximate centre of the leaf, tertiary venation inconspicuous beneath and more or less parallel to the secondary veins. Inflorescence axillary, ramiflorous, sometimes at the same time terminal, fasciculate, $1.5-2.5 \times 2.5-3 \mathrm{~cm}, \mathrm{IO}(-15)$ flowered, sessile. Pedicels I-2 mm long. Bracts very small, scale-like. Flowers very fragrant. Sepals very pale green, free, erect, membranaceous for about $0.2-0.4 \mathrm{~mm}$ of their edge, ovate, $0.6-2.1(-3.1) \times$ as long as wide, I.I-2.8 $\times 0.6-\mathrm{I} .7 \mathrm{~mm}$, acute at the apex where it is usually damaged and appearing dentate. Corolla pure white, $15-18.5 \mathrm{~mm}$ long in mature bud and forming a comparatively large oblong head $0.31-0.4$ of the bud length, (5-) $6.5-8 \times \mathrm{I} .5-3 \mathrm{~mm}$, with a rounded apex, with a belt of pubescence $2.8-$ 4.5 mm wide inside just below the insertion of stamens, with longest hairs just below the anthers; tube 5.1-14.3 \times as long as the calyx, 1.3-2.4 \times as long as the lobes, (9.2) io- 15 mm long, almost cylindrical, $0.8-1.8 \mathrm{~mm}$ wide above the base, narrowed below the insertion of the stamens to $0.4-0.8 \mathrm{~mm}$ wide, again widened around the anthers to $0.7-2 \mathrm{~mm}$ wide; lobes narrowly oblong to broadly ovate, $0.4-0.8 \times$ as long as the tube, $\mathrm{I} .3-3.4 \times$ as long as wide, $5-10.2 \times(\mathrm{I} .5-) 2.1-5.5 \mathrm{~mm}$, obtuse, spreading and recurved later. Stamens with apex $0.2-1 \mathrm{~mm}$ below the mouth of the corolla tube, inserted $0.68-0.86$ of the length of the corolla tube, at $7.5-12 \mathrm{~mm}$ from the base; filaments 0.3-0.6 mm long; anthers narrowly ovate to oblong, $1.8-5.5 \times$ as long as wide, $\mathrm{I}-\mathrm{I} .4 \times 0.2-0.35 \mathrm{~mm}$, acuminate at the apex, acumen up to 0.3 mm , cordate at the base. Pistil 7.5-12.2 mm long; ovary ovoid or subglobose, 0.7-1 $\times 0.5-0.7 \times$ $0.3-0.7 \mathrm{~mm}$, abruptly narrowed into the style, with a disk-like thickening uniting the carpels at the base, about $0.25-0.4$ of the length, $0.2-0.4 \mathrm{~mm}$ high, of two separate carpels; style $5.5-10.7 \mathrm{~mm}$ long; pistil head oblong to ellipsoid, $0.3-\mathrm{I} \times 0.15-$ 0.3 mm . Ovules two in each carpel. Fruits orange, smooth, of two separate mericarps; mericarps obovoid or ellipsoid to obliquely ellipsoid in immature fruits, II-18 $\times 7$-1 $2 \times 8-9 \mathrm{~mm}$, rounded at the apex; 2 -seeded, wall about I-2 mm. Seeds ellipsoid, oblong or subglobose, $9-$ I I $\times 5-7 \times 3-4 \mathrm{~mm}$. Embryo 5-7.8 mm long, cotyledons elliptic to ovate, $1.75-2 \times$ as long as wide $2-4 \times$ I-2 mm, obtuse or rounded

Figure 36. Pleiocarpa bicarpellata. 1, habit ($\times 2 / 3$); 2, branch $(\times 2 / 3)$; 3, sepal $(\times 20)$; 4, corolla $(\times 4)$; 5, opened corolla ($\times 4$); 6, calyx with ovary ($\times 6$); 7, pistil ($\times 6$). 1-2 from Zenker II 242; 3-7 from Zenker 1660.

Map 14. Pleiocarpa bicarpellata.
at the apex, rounded at the base; radicle $0.87-1.5 \times$ as long as cotyledons, $3-4 \times 0.5-$ 0.8 mm .

Distribution. Cameroun, Gabon, Zaire, Angola and Kenya.
Ecology. Low bush, secondary or primary forest, sometimes in stream ravine. Alt. 300-1200 m. Flowering and fruiting all the year round.

Geographical selection of the approximately 70 specimens examined:
Cameroun. Sud-Ouest: Mamfe Rd., around Ekona Mombo, Etuge \& D. W. Thomas 419 (MO, WAG); Barombi Lake, Brenan \& Jones 9458 (FHO, K, P); Barombi Lake, Preuss 44 (K); Kumba, Staudt 573 (G, K, P, S, US, WU, Z), 683 (EA, G, K, P, Z), 791 (FHO); Bambuko F. R, Keay FHI 37457 (K, P); Cameroun Mt., Mann 1213 (K, P, type); NE slope of MT. Etinde, Wieringa 2070 (WAG). Littoral: near Douala, Fleury in Chevalier 33348 (P); Edea Reserve, near L. Tissongo, D. W. Thomas 294 (K). Centre-Sud: N of Mt. Elephant (Rouillon), Bos 6502 (BR, K, M, P, WAG); Calvary Mt., Bidou I, Bos 6215 (BR, C, K, P, UPS, WAG); Bipindi, Zenker 1658 (B, BP, BR, E, G, K, L, M, NY, S, W, WU, WAG, Z), 1660 (B, BP, BR, E, G, HBG, K, L, M, P, MO, S, W, WAG, WU, Z), 1728 (B, BP, BR, E, G, HBG, K, L, M, NY, S, W, WAG, WU, Z), 2501 B, BP, BR, E, G, HBG, K, L, M, MO, P, W, WAG, WU, Z), 2858 (B, BR, BP, E, G, HBG, K, L, M, P, S, W, WAG, WU, Z), 2893 (BR, BP, E, G, HBG, K, L, M, P, S, WAG, WU, Z), 4231 (BP, BR, E, G, HBG, K, L, M, MO, P, S, W, Z), 4470 (B, BR, E, G, K, L, M, P, S, W, Z), 4635 (B, BP, BR, G, HBG, K, L, M, MO, P, S, W, Z), 4882 (BR, G, HBG, K, L, M, MO, P, S, W, Z); 4889 (B, BP, BR, G, HBG, K, L, M, MO, P, S, W, Z), II 117 (B, C, NY, US, U, WAG), II 242 (B, BR, C, FT, G, GH, MO, NY, P, US, WAG); Efoulen, Bates 368 (G, K, Z); Lolodorf, Staudt 93 (A, E, G, K, P, W, Z); Ndikinimeki, Asonganyi 414 (P, WAG); 25 km ESE of Ebolowa, Letouzey 9850 A (P); near Oveng, Breteler 2650 (K, P, WAG); c. 5 km S of M'balmayo, De Wilde \& De Wilde-Duyfjes 1798 B (BR, P, WAG); Ototomo Forest Reserve, Farron 726I (P); Yaoundé, Zenker \& Staudt 6II (B, M, US, WU), 753 (K); Meyang Hill, Dang 614 (P).

Gabon. Estuaire: Monts de Cristal, Hallé \& Villiers 5080 (P). Ogooué-Ivindo: near Ekobakoba, Reitsma 2717 (WAG), 3051 (NY, WAG); io km SSW of Makokou, Leeuwenberg 1 145ı (WAG); Booué

Notes. When Stapf (1894) described P. bicarpellata, he distinguished it on the basis of its opposite leaves and bicarpellary ovary with 2 ovules each. All the specimens analyzed from Cameroun, Gabon and Taita hills maintain these characteristics. In Equatorial Guinea, the only specimen analyzed has 3 carpels and 2 ovules (Tessmann 549). As one approaches Congo, specimens that look quite similar to P. bicarpellata are found that have 5 carpels instead of the usual 2 (Sita 2977, Bouquet 514). Unfortunately, none of these specimens have flowers, therefore making it difficult to place them at the moment. In Zaire a few specimens from Kaniama maintain the original P. bicarpellata characteristics, but have comparatively much smaller flowers (Herman 2248, 2179 and Gathy 1908). The rest of the specimens from Zaire have an extremely variable number of carpels (3-5), even in the same inflorescence, one or two ovules per carpel and very short corolla lobes (less than 3.4 mm), (Toussaint 241 1, Donis 1967, Germain 7622, Ed Luja, June 1910, Vanderyst 10270, 10271, and 15900). I, however hesitate to place these specimens under bicarpellata until thorough fieldwork has been carried out. In my opinion the genus Pleiocarpa has proved to be extremely variable as a whole, and one cannot merely unravel this mystery based on morphology alone. Other disciplines need to be employed to study the various populations to better understand the variation.

2.7.2 Pleiocarpa brevistyla Omino sp. nov.

Frutex foliis oppositis petiolatis lamina coriacea elliptica apice acuminata. Inflorescentia plerumque axillaris rariter terminalis vel ramiflora. Flores odorantes. Sepala pallide viridia ovata apice obtusa usque ad rotundata. Corolla alba tubo lobis ovatis longiore. Stamina inclusa circiter medio tubi corollae inserta antheris ovatis apice obtusis basi cordatis. Pistillum ovario carpellis quinque separatis. Fructus mericarpis quinque separitis. - Type: Gabon, Ogooué-Maritime, 5 km East of Gamba Airport, Wieringa 1267 (holotype WAG, photo. WAG).

Fig. 37, p. 140; map 15, p. 141

Shrub I-I. 2 m high. Trunk very slender. Branchlets drying greyish-black. Leaves opposite; petiole $5-7 \mathrm{~mm}$ long; blade leathery when fresh, broadly to narrowly elliptic, $2.2-4.2 \times$ as long as wide, $4.5-16.8 \times 2.1-5.9 \mathrm{~cm}$, acuminate at the apex, acumen $7-17 \times 2.3 \mathrm{~mm}$, acute to cuneate at the base or decurrent into the petiole; midrib slightly prominent beneath in dried leaves; secondary veins more or less straight and slightly curved towards the margin, in 12-I 8 pairs, forming a submarginal vein and an angle of $60-70^{\circ}$ with the costa, 4-10 mm apart at the approximate centre of the leaf. Inflorescence predominantly axillary, rarely terminal or ramiflorous, I(-2) flowered, sessile. Flowers fragrant. Sepals pale greenish yellow,

Figure 37. Pleiocarpa brevistyla. 1, habit ($\times 2 / 3$); 2, sepal ($\times 12$); 3, opened corolla and above it pistil with part of calyx ($\times 4$); 4, pistil with opened ovary and part of calyx (X_{12}); 5, branchlet with young fruits (x 2/3). I from Wieringa 1267; 2-4 from Van der Burgt 48; 5 from Wieringa \& Haegens 2502.

Map 15. Pleiocarpa brevistyla.
erect, ovate, $0.8-1.2 \times$ as long as wide, $1.4-1.5 \mathrm{~mm}$, obtuse to rounded at the apex. Corolla white, with a belt of pubescence $1.5-2 \mathrm{~mm}$ wide inside just below the insertion of the stamens; tube 5.8-6 \times as long as the calyx, 1.9-2.2 \times as long as lobes, 8.510.5 mm long, almost cylindrical, 1.9 mm wide above the base, narrowed below the insertion of the stamens to 1.5 mm wide, again widened around the anthers to I. 9 mm ; lobes ovate, $0.5 \times$ as long as the tube, $1.6-\mathrm{I} .8 \times$ as long as wide, $4.5-4.8 \mathrm{~mm}$ long, obtuse at the apex, recurved. Stamens with the apex $3-3.2 \mathrm{~mm}$ below the mouth of the corolla tube, inserted $0.5-0.52$ of the length of the corolla tube at $4.3-5.5 \mathrm{~mm}$ from the base; filaments short, filiform, 0.5 mm long; anthers ovate, 3.7-4.8 \times as long as wide, I.I-I. $2 \times 0.25-0.3 \mathrm{~mm}$, obtuse at the apex, cordate at the base, Pistil $2.5-3 \mathrm{~mm}$ long; ovary broadly subglobose, $0.8-\mathrm{I} .2 \times \mathrm{I}-\mathrm{I} .5 \times 0.6-\mathrm{I} .3 \mathrm{~mm}$, abruptly narrowed into the style, of 5 separate carpels; style $1.2-1.5 \mathrm{~mm}$ long; pistil head narrowly ovoid to ellipsoid, $0.5-0.6 \times 0.2-0.3 \mathrm{~mm}$. Ovules ($1-$) 2 in each carpel. Fruits of five separate mericarps, mericarps immature, rounded, triangular from above, c. $9 \times 6 \mathrm{~mm}$.

Distribution. Gabon.

Ecology. Dense forest. Alt. 30 m . Flowering between July and March, fruiting in March to May.

Specimens examined:
Gabon. Ogooué-Maritime: Gamba, J. De Wilde 11375 (WAG); Gamba near Namba Lake, Van der Burgt 48 (WAG); 5 km E of Gamba Airpon, Wieringa 1267 (WAG); Wieringa \& Haegens 2502 (WAG).

Notes. The leaves of Pleiocarpa brevistyla resemble those of P. mutica, the two species can be distinguished as follows:

Stamens with apex 3-3.2 mm below the mouth of the corolla tube, inserted 0.5-0.52 of the length of the corolla tube at 4.3-5.5 mm from the base; style 1.2-I.5 mm long . P. brevistyla

Stamens with apex 0.8-1.3 mm below the mouth of the corolla tube, inserted 0.730.92 of the length of the corolla tube at $8-18 \mathrm{~mm}$ from the base; style $7.9-16 \mathrm{~mm}$ long
P. mutica

2.7.3 Pleiocarpa mutica Benth.

in Hooker. Ic. Pl. 12: 71, Pl. II81 (1876); K. Schumann in Engler \& Prantl, Nat. Pflanzenf. 4, 2: 135, fig. 52, C \& D, p. 134 (1895); Stapf in Fl. Trop. Afr. 4, I: 98 (1902); Pichon in Bol. Soc. Brot. sér. 2, 27: 138, map c p. 121 (1953); Hutchinson \& Dalziel in Fl. W. Trop. Afr. ed. I, 2: 38 (193I); H. Huber in Fl. W. Trop. Afr. ed. 2, 2: 63, fig. 214, (1963). - Type: Nigeria, Cross River State, Old Calabar River, Mann 2277 (holotype K).

Fig. 38, p. 143; map 16, p. 144
Homotypic synonym:
Hunteria pleiocarpa Hall. f. in Jahrb. Hamb. Wiss. Anst. 17, Beih. 3: 193 (1899), partly as for the type.

Heterotypic synonyms:
Pleiocarpa salcifolia Stapf op. cit. 99 (1902); Hutchinson \& Dalziel op. cit. 38 (193I). - Type: Sierra Leone, sin. loc., Barter 8 May I85I, (holotype K).
P. tricarpellata Stapf in Kew Bull. 1915: 47 (1915); Hutchinson \& Dalziel op. cit. 38 (1938). - Type: Sierra Leone, Falaba, Alymer 35 (holotype K).

