Next Article in Journal
Phosphate-Solubilizing Capacity of Paecilomyces lilacinus PSF7 and Optimization Using Response Surface Methodology
Next Article in Special Issue
The Potential Use of Fungal Co-Culture Strategy for Discovery of New Secondary Metabolites
Previous Article in Journal
Association between Gut Microbiota and SARS-CoV-2 Infection and Vaccine Immunogenicity
Previous Article in Special Issue
Nematicidal Metabolites from the Actinomycete Micromonospora sp. WH06
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Sustainable Applications of Endophytic Bacteria and Their Physiological/Biochemical Roles on Medicinal and Herbal Plants: Review

by
Phumudzo Patrick Tshikhudo
1,*,
Khayalethu Ntushelo
2 and
Fhatuwani Nixwell Mudau
3
1
Department of Agriculture, Land Reform and Rural Development, Directorate Plant Health, Division Pest Risk Analysis, Arcadia, Pretoria 0001, South Africa
2
Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida 1710, South Africa
3
School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
*
Author to whom correspondence should be addressed.
Microorganisms 2023, 11(2), 453; https://doi.org/10.3390/microorganisms11020453
Submission received: 15 January 2023 / Revised: 2 February 2023 / Accepted: 6 February 2023 / Published: 10 February 2023
(This article belongs to the Special Issue Secondary Metabolism of Microorganisms 2.0)

Abstract

:
Bacterial endophytes reside within the tissues of living plant species without causing any harm or disease to their hosts. These endophytes can be isolated, identified, characterized, and used as biofertilizers. Moreover, bacterial endophytes increase the plants’ resistance against diseases, pests, and parasites, and are a promising source of pharmaceutically important bioactives. For instance, the production of antibiotics, auxins, biosurfactants, cytokinin’s, ethylene, enzymes, gibberellins, nitric oxide organic acids, osmolytes, and siderophores is accredited to the existence of various bacterial strains. Thus, this manuscript intends to review the sustainable applications of endophytic bacteria to promote the growth, development, and chemical integrity of medicinal and herbal plants, as well as their role in plant physiology. The study of the importance of bacterial endophytes in the suppression of diseases in medicinal and herbal plants is crucial and a promising area of future investigation.

1. Introduction

It is well known that users of endophytic bacteria employ comparable strategies to enhance plants growth. In addition, endophytic bacteria are more successful than rhizobacteria at reducing the negative impacts of environmental stressors on plants. They enter the plant tissue primarily through the roots and other natural openings in the plant. After entering the plant, bacterial endophytes may spread throughout the tissues of the host plant [1]. Medicinal and herbal plants have secondary metabolites which function as important drugs, flavor, fragrances, agrochemicals, dye, pigments, pesticides, and may play a key role in the adaptation of plants to their environment [2].
Bacterial endophytes of the genera Bacillus, Pantoea, Pseudomonas, Stenotrophomonas, and Serratia can produce phytohormones, such as auxin and gibberellin, as well as protease and hydrogen cyanide, and play a role in siderophore production, phosphate solubilization, and atmospheric nitrogen fixation [3]. Among other endophytes, Bacillus, Pseudomonas, Agrobacterium, and Flavobacterium species solubilize the inorganic phosphate compounds by phosphatases. Bacterial species of the genera Alcaligenes, Arthrobacter, Azotobacter, Bradyrhizobium, Chromobacterium, Enterobacter, Escherichia, Micrococcus, Streptomyces, Serratia, and Thiobacillus secrete organic acids to solubilize the insoluble phosphorus. Pseudomonas spp. and Bacillus spp. are known endophytes that are involved in siderophores production [4]. For example, secondary metabolites produced by endophytic bacterium Bacillus pumilus have a significant inhibitory effect against fungal species, such as Pythium aphanidermatum, Rhizoctonia solani, and Sclerotium rolfsii [5]. The leaf and stem of heart-leaved moonseed (Tinospora cordifolia (Thunb.) Miers) contain Bacillus, Aneurinibacillus, and Pseudomonas species [6]. Traditional medicine has long utilized T. cordifolia to treat several conditions including fever, jaundice, chronic diarrhea, cancer, dysentery, bone fractures, pain, asthma, skin diseases, deadly bug bites, and eye issues.
Nitrogen-fixing bacterial strains are linked with certain leguminous and non-leguminous species [7]. Species such as Gluconacetobacter diazotrophicus and Azorhizobium caulinodans can fix nitrogen [8]. Pseudomonas putida, Azospirillum brasilense, and Enterobacter cloacae enable plants to grow and survive under higher levels of polyaromatic hydrocarbons (PAHs) through phytoremediation [9]. Arthrobacter sp. and Bacillus sp. bacterial endophytes produce secondary metabolites for plants to adapt to abiotic stress [10]. Several studies have shown that endophytic bacteria play a beneficial role in plant growth. It is not yet clear which bacterial strains contribute more to the growth and development of medicinal plants. It is well-known that the density of endophytic bacteria within the plant tissues is less than that of found in the rooting zone [11]. Plant-growth-promoting (PGP) bacteria that fix nitrogen may be used as biofertilizers to improve plant growth [12]. Many of these bacteria also produce phytohormones [13]—for example, as the bacterial strain SCCPVE07—that improve the growth of coriander (Coriandrum sativum L.) grown under salinity stress [14]. The stem and leaves of coriander have antimicrobial and antibacterial qualities. Inoculated C. sativum showed higher levels of calcium, carbon, iron, and potassium contents. In this case, the levels of cinnamic acid, 4-methoxy-cinnamic acid hexoside, 5-O-caffeoylquinic acid, K-3-O-rutinoside, Q-3-O-rutinoside, Q-3-O-glucoside, and Q-3-O-glucuronide were significantly increased [15]. In addition, certain plant species are capable of accumulating heavy metals and soil contaminants in their tissues [16].