Shrub or small tree $0.5-7.6 \mathrm{~m}$ high, rarely a climbing shrub, 4-9 m high. Trunk i.55 cm in diameter; bark smooth, dark brown to pale grey; wood pale brown to yellow, hard, very close-grained. Branches dark green with brownish patches, brown to dark brown, or dark grey, lenticellate; branchlets brownish, pale to medium green. Leaves opposite, sometimes ternate (in plants from Liberia and Ivory Coast); petiole, 5-13 mm long; blade papery to thinly leathery when fresh, rather stiff, broadly to narrowly elliptic, oblong to ovate $1.6-5 \times$ as long as wide, $5.1-19.5(-29.5) \times 1.9-8.1(-$ II.4) cm , acuminate at the apex, acumen acute, $4-25 \times 2-5 \mathrm{~mm}$, acute, obtuse or cuneate at the base and decurrent into the petiole, smooth and shiny on both sides, drying reddish beneath; midrib slightly channelled above, prominent beneath; secondary veins in 9-12 pairs, forming a submarginal vein and an angle of $50-70^{\circ}$ with the midrib, $8-20(-30) \mathrm{mm}$ apart at the centre of the leaf; tertiary veins obscure beneath. Inflorescence an axillary cluster or ramiflorous, rarely terminal, 1.5-2.5 $\times 2$ 2-3 cm , about 10 (-35)-flowered; sessile. Pedicels brown, $0.5-2 \mathrm{~mm}$. Bracts very small, $0.8 \times 0.5 \mathrm{~mm}$. Flowers very fragrant. Sepals pale to dark green, free or connate at the base up to 0.2-0.4 mm of their length, erect, membranaceous for about 0.30.4 mm of their edge, ovate or elliptic, $0.7-2.6 \times$ as long as wide, $1.3-2(-2.4) \times 0.7-$ 1.9 mm , obtuse at the apex. Corolla pure white, $14-26.6 \mathrm{~mm}$ long in mature bud and

Figure 38. Pleiocarpa mutica. 1, habit ($\times 2 / 3$); 2, flower ($\times 3.4$); 3, opened corolla $(\times 4)$; 4, opened calyx with pistil (6); 5 , infructescence ($\times 2 / 3$); 7, longitudinal section of seed in fruit ($\times 1$); 8, pulp ($\times 1$); 9, seed (X_{1}); 10, embryo (\times_{2}). I from J. J. de Wilde 7548; 2-4 from Leeuwenberg 12219; 5-10 from De Koning 5790.

Map 16. Pleiocarpa mutica.
forming a comparatively large oblong head 0.29-0.37 of the bud length, $5-\mathrm{II} \times 2.5-$ 3.5 mm , with a rounded apex, with a belt of pubescence $2.5-6 \mathrm{~mm}$ wide inside just below the insertion of stamens, longest hairs just below the anthers becoming shorter and scarce further down and sometimes with a few hairs around the stamens up to the mouth; tube 5.3-13 (-18.4) \times as long as the calyx, $1.4-2.4(-2.8) \times$ as long as the lobes, $10.8-22 \mathrm{~mm}$ long, almost cylindrical, $\mathrm{I}-3 \mathrm{~mm}$ wide above the base, narrowed below the insertion of the stamens to $0.4-1.8 \mathrm{~mm}$ wide, again widened around the anthers to 0.9-1.8(-2.5) mm wide; lobes ovate, elliptic to narrowly oblong, 0.4-0.7× as long as the tube, $1.4-5.2 \times$ as long as wide, $(5-) 6-13 \times 2.1-4.3 \mathrm{~mm}$, rounded or obtuse at the apex, entire, spreading and recurved later. Stamens with apex 0.81.3 mm below mouth of the corolla tube inserted $0.73-0.92$ of the length of the corolla tube, at $8-18 \mathrm{~mm}$ from the base; filaments $0.2-0.6 \mathrm{~mm}$ long, glabrous; anthers narrowly ovate to oblong, yellow with red stripes, 2.8-6 \times as long as wide, 1-1.9 \times $0.25-0.6 \mathrm{~mm}$, obtuse at the apex and sterile for 0.2 mm , cordate at the base. Pistil $9.2-18 \mathrm{~mm}$ long; ovary subglobose, $0.7-\mathrm{I} .2 \times 0.6-\mathrm{I} .5 \times 0.5-\mathrm{I} \mathrm{mm}$, abruptly narrowed into the style, with a disk-like thickening uniting the carpels at the base, about o.40.5 of the length, $0.3-0.4 \mathrm{~mm}$ high, of 5 separate carpels, (occasionally 3-4 carpels found in the flowers of the same inflorescence or branch); style white, $7.9-16 \mathrm{~mm}$ long; pistil head white, oblong to ellipsoid, $0.6-\mathrm{I} \times 0.2-0.4 \mathrm{~mm}$ rarely with a filiform stigmoid apex up to 0.3 mm long. Ovule one in each carpel. Fruits yellow to bright orange, smooth, dull, slightly wrinkled to finely lenticellate, 5 (rarely 3-4) separate mericarps; mericarps obovoid, subglobose, ovoid, or ellipsoid, sometimes somewhat curved and with a pointed apex, often in clusters, $13.5-20 \times 8.5-20 \times 7-11.6 \mathrm{~mm}$, rounded at the apex, always i-seeded; wall about $2-3 \mathrm{~mm}$ thick. Seeds subglobose to oblong, $7.5-12 \times 4.5-9.5 \times 4-8 \mathrm{~mm}$. Embryo $7 . \mathrm{I}-9 \mathrm{~mm}$ long; cotyledons ovate to
elliptic, thin and leafy, $1.2-2.3 \times$ as long as wide, $3-4 \times$ I.5-3 mm, obtuse at the apex and rounded at the base; radicle 0.9-2.3 \times as long as the cotyledons, $3.4-5 \times 0.6-0.8$ mm.

Distribution. Sierra Leone, Liberia, Ivory Coast, Ghana, Nigeria, Cameroun and Gabon.

Ecology. Dense primary or secondary forest in swampy areas rich in epiphytes or along the river banks on sandy soil or limestone out-crops. Alt. 0-600 m. Flowering and fruiting all the year round in Ivory Coast, flowering in January to April and fruiting between July to September in the other countries.

Uses. The wood is yellow, hard, heavy, close-grained and tough (Vigne 269, FHO, K, P, Ghana; Burt-Davy 1937; Irvine 1969); used to make combs (Deighton 3270, K, P, 1936, Sierra Leone); for combs and planes (Vigne 269, FHO, K, P, Ghana); for sundry small objects (Aubreville 1959); used in Ivory Coast for canoe paddles and pestles (Bouquet \& Debray 1974). An ornamental plant with clusters of narrow, tubular, white sweet-scented flowers known as the stove plant in Europe (Dalziel 1937; Irvine 1961). In Ivory Coast the plant is considered a general panacea for all ills by the coastal people, the Anyi use a decoction of the grated bark for stomach pains, and a similar preparation is used by the Kyama against oedema of the legs, probably due to kidney malfunction (Dalziel 1937); a decoction of the root bark used against kidney diseases and malaria (Leeuwenberg 12302,WAG, 1981, Ivory Coast); bark ground and rubbed on the body against fever (Deighton 3270, K, P, 1936, Sierra Leone). A number of alkaloids have been reported from the bark and roots (Willaman \& Li 1970).

A selection of the approximately 130 specimens examined:
Sierra Leone. York Peninsula, Morton 23.i1.1963 (K), SL i 268 (WAG); Falaba, Alymer 35 (K, type of P. tricarpellata); near Falama, Deighton 3869 (K), Deighton 3871 (K); Giehun, Marmo 65 (K); Gola Forest, Small 701 (B, K, P); Yonibana, N. W. Thomas 4235 (K); Kambui Forest Reserve, Lane-Poole 333 (K); Mabonto, Deighton 3270 (K, P); Sugar Loaf Mt., Hepper 2539 (K); Near Sugar Loaf, Richards 6.2.1971 (K), Roberty 17318 (G); Gbinti, Deighton 2501 (K); Kafa, Alymer 216 (K); sin. loc. Barter 8.5.1851 (K, type of P. salicifolia).

Liberia. Bonge Range, Voorhoeve 1140 (WAG), Leeuwenberg \& Voorhoeve 4945 (B, BR, HBG, K, MO, P, WAG). Eastern Prov.: Tchien Distr., Baldwin 7013 (K); 16 km NW of Tchien, Jansen 1255 (WAG); Along Dukwai R., Cooper 248 (A, FHO, GH, K, NY, US); Monrovia, Dinklage 2976 (Z); Grand Cape Mt., Baldwin 10814 A (K); Greenville, Baldwin Jr. 1155^{2} (K, MO); Ganta, Harley 317 (K); Road to Tappita, Jansen 2112 (P); Zeah Town, Baldwin 6991 (K); Firestone Plantation, Linder 2.8.I 926 (A).

Ivory Coast. Mont Cope, Chevalier 19722 (P); Yokobo, Leeuwenberg 12302 (WAG); Fort Binger (= Djiroutou), Chevalier 19432 (P); Béréby, Chevalier 20011 (K, P); San Pedro, Thoiré 796 (P); 22 km NE of Monogaga, Geerling \& Bokdam 2377 (BR, MO, WAG); Sassandra, Thijssen 118 (WAG); 60 km N of Sassandra, left bank of Davo River, Leeuwenberg 2835 (BR, FHO, GENT, K, L, MO, NY, P); 50 km NNE of Sassandra, Breteler 61 20 (K, L, P, U, US, WAG, Z); West of Fresco, Breteler 5354 (BR, K, P); Yapo Forest, Bamps 2559 (BR); Banco Forest, De Koning 5790 (WAG); ibid., Oldeman 96ı (B, BR, K, M, WAG); Between Port Bouet and Grand Bassam, J. de Wilde 3204 (A, B, BR, K, NY, P, WAG); Aboisso, Sanvi, Chevalier 17862 (P); Assinie, Chevalier 17869 (P).

Ghana. Westerm: Enchi, Andoh 5639 (BR); Tano Nimri, Enti FH 7544 (K, UPS); Ankasa Game Reserve, Jongkind \& Abbiw 2073 (WAG); Asanwinso, Vigne 269 (FHO, K, P); Axim, Irvine 2173 (E, K,

MO); Asenanyo Forest Reserve, Andoh 4305 (BR, K); Ndumfri R. Forest Reserve, Enti \& Hall GC 38392 (FHO, K); Princes Town, Akpabla 792 (K); Neung Forest Reserve, Enti 2296A (MO); Daboase, Hall \& Abbiw GC 45117 (K). Central: Eguafo, Hall 2944 (K). Eastern: Atewa Range Forest Reserve, Vigne 4345 (K).

Nigeria. Cross River: Odukpani, Ariwaodo in FHI 88715 (MO); Abangara-Ndiakoro Rd., Ujor FHI 30169 (K); Old Calabar R., Mann 2277 (K, type); Stubbs Creek Forest Reserve, Van Meer 1178 (WAG); Ekinta R. Forest Reserve, Van Meer 1491 (WAG); Oban Group Forest Reserve, Van Meer 1266 (WAG); Oban, Talbot 1565 (K), 1654 (K), 191 1-1912 (K).

Cameroun. Sud-Ouest: Korup National Park, D. W. Thomas 4575 (P, MO, WAG); KondotitiMundemba Rd., Gentry \& D. W. Thomas 5268I (MO, WAG); Near Ekondotiti, Lowe 3807 (K); 4 km W. of Onge River, Watts 760 (K); Idenao, Tchouto 740 (K); Weke, Kumba, Smith $75 / 36$ (FHO). Centre-Sud: Lolodorf, Staudt 322 (G, K, P, S); 5 km NE of Lolodorf, Letouzey 12784 (P, YA); Near Meyo, Ntem, Koufani 107 (P, WAG), Letouzey 15209 (P); Ebolowa, De Wilde \& de Wilde-Duyfjes 1964 (BR, K, P, WAG); Station du Cacaoyer de N'koemvone, J. de Wilde 7548 (BR, P, MO, WAG); 10 km SW of Ambam, De Wilde \& De Wilde-Duyfjes 2032 (WAG); 25 km ESE of Ebolwa, Letouzey 9850 B (P).

Gabon. Nyanga: Gamba, Breteler \& Van Raalte 5635 (BR,WAG). Ogooué-Lolo: near Lastoursville, Breteler 6558 (BR, MO, WAG); 14 km NE of Bambidie, Breteler et al., 13338 (WAG).

Cultivated. Netherlands: Wageningen Bot. Garden, Leeuwenberg 14054 (WAG), Van Setten 415 (WAG), seedling of De Koning 576; Ivory Coast: Adiopodoume, Breteler 6207 (WAG); Université d'Abidjan, Fredoux 589 (P). Singapore: Botanic Garden, Leeuwenberg 13340 (WAG).

Notes. The only constant character in P. mutica is the number of ovules which is always one per carpel in all the specimens examined, even when the carpels vary from 3-5. The leaves, are opposite and sometimes ternate especially in specimens from Ivory Coast.

2.7.4 Pleiocarpa pyenantha (K. Schum.) Stapf

in Fl. Trop. Afr. 4, 1: 99 (1902); Eggeling \& Dale in Indig. Trees Uganda Prot. ed. 2: 29 (1951); Pichon in Bol. Soc. Brot. sér. 2, 27: 128, t. 4 fig. I (1953); F. White in F. F.N.R. 350 (1962); H.Huber in Fl. Trop. Afr. ed. 2, 2: 63 (1963); R.B.Drummond in Kirkia 10: 269 (1975); Kupicha in Fl. Zamb. 7, 2: 432, tab.99, p. 433 (1985). Type: Uganda, Sesse Islands, Stuhlmann 1216, (holotype B \dagger, isotype K).

$$
\text { Fig. 39, p. 147; map 17, p. } 148
$$

Basionym:
Hunteria pycnantha K. Schum. in Engler, Bot. Jahrb. 23: 222 (1896); Hall. f. in Jahrb. Hamb. Wiss. Anst. 17, Beih. 3: 191 (1899).

Heterotypic synonyms:
Pleiocarpa tubicina Stapf in Kew Bull. 1898: 304 (1898); De Wildeman \& Durand in Ann. Mus. Congo Bot. Ser. 2 vol. I, I: 37 (1899) \& I, 2: 150 (1901). P. pycnantha var. tubicina (Stapf) Pichon op. cit. 132, map C, p. 121.; H. Huber 1.c. - Type: Zaire, Lower Congo R., Dewèvre 945 (holotype BR; isotype K).

Figure 39. Pleiocarpa pycnantha. 1, habit $(\times 2 / 3)$; 2, flower bud $(\times 4) ; 3$, flower $(\times 4)$; 4, flower above $(x$ 4); 5, sepal inside ($\times 8$); 6, opened corolla ($\times 6$); 7, pistil ($\times 8$). I from J. Louis $12898 ; 2-7$ from Breteler \& De Wilde 636/78.

Map 17. Pleiocarpa pycnantha.
P. welwitschii Stapf ex Hiern in Cat. Welw. Afr. Pl. 1, 3: 665 (1898); Stapf in op. cit. 100. - Type: Angola, Golongo Alto, left bank of R. Cuango, Welwitsch 598 I (holotype K; isotypes B, BM, C, G, P).
Hunteria breviloba Hall. f. in Jahrb. Hamb. Wiss. Anst. 17, Beih 3: 189 (1899); Schlechter in Westafr. Kautschuk. Exped. 306 (1900). Pleiocarpa breviloba (Hall. f.) Stapf op. cit I02. - Type: Congo, near Sanga R., between Woso and Bonga, Schlechter 12706 (holotype B †).
Pleiocarpa micrantha Stapf in op. cit. 100; Hutchinson \& Dalziel in Fl W. Trop. Afr. ed. I, 2: 38 (1931); Irvine in Woody pl. Ghana, 630 (1961). - Type: Ghana, base of Aburi hills, Johnson 623 (holotype K).
P. flavescens Stapf in op. cit. IOI; Hutchinson \& Dalziel l.c. - Type: Ghana, Aburi hills, Johnson 616 (lectotype K, designated here).
P. microcarpa Stapf in op. cit. 102. - Type: Zaire, Haute-Zaire Niamniamland, Mbrowole R., Schweinfurth 3073 (holotype K).
P. bagshawei S. Moore, in J. Bot. 14: 49 (1907). - Type: Uganda, U2, Toro Distr., Durro (= Dura) Forest, Bagshawe I086 (holotype BM).
P. swynnertonii S. Moore, in J.Linn. Soc. Bot. 40: I38 (19I I). - Type: Zimbabwe, Chirinda Forest, Swynnerton 14 (lectotype BM, designated by Kupicha 1985; isolectotypes K, SRGH, US, Z).

Shrub or small tree $1.5-20(-30) \mathrm{m}$ high, rarely lianescent. Trunk 2-50 cm in diameter; bark 3-6 mm thick, smooth or slightly rough, fissured to reticulate with irregular longitudinal and straight horizontal cracks $1-2 \mathrm{~cm}$ deep, pale to dark grey, pale to reddish-brown, yellowish to brown on section, sometimes lenticellate, more or less flaky and peeling off; inner bark creamy-white to pale brown with dark yellow striations; wood very hard and durable, smooth, dark brown. Branchlets terete, very pale to dark brown in dried specimens, sometimes lenticellate, often with bark peeling off. Leaves opposite and in whorls of 3-5, always whorled in one node of each branchlet of a plant; petiole $5-20 \mathrm{~mm}$ long; blade coriaceous when fresh, papery when dried, narrowly elliptic to oblong, rarely obovate, $1.9-5.4 \times$ as long as wide, $4-22.3 \times$ I.I- 8 cm , acute, obtuse to acuminate at the apex, acumen $4-12 \times 2.5 \mathrm{~mm}$, acute or obtuse to rounded, or cuneate at the base and decurrent into the petiole, sometimes undulate, glossy, with $15-25$ pairs of secondary veins, forming a neat submarginal vein and angle of $50-80^{\circ}$ with the midrib, tertiary venation inconspicuous. Inflorescence axillary, rarely also terminal, fasciculate, sometimes ramiflorous, I-2 \times I-3 $\mathrm{cm}, \mathrm{IO}-30(-40)$-flowered; sessile or with a peduncle I- 2 mm long. Pedicels I-3 mm long. Bracts very small, scale-like. Flowers very fragrant to malodorous. Sepals green, free or connate at the base for up to 0.2 of their length, erect, often spreading in dried flowers, membranaceous for about $0.2-0.4 \mathrm{~mm}$ of their edge, broadly ovate or ovate to elliptic, 0.9-2.5 \times as long as wide, $1.1-2.5(-3) \times 0.6-2 \mathrm{~mm}$, acute to rounded at the apex. Corolla pure white to orange-yellow, $8-12.8(-15) \mathrm{mm}$ long in the mature bud and forming a comparatively narrow ovoid head 0.14-0.4 of the bud length, 2-4.5 $\times 0.5-2.5 \mathrm{~mm}$, with a rounded apex, with a belt of pubescence I-3 mm wide inside just below the insertion of stamens, hairs longest just below the stamens; tube greenish-white, 3.2-7.5 (-8.8) \times as long as the calyx, $1.7-4.8(-5.4) \times$ as long as the lobes, $6.2-10(-10.5) \mathrm{mm}$ long, almost cylindrical, $0.6-2(-3) \mathrm{mm}$ wide above the base, narrowed below the insertion of the stamens to $0.6-\mathrm{I} .5 \mathrm{~mm}$ wide, again widened around the anthers to $0.7-2 \mathrm{~mm}$ wide; lobes ovate or elliptic to suborbicular, $0.2-0.5(-0.6) \times$ as long as the tube, $0.9-2.1(-2.5) \times$ as long as wide, $1.3-$ $4.5(-4.8) \times 0.7-3.2(-3.5) \mathrm{mm}$, rounded to acute at the apex, entire, spreading and recurved later and with an upcurved apex. Stamens with apex $0.2-1 \mathrm{~mm}$ below the mouth of the corolla tube, rarely visible at the mouth, inserted 0.64-0.87 (-0.97) of the length of the corolla tube, at 4.6-8 (-9.5) mm from the base; filaments white, 0.30.7 mm long; anthers yellow, ovate, $1.75-5.3 \times$ as long as wide, $0.6-1.3 \times 0.15-$ 0.5 mm , acuminate to obtuse at the apex, cordate at the base. Pistil glabrous, 4.68.6 (-9.7) mm long, ovary ovoid or subglobose, $0.5-1.4(-1.7) \times 0.3-1.0(-1.2) \times 0.2-$ $0.8(-\mathrm{I}) \mathrm{mm}$, abruptly narrowed into the style, with a disk-like thickening uniting the carpels at the base, about $0.25-0.4$ of the length, $0.2-0.5 \mathrm{~mm}$ high, of two separate carpels; style 3.8-7.2 (-8) mm long; pistil head ellipsoid to ovoid 0.2-0.8 (-I .0) \times 0.20.5 mm . Ovules two in each carpel, (4 in Troupin 4024, WAG and Goldsmith 38/65, SRGH). Fruits yellow to orange; mericarps smooth, sometimes rugose, subglobose or pyriform to ellipsoid, sometimes stipitate, 13-23 (-30) $\times 6.5-24 \times 5-15 \mathrm{~mm}$, acuminate to rounded at the apex, 2 seeded, wall about $2-5 \mathrm{~mm}$ thick, sometimes fibrous. Seeds ellipsoid to oblong, 6.5-13.5 $\times 4.5-9.5 \times 2-4 \mathrm{~mm}$. Embryo $4.7-9 \mathrm{~mm}$ long, cotyledons ovate to elliptic, thin and leafy, I.I-3.7 \times as long as wide, $2-4 \times 0.8$ -
2.0 mm , rounded at the apex and at the base; radicle, $0.4-\mathrm{I} .9 \times$ as long as the cotyledons, $1.4-5 \times 0.4-0.9 \mathrm{~mm}$.

Distribution. Tropical Africa from Senegal in the West to Kenya in the East and Angola and Mozambique in the South.

Ecology. Montane forest, secondary forest or rain forest understorey rich in lianas, mosses and epiphytes, or gallery forest. Alt. 0-2300 m. Flowering and fruiting all the year round.

Uses. The wood is very hard (Dalziel 1937) and is used for local construction (Flamigny 6123, BR); for making combs (Irvine 1961). Roots ground, mixed with guinea grains and palm wine and used to promote freedom of bowels, or used in palm wine to make it strong (Irvine 1759, E, K, 1932, Ghana); leaves are bitter (Irvine 1961).

A selection of the approximately 200 specimens examined:
Senegal. Sine Saloum: Delta du Saloum National Park, Lykke 356 (WAG). Casamance: Djibelor, Van den Berghen 566 I (BR); Oussouye Adam 13686 (MO); Boukitimgo, Berhaut 6922 (BR, M, P).

Guinea Bissau. Canchungo, Emapaca, Espírito Santo 1941 (BR, MO, P, WAG). Bolama, Entacha, Espírito Santo 1919 (MO, WAG); Fulacunda, Espirito Santo 2042 (WAG).

Ghana. Central:Winneba junction, Hall \& Abbiw 47096 (BR, MO,WAG); Awutu-Winneba Rd., Enti, SP 393 (F, MO, NY). Eastern: Akropong, Akwapim, Irvine 1759 (E); 1 km S of Aburi, Leeuwenberg 11042 (WAG).

Togo. near Lome, Warnecke 481 (EA, P).
Benin. Ouidah, Le Testu 70 (P); near Sakété, Chevalier 22873 (P).
Nigeria. Oyo: Ilesha, Patel 5 I 694 (WAG); Igbajo, Latilo FHI 31754 (WAG); Iressa, Latilo FHI 58433 (EA). Ondo: Akure-Owo Rd., Gbile et al. FHI 20580 (P,WAG); Iyin, Ekiti, Olurunfemi \& Fagbemi FHI 70757 (WAG). Kwara: Kabba, Latilo FHI 60556 (MO). Anambra: Abakaliki-Obubra Rd., Okafor \& Emwiogbon FHI 66040 (WAG). Benue: Ankpa, Okafor FHI 36886 (FHO). Cross River: Ogoja, Binuyo FHI 41240 (BR,WAG).

Cameroun. Sud-Ouest: Mbilishe, D. W. Thomas 7432 (MO). Ouest: Bangwa, De Wilde \& De WildeDuyfjes 2420 (P, WAG). Centre-Sud: Mt. Eloumdren, Lejoly 88/601 (BR); Lobo R., Letouzey 4589 (P). Est: 30 km N of Bertoua, Breteler 2203 (BR, P, WAG); 53 km SE of Ngoila, Letouzey 11963 (BR, K, P, WAG); Moloundou, Mildbraed 4588 (HBG); Near Ndongo, Letouzey 12087 (BR, G, HBG, P, WAG); 65 km NNE of Moloundou, Letouzey \& Villiers 10492 (K, P).

Central African Republic. Nana-Mambéré: Along Ndongue Forest, Haxaire 1345 (WAG). Lobaye: Ebure Forest, Tisserant 24 II (BR, K, P); Torogurade, Tisserant 2412 (K, P). Ombella-Mpoko: Bangui, Chevalier 10930 (P). Kemo-Gribingui: near Sibut, Chevalier 10793 (P). Ouaka: Kudu R., near Moroubas, Tisserant 1461 (P). Haute-Kotto: Yalinga, Le Testu 4524 B (P, US), 4566 (BR, P).

Gabon. Ogooué-Ivindo: Belinga, Hallé 3773 (P). Woleu-Ntem: Oyem, Le Testu 946i (EA, MO, P); Babiel North, Breteler \& De Wilde 636/78 (WAG).

Congo. Pool: Kaka Forest, Koechlin 5065 (P). Plateaux: Ngo Forest, Sita 3075 (P). Cuvette: Sangha R., Pobéguin 157 (P); Kassa, Chevalier 5084 (P). Likouala: Ibenga Forest, Sita 3797 (BR).

Zaire. Bas-Zaire: Matadi, Dacremont 329 (BR, EA, MO, P, UPS, WAG); Mbuami, Dubois 63 (BR, EA, K, WAG); between Dembo and Krango, Butaye Oct 1900 (BR); Nzuma, Nsimundele 937 (BR); Kinshasha: Maluku, Breyne 790 (BR), 2318 (BR). Bandundu: Bokoro, Jans 4.4.1948 (BR); Buna, Flamigny 6123 (BR); Kamtsha R., Vanderyst 11305 (BR), Kikwit, Renier 24.5.1944 (BR); Ipamu, Vanderyst 9314 (BR), 10432 (BR); Libue, Luja 292 (BR). Equateur: Wangata, Lebrun 915 (BR, C, EA, MO, P, WAG); Ikenge, Huyghe May 1907 (BR); Ingende, Evrard 6i 19 (BR); Djoa, Evrard 4082 (BR, K); Makanza, De Giorgi 1339 (BR, G, US); Bomputu, Ghesquière 2782 (B, BR, K, P); between Karawa and Businga, Lebrun 1950 (BR, WAG); Bobutu, Evrad 48I (BR); Bodangabo, Evrard 327 (BR); Businga,

Lebrun 1987 (BR, MO, WAG); Likimi, Malchair 107 (BR); Molegbue, Gutzwiller 58 I (BR, MO, WAG); Lisala, Leontovitch 228 (BR, MO); Yambata, De Giorgi 1737 (BR); Dundusana, Reygaert 125 (BR); Ubangi, Lebrun 2167 (BR, EA, MO, WAG); Ikela, Hulstaert 1306 (BR); Bokungu, Jespersen 86 (BR). Haut-Zaire: Yobahonde, Germain 8150 (BR, K, M, P); Barumbu, Laurent 1376 (BR); Mobwasa, Reygaert 1326 (BR); Kulu, Van den Brande 380 (BR); Buta, Lebrun 2479 (BR, MO, P, WAG); Yangambi, Louis 4275 (BR, C, K, NY), 12898 (BR, C); Isangi, Louis 6340 (BR, B, C, EA, NY, US); Kisangani, Lejoly 1933 (BR); Kisangani, Lisowski 47865 (BR); Wanie-Rukula, Lisowski 17126 (BR, K), 43425 (BR, K); near Bangoka, Lisowski 45508 (BR, K, WAG), 455 II (BR, K); Kongolo Island, Mosango 539 (BR); Kabondo. Mosango 43 (BR); Zobia Forest, Seret 893 (BR); Tukpwo, Gérard 2746 (BR, WAG), 3732 (BR); Batite, Gérard 5542 (BR,WAG); near Panga, Bequaert 623 (BR); Bafwaboli, Claessens 258 (BR); Doruma, De Graer 237 (BR); Nala, Boone II (BR); Mabwasa, Hart 508 (BR, MO); 4 km SSW of Epulu, Gereau 5385 (WAG); Penghe, Bequaert 2298 (BR), 2229 (BR, K); Mniamnian, Mbrowole, Schweinfurth 3073 (K, type of P. macrocarpa); Gombari, Seret 482 (BR); Garamba National Park, Troupin 7 (BR, EA, K, P, WAG), 547 (BR,WAG); Kurukwata, Gérard 3580 (BR, WAG); Mokatji, Van der Ben 1433 (BR, K, M); Mahagi, Meyers 297 (BR, C, K, M); Lekwa, Lebrun 9898 (BR, MO, P, WAG); Djugu Forest, Bamps 26ı (BR, K); Djugu Reserve, Meyers 195 (BR, C, EA, MO, WAG); Kawa Forest, Van der Ben 1262 (BR, K, M). Kivu: Rumangabo, Germain 3796 (BR, EA, MO,WAG); Kahe, Gutzwiller 1983 (BR) \& 1995 (BR); Rutshuru, Deru 344 (BR); Burungu, A. Léonard 5230 (BR, EA, MO, WAG); Irangi, Troupin 3515 (BR, EA, K, WAG); Kilongo, Gutzwiller 1117 (BR, MO, WAG); Kavumu-Walikale Rd., Pierlot 2341 (BR, WAG); Walikale, Lebrun 512 I (BR, MO, P, WAG); Bukavu-Shabunda Rd., Pierlot 2523 (BR, C, EA, MO, WAG); Bukavu-Walikale Rd., Stauffer 1021 (BR, K, UPS, WAG); Mt. Kaluli, Pierlot 2390 ((BR, WAG); Bitale, Pierlot 1045 (BR); Lusheni, A. Léonard 4704 (BR, EA, MO, P, WAG); Kitole, A. Léonard 3948 (BR, EA, MO, WAG); Nyakigunda, A. A. Léonard 387 I (EA, MO, P); Urega, Lebrun 5586 (BR,WAG); near Kindu, Lebrun 6088 (BR, M)); Elundu, Henrad 331 (BR); Maniema, Michelson 133 (BR); Lumuna, Lebrun 5877 (BR, MO, WAG); Kapanga, Michelson 736 (BR, P); Mutambo, A. Léonard 5690 (BR. EA, MO, P, WAG); Kasongo, Dewèvre 945 (BR, K, type of P. tubicina); Kahusi, A. Léonard 3981 (BR, EA, MO, WAG). Kasai-Occidental: Lutshuadi Forest, Deffet Io (BR, P). Kasai-Oriental: between Lodja and Kole, Lebrun 6220 (BR, WAG); Bena-Kabindi, Liben 1835 (BR). Shaba: Monono, Thiebaud 203 (BR); near Kilwesi National Park, De Witte 4198 (BR, EA, WAG); Upemba National Park, De Witte 6942 (BR, WAG); N'zilo near Kolwezi, Schmitz 3704 (BR); near Luambo \& Bunkeya, Devlaux 409 (BR); Lukafu Forest. Schmitz 7334 (BR, MO), Schaijes 3119 (BR); Boa, Malaisse 6763 (BR, WAG); Kafubu Forest, Malaisse 8599 (BR).