In this context, we aim to provide a review of the sustainable applications of endophytic bacteria and their physiological and biochemical processes on m medicinal and herbal plants to lay a foundation for future studies intended for the isolation, identification, and characterization of endophytic bacteria from the internal tissues of medicinal and herbal plants. Understanding these functions might lead to the development of new techniques in agricultural and biotechnological environments, specifically for the future cultivation and commercialization of indigenous medicinal and herbal plants.

2. Potentialities of Endophytic Bacteria

In this regard, this research thoroughly examines several bacterial endophytes and their potentialities on herbal plant species without inflicting any harm or disease to their hosts, drawing on a variety of sources in the literature. These endophytes can be isolated, recognized, and characterized in addition to being employed as biofertilizers to improve plant development and change the chemical makeup of the plant. Additionally, bacterial endophytes boost plants’ resilience to diseases, pests, and parasites and are a promising source of bioactives with the potential for use in pharmaceuticals (Figure 1). For instance, the existence of distinct bacterial strains is credited with the synthesis of antibiotics, auxins, biosurfactants, cytokinins, ethylene, enzymes, gibberellins, nitric oxide organic acids, osmolytes, and siderophores. In order to enhance the growth, development, and chemical integrity of medicinal and herbal plants, as well as their function in plant physiology, this manuscript reviews sustainable applications of endophytic bacteria. It is critical to examine the role of bacterial endophytes in the control of illnesses in medicinal and herbal plants—a promising avenue of future research.

2.1. Growth-Promoting through Nitrogen Fixation, Phosphate Solubilization and Anti-Pathogenic Capabilities

Endophytic bacteria have been increasingly associated with the ability to suppress a broad pool of plants diseases, with this ability being closely associated with the vegetative growth and chemical composition of the plant [17]. Different alkaloids contribute to plant defense through endophytes action, acting as growth-promoting compounds or having a key role in plants’ resistance to environmental stress. Amines and amides, very common metabolites from endophytes, present toxic activities against insects. Steroids, terpenoids, and diterpenes are also generated by endophytes [18] and are responsible of several activities such as plant-growth promotion and yield, suppression of pathogen-growth and colonization, contaminants remotion, phosphate solubilization, and nitrogen plant-assimilation [19]. These properties may be helpful in organic tea plantation [20,21].
Pseudomonas and Bacillus spp. were studied for their role against blister blight disease caused by Exobasidium vexans in tea plants [22]. Pseudomonas fluorescens, applied at 7-day intervals, reduced the disease incidence for two seasons to the same level as a fungicide and increased tea yield. Chemical analysis of the plant showed that there was induction of phenolics compounds and defense enzymes, such as peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, chitinase, and β-1,3-glucanase. Methylobacterium radiotolerans MAMP 4754 was isolated and identified from the seeds of the therapeutic plant Combretum erythrophyllum in order to explore the endophyte’s antibacterial and antioxidant properties [23]. Basil (Ocimum sanctum L.) plants have antimicrobial, immunomodulatory, antistress, anti-inflammatory, antipyretic, anti-asthmatic, hypoglycaemic, hypotensive, and analgesic properties [24,25].
Endophytes living within a healthy plant are a good source of antimicrobial agents, enzymes, and secondary metabolites [24]. For example, endophytic bacterial strains isolated from O. sanctum leaf tissues are antagonistic to pathogenic fungi, such as Alternaria solani, Fusarium solani, R. solani, S. rolfsii, and Colletotrichum lindemuthianum [26], and are therefore capable of promoting the O. sanctum growth. Interestingly, O. sactum treatment with these bacterial endophytes increased the content of plant essential oil, with this demonstrated influence of bacterial endophytes on O. sactum growth and oil content [26]. Bacterial endophytes inhibited six out of ten test microorganisms [24]. Among these, Salmonella typhi, which is a typhoid-causing bacterium, was significantly inhibited by 3 bacterial isolates (BTS 2, GTL 3, BTS 4), while 2 bacterial isolates (BTS 2, GTL 3) significantly inhibited Micrococcus luteus, an opportunistic pathogen. Medicinal species, such as seepweed (Suaeda nudiflora Thwaites), white-flowered black mangrove (Lumnitzera racemose Willd.), beach moonflower (Ipomoea tuba (Schltdl.) Colla), and mangrove (Avicennia alba Blume) have different levels of antimicrobial activities against M. luteus, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsella pneumonia, and Bacillus subtilis [27].