Rwanda. Rangiro, Troupin 14693 (BR, EA).
Burundi. Bugarama, Niyongere I/84 (BR); Siguvyaye valley, Lewalle 3990 (BR).
Angola. Cabinda: Sumba, Peco, Gossweiler 729 (K), 8729 (US). Malanje: Golungo-Alto, Welwitsch 598 I (B, BM, BR, C, G, K, MO, P, type of P. welwitschii). Congo: Uige, Gossweiler 1139 (K, P). Lunda: Dundo, Gossweiler 13862 (K), 14051 (B, K, P, US).

Sudan. Source of Yubu R., Hoyle 725 (FHO); Azza Forest, Turner 160 (K).
Uganda. U 2: Kigezi Distr., Kigezi Forest, Forest Dept. EAH 12437 (EA, K). Toro Distr., Mungilo, Bwamba Forest Reserve, Paulo 607 (EA, K); Hima Forest, Osmaston 684 (EA, K); Durro (= Dura) Forest, Bagshawe 1086 (BM, type of P. bagshawei). Ankole Distr., Kalinzu Forest Reserve, Osmaston 2767 (K), Paulo 619 (BR, EA, K); Ruampara, Kikagati near Kagera River (EA, K). Masaka Distr., W of Katera, Katende 1429 (EA); Malabigambo Forest, Drummond \& Hemsley 4546 (K). Mengo Distr., near Budo, Eggeling 517 (BR, EA, K); 16 km on Borbo Road, Chandler 2125 (B, BR, K, P); Kyewaga (= Kyiwaga) Forest, Maitland 606 (K); Sesse Islands, Stuhlmann 1216 (K, type).

Kenya. K4: Meru Distr., Ngaia Forest, Wachiori 41 (EA, K); Meru National Park, Rojwero R., Ament \& Magogo 169 (BR, EA, K). K 7: Kwale Distr., Mrima Hill, Faden \& Faden 77/751 (K, US), Kokwaro 3959 (EA); Shimba Hills Lodge, Mkomba R., Robertson \& Luke 5153 (EA); Shimba Hills, Mwele Mdogo Forest, Omino 32 (EA, WAG). Kilifi Distr., Kaya Ribe, Robertson \& Luke 4830 (EA, K); Arabuko Sokoke Forest, Omino 69 (EA, WAG). Lamu Distr., Witu Forest Reserve, Luke \& Robertson 1405 (EA, K).

Tanzania. T i: Bukoba Distr., Kaige, Gillman 352 (BR, EA, K). T 3: Lushoto Distr., Kwamkoro Forest Reserve, Ruffo \& Mmari 2129 (K); Lushoto/Tanga Distr., Longuza, Ruffo \& Mmari 1873 (K).T 4: Kigoma Distr., Kasakati, Suzuki B 23 (EA); Mpanda Distr., near Selimwenguru below Kungwe Mt., Harley 9587 A (B, BR, EA, K); Kungwe Mt., Harley 9596 (BR, K). T 6: Ulanga Distr., Ifakara, Vikundu

Forest Reserve (= Vikindu), Haerdi 033-1963 (Z). Morogoro Distr., Uluguru Mts. near Ruvu Bridge, Luke 747 (EA); Morogoro, Wallace 475 (EA, FHO, K). T 8: Lindi Distr., Mchinjiri, Rondo Plateau, Semsei 679 (BR, EA, K). Z: 27 km from Chwaka, Faulkner 3022 (BR, P, UPS); Ufufuma, Vaughan 1777 (EA, K); Kizi Kazi Cave, Vaughan 1820 (EA, K); Zanzibar, sin. loc., Sacleux 1457 (P).

Zambia. Chembe Ferry, Angus 218 (BR, FHO, K, MO). Nothern: Brenan \& Greenway 8011 (BR, EA, FHO, K).

Zimbambwe. Melsetter (= Chimanimani), Swynnerton 21 (PRE); Chirinda Forest, Goldsmith 38/65 (BR, COI, K, MO, PRE, SRGH), Swynnerton I4, (BM, K, SRGH, US, Z, type of P. swynnertonii).

Mozambique. Zambezia: Gobene Forest,Torre \& Correia 14541 (COI, LISC), 16199 (LISC), 17015 (LISC). Manica: Serra Macuta, Müller \& Gordon 1784 (LISC, SRGH); Chibabava, Carvalho 1228 (BR). Sofala: Gorongosa National Park, along Urema Rd., Tinley 2718 (K, MO, SRGH); Chiniziua, Gomes \& Sousa 4407 (COI, K, MO, PRE); 25 km from Lacerdonia, Müller \& Pope 1916 (LISC, K, PRE, SRGH); Serracao de Corboso, Torre 5904 (LISC). Gaza: Macia, Balsinas 1453 (LISC, WAG).

Notes. P. pycnantha can easily be distinguished from the other Pleiocarpa species by the presence of at least one node on every branchlet with leaves in whorls of 3-5 and from the ternate P. mutica specimens by the more numerous secondary veins and shorter corolla lobe and tube. The carpels are always 2 except in Lebrun 9898 where 3-carpelled ovules are reported by Pichon (1953). The number of ovules is almost always 2 except in Troupin 4024 WAG, and Goldsmith 38/65, SRGH, where four ovules were found, but the leaves occur in whorls of 3-5. The habit and size of the corolla tube and lobes is greatly affected by the habitat. Plants growing near rivers tend to be small shrubs, 2-3 (-6) m high with bark of the branchlets easily peeling off. The flowers are very small, with very short corolla lobes and often have an unpleasant odour (Breteler 2203, Letouzey 4589, Tisserant 146I \& 2412). All these specimens were previously placed under var. tubicina.

All the material from Usambara Mts., cited below, have opposite leaves unlike the rest of the material and all flowers analyzed from this region have 4-ovulate carpels. More material is needed to verify whether the leaves are always opposite or not, and to verify the taxonomic position of these specimens.

Tanzania. T 3: Tanga Distr., Usambara Mts. Bulwa, near Amani, Zimmermann G7712 (NY), Peter
58222 (B); Kwamkoro, Peter 58229 (B, WAG), 58267 (B), 58305 (B), Zimmermann 27.12.1916 (K), G
7724 (EA); Amani, East Usambara Mts., Botany Students 252 (WAG), Peter 58 I99 (B, WAG); Mlinga
Peak, East Usambaras, Drummond \& Hemsley 1449 (B, BR, EA, K, S), Greenway 4905 (EA, FHO, K).

2.7.5 Pleiocarpa rostrata Benth.

in Hook. Ic. Pl. 12: 71, t. 1182 (1876); K. Schumann in Engler \& Prantl, Nat. Pflanzenf. 4, 2: 135, fig 52 E (1895); Stapf in Fl. Trop. Afr. 4, i: 98 (1902); Hutchinson \& Dalziel in Fl. W. Trop. Afr. ed. I, 2: 38 (1931). - Type: Cameroun, Wouri R., Mann 720 (holotype K, photo. MO).

Fig. 40, p. 153; map 18, p. 154
Homotypic synonyms:
Hunteria rostrata (Benth.) Hall. f. in Jahrb. Hamb. Wiss. Anst. 17, Beih 3: 194 (1899). Carpodinopsis rostrata (Benth.) Pichon in Bol. Soc. Brot. sér. 2, 27: 147, t. 5, 4 p. 145, map c, p. 12 I (1953).

Figure 40. Pleiocarpa rostrata. 1 and 5 habit ($\times 2 / 3$); 2 and 6, opened corolla ($\times 5$); 3,4 and 7, pistil with opened ovary (\times 10) . 1-3 from Talbot 1037; 4 from Le Testu 8871; 5-7 from Zenker 4362.

Map 18. Pleiocarpa rostrata.
Heterotypic synonyms:
Pleiocarpa talbotii Wernham in Cat. Talb. Nig. pl. 62 (1913); H.Huber in F.W.T. A ed. 2, 2: 64 (1963), syn. nov. Carpodinopsis talbotii (Wernh.) Pichon in op. cit. 144, t. 5, I-3, map C, p. I21. - Type: Nigeria, Oban district, Talbot 1037 (holotype BM ; isotype K).
Carpodinopsis uniflora Pichon op. cit. 148, t. 5, 5-7, syn. nov. - Type: Cameroun, Bipindi, Zenker I I8I-b (holotype P; isotypes BM, E, G, HBG, K, L, M, W, WU).

Shrub or small tree $0.6-5 \mathrm{~m}$ high with a semi-scrambling habit and white, sticky latex. Trunk up to 4 cm in diameter; bark smooth, light to dark brown, purple-brown or dark grey, inner bark pale green or cream to yellow, wood dark cream. Branches brown to dark olive-brown or grey; branchlets thin, quadrangular when young, dark brown, with a few lenticels. Leaves opposite; petiole $5-14 \mathrm{~mm}$ long; blade coriaceous or subcoriaceous when fresh, broadly to narrowly elliptic to obovate, 2.1-3.5 x as long as wide, $10.6-28 \times 3.8-\mathrm{II} .3 \mathrm{~cm}$, acuminate, rarely obtuse at the apex, acumen $4-12 \times 3 \mathrm{~mm}$, acute at the base or decurrent into the petiole; midrib prominent beneath; secondary veins oblique, very prominent beneath, in 7-12 pairs, forming a submarginal vein on the entire or only the upper 0.3-0.75 of the leaf and an angle of $40-58^{\circ}$ with the midrib, $12-37 \mathrm{~mm}$ apart at the central part of the leaf. Inforescence axillary, rarely terminal, ramiflorous, $1.5-3.5 \times 2-4 \mathrm{~cm}$, about $\mathrm{I}-4$-flowered, sessile. Pedicels $0.5-5 \mathrm{~mm}$ long. Bracts very small, scale-like. Flowers: Sepals pale green, free or connate at the extreme base, erect, membranaceous at the edge and the apex, ovate, 1-2.7 \times as long as wide, $2-4.5 \times$ 1.2-3 mm, coriaceous or not, acute to obtuse at the apex. Corolla white, creamy to pale green in bud, $13-37 \mathrm{~mm}$ long in mature bud and forming a comparatively wide oblong head $0.25-0.43$ of the bud length, 6 $15 \times 1.5-4 \mathrm{~mm}$, with a rounded apex, with a belt of pubescence $3-10.5 \mathrm{~mm}$ wide inside just below the insertion of stamens; tube yellow at the narrow throat, thick or not, 4-16 \times as long as the calyx, 1.4-2.9 \times as long as the lobes, $12-32 \mathrm{~mm}$ long, almost cylindrical, $\mathrm{I}-3 \mathrm{~mm}$ wide above the base, narrowed below the insertion of the
stamens to $0.5-2.0 \mathrm{~mm}$ wide, again widened around the anthers to $0.5-3.5 \mathrm{~mm}$ wide; lobes obovate to elliptic, 0.3-0.9 \times as long as the tube, $1.6-3.1 \times$ as long as wide, 5.5^{-} $26 \times 4-15 \mathrm{~mm}$, rounded, spreading to recurved. Stamens with apex $3-8 \mathrm{~mm}$ below the mouth of the corolla tube, inserted $0.58-0.74$ of the length of the corolla tube, at $7-\mathrm{I} 8 \mathrm{~mm}$ from the base; filaments $0.5-\mathrm{I} \mathrm{mm}$ long; anthers ovate to elliptic, 3.3-7 \times as long as wide, $1.8-4 \times 0.4-0.9 \mathrm{~mm}$, acuminate at the apex, acumen $0.2-0.5 \mathrm{~mm}$ long, sterile, cordate at the base. Pistil $10-13.8 \mathrm{~mm}$ long, with apex $1-5 \mathrm{~mm}$ below the stamens; ovary subglobose, 0.9-1.5 $\times 0.6-1.5 \times 0.4-0.9 \mathrm{~mm}$, abruptly narrowed into the style, with a disk-like thickening uniting the carpels at the base, about 0.30.5 of the length, $0.3-0.8 \mathrm{~mm}$ high, of $3-5$ separate carpels; style $6.5-\mathrm{II} \times 0.2 \mathrm{~mm}$ long; pistil head ellipsoid to oblong $1.5-3.4 \times 0.2-0.4 \mathrm{~mm}$. Ovules $3-4(-6)$ in each carpel. Fruits bright orange, waxy, smooth, minutely tubercled to rugose, of 3-5 separate mericarps; mericarps narrowly ellipsoid, ovoid to slightly crescent-shaped, $20-50 \times 15-25 \times 10-13 \mathrm{~mm}$, rounded or with a straight to hook-shaped beak at the apex, beak $4-15 \times 2-4 \mathrm{~mm}$; 1 -5-seeded; wall about $2-4 \mathrm{~mm}$ thick. Seeds orange, smooth, $14-17 \times 8$-I I $\times 4-5 \mathrm{~mm}$. Embryo 9.5 mm . long; cotyledons elliptic, $\mathrm{I} .8 \times$ as long as wide, $5.5 \times 3 \mathrm{~mm}$. obtuse at the apex and at the base, radicle $0.7 \times$ as long as the cotyledons, $4 \times 0.5 \mathrm{~mm}$.

Distribution. Nigeria, Cameroun and Gabon.