In China, Glycyrrhiza spp. are regarded as the most important herbs to treat blood disorders, cancer, and hepatitis, and these plant species are thought to improve the immune system while reducing chemotherapy-related side effects [28]. Glycyrrhiza spp. have antimicrobial activity [29]. Licorice (Glycyrrhiza glabra L.) is a perennial shrub that contains glabridin which is specifically derived from the plant’s roots [30]. G. glabra is used to manage ulcer and respiratory problems [31]. Licorice (Glycyrrhiza uralensis Fisch. ex DC) is a leguminous herb that is native to Asia [32], but it is now grown in many parts of the world [32]. The roots of G. uralensis produce a variety of terpenoids and flavonoids. Bacterial strains were isolated from the root nodules of G. uralensis and G. glabra to identify and classify them, as well as to determine their level of stress tolerance [30,32]. Based on 113 physiological and biochemical characteristics, the isolates were clustered into three groups. One bacterial isolate, which belongs to the genus Mesorhizobium, has a high tolerance to NaCl, pH, and high temperatures.
Nodulation tests demonstrated that this isolate also formed nitrogen-fixing nodules on other plants, namely sophora (Sophora viciifolia Hance), bird’s-foot trefoil (Lotus corniculatus L.), white clove (Trifolium repens L.), melilot (Melilotus suaveolens Ledeb.), and bitter licorice (Sophora alopecuroides L.). S. alopecuroides has been used as a traditional Chinese medicine to treat fever and diarrhea, among other diseases, as well as to inhibit cancer cell growth [33,34]. 16S rRNA and recA gene analyses revealed the presence of Agrobacterium tumefaciens, Mesorhizobium alhagi, Mesorhizobium gobiense, Mesorhizobium amorphae, Phyllobacterium trifolii, Rhizobium giardinii, Rhizobium indigoferae, Sinorhizobium fredii, and Sinorhizobium meliloti from the root nodules of S. alopecuroides in different regions of China’s Loess Plateau [35].
Ginger (Zingiber officinale Roscoe) is an important medicinal plant, producing aromatic rhizomes which are valuable both as spice and herbal medicine [36]. Ginger has been used as a traditional medicine in China and India for more than 25 centuries [37]. However, ginger wilt provoked by Ralstonia solanacearum is a severe disease which threatens the productivity of ginger in China. Ginger has anti-inflammatory, anti-emetic, and chemo-protective properties [38]. Bacterial strains were isolated from the plant surface as well as the stem, leaf, and root tissues of Z. officinale for their antimicrobial activity against R. solanacearum using amplified ribosomal DNA restriction analysis (ARDRA) fingerprint analysis [36]. It was also found that the isolated bacterial strains had the ability to produce certain enzymes and metabolites which exert a significant reduction in disease occurrence when the antagonists were applied.
Rooibos tea (Aspalathus linearis (Burm.f.) R.Dahlgren) is the source of commercialized rooibos tea, which is endemic in the mountains of the Western Cape province in South Africa [39]. Burkholderia tuberum was originally isolated from Aspalathus sp. (rooibos tea plant) nodules in South Africa [40]. Sequence analysis of the 16S rRNA showed that endophytic bacterial isolates were beta-rhizobia [39]. Rooibos tea contains no colorants, additives, or preservatives and is free of caffeine. Bush tea (Athrixia phylicoides DC.) is indigenous to Southern Africa. A. phylicoides is used for cleansing or purifying blood, treating boils, headaches, infected wounds, and cuts [41,42]. Vhavenda people believe bush tea has aphrodisiac properties [43]. Traditionally, Zulu people prefer bush tea decoction extracted from the root as a cough remedy and purgative [44], whereas the Sotho people use bush tea as a soothing wash for sore feet [45,46]. It is known that leaves of bush tea contain 5-hydroxy-6,7,8,3′,4′,5′-hexamethoxy flavon-3-ol [41,47], 3-O-demethyldigicitrin; 5,6,7,8,3′,4′-hexamethoxyflavone and quercetin [48], total polyphenols [41,48,49], tannins [49], and total antioxidants [50,51,52].
Echinacea spp. contain polysaccharides, glycoproteins, alkamides, volatile oils, and flavonoids [53]. The echinacea herb is used for the treatment of flu and colds [54]. Endophytic bacteria of the genera Acinetobacter, Bacillus, Pseudomonas, Wautersia (Ralstonia), and Stenotrophomonas were identified and characterized from the medicinal plant Echinacea spp. by means of 16S rRNA gene analyses and other microbiological tests such as thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). It was also discovered that the Pseudomonas stutzeri P3 strain produces the plant indole acetic acid [40]. In terms of antibiotic resistance, it was found that most endophytic bacterial isolates were resistant to the antibiotic kanamycin.
Bacillus, Brachybacterium, Kocuria, Leucobacter, Lysinibacillus, Mycobacterium, Paenibacillus, Pseudomonas, Providencia, Rhizobium, and Streptomyces have been isolated from Polygonum cuspidatum Sieb. et Zucc. and identified using 16S rDNA sequence. P. cuspidatum produces polydatin, a glycosylated derivative of resveratrol. These endophytic bacteria isolated from P. cuspidatum have inhibitory activity against Aspergillus niger, Aspergillus fumigatus, B. subtilis, Gibberella fujikuroi, K. pneumoniae, and S. aureus [55]. From the roots and leaves of Radish (Raphanus sativus L.) at Jinju, Korea, Proteobacteria, Bacillus, and Bacteroidetes spp. were isolated using phylogenetic analysis based on 16S rDNA sequences. B. subtilis exhibited amylase, cellulase, xylanase, mannase, PGAase, DNase, protease, and esterase and inhibitory action against plant pathogenic fungi [56]. In China, R. sativus is used to treat hypertension, chronic tracheitis, and constipation.
Extract of endophytes isolated from creat or green chiretta (Andrographis paniculata (Burm. f.) Wall. ex Nees) contains antibacterial activities against human pathogenic bacteria [57]. From internal tissues of the root and stem of Piper nigrum L., endophytic bacterial species such as Pseudomonas spp., Serratia spp., Bacillus spp., Arthrobacter spp., Micrococcus spp., and Curtobacterium sp. (1 strain) were isolated and identified based on 16S rDNA sequencing and found to be effective antagonistic endophytes for the biological control of Phytophthora capsici [58]. White Tree Peon (Paeonia ostia T. Hong and J.X.Zhang) is an important medicinal plant of China, and 56 endophytic bacterial strains were identified by 16S rDNA gene sequence analysis. These bacterial endophytes contain non-ribosomal peptide synthetase and putative polyketide synthase genes responsible for bioactivities [59].
Pseudomonas aeruginosa isolated from balloon flower (Platycodon grandiflorum (Jacq.) A. DC.) degraded 2,4-Dichlorophenoxyacetic acid which is responsible for antimicrobial activity against pathogenic fungus causing balloon flower root rot [60]. Endophytic bacteria isolated from the leaves of pennywort (Centella asiatica (L.) Urb.), B. subtilis BCA31, and P. fluorescens BCA08 reduced the growth rate and disease incidence of the causal agent of anthracnose Colletotrichum higginsianum [61]. The endophyte B. subtilis ALB629 isolated from cacao seedlings has antimicrobial properties against fungi Moniliophthora perniciosa and Colletotrichum gossypii. B. subtilis ALB629 promotes growth of both the aerial and roots of cacao seedlings [62]. 16S rRNA sequence analysis revealed Bacillus, Streptomyces, Pseudovibrio, and Pseudomonas species isolated from Rhizophora stylosa. These isolates had antimicrobial activity against E. coli ATCC 25922, P. aeruginosa ATCC 25923, B. subtilis ATCC 27212, S. aureus ATCC 12,222, and C. albicans ATCC 7754 [63].
Dendrobium spp. are medicinal plants containing properties with anti-cancer, anti-fatigue, gastric ulcer protective effects, etc. Of all the bacterial endophytes isolated from stems of Dendrobium spp. plants, Bacillus megaterium exhibited the highest antimicrobial effects [64]. Acinetobacter guillouiae, B. cereus, Burkholderia tropica, Novosphingobium sp., Pseudomonas moraviensis, Pseudomonas sp., Rahnella aquatilis, and Raoultella ornithinolytica, were isolated from the Cape coast lily (Crinum macowanii Baker) bulbs and showed potential for possible drug lead against common pathogenic bacteria [65]. Traditional uses of C. macowanii include treating boils, diarrhea, fever, inflammation, respiratory issues, skin rashes, tuberculosis, wounds, and urinary tract issues. Bacterial isolates FjR1 and FjF2 from the Indian coffee plum (Flacourtia jangomas (Lour.) Raeusch.) displayed potential antimicrobial activity against pathogenic bacteria [66]. The longevity spinach (Gynura procumbens DC.) is a medicinal plant species for treatment of cancer, constipation, fever, kidney diseases, rheumatism, rashes, headache, and viral skin diseases [67,68]. The leaves of G. procumbens contain anti-herpes simplex virus, antihyperglycemic, anti-inflammatory, antihyperlipidemic, anti-allergy agent, and antihypertensive properties [68]. Apart from its antihypertensive, glucose-lowering, and anti-inflammatory properties, it is also a source of proteins and peroxidase [69]. G. procumbens leaves contain essential oil, flavonoids, miraculin, polyphenols, peroxidase, thaumatin-like proteins, terpenoids, and unsaturated sterols. The screening of endophytic bacteria for the plant growth regulators such as cytokinin were needed as means to explore if these endophytic bacteria can be applied in agriculture [67]. Acenitobacter calcoaceticus, Paenibacillus polymaxa, and Psuedomonas resinovorans were isolated from G. procumbens leaves collected in Malaysia [68]. It was also found that broth extracts from P. resinovorans and P. polymaxa contain cytokinin-like compounds [68].