Ecology. Dense rain forest, primary or secondary forest along rivers, creeks and swamps in clayish and sandy soil. Alt. 0-1400 m. Flowering and fruiting in November to January.

Uses. Cold infusion used against stomach ache (Watts 954, Cameroun, 1993).
Geographical selection of the approximately 60 specimens examined:
Nigeria. Cross River: Akampa Rubber Estate, Latilo FHI 40918 (K); Oban, Talbot 1037 (K, P, type of P. talbotii), 1313 (K); Oban Forest Reserve, Onochie FHI 36293 (FHO, K); North Forest Reserve, Van Meer 1725 (WAG); Ayuk, Latilo FHI 67755 (K); British Obokum, Keay FHI 28277 (K).

Cameroun. Sud-Ouest: Mbilishe, D. W. Thomas 7444 (MO, WAG); Ejagham Forest Reserve, Satabie 743 (YA); Bokossi Mts., D. W. Thomas \& McLeod 5339 (MO, P. WAG); S Bakundu Forest Reserve, Keay FHI 28571 (K, P); near Fabe, Manning 910 (MO); Korup National Park, D. W. Thomas 4136 (MO, P, WAG); big Ekombe Forest, Nemba \& D. W. Thomas 450 (MO); Meme, Wheately 691 (K); Idenau, Watts 954 (K); Etinde, Cable 289 (K); Limbe, Wieringa 2040 (WAG). Ouest: 40 km WNW of Ndikinimeki, Letouzey 11229 (P, WAG). Littoral: 15 km N of Yabassi, Letouzey 1442 (P); 5 km SSE of Nkongsamba, Letouzey 14483 (P, WAG); Likomba plantation, Mildbraed 10692 (A); Wouri R., Mann 720 (K, Type), Mann 2189 (K); 50 km NW of Eseka, De Wilde \& De Wilde-Duyfjes 1245 (K, P, WAG); 30 km ENE of Edea, Letouzey 12378 (YA); Between Dibamba and Ebo, Letouzey 11028 (BR, K, P, YA, WAG); 7 km E o Yingui, Leeuwenberg 9091 (WAG). Centre-Sud: Dibombe-Mabombe Forest Reserve, Beentje 1501 (WAG); 15 km N of Eseka, J. de Wilde et al. 3887 (MO, P, WAG); Eseka, Bamps 1307 (BR, WAG); 2 km N of Longii Forest, Bos 4916 (WAG); Bipindi, Annet 355 (P), Zenker II8I b (E, G, HBG, K, L, M, P, W, WU, Z, type of Carpodinopsis uniflora), 4362 (B, BR, E, G, K, L, M, MO, P, S, W, Z); 8 km S of Kribi, Bos 3968 (WAG); Njabilobé, Raynal 10403 (P); Mambe Forest, Letouzey 12275 (P, YA); 29 km NW of Eseka, De Wilde \& De Wilde-Duyfjes 1278 (B, K, MO, P, WAG).

Gabon. Boudinga. Le Testu 8871 (P).

Notes. The secondary veins may form a submarginal vein along the entire edge or only in the upper 0.3-0.75 of the leaf. The corolla tube and lobes are very variable in size and in Beentje 1501 both small and large flowers are found on the same branch. The carpels also vary from 3-5, D. W. Thomas \& McLeod 5339 has 4-5carpellate ovaries on the same branch. The fruits are also very variable in size, shape, texture and at the apex. Watt 608 and Wheatly 691 have rugose fruits which are smooth towards the centre, the fruits may also be entirely rugose or smooth and may have a rounded to rostrate apex. The inflorescence always has very few flowers, rarely more than four.

2.8 Doubtrul species

Pleiocarpa picralimoides (Pichon) Omino, comb. nov.
Basionym:
Carpodinopsis (?) picralimoides Pichon in Bol. Soc. Brot. sér. 2, 27: 143, t. 4 fig. 2 (1953). - Type: Angola, Cabinda, near Belize, Gossweiler 7994 (LISU; isotype $\mathrm{K})$.

Shrub (sarmentose) to 2 m high. Trunk very slender. Leaves opposite; petiole 5-10 mm long; blade elliptic, acuminate at the apex, cuneate at the base; secondary veins in II-I8 pairs, forming a submarginal vein and an angle of $60-70^{\circ}$ with the costa. Flowers unknown. Fruits yellow to orange, smooth to rugose, of $4-5$ separate mericarps, mericarps $14-30 \times 9.5-16 \mathrm{~mm}$, rounded at the apex, $3-4$ seeded, wall 2-5 mm thick. Seeds variously shaped, I I-I $5 \times 6.2-10 \times 4-8 \mathrm{~mm}$.

Distribution. Angola.

Ecology. Forest, sometimes riverine. Alt. low.
Other specimens examined:
Gabon. Moyen-Ogooué. Lac Ezanga, N. Hallé 2087 (P).
Congo. Kouilou: Mayumbe, Thollon 1139 (P); ibid., Bitsindou 8 Jan. 1977 (P); Between Pounga and Dimonika, Cusset 546 (P); Dimonika, Dechamps 13016 (BR); ibid., De Foresta 883 (P); ibid., F.Hallé 1851 (P); ibid., Moutsambote 68 (WAG); ibid., Sita 4698 (WAG): Cofibois, De Foresta 1184 (P).

Notes. Pichon (1953) first described the above species under Carpodinopsis which is currently a synonym of Pleiocarpa. Since then more specimens have been collected in Angola and Congo, but unfortunately all are either fruiting or with very immature flower buds. It is therefore not very easy to comment on the current taxonomic position of this species which is definitely a Pleiocarpa. In my opinion it is not close to P. mutica which always has one ovule per carpel as opposed to its 4 ovules per carpel. It is, however, very close to P. rostrata which also has $3-4(-6)$ ovules per carpel but has $9(-12)$ strongly curved and widely spaced secondary veins
as opposed to its I I- I 8 pairs of slightly curved secondary veins. Perhaps when flowering specimens become available it will be easier to tell how close it is to P. rostrata.

2.9 EXCLUDED SPECIES

Hunteria atrovirens Wall. ex G. Don, Gen. Syst. 4: 105 (1837) = Chilocarpus denudatus Bl .
Hunteria coriacea Wall ex G. Don, Gen. Syst. 4: 105 (1837); A. DC. Prod. 8: 350 (1844) = Alyxia coriacea Wall. ex Roxb.
Hunteria? cuspidata Wall. ex A.DC. in Prod. 8: 350 (1844) = Melodinus orientalis Bl.
Hunteria eugenifolia Wall ex G. Don, Gen. Syst 4: 105 (1837) $=$ Wrightia arborea (Dennst.) Mabberley.
Hunteria fascicularis G. Don., Gen. syst. 4: 105 (1837); A. DC in Prod. 8: 350 (1844) $=$ Alyxia fascicularis Benth.

Hunteria gracilis Wall. ex A.DC., Prod. 8: 350 (1844) = Alyxia gracilis (Wall. ex A. DC.) Benth.

Hunteria sundana Miq. in Fl. Ind. Bat. 2: 409 (1856) = Rauvolfia serpentina (L.) Benth ex. Kurz.

Hunteria ballayi (ba), H. camerunensis (ca), H. congolana (co), H. densiflora (d), H. ghanensis (g), H. hexaloba (h), H. macrosiphon (ma), H. myriantha (my), H. oxyantha (o), H. simii (s), H. umbellata (u), H. zeylanica (z); Picralima nitida (n); Pleiocarpa bicarpellata (bi), P. brevistyla (br), P. mutica (mu), P. pycnantha (p), P. rostrata (r).

Adam, J.G., 59 (s), 6549 (mu), i 3606 (p), 13686 (p), 16636 (s), 16708 (s), 16759 (s), 17334 (u), 1736 I (u), 17937 (u), 21395 (s), 21414 (r), 21422 (s), 21606 (s), 24140 (s), 25768 (s), 26048 (s), 27452 (s), 27599 (s), 28500 (s), 28608 (s), 28733 (u), 30466 (p), 30294 (s), 30299 (s).
Adams, C.D., 3789 (p); 433 I (p).
Adamson, J., 22 (z), 34 (z), 37 (z), 224 (z).
Adebusuyi, J. K., FHI 43383 (mu).
Aké Assi, L., 7478 (g), 9738 (u), i1578 (u), il 1222 (g), 12676 (s), I3665 (u), 13763 (g), 15143 (n), 15904 (u), 17243 (mu).

Akpabla, G.K 1 IO (u), 792 (mu).
Alymer, G., 35 (mu), 216 (mu).
Ament, J., 169 (p), 388 (z).
Andrada, E.C. da, 1062 (z).
Andoh, J.E., 3335 (n), 4222 (n), 4305 (mu), FHI 547 I (u), 5639 (mu).
Angus, A., 218 (p).
Annet, E., 355 (r).
Ariwaodo, J.O., FHI 88715 (mu), FHI 89126 (r).
Asonganyi, J.N., 128 (n), 4 I4 (bi).
Attims, Y., 98 (ma).
Aubréville, M.A., 23 (u), 95 (s), 350 (mu), I 342 (mu), 1343 (u), 1383 (n).
Bagshawe, A.G., 1086 (p).
Bakare, FHI 22857 (u).
Baldwin J. T. Jr., 699 (mu), 7013 (mu), 9460 (s), 10443 (s), 10736 (s), 10814 A (mu), I 1552 (mu), 1256 I (s).
Ballay, M., May 1906 (ba).
Bally, P.R.O., 2042 (z), 2157 (z), 4712 (z), 5919 (z), 6068 (z), 16718 (z).
Balsinhas, A., 1453 (p).
Bamps, P., 225 (p), 26I (p), I 307 (r), I35I (r), 2035 (mu), 2047 (mu), 2304 (s), 2388 (s), 2559 (mu).
Barker, A.J.D., I 139 (s).
Barret B., BJH 6542 (z).
Bartin, D., 1858 (p).
Bates, G.L., 368 (bi), 1421 (n).
Battiscombe, E., K 226 (z).
Beentje, H., I450 (ca), I50I (r), 438 I (z).
Begné, 3120 (mu).
Benoit, M., 149 (n), 232 (n), 235 (n), 256 (n), 326 (n), 382 (u).

Bequaert, J.C., 148 (mu), 1623 (p), 2 I 34 (p), 2229 (p), 2298 (p).
Berhaut, H. J., I 669 (u), 208I (u), 2082 (u), 4079 (u), 412 I (u), 4124 (u), 4292 (u), 4801 (u), 4802 (u), 5750 (p), 5766 (p), 5974 (p), 6762 (p), 6922 (p), 7143 (p).
Bernadi, L., 81 38 (mu), 8522 (mu), 8550 (mu).
Binuyo, A., FHI 35090 (ca), FHI 4 I 240 (p), FHI 41297 (n).
Bolema, D., 328 (co), 709 (p), 1082 (co).
Bond, W., 9837 (z), 9883 (z), 10850 (p).
Boone, A., II (p),
Bos, J. J., 2028 (s), 3065 (u), 3968 (r), 4500 (r), 4916 (r), 4977 (u), 4978 (u), 5018 (r), 6102 (u), 6215 (bi), 6301 (bi), 6373 (n), 6502 (bi), 6725 (bi), 6868 (bi), 7104 (r), 7106 (u), 742 I (u).

Bouquet, A. 672 (n), 8 I9 (n), 946 (u), i629 (ba), 1748 (n), 1917 (n), 1977 (u).
Bowbrick, J. M., JC io (z).
Brenan, J.P.M., 8011 (p), 8910 (n), 9401 (ca), 9401 A (ca), 9401 B (ca), 9458 (bi).
Breteler, F. J., 636/78 (p), 748/78 (ca), 1308 (n), 2203 (p), 2650 (bi), 5215 (mu), $5354(\mathrm{mu}), 5635(\mathrm{mu}), 5886(\mathrm{mu}) 6005(\mathrm{mu}), 6120(\mathrm{mu}), 6207(\mathrm{mu}), 6558(\mathrm{mu})$, 7388 (s), 7398 (s), 7592 (n), 8654 (ca), 9876 (ma), 9920 (ma), 9934 (ma), 9993 (u), I I 267 (ma), I I 299 (o), I I 35 I (ma), I I 358 (mu), I 3233 (o), I 3338 (mu).

Breyne, H., 790 (p), 2318 (p), 413 I (ma).
Buch, W.R., 62/193 (z).
Burstyn, P., 75/83 A (z).
Butaye, R. P., oct. 1900 (p).
Buetner, 62 I (p).
Caballé, G., 364 (ca), 365 (o), 407 (ca), 414 (bi).
Cable, S., 289 (r), 514 (r).
Casier, P., 412 (p).
Causdale, G.S., 166 (u).
Chandler, P. 2125 (p).
Chapman, J.D., 458i (p).
Cheek, M., 5504 (r).
Chevalier, A., (p), 597 (p), 5084 (p), 10793 (p), 10930 (p), 13804 (mu), I3845 (p), 13928 (u), I 3966 (u), I 518 I (u), 15198 (u), 15199 (u), I $5200(n)$, 15462 (u),
 (u), 16640 (u), 16671 (u), 16871 (u), 17043 (u), 1745I (mu), 17659 (u), 17766 (u), 17862 (mu), 17865 (u), 17869 (mu), i 7952 (mu), I9036(s), 19311 (s), 19367 (s), 19368 (s), 19432 (mu), 19434 (mu), 19519 (mu), 19535 (s), 19572 (mu), 19706 (u), 19722 (mu), 19934 (mu), i9948 (u), 19975 (u), 19994 (mu), 2001 I (mu), 20012 (mu), 20013 (u), 20044 (mu), 2239I B (n), 22440 (n), 22844 (p), 22873 (p), 34 I 64 (mu), 34249 (mu).
Christiaensen, A.R., 409 (n).
Claessens, J., 66 (n), 209 (p), 258 (p), 756 (n).
Corbisier, A., 103 (n), 720 (n), 726 (n).
Cremers, G., 5 I8 (n), 783 (u), 868 (u).
Cook, A.C., 8I 5 (mu).
Cooper, G.P., 169 (s), 248 (mu).