Acetone extract from kauri booti (Ajuga bracteosa Wall ex Benth.) has antibacterial activity against E. coli [70]. This plant contains phytochemicals which have anti-inflammatory, astringent, diuretic, and depurative properties, and can be used to treat agues, menorrhea, bronchitis, diarrhea, fever, gout, jaundice, pneumonia, palsy, and rheumatism [71]. The leaves, bark, stem, and roots of A. bracteosa have medicinal properties, can be used as an astringent against hypoglycaemic and gastrointestinal disorders, and have anthelmintic, diuretic, antifungal, anti-inflammatory, and antimycobacterial compounds [71]. Bacterial species were isolated and screened for PGP and biotechnological potential associated with A. bracteosa, with most isolates belonged to Proteobacteria and Pseudomonas [70,71]. These isolates exhibited PGP through production of siderophores and indole acetic acid. They are also capable of phosphate solubilization through production of hydrolytic enzymes such as amylase, cellulose, chitinase, lipase, pectinase, phosphatase, and protease [71].
The biological compounds produced by endophytic bacteria play a pivotal role in the protection of medicinal and herbal plants against pests and pathogens (Table 1). Living plants are a good source for bacterial endophytes which can be isolated for more efficient production of antimicrobial compounds with pharmacological importance. In turn, medicinal plants could also benefit in terms of growth promotion with less application of inputs such as fertilizers, fungicides, insecticides, or herbicides.

2.2. Growth-Promoting Bacteria on Medicinal and Herbal Plants

Sixty-one bacteria were identified and comparatively characterized from the root nodules of Medicago, Melilotus Onobrychis, Oxytropis, and Vicia species grown in the Loess Plateau and Qinghai-Tibet Plateau [100]. Vicia sativa has been used as a traditional medicine to treat asthma, bronchitis, skin infections, and urinary diseases, and it also has anti-poison, antiseptic, aphrodisiac, antipyretic, and antirheumatic properties [101]. Oxytropis spp. contain flavonoids, alkaloids, and saponins which have medicinal properties [102]. Apigenin, caffeic acid, gallic acid, pyrogallol, salicylic acid, naringenin, quercetin, myricetin, and daidzein are major secondary metabolites in the extract of the alfalfa (Medicago sativa L.) leaves [103]. Melilotus spp. are native to the Mediterranean area [104]; their herbs have aromatic, emollient, and carminative properties [105]. Onobrychis genus is an important legume with over 150 species [106]. Among the bacterial isolates are Rhizobium leguminosarum, S. meliloti, and S. fredii; the rest belong to Mesorhizobium, Phyllobacterium, and Stenotrophomonas. Species of R. leguminosarum was isolated from Oxytropis spp. and medick or burclover (Medicago archiducis-nicolai Širj.), while S. fredii was isolated from the black medick (Medicago lupulina L.) grown in the Qinghai-Tibet Plateau. These strains were also found to be resistant to high alkalinity and a high concentration of NaCl [100]. V. sativa contains significant activity against pathogenic bacterial species such as Bacillus atrophaeus, E. coli, S. aureus, and Staphylococcus epidermidis [101]. Medicago spp. are used to treat eczema, anemia, constipation, body odor, infections, burns, athlete’s foot, cancer, arthritis, intestinal ulcers, gastritis, liver diseases, bleeding gums, and high blood pressure.
The hyacinth bean (Lablab purpureus (L.)) serves as a herbal medicine in China for the treatment of internal heat fever. The leaves and fruits of L. purpureus contain sterols and fatty acids such as palmitic, palmitoleic, linoleic, and linolenic acids [104,107,108]. Pyridine alkaloids, trigonelline, and sterols have been isolated from tissue cultures of seeds, stems, and leaves. To study the diverse rhizobia associated with this plant, Bradyrhizobium, Rhizobium, Ensifer, and Mesorhizobium species were isolated from southern China [104].
Based on 16S rDNA analysis, the bacteria isolated belonged to Aeromonas, Bacteroides. Cytophaga, Flexibacter, Ilyobacter, Pelomonas, Proteobacteria, Pseudomonas, Rhodoferax, Rhizobium, Sulfurospirillum, and Uliginosibacterium. These endophytic bacteria have the capacities of fixing nitrogen and removal of contaminants from the water body through phytoremediation by degrading catechol, cyanide, methane, methanol, methylated amines, oxochlorate, urea, and 2,4-Dichlorophenoxyacetic acid [109]. Although this area of study will not form part of our investigation, we may opportunistically assess the possibility of environmental remediation by bacteria when we survey natural populations of A. phylicoides.
Caragana spp. are leguminous plants containing more than 80 species worldwide [110]. The roots, flowers, shoots, barks, and seeds are useful plant parts applied as herbal medicine [111] for the treatment of cancer of gynecological problems [112]. Species of the genus Caragana are resistant to extreme temperatures and have nitrogen-fixing abilities [110]. Agrobacterium, Mesorhizobium, Rhizobium, Bradyrhizobium, and Phyllobacterium species are associated with Caragana species grown in China [110].