Dacremont, A., 329 (p).
Dale, I. R., 487 (p), 856 (p), 1077 (z).Dalziel, J.M., 8240 (r).
Dang, D., 614 (bi).
Daniel, P. M., 238 (s).
Dawe, A., 707 (n), 7 I9 (n).
De Briey, C., 257 (n).
De Bruijn, 922 (n).
Dechamps, R., 5 (my), 139 (my), I7I (n), 242 (my).
Declercq, A., 32 (my).
Decloix, G., 168 (p),
D'Elzius, C., 499 (p).
Deffet, Io (p).
De Carvalho, M.F., 1228 (p).
De Giorgi, S., 241 (p), 1339 (p), 1672 (n), 173I (p).
De Graer, P. A. M., 237 (p).
Deighton, F.C., 2501 (mu), 3270 (mu), 3869 (mu), 387 I (mu). 4348 (s), 5010 (u).
Dekker, A.J.F.M., 84 (mu).
De Kruif, A.P.M., 4 (n), 5 (u).
Demeuse, J., 105 (n), 427 (mu).
De Namur, C., 1423 (s).
D'Orey, J., 376 (u).
Deru, 344 (p).
De Saeger, H., 22 G (p), i6i I (p).
De Schlippe, 267 (p), 299 (p).
Deville, A., 22 (p), 246 (p), 290 (p), 488 (p).
Devlaux, J., 409 (p).
Dewèvre, A., 847 (n), 945 (p), 1113 (n).
Devred, R., 1779 (p), 4027 (co), 4193 (co).
De Wilde, J., 393 (n).
De Wilde, J. J.F.E., 8 I 2 (u), 993 (mu), 3204 (mu), 7548 (mu), 8 I 50 (mu), 837 I (u), II 375 (br).
De Wilde, W. J. J. O., 307 (mu), 1245 (r), 1272 (u), 1278 (r), 1442 (ca), 1498 (ca), 1498 B (ca), 1798 (bi), 1798 B (bi), 1952 (n), 1964 (mu), 1964 B (mu), 1974 (ca), 1974 B (ca), 2032 (mu), 2062 (bi), 2106 (r), 2195 (ca), 2420 (p), 2863 (u), 2901 (ca), 2922 (u), 3887 (r), 10454 (ma).
De Wit, H.C.D., A 2850 (p), 9435 (mu).
De Witte, C.F., 4198 (p), 6942 (p).
Dibata, J., 956 (n).
Dinklage, M., 1088 (r), 1432 (r), 2976 (mu).
Donis, C., 165 (n), 2134 (n), 2738 (co), 2837 (p), 3002 (p), 3063 (p), 3122 (co), 3129 (p), 3405 (p), 3561 (p), 3579 (p).
Doumenge, 546 (r).
Dowsett-Lemaire, F., 1447 (u), I833 (n).
Drummond, J. H., 3563 (z), 3655 (z), 4546 (p).
Dubois, J., 63 (p).

Dubois, L., 40 I (p), 65 I (co), 85 I (co).
Earle, P. G., 5 PID (z).
Edwards, L. C., E ioi (z), i78 (z).
Edwardson, T. E., 41 (u).
Eggeling, W. J., 517 (p), 3115 (p), 3854 (n), 3972 (n), 4042 (n).
Ejiofor, M. C., FHI I40IO (n), FHI 26897 (u).
Else, io (z), i6 (z).
Emwiogbon, J. A., FHI 3332 I (p), FHI 45328 (n), FHI 6 I 669.
Enti, A. A., R 973 (u), R I 168 (mu), FE 1203 (u), FE 2175 (p), 2296 A (mu), 2296 B (u) SP 393 (p), FE 1875 (n), FH 6920 (u), FH 7544 (mu), GC 38392 (mu), GC 38426 (u).
Espírito Santo, J. V. da Graca do, 1940 (u), 194I (p), 1919 (p), 2042 (p), 2257 (u), 3001 (u), 3016 (u), Santo (u).
Etuge, M., 207 (r), 419 (bi), 499 (n).
Evrard, C., 327 (p), 481 (p), 571 (p), 785 (n), 1614 (u), 3178 (n), 3562 (p), 4082 (p), 4306 (n), 4354 (co), 5482 (co), 5675 (d) 6119 (p), 6270 (co).
Faden, R.B., 70/200 (z), 74/32I (z), 77/648 (z), 77/751 (p) 77/760 (z).
Fanshawe, D. B., 3904 (p), 4676 (p).
Farmar, L., 540 (n).
Farron C., 4247 (n), 4362 (ma), 4828 (n), 7261 (bi), 7554 (ca).
Faulkner, H. G., 1280 (z), I626 (z), 3022 (p).
Fay, J. M., 8127 (ba), 8782 (ba), 8835 (ba).
Fischer, 202 (z).
Flamigni, A., 6014 (p), 6123 (p), 7116 (n), 10383 (n).
Fleury in Chevalier 33348 (bi), 33099 (u).
Florence, J., 154, 514, 516, 566 (ca), 584 (o), 614 (o), 1026 (ca), 1798 (bi).
Floret, J. J., I633 (n).
Forest Dept., EAH 12437 (p).
Foster, E. W., 5 (u), 182 (p), 220 (n).
Fox, 10 (u), II (u).
Frédoux, A., 46 (n), 182 (K), 413 (mu), 584 (mu), $589(\mathrm{mu})$.
Gardner, H. M., 2205 (z).
Garnier, 652 A (u), 653 B (u), 653 C (u), 653 D (u), 653 E (u).
Gatheri, G. W., 79/67 (z).
Gathy 1908 (bi).
Gautier-Béquin, D., 737 (mu), 792 (mu), 800 (mu), 967 (n).
Gbile, Z. O., FHI 20580 (p)
Geerling, G., I5I6(mu), 236 I (mu), 2377 (mu), 2379 (mu), 2419 (u).
Gentry, A. L., 32674 (u), 32703 (u), 32758 (u), 32793 (u), 32810 (u), 33027 (o), 33177 A (o), 33177 B (ca), 33264 (o), 33503 (n), 33506 (o), 33512 (n), 33736 (o), 5268 I (mu).
Georges, J., 278 I4 (u).
Gérard, P.H., I70I (p), 2746 (p), 3580 (p), 3689 (p), 3732 (p), 3796 (p), 3839 (n), 5542 (p).
Gereau, R.E. 5253 (p), 5385 (p).

Germain, R., 279 (u), 357 (u), 362 (u), 3162 (p), 5244 (n), 7764 (u), 8150 (p), 8189 (p), 7998 (co).

Ghesquière, J., 2782 (p), 4957 (co), 8593 (co).
Gilbert, G.H., 425 (n), 1013 (p), 1058 (p), 1066 (co), 1180 (p), 1279 (p), 1296 (co), 2050 (co), 2169 (p), 2347 (p), 5860 (z), 8366 (p), 9043 (p), 9234 (u), 9473 (p), 10147 (p).
Gille, P., $100(\mathrm{n})$.
Gillett, J.B., 18905 (z).
Gillman, H., 352 (p).
Goldsmith, B., 38/65 (p), 144/67 (p).
Gomes, A., 4407 (p).
Goosens, V., 2516 (p).
Gossweiler, J. 729 (p), i 139 (p), 6258 (n), 6258 B (n), 6549 (bi), 6648 (bi), 7232 (n), 8729 (p), 13682 (p), 1405 I (p), 14153 (p).
Graham, R.M., 1976, 2205 (z).
Greenway, P. J., 5077 (z), 8860 (z), 9237 (z).
Greenwood, K., 12 (z).
Guile, D.P.M., II20 (P).
Gutzwiller, R., 201 (p) 58 I (p), 1117 (p), 1983 (p), 1995 (p), 2008 (p).
Hack, R.B., I (p).
Hall, J.B., 2944 (mu), GC 4208I (mu), GC 4374 I (g), GC 45 I 34 (u), GC 47044 (g), GC 47045 (g), GC 47096 (p), GC 45117 (mu).
Hallé, N., 641 (n), 678 (p), 3773 (p), 5008 (bi), 5080 (bi).
Hamilton, F.H., 93 (z).
Hamilton, P.H., 683 (p), 738 (p).
Hanie, A., 74 (n).
Hansen, O.J., 73 (z).
Harley, R.M., 9596 (p), 9587 A (p).
Harley, W.J., 317 (mu).
Harris, D.J., 63 (ba), 504 (n), 547 (ba), 3797 (r), 3873 (r).
Harris, B. J., BJH 2828 (z), BJH 3636 (z), 555 (z).
Hart, T. 91 (n), 374 (p), 508 (p).
Hawthorne, W., 812 (z).
Haxaire, C., I 345 (p).
Hedin, L., 1332 (n), I 628 (n).
Hendrickx, F.L., 3627 (p).
Henrard, A., 33 (p).
Hepper., F.N., 2539 (mu).
Herman, G., 2179 (bi), 2248 (bi).
Hiepko, A., 2663 (z).
Hladik, A., 1314 (n), 2098 (n).
Holland, J.H., Io6 (mu).
Hombert, J., 87 (n), 556 (n).
Howes, 1157 (n).
Hoyle, A.C., 725 (p), 780 (p).

Hulstaert, K. N., I306 (p).
Ichakawa, 60 (n).
Irvine, F. R., 1759 (p), 2173 (mu), 2817 (n).
Jacques-Felix, H., 2898 (r).
Jaeger, P., 6750 (n), I0019 (u).
Jansen, J. W. A., 1255 (mu), 1780 (s), 2 I I 2 (mu), 2147 (u), 2282 (s), 2564 (mu).
Jawse, D., D6 (z).
Jasi, A., 10 (p).
Jeanty, C.E., I 34 (p).
Jespersen, J., 86 (p).
Jex-Blake, M., 464I (z).
Jones, A.P.D., 982 (n).
Jongkind, C.C.H., 2073 (mu).
Johnson, W.H., 623 (p), 6 I 6 (p), 803 (p).
Jordan, H. D., 2037 (s), 2046 (s), 2120 (u).
Jumah, J. A., I (u), 2 (u), 3 (u).
Jungner, J. R., 147 (r).
Kaji, M., 50 (n).
Katende, A. B., K 1429 (p), 2127 (n).
Kayasha, E., 147 (z).
Keay, R.W.J., FHI 25705 (u), FHI 28250 (u), FHI 28277 (r), FHI 2857 (r), FHI 36605 (n), FHI 37457 (bi).
Kennedy, J. D., 212 (n), 2056 (n), 2182 (n), 2348 (n).
Key, Mc., 57 (bi).
Kibuwa, S.P., 248 I (z).
King, E.L., 132 B (mu).
King, H.C., 23 ((u).
Klaine, T.J., 106 (n), 299 (n), 3077 (ba), 3158 (h).
Kodambo, T. J., I85 (u).
Koechlin, J., 5065 (p).
Kokwaro, J.O., 3959 (p).
Koufani, A., 107 (mu), 143 (ba).
Kouakou, 425 (u).
Kuchar, P., I3438 a (z), I3478 (z), I349 ((z), I3505 (z), 13530 (z).
Lane-Poole, C. E., I 29 (u), 333 (mu).
Latilo, M.G., I96(s), FHI 31754 (p), FHI 31758 (p), FHI 3 I840 (u), FHI 40918 (r), FHI 53997 (n), FHI 58433 (P), 60556 (p), FHI 67755 (r).
Laurent, M., I 376 (p).
Lebrun, J., 915 (p), 1950 (p), 1987 (p), 2157 (p), 2363 (mu), 2479 (p), 2681 (mu), 2835 (mu), 2840 (mu), 4378 (n), 4945 (mu), 5586 (p), 5121 (p), 5877 (p), 6088 (p), 6260 (p), 9898 (p).

Leeuwenberg, A.J.M., 2386 (u), 6176 (n), 9091 (r), 9166 (r), 10722 (u), 10740 (u), 10778 (n), 10779 (n), $10800(\mathrm{z})$, I 1042 (p), III64 (g), II 208 (g), II 348 (n),
 I22 19 (mu), 12302 (mu), 12464 (u), I 3340 (mu), 13695 (n), 14054 (mu).

Lejoly, J., 3479 (p), 5085 (p), 86/601 (p), 1933 (p).
Lemaire, H., 97 (p), 388 (n).
Léonard, A., 98 (p), 754 (co), 183 I (co), 3312 (p), 387 I (p), 3948 (p), 398 I (p), 4704 (p), 5230 (p), 5690 (p), 5871 (co).
Léonard, J., 1455 (co).
Leontovitch, 228 (p).
Lescrauwaet, E., 1904 (n).
Le Testu, G., I744 (u), I84I (n), I223 (n), 4524 A (bi), 4524 B (p), 4566 (p), 4738 (p), 5898 (n), 6035 (n), 6408 (u), 7085 (ma), 7429 (n$), 8025$ (u), 8558 (ba), 887 I (r), 946 I (p).

Letouzey, R., II IO (n), 4589 (p), 5069 (n), 5477 (u), 9002 (bi), 9850 A (bi), 9850 B (mu), 10383 (ba), 10492 (p), 10568 (ba), 11028 (r), 11229 (r), 11804 (n), 11963 (p), 12087 (p), 12275 (r), 12283 (r), 12378 (r), 12777 (bi), 12784 (mu), I442 (r), 14483 (r), 15124 (r), 15209 (mu), 15274 (mu).
Lewalle, J., 3189 (p), 3990 (p).
Liben, L., 4020 (p), 1835 (p).
Linder, D.H., 3508 (p).
Lisowski, S., 15846 (co), 17126 (p), 43425 (p), 45508 (p), 455 II (p), 47865 (p), 52344 (p).
Louis, A.M., 1884 (n), 2101 (o), 2114 (n).
Louis, J., 305 (co), 440 (p), 667 (p), 724 (co), 1008 (p), 1083 (co), 1455 (p), 1543 (p), 1588 (p), 2314 (co), 2476 (co), 2515 (p), 2622 (co), 3156 (p), 3809 (co), 386 I (p), 3966 (co), 4275 (p), 5751 (co), 6328 (co), 6228 (co), 6337 (co), 6338 A (p), 6338 В (co), 6340 (p), 6489 (co), 7824 (p), 8293 (p), 8429 (p), 9677 (p), 9722 (co), 9938 (co), 10243 (p), 12612 (p), 12898 (p), 13180 (p), 13445 (p), 15143 (p), 15669 (co), 16309 (co), 16385 (p).
Lowe, J., 3807 (mu).
Luja, E., 292 (p).
Luke, Q., TPR 3 I (z), 747 (p), 893 A (p), 1405 (p).
Lykke, A.M., 356 (p).
Macedo, A., 1258 (z).
MacGregor, W.D., 522 (u).
Maitland, T.D., 284 (n), 306 (p), 764 (n), 787 (n).
Malaisse, F., 6753 (p), 8599 (p).
Malchair, 107 (p).
Mandango, 1969 (p).
Mann, G., 710 (n), 720 (r), 1213 (bi), 2189 (r), 2277 (mu).
Manning, S.D., 9 Io (r).
Marmo, V., 65 (mu).
Martineau, 235 (mu), 260 (u).
Maudoux, E., 5 (n), 171 (n), 590 (p), 1176 (p), 1182 (p).
Mbambi, 54 (n), 70 (n).
Mbatchou, G.T., 209 (n), 216 (bi), 449 (r).
Mc Ainsh, 890 (u).
Medley, K., 23 I (z).