Bacterial species belonging to Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria phyla are salinity tolerant nitrogen-fixing endophytic bacteria isolated from roots of the halophyte Suaeda sp. obtained in Iran and are capable of growth–promotion the halophyte sea-blite (Suaeda maritima (L.) Dumort.) [113]. Nitrogen-fixing bacteria of Brachybacterium saurashtrense sp. nov., Zhihengliuella sp., Brevibacterium casei, Haererehalobacter sp., Halomonas sp., Vibrio sp., Cronobacter sakazakii, Pseudomonas spp., Rhizobium radiobacter, and Mesorhizobium sp. were isolated and identified from roots of halophytic pickleweed (Salicornia brachiatas Miq.) using analysis of 16S rRNA genes. It has been revealed that isolated endophytic bacteria from S. brachiatas is capable of growth promotion based on production of indole acetic acid production, phosphate solubilization, and 1- aminocyclopropane-1-carboxylic acid deaminase [114].
Using 16 S rDNA, it was discovered that the root nodules of Mimosa patida contains Burkholderia spp. that secretes phytohormone, aminocyclopropane-1-carboxylic acid deaminase, and solubilizes phosphate and has antimicrobial activity against phytopathogens [115]. Azotobacter beijerinckii, Azotobacter chroococcum, Azospirillum lipoferum, and Azotobacter vinelandii isolated from the roots of medicinal aloe (Aloe vera (L.) Burm.f.) and devil’s trumpet (Datura metel L.) fix nitrogen. These isolates also secrete glucose, sucrose, lactose, maltose, rhamnose, xylose, and mannitol. The production of indole acetic acid by A. beijerinckii, A. chroococcum, and A. vinelandii stimulated the growth of A. vera and D. metel [116].
The root nodules of sulla (Hedysarum carnosum L.), clover bord (Hedysarum spinosissimum L.), and Hedysarum pallidum Desf., sampled from various localities in Algeria, were isolated based on the ARDRA, Random Amplified Polymorphic DNA (RAPD) fingerprinting, and 16S rDNA have, E. cloacae, Enterobacter kobei, Escherichia vulneris, Leclercia adecarboxylata, Pantoea agglomerans and Pseudomonas sp. [117]. Rhizobium tropici isolated had nitrogen-fixing symbioses with Medicago ruthenica [118]. Both the isolation and characterization of Rhizobium, Sinorhizobium, Mesorhizobium, and Bradyrhizobium species from Acacia, Anthyllis, Argyrolobium, Astragalus, Calycotome, Coronilla, Ebenus, Genista, Hedysarum, Hippocrepis, Lathyrus, Lotus, Medicago, and Ononis species from southern Sudan were based on comparative 16S ARDRA using seven enzymes, total cell protein sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis, and 16S rDNA sequencing [119].
Rhizobium huautlense, a nitrogen-fixing rhizobial symbionts of bigpod sesbania (Sesbania herbacea (Mill.) McVaugh), sampled at Sierra de Huautla, Mexico, was isolated and identified using PCR-RFLP analysis. The electrophoretic alloenzyme types (Ets) were also identified [120]. R. indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov from root nodules of Indigofera spp. and Kummerowia spp.; R. loessense sp. nov from the root nodules of Astragalus and Lespedeza spp; and R. sullae sp. nov were described as the nitrogen-fixing bacterial symbionts [121,122,123]. The multi-locus enzyme electrophoresis (MLEE) and 16S rRNA gene sequence analysis revealed two nitrogen fixing bacterial species of Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov. from the root nodules of Acacia rutico and Prosopis chilensis sampled in Sudan and Kenya [124].
Sinorhizobium morelense sp. nov. isolated from root nodules of jumbay (Leucaena leucocephala (Lam.) de Wit) has been found to be resistant to carbenicillin, kanamycin, and erythromycin [125]. This medicinal plant is frequently used to treat diabetes. It is also used to treat stomach ailments, assist abortion, and promote contraction. The revealed Allorhizobium undicola sp. nov. solated from the water mimosa or sensitive Neptunia (Neptunia natans (Girard) Kuntze) based on the 16S rRNA gene sequencing has nitrogen-fixing ability [126]. This medicinal plant has pharmacological qualities that include antifungal, antiemetic, astringent, anthelmintic, antidysentery, diuretic, anti-inflammatory, antioxidant, hypercholesterolemia, antipyretic, and antiemetic properties.
From nodules of False Indigo (Amorpha fruticose L.), M. amorphae sp. nov was characterized based on the RFLP of PCR-amplified 16S rRNA genes, MLEE, DNA–DNA hybridization, 16S rRNA gene sequencing, electrophoretic plasmid profiles, cross-nodulation, and a phenotypic study [127]. A. fruticose is used to treat dermatitis, carbuncles, and burns in traditional Chinese medicine. DNA–DNA hybridizations were conducted to identify Mesorhizobium spp. from the sample from the white carob tree (Prosopis alba Griseb.) root nodules grown in Argentina [128]. R. tropici were found to be root modulating bacteria of N. natans from India [129]. Prosopis plants have a variety of bioactive qualities, including antioxidant, anti-inflammatory, anti-cancer, and anti-diabetic properties.
A new species name for a root-forming nodule bacterial isolate, Devosia neptuniae sp. nov., which was previously classified as A. undicola, was suggested to neptunium-modulating rhizobia isolated from India. This bacterial species can form a bonafide dinitrogen-fixing root-nodule symbiosis with other legume plants [130].
Root-nodule isolates of Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhizobium spp. from Lespedeza spp., collected from China and the USA, were isolated and characterized using SDS-PAGE analysis of whole-cell proteins, DNA–DNA hybridization, and 16S rRNA gene sequence analysis [131]. Ralstonia taiwanensis sp. nov. was isolated from Mimosa spp. and is the capable of root nodule formation and nitrogen fixation [132].
The endophytic bacterial isolates from H. carnosum, H. spinosissimum subsp. capitatum, and H. pallidum grown in Algeria were identified as P. agglomerans, E. kobei, E. cloacae, L. adecarboxylata, E. vulneris, and Pseudomonas sp. by means of ARDRA using the enzyme Cfo I, RAPD fingerprinting and sequencing of 16S rDNA. This was the first report confirming that Gammaproteobacteria is associated with H. carnosum, H. spinosissimum subsp. Capitatum, and H. pallidu [117]. The diversity of endophytic bacteria from the root of Angelica sinensis in Angelica in the Gansu province revealed that certain endophytic bacterial strains may have come from the rooting zone [133].
Among the endophytic bacteria isolated from the red clover (Trifolium pratense L.), P. agglomerans (59.6%) was mostly detected in foliage tissues, Agrobacterium rhizogenes A in the tap root (49.2%), and R. leguminosarum BV phaseoli and R. loti B in the nodules (27.2% each) [134]. In addition, T. pratense has been used medicinally to treat a number of illnesses, such as eczema and psoriasis, cancer, whooping cough, respiratory issues, and skin inflammations. B. megaterium, Bordetella avium, Curtobacterium luteum, and R. leguminosarum BV trifolii promoted the growth of T. pratense. Nodulation of red clover seedlings became evident because of co-inoculation of R. leguminosarum BV trifolii with Bacillus insolitus, B. brevis, or A. rhizogenes A [134]. Crop rotations of T. pratense and potato (Solanum tuberosum L.) have specific associations with bacterial endophytes. Of all the growth-promoting bacterial strains isolated from these plants, 63% enhanced shoot height, 66% enhanced shoot wet weight, and 55% enhanced root wet weight [135]. It has been claimed that potatoes offer a multitude of medicinal properties, including antioxidant, anticancer, antiallergy, antibacterial, anti-inflammatory, anti-obesity, and anti-ulcer action. A total of 200 bacterial isolates from the berseem clover (Trifolium alexandrinum L.) possess plant growth promoting traits. Production of indole acetic acid by the endophytic bacteria stimulated the plant development of rice plant [136]. Because of their expectorant, analgesic, and antibacterial qualities, Trifolium spp. are also used to treat rheumatic pains. Co-inoculation of T. repens with Rhizobium strains CHB1120 and CHB1121, Bacillus aryabhattai strain Sb, and A. vinelandii strain G31 promotes the nitrogen fixation and nutrient uptake of white clover in a P-deficient soil [137].
Nitrogen-fixing bacteria can form endophytic colonies in various medicinal and herbal plants. These beneficial bacteria fix nitrogen from the atmosphere to enhance the length and biomass of medicinal and herbal plants. Nitrogen-fixing endophytic bacteria may be useful for the sustainable production of medicinal and herbal plants, specifically in saline-based environments. Nitrogen-fixing bacteria are currently being introduced as biofertilizers.
Native phosphate-solubilizing endophytic bacteria, including those from rhizospheres, improve the growth of herbal and medicinal plants. Various leaf structural and chemical characteristics were assessed as possible predictors of the size of the phyllosphere bacterial population associated with plant species such as strawberry tree (Arbutus unedo L. 1753), lesser calamint (Calamintha nepeta (L.) Kuntze), rockrose (Cistus × incanus L.), lavender (Lavandula stoechas L.), lemon balm (Melissa officinalis L.), common myrtle (Myrtus communis L.), lentisk or mastic (Pistacia lentiscus L.), and kermes oak (Quercus coccifera L.) [57]. A. unedo contain polyphenols, which are reported to manage cancer risk, coronary heart disease, and other degenerative diseases [58]. Quercus spp. have been used as traditional medicinal plants and are antiseptic and hemostatic for the treatment of diarrhea and hemorrhoids [59]. Certain species of the genus Quercus contain antimicrobial, anti-inflammatory, gastroprotective, antioxidant, cytotoxic, and antitumor properties [59]. The extract of the different parts of P. lentiscus has antiatherogenic, anti-inflammatory, antioxidant, antimicrobial, hypotensive, anticancer, anti-arthritis, antigout, anti-asthmatic, and anthelmintic activities [60]. M. communis is used for various ailments such as diarrhea, dysentery, gastric ulcers, hemorrhages, leucorrhea, rheumatism, sinuses, and vomiting [61]. Lavender oils are derived from the true lavender (Lavandula angustifolia Mill.), Spanish lavender (Lavandula stoechas L.), broadleaved lavender (Lavandula latifolia Medik.) and lavender (Lavandula × intermedia ‘Grosso’) [62], which have antimicrobial, anti-inflammatory, hypnotic, and anxiolytic properties [63]. C. × incanus contains phenolic substances together with an associated strong antioxidant activity [64]. C. nepeta is aromatic, diaphoretic, expectorant, febrifuge, and stomachic [65]. M. officinalis possesses antioxidants such as caffeic and rosmarinic acids [66]. M. officinalis also contains antibacterial and antiviral properties. The role of the P-solubilizing bacterium Enterobacter ludwigii in the growth promotion and P content of barley (Hordeum vulgare L.) was investigated [138].