Menavanza, F., 143 (co).
Mendonga, F. A., 4447 (p).
Meyers, S., 195 (p), 262 (p), 290 (p), 297 (p).
Mezili, P., 120 (ba).
Michelson, A., 85 (o), 133 (p), 736 (p), 23 I (n), 914 (co), 92 I (d).
Mildbraed, J., 4038 (ba), 4138 (n), 4588 (p), 6098 (u), 8285 (n), 10692 (r), 10716 (ca).
Miller, J. S., 7893 (n).
Mooney, H.F., 7666 (z).
Moonmaw, J.C., I 295 (z).
Moor, A.W., ili5i (u), 224I (u).
Mortehan, M.G., 520 (p).
Morton, J. K., S.L. 1268 (mu).
Mosango, 43 I (p), 539 (p).
Mosnier, M., 2537 (u), 2594 (u).
Muchiri, J., 424 (z).
Müller, T., 1320 (p), 1784 (p), 1865 (z), 1916 (p), 1926 (z).
Muwin, A.H., 26 (u).
Mwasumbi, L. B., I386I (p).
Nchami, V.C., FHI I434I (u).
Ndele, 759 (co), 767 (p), 771 (p).
Nemba, J., 281 (r), 450 (r), 582 (u).
Niyongere, L., I/84 (p).
Nolde, B. von, 493 (p), 646 (p), 727 (p).
Nsimundele, 937 (p), 1077 (p).
Nsola, 126 (co).
Obermeyer, A. A., 37485 (p).
Ohnson, M., 903 (p).
Okafor, J. C. FHI 36886 (p).
Oldeman, R. A. A., 642 (u), 96 I (mu).
Olorunfemi, J., FHI 30579 (u), FHI 70757 (p).
Omino, E.A., 32 (p), 63 (z), 69 (p), 82 (bi), 89 (z), 157 (bi), 158 (bi).
Onochie, C., FHI 4936 (u), FHI 33370 (n), FHI 36293 (r).
Onyeachusim, FHI 48005 (n).
Orokoro, 228 (p).
Osmaston, H. A., 684 (p), 2644 (n), 2767 (p).
Osseyemeh, J., 3341 (n).
Patel, M.B., 51694 (p).
Paoli, G., 8 I 5 (z), 478 (z), 850 (z).
Pardy, A.A., 2 (p).
Paulo, S., 133 (z), 607 (p), 619 (p).
Perdue, R.E., 10012 (z).
Pereira, J. A., 1889 (u), 2704 (u), 3163 (u).
Pierlot, R. 947 (n), 1045 (p), I 844 (p), 1936 (p), 2025 (p), 218 I (p), 234 (p), 2437 (p), 2523 (p), 2596 (co), 28 I (n), 32 IO (p), 3184 (p), 950 (co).

Pobéguin, H.H., 45 (n), 157 (p), 2015 (u).
Polhill, R. M., 755 (z), 8 I 8 (z), 49 I6 (p).
Preuss, R., 44 (bi).
Punch, C., I38 (u).
Putman, P.T.L., 126 (p), 457 (n).
Pyne, C.T., ilf(u).
Raynal, J., 9606 (ca), 10403 (r).
Reitsma, J.M., I44 (z), I 59 (z), 976 (o), 899 (n), 1858 (ca), I 866 (n), 1952 (u), 2717 (bi), 305 I (bi), 3132 (n).
Reygaert, F., I25 (p), 884 (co), I 290 (p), I 326 (p).
Richards P.W. 32 II (u).
Robertson, S.A., 3506 (z), 3668 (z), 4138 (z), 4145 (z), 4830 (p), 5153 (p), 5573 (z), 5669 (z).
Roberty, G., I 57 I8 (mu), I73I8 (mu), I572 I (u).
Ross R., 7 (n), (u), 79 (u), 126 (u), 142 (u).
Rudatis, H., 59 (u).
Ruffo, C. K., I 873 (p), 2129 (p).
Sacleux, C.H., 482 (z), 678 (z), 1457 (p).
Samai, S. K., 522 (u).
Sangai, G.W., I573I (z).
Sargos, 53 (u), 75 (u), 85 (n), 180 (n), 244 (n).
Satabié, B., 743 (r).
Scassellati, 56 (z).
Schaijes, M., 3 II9 (p).
Schlott, R.L., I I (ba).
Schmitz, A., 3704 (p), 7334 (p).
Schnell, R., 6067 (s).
Schweinfurth, G., 3073 (p).
Scott Elliot, G. F., 4288 (p), 5690 (u).
Semsei, S. R., 679 (p), 3723 (z).
Seret, F., 482 (p), 873 (n), 893 (p).
Sharland, R.E., 329 (p), sn 25.1.8 I (p).
Short, J., GC 47008 (u).
Sim, D., I6 (s).
Simão, J., 1201 (z), 273/48 (z).
Simpson, B.L., 138 (z), 235 (z), 265 (z).
Sita, P., I 345 (u), I36I (o), 3075 (p), 3373 (ba), 345 I (ba), 3797 (p), 4048 (ma).
Soward, 65I (n).
Small, D., 402 (u), 539 (s), 649 (s), 701 (mu).
Smith, J., 75/36 (mu).
Spire, 33 (p).
Spjut, R.W., 2710 (z), 2745 (z), 4617 (z).
Staudt, 93 (bi), 130 (u), 322 (mu), 573 (bi), 683 (bi), 791 (bi).
Stauffer, H., I02 I (p).
Stoop-van de Kasteele, F.S.C., 38 (s), 171 (s).

Straub, F. C., 287 (s).
Stuhlmann, 1216(p).
Suzuki, A., B 23 (p).
Swynnerton, J.C., 14 (p), 2 I (p), 6503 (p).
Synnot, T. J., 410 (p), 1949 (z).
Talbot, P.A., 219 (n), 1037 (r), 1313 (r), 1565 (mu), 1654 (mu), 1690 (n), 3146 (n), 3256 (n).
Tanner, R.E.S., 2463 (z), 3366 (z), 3722 (z).
Tardelli, M., 434 (z).
Taton, 174 (p).
Tawse, D., D 6 (z).
Tchouto, P., 712 (r), 740 (mu), 879 (r).
Thairu, N., 69 (z).
Thiébaud, 203 (p).
Thijssen, M.T., I 8 (mu).
Thoiré, M., 796 (mu).
Thomas, D.W., 294 (bi), 617 (u), 2320 (r), 3207 (u), 3313 (n), 4136 (r), 4178 A (r), 4178 B (u), 4195 (u), 4575 (mu), 4588 (u), 4684 (n), 5205 (u), 5339 (r), 7202 (ba), 7432 (p), 7444 (r), 7694 (r).
Thomas, N.W., 19 (u), $954(\mathrm{mu}), 963(\mathrm{mu})$, $194 \mathrm{I}(\mathrm{n}), 206 \mathrm{I}(\mathrm{n}), 210 \mathrm{I}(\mathrm{n}), 4235(\mathrm{mu})$, 4764 (s), 5008 (s), 5245 (u), 5245 B? (s) 10102 (u), 10283 (u).
Thompson, B., E 5245 (p).
Thomson, W.C., 38 (mu).
Tinley, K.L., 2369 (z), 2718 (p).
Tisserant, C., 509 (n), 146 (p), 241 I (p), 2412 (p).
Toilliez, J., 291 (mu), 384 (n).
Toka, L., 57 (n), 163 (n).
Tondeur, 35 (n).
Toree, A. R., 5904 (p), 14541 (p), 16199 (p), 17015 (p).
Tou, 70 (p).
Trilles, il 8 (h).
Trochan, J., 3467 (u).
Troupin, G., 7 (p), 547 (p), 759 (p), 3515 (p), 3769 (p), 3897 (p), 3961, 3962 (p), 3973 (p), 3975 (p), 4024 (p), 4282 (p), 4487 (n), 4587 (n), 6402 (n), 7277 (n), 7748 (p), 10025 (p), 10296 (p), 10944 (p), 10637 (p), 12151 (co), 12496 (p), 14693 (p).
Turner, L., 160 (p).
Ujor, E., FHI 2927 I (n), 30169 (mu).
Umwin, A.H., 26 (u).
Van den Berghen, 5116 (p), 5661 (p).
Van den Bossche, 31 (n).
Van den Brande, J., 380 (p).
Van der Ben, D., I262 (p), I433 (p).
Van der Burgt, X. M., 48 (br).
Van der Maesen, L. J. G, 5534 (ma), 5579 (ba).

Van Meer, P. P. C., 380 (u), 464 (s), 1017 (u), i 178 (mu), 1456 (mu), i491 (mu), I266 (mu), 1875 (u).
Vanderyst, H., 9314 (p), 9827 (p), 102 I5, 10432 (p), 10910 (p), I 1008 (p), I 1053 (p), III2I, I II74, II305 (p), I 1997 (n), I 2042 (p).

Van Eijnatten, C.L.M., I 266 (u), I 5 I 5 (u), I 519 (n), I 526 (n), I698 (u).
Van Meer, P.P.C., 792 (n), 1725 (r).
Van Setten, K., 179 (u), 415 (mu), 423 (n), 471 (n), 586 (u), 793 (mu), 798 (u).
Vaughan, J.H., 885 (z), 1777 (p), I819 (p), I820 (p), 1966 (p); 2078 (z), 2729 (z), 2783 (z).
Verdick, E., 594 (p).
Vermoesen, F., 82 (p), 287 (n).
Versteegh, C., 586 (u), 688 (n).
Vigne, C., 208 (n), 269 (mu), 864 (n), i 660 (u), 1957 (u), 1975 (mu), 2701 (u), 3166 (mu), 3335 (n), 3956 (n), 4345 (mu).
Villiers, J. F., 652 (n).
Voorhoeve, A. G., 36 (u), 853 (u), 933 (mu), 1140 (mu).
Wachiori, P., 4I (p).
Wagemans, J., 494 (n), 559 (n), I 142 (n).
Wallace, G. B, 53 (s), 450 (p), 475 (p).
Wanters, M., 168/8o (z).
Watts, J., 599 (r), 602 (mu), 608 (r), 667 (mu), 760 (mu), 806 (mu), 813 (r), 954 (r).
Warnecke, O, 48I (p).
Welwitsch, 455 I (p), 598 I (p).
Wheatly, J.I., 691 (r).
Wieringa, J. J., 856 (mu), 1267 (br), 1285 (u), 1479 (ca), 2040 (r), 2070 (bi), 2090 (u), 2156 (u), 2502 (br), 2524 (u).

Wilks, C.M., 1453 (ba).
Winkler, H., 660 (n), 1035 (u).
Wit, P., I 257 (u), I260 (u).
Yafunga, F., 8I (p), I29 (p).
Zenker, G., II7 (bi), I63 (ca), 242 (bi), 283 (n), II 287 A (n), II 287 B (u), 61 I (bi), 753 (bi), i 18 I b (r), 1211 (ca), 1620 (ca), 1658 (bi), 1660 (bi), 1707 (u), 1728 (bi), 1729 (u), 23 I I (ca), 250 (bi), 2858 (bi), 2893 (bi), 3028 (n), 3 I 63 (ca), 36 I I (ca), 3676 (bi), 3705 (u), 4113 (ca), 423 I (bi), 4362 (r), 4488 (u), 4470 (bi), 4564 (u), 4685 (bi), 4882 (bi), 4889 (bi), Nov. 1896 (bi).

INDEX OF SCIENTIFIC NAMES

New names are in bold face, synonyms in italics. Page number of principal entriesare in bold face, those of figures and maps in italics.Acokanthera G. Don $3,4,8,9,10,34,38-40,74$
laevigata Kupicha 74
oblongifolia (Hochst.) Codd 38
oppositifolia (Lam.) Codd $5-7,9,10,35,36,40,74,78$
schimperi (A. DC.) Benth. 74
spectabilis (Sond.) Hook.f. 38
Adenium Roem. \& Schult. 9, II, 74
obesum (Forsk.) Roem. \& Schult. 4, 6-9, II, 12, 36, 37, 74, 78
Alafia Thouars 12, 75
barteri Oliv. 13
caudata Stapf. 75
erythrophthalma (K. Schum.) Leeuwenberg 75
landolphioides (A. DC.) K. Schum. 13
lucida Stapf. 75
microstylis K. Schum. 6, 12, 75, 78
multiflora (Stapf) Stapf 13
orientalis K. Schum. ex De Wild. 75
scandens De Wild. 13
zambesiaca Kupicha 75
Alafiinae Pichon ex Leeuwenberg 75
Allamanda L.
blanchetii A.DC. 35, 36
cathartica L. 36
nereifolia Hook. 3
schottii Pohl 3
violacea Gardn. \& Field. 35, 36
Alstonia R.Br. 4, 74
boonei De Wild. 74
Alstoniinae (G. Don) K. Schum. 74
Alyxia R.Br. 82
coriacea Wall. ex Roxb. 157
fascicularis Benth. 157
gracilis (Wall. ex A.DC.) Benth. 157
Alyxieae G. Don 74
Alyxiinae Pichon ex Leeuwenberg 82
Amsonia Walt.
orientalis Dcne. 9
Anacardiaceae Lindl. 37
169
Ancylobotrys Pierre $4,8,9,13,34,35,39,41$
amoena Hua 74
petersiana (Klotzsch) Pierre $7,8,13,14,36,40,74,78$
tayloris (Stapf) Pichon 5-7, 13, 14, 38, 74, 78
Apocyneae Allorge ex Leeuwenberg 75
Apocynoideae 3, 74
Apocyno-Nerium L. 82
Apocynum L 3
cannabinum L. 3
Aspidosperma Mart. \& Zucc. quebracho-blanco Schldl. 34
Aspidispermatinae Pichon ex Van der Ploeg \& Leeuwenberg 74
Atropa L.
belladonna L. 35
Baissea A. DC. 14, 75
leonensis Benth. 75
leontonori Van Dilst 75
major (Stapf) Hiern 75
myrtifolia (Benth.) Pichon $4-7,9,14,36,37,39,40,75,78$
viridifolia (K. Schum.) De Kruif 75
Cameraria L. 82
zeylanica Retz 123
Carissa L. $3,4,8,9,15,34,35,38,40,74$
bispinosa (L.) Desf. ex Brenan 74
edulis (Forsk.) Vahl $5,7,9,15,16,74$, 78
grandiflora (E. Mey.) A.DC. 36
hirsuta Roth 35
macrocarpa (Eckl.) A. DC. 36
spinarum L. 35
tetramera (Sacl.) Stapf $4,5,7-9,15,16,35,36,40,74,78$
Carisseae Endl. 74,8 I
Carissinae A. DC. 74
Carpodinopsis Pichon 82, 134, 156
picralimoides Pichon 81, i56
rostrata (Benth.) Pichon 134, I 52
talbotii (Wernham) Pichon I 54
uniflora Pichon I 54
Carpodinus R.Br. ex G.Don umbellata K.Schum. 118
Carvalhoa K.Schum. 3, 16, 74
campanulata K. Schum $4-7,16,17,36,74,78$
Catharanthus G. Don
pusillus (Murr.) G. Don 3, 35, 36, 38
roseus (L.) G. Don 36
Cerbera L. 74
manghas L 74
Cerbereae (Benth. \& Hook. f.) Leeuwenberg 74
Chilocarpus Bl. 82
denudatus Bl 157
Clitandra Benth. 8, 17, 39, 41, 74
cymulosa Benth. $4,5,7-9,17,35,39,74,78$
Combretaceae R. Br. 37
Combretum Loeff. 37
Comularia Pichon 82, 88
camerunensis (K. Schum. ex Hall.f.) Pichon 88, 95
Croton L. zambesiacus Muell. Arg. 104
Dictyophleba Pierre 4, 9, 18, 35, 39, 41, 74
lucida (K. Schum.) Pierre $5,8,9,18,40,74,78$
Diplorhynchus Welw. ex Fic. \& Hiern 18, 39, 74
condylocarpon (Muell. Arg.) Pichon $5-7,9,18,74,78$
Echites Jacq. peltata Vell. 35
Ervatamia (A.DC.) Stapf coronaria (Jacq.) Stapf 35
Funtumia Stapf 3, 19, 41, 75
africana (Benth.) Stapf. 75
elastica (Preuss) Stapf 6-9, 19, 75, 78
Gynopogon Forst.
lanceolatum (Wall. ex A.DC.) Kurz 123
Holarrhena R. Br. 20, 39, 75
antidysenterica Wall. ex A. DC. 21
pubescens Wall. ex G.Don 4-8, 20, 21, 35, 37, 75, 78
Hunteria Roxb. 3, 4, 8, 9, 21, 39, 41, 74, 8I-87, 88, 89, 99
africana K. Schum. I 23
ambiens K. Schum. 136
atrovirens Wall. ex G.Don 157
ballayi Hua 158
breviloba Hall.f. 148
camerunensis K. Schum. ex Hall.f. $83-85,88,89,93,94,95$, 158
congolana Pichon $5,7,21,22,74,78,83-86,90,96,97,98$, 158
coriacea Wall. ex G. Don 157
corymbosa Roxb. 82, 88, I23
var. genuina Hall.f. 123
var. roxburghiana (Wight) Trimen ex J. Gamble 123
var. salicifolia (Wall.) Hall.f. 123
var. zeylanica (Retz.) Hall.f. 123
cuspidata Wall. ex A. DC. 157
densiflora Pichon $83,84,86,90,99,100,101,112,158$
Wageningen Agricultural University Papers 96-I (1996) 171
eburnea Pichon II 8
elliotii (Stapf) Pichon II8
eugenifolia Wall. ex G.Don I 57
sect. Euhunteria Pichon 82, 88
fascicularis Benth. I 57
ghanensis Hall \& Leeuwenberg 83-86, 89, 102, 103, 104, I12, I 58
gracilis Wall. ex A.DC. 157
hexaloba (Pichon) Omino 81-89, 104, 105, 106, 158
lanceolata Wall. ex A.DC. 123
legocii Livera 123
macrosiphon Omino 81, 83, 86, 90, 107, 108, 109, 158
mayumbensis Pichon 118
myriantha Omino 81-85, 90, 109, IIO, III, II2, 158
oxyantha Omino 8i-86, 90, 112, $113,114,158$
pleiocarpa Hall.f. 143
sect. Pleuranthemum Pichon 82, 88
pycnantha K. Schum. 83, 146
rostrata (Benth.) Hall.f. 152
roxburghiana Wight 123
simii (Stapf) H. Huber $83-86,89,115,116,117,158$
sundana Miq. 157
umbellata (K. Schum.) Hall.f $22,83-88,90,118,119, I 20,158$
zeylanica (Retz.) Gardn. ex Thw. . 8, 21, 35, 74, 78, 8 I-90, 122, 124, 125, 127,158 I23, 127
var. salicifolia (Wall.) Pichon 123, 127
Icacinaceae Miers 37
Ichnocarpinae (Benth. \& Hook. f.) Allorge 75
Ichnocarpus R.Br.
frutescens (L.) W.T. Aiton 35
Isonema R. Br.
buchholzii Engl. 35
Kalanchoë Adans.
fedschenkoi Hamet \& Perrier 36
Landolphia P. Beauv. 8, 9, 22, 39, 4I, 74
buchananii (Hall.f.) Stapf 7, 22, 23, 74, 78
calabrica (Stapf) E. A. Bruce 23
dulcis (R. Br. ex Sabine) Pichon 23, 35
var. barteri (Stapf) Pichon 23, 35
eminiana Hall. f. 74
kirkii Dyer 74
landolphioides (Hall. f.) A. Chev. 74
owariensis P.Beauv. 23, 35, 74
parvifolia K. Schum. 74
watsoniana Romburgh $5,7,22,23,74,78$
Landolphiinae K. Schum. 74
Lepinia Decne. 82
Lochnera Rchb. ex Endl. pusilla (Murr.) K. Schum 3
Macropteranthes F. Muell. 37
Malouetiinae (Muell. Arg.) Pichon 75
Marantaceae Petersen 93
Mascarenhasia A.DC. 75
arborescens A.DC. 78
Melodinus Forst 82
orientalis Bl. 157
Motandra A. DC. 3, 4, 9, 24, 25, 4I, 75
guineensis (Schum. \& Thonn.) A. DC. 3-9, 24, 35, 75, 78
Nauclea L. latifolia Sm. 104
Neriinae Boiteau 74
Nerium L.
oleander L. 34, 37
Notonerium Benth. 82
Oncinotis Benth. 3, 4, 25, 41, 75
glabrata (Baill.) Stapf ex Hiern 26, 75
gracilis Stapf 26, 35
hirta Oliv. 35, 40, 75
nitida Benth. 26
pontyi Dubard 75
tenuiloba Stapf $5,6,8,25,37,75,78$
tomentella Radlk 35
Peltastes Woods. peltatus (Vell.) Woods. 35
Picralima Pierre 3, 9, 26, 39, 41, 74, 81-87, 128
elliotii (Stapf) Stapf 118
klaineana Pierre 83, 130
nitida (Stapf) Th. \& H. Dur. $6,26,36,74,78,83,84,128, I 29,130$, I 58umbellata (K. Schum.) StapfI 18
Pistacia L.
terebinthus L. 37
Pleiocarpa Benth 3, 4, 5, 9, 26, 27, 38, 41, 74, 81, 82, 85, 87, 134, I35, I 56
bagshawei S. Moore 148
bicarpellata Stapf $7,8,26,27,74,78,82,83,135,137,138$, I 58
breviloba (Hall.f.) Stapf 148
brevistyla Omino 8I-84, I35, 139, 140,141, I 58
camerunensis (K. Schum. ex Hall.f.) Stapf 93
flavescens Stapf I48
micrantha Stapf 148
microcarpa Stapf 148
mutica Benth. $28,82-84$, I $35,141,142,143,144,156$, I 58
picralimoides (Pichon) Omino 81, 156
pycnantha (K. Schum.) Stapf . 7, 26, 27, 28, 74, 78, 82-85, 135, 146, 147, 148, 158
var. tubicina (Stapf) Pichon 28, 146
rostrata Benth. 28, 82-85, 134, I35, 152, I53, I54, I56, I58
salicifolia Stapf 142
simii (Stapf) Hutch. \& Dalz. II5
swynnertonii S. Moore 148
talbotii Wernh. 28, I54
tricarpellata Stapf 142
tubicina Stapf 146
welwitschii Stapf ex Hiern 148
Pleiocarpeae K. Schum. 87
Pleioceras Baill. 75
orientale Vollesen 75
Pleiocarpinae (K. Schum.) Pichon 3, 74, 81-83, 85, 87
Pleuranthemum Pichon 82, 88
ballayi (Hua) Pichon 88, 90
Plumeria L.
rubra L. 3, 35
Plumerieae Endl. 74
Plumerioideae K.Schum. 3, 74, 81
Polyadoa Stapf 82, 88
camerunensis (K.Schum. ex Hall.f.) Brenan 93
elliotii (Stapf) Pichon II 8
(?) simii Stapf II 5
umbellata (K. Schum.) Stapf II8
Rauvolfia L. $4,28,38,74,82$
caffra Sond. $4,7,8,28,29,36,74,79$
mannii Stapf $5,6,28,29,36,74,79$
mombasiana Stapf $6,8,28,29,74,79$
serpentina (L.) Benth. ex Kurz I 57
volkensii (K. Schum.) Stapf 74
vomitoria Afzel. 74
Rauvolfiinae Benth. \& Hook. f. 74
Rhazya Dcne.
orientalis A. DC. 9
Saba (Pichon) Pichon 29, 39, 74
comorensis (Boj.) Pichon 6-9, 29, 34, 74, 79
Schizozygia Baill. 3, 30, 74
coffaeoides Baill. $5,8,9,30,74,79$
Stephanostema K. Schum. 30, 75
stenocarpum K. Schum. $4,5,30,39,75,79$
Strophanthus DC. 31, 75
barteri Franch. 32
courmontii Sacl. ex Franch. 5-8, 31, 35-38, 75, 79
eminii Asch. \& Pax 75
gracilis K. Schum. \& Pax 32
hispidus DC 32, 35, 75
hypoleucos Stapf 4, 75
kombe Oliv. 75
mirabilis Gilg 4, 75
petersianus Klotzsch 75
preussii Engl. \& Pax 32, 75
sarmentosus DC 75
welwitschii (Baill.) K. Schum 75
zimmermannianus Monach. 75
Tabernaemontana L. $3,8,9,32,38,74,83$
divaricata (L.) R. Br. ex Roem. \& Schult 35
eglandulosa Stapf 33
elegans Stapf 79
nitida Stapf 130
odoratissima (Stapf) Leeuwenberg 74
pachysiphon Stapf 79
parviflora Heyne ex Wall. 123
penduliflora K.Schum. 33
salicifolia Wall. 5-7, 32, 33, 35, 123
stapfiana Britten 5-7, 32, 33, 35, 74, 79
ventricosa Hochst. ex A. DC. 32, 33, 74, 79
Tabernaemontaneae G. Don 74
Tetradoa Pichon 81, 82, 88
hexaloba Pichon 88
simii (Stapf) Pichon II5
Thevetia L.
peruviana (Pers.) K. Schum. 3, 36
Trachelospermum Lem.
jasminioides (Lindl.) Lem. 36
Vinca L.
minor L. 3
rosea L 36
Voacanga Thouars 3, 33, 38, 74
africana Stapf 3-5, 34, 74, 79
schweinfurthii Stapf 3
thouarsii Roem. \& Schult. $5,6,34,39,74,79$
Wrightia R.Br. 3, 75, 82
arborea (Dennst.) Mabberley 35, I 57
demartiniana Chiov. 75
laevis Hook.f. 35
saligna (R.Br.) F.Muell. ex Benth 34, 35, 37
tinctoria R.Br. 35
tomentosa Roem. \& Schult. 35
Wageningen Agricultural University Papers 96-I (1996) 175
Wrighteae G. Don 74
Wrightiinae Pichon ex Leeuwenberg 75

CURRICULUM VITAE

Elizabeth Anyango Omino was born on 6 July 1962. She joined the University of Nairobi in 1983, where she graduated in September 1986 with a Bachelor of Science degree in botany and zoology. She immediately joined the Kenya Marine and Fisheries Research Institute as an assistant Research Officer. Between September 1987 and June I99I, she rejoined the University of Nairobi for her Masters of Science degree in plant taxonomy. During this period, she demonstrated plant taxonomy in the undergraduate class, and taught as a part-time lecturer in Medical Training Centre, Nairobi, for the herbal medicine course. Between September 1992 and I996, she joined the Department of Plant Taxonomy, Wageningen Agricultural University, for a Ph.D. study, made possible by the sandwich programme. During this time, she operated in liaison to the Botany Department, University of Nairobi (with Prof. Kokwaro), the East African Herbarium and Anatomy Lab., Jodrell Laboratory, Royal Botanic Gardens, Kew, with Dr. David Cutler and Mr. Tim Lawrence. She is currently lecturing at the Jomo Kenyatta University of Agriculture and Technology, in the Department of Botany. She is married and has two children.

ACKNOWLEDGEMENTS

The author would like to thank the following persons or institutions:
Dr. A.J.M.Leeuwenberg and Prof. dr. L.J.G. van der Maesen of the Department of Plant Taxonomy, Wageningen Agricultural University, for initiating the Ph.D. programme.

Dr. A.J.M.Leeuwenberg for his invaluable professional guidance throughout the course of the Pleiocarpinae monograph and his thorough checking of the final text.

Dr. David Cutler of the Jodrell Laboratory (Royal Botanic Gardens, Kew) for his valuable direction and critical remarks on the anatomy chapter and for wavering the bench fees for the Anatomy Lab., in the Jodrell Laboratory.

Prof. dr. L.J.G. van der Maesen for trimming and correcting both manuscripts and proofs, and for his patience, stimulating interest and critical remarks.

Dr.Ir. J. J. Bos for his useful comments on the manuscript.
Miss Y.F. Tan and Mr. J. M. de Vries for their professional illustrations for the Pleiocarpinae chapter, and Mrs. Wil Wessel for preparing the fine drawings and mounting of all the figures in the anatomy chapter.

Prof. J.O.Kokwaro (University of Nairobi, Kenya) for introducing me to the field of plant taxonomy, for suggesting the topic on Apocynaceae for my M.Sc. and for his interest and encouragement throughout this work.

Mr. Tim Lawrence of the Jodrell Laboratory (Royal Botanic Gardens, Kew) for all the valuable technical assistance and his helpful remarks in connection with the anatomy chapter.

Dr. Hazel Wilkinson of the Jodrell Lab. for the encouragement and informative tips.

All the Staff of the Jodrell Laboratory for any assistance they gave in connection with this work.

Mr. Tim Pierce of PCPU (Plant Conservation and Propagation Unit, National Museums of Kenya) for assisting with all the field work in Kenya and the rest of the PCPU Staff for all the assistance they gave in connection to this work.

The Wageningen Agricultural University for providing the I year sandwich grant and the grants that enabled me to visit the Herbaria in Belgium and Paris.

The Department of Plant Taxonomy for arranging the grant that enabled me to work in the Kew Herbarium and Jodrell Lab. for three months.

The British council, Nairobi, for providing a return our ticket to London (Royal Botanic Gardens Kew).

All the staff and collaborators of the Department of Plant Taxonomy of the Wageningen Agricultural University for all their help in connection with this thesis.

The Jomo Kenyatta University of Agriculture and Technology for granting me study leave for the entire research period.

The staff of the East African Herbarium and the National Museums of Kenya for all the assistance they gave in connection with this research.

To Mrs. Judith van Medenbach de Rooy for all the moral support during my stay in the Netherlands.

To Miss Marjo Buitelaar for all the help she gave me during the last stages of preparation of this publication and for being such a great friend.

To my parents, Dottie and Joel Omino, for their moral support and inspiration. To Margaret Mueni Musau for taking care of my family during my absence.

Special thanks are due to my husband, Daniel S. Omino, for his continuous encouragement, utmost patience and sacrifices, and for his assistance in many ways.

The directors and/or curators of the following herbaria for putting their material at my disposal: A, B, BM, BP, BR, C, COI, E, EA, F, FHO, FT, G, GH, HBG, K, L, LD, LG, LISC, LISU, M, MO, NY, P, PRE, S, SRGH, U, UC, UPS, US, W, WAG, WU, YA, Z.

[^0]: T.S. petiole

 Vascular bundle bicollateral, circular, but flattened at the top.

[^1]: ${ }^{\mathrm{a}}=$ upper epdermis; ${ }^{\mathrm{b}}=$ lower epidermis; ${ }^{x}=$ upper epidermis, midrib; ${ }^{\mathrm{y}}=$ lower epidermis, midrib;
 ${ }^{2}=$ margin; ${ }^{1}=$ first row of palisade; ${ }^{2}=$ second row of palisade.