The study revealed beneficial effects on the dry weight, P assimilation, and barley yield in E. ludwigii-inoculated plants [138]. C. nepeta, M. communis, M. officinalis, and L. stoechas produce essential oils Interestingly, aromatic plants are more colonized than the other species, whereas the non-woody perennials are more highly colonized than the water pepper (Polygonum hydropiper (L.) Delabre 1800) is regarded as a P-accumulating herb used for P-phytoextraction, with higher P-accumulating capability in the mining ecotype compared to the non-mining ecotype [139]. In traditional medical systems, water pepper is used as an astringent, sedative, antiseptic, and to treat respiratory problems, edema, and snake bites.
Tea plant (Camellia sinensis (L.) Kuntze) is used in one of the most important beverages; the plant contains about 4000 bioactive compounds, of which 1/3 is contributed by polyphenols alone [140]. The phytochemical screening of green tea showed the presence of alkaloids, saponins, tannins, catechin, and polyphenols [56,141], which are quality parameters of tea. A study was conducted to examine the diversity of cultivable P-solubilizing bacteria in C. sinensis [142]. Over 900 rhizoplane bacteria were randomly selected and were identified using fatty acid methyl ester (FAME) analysis and isolates belonging to Bacillus (34.6%), Pseudomonas (8.9%), Stenotrophomonas (6.1%), Paenibacillus (5.9%), and Arthrobacter (4.8%) were identified [2]. The leaf of C. sinensis showed antimicrobial properties against S. aureus, Vibrio cholerae, C. jejuni, S. epidermidis, V. mimicus, L. monocytogenes, E. coli, S. typhi, P. aeruginosa, H. pylori, and P. acnes, among others [143,144,145,146,147,148,149,150,151,152]. Proteobacteria and Sphingobacteria spp. possess plant growth promoting attributes such as indole acetic acid, aminocyclopropane-1-carboxylic acid deaminase production, and P and K-solubilization [153].
Aloe (Aloe barbadensis Mill.) is an important medicinal plant with applications in pharmaceutical, food, and cosmetic industries and is used for flavoring liquid formulations [154]. A. barbadensis contains phenolic compounds such as aloin-A (barbaloin), aloesin, soaloeresin D, and aloeresin E used in the treatment of tumors, diabetes, ulcers, and cancer [155]. Burkholderia gladioli, Enterobacter hormaechei, Pseudomonas synxantha, and S. marcescens isolated from A. barbadensis are capable of solubilizing phosphate into liquid phase [154]. From Brassica juncea (L). Czern and Coss var. Pusa Bold (DIR-50), a Ni-tolerant B. subtilis strain SJ-101 was isolated and identified. It was found that the strain SJ-101 produced indole acetic acid and solubilized inorganic phosphate [55]. Endophytic bacteria isolate from P. hydropiper contains plant growth promotion traits including indole acetic acid, siderophores, and phosphate-solubilization among others [156]. Endophytic bacterial strains isolated from the tissues of livening thyme (Thymus vulgaris L.) exhibited some plant growth-promoting activities such as auxin synthesis, diazotrophic, P-solubilization, siderophore production, and production of lytic enzymes (i.e., chitinase, cellulase, protease, and lipase) under in vitro conditions [157]. T. vulgaris has been used for treating chest congestion and promoting salivation since ancient times. The fresh leaves are also consumed to soothe sore throats.
Endophytic bacteria are capable of solubilizing inorganic phosphate in a solid medium, thereby increasing its availability to living medicinal and herbal plants (Table 2). Phytochemicals released by endophytic bacteria promote the sustainable production of medicinal and herbal plants resulting from improved fertility of the soil, and hence increase medicinal and herbal plant production.

2.3. Endophytic Bacterial Species Responsible for Phytomediation on Medicinal/Herbal Plants

Due to a variety of industrial activities as well as natural processes, the accumulation of heavy metals in soil has rapidly grown. Endophytic bacteria can be isolated from leaves, stems, and roots of plants grown in contaminated soil. Many endophytes are capable of degrading organic contaminants and heavy metals, and can therefore be used for phytoremediation on contaminated soils [175]. The mobility and bioavailability of heavy metals in the soil influence phytoextraction and phytostabilization [16,155]. Plant tolerance to the contamination is crucial for successful phytoremediation [176]. Decontamination may be accelerated with appropriate microorganisms’ inoculation that is able to break down pollutants and compete with indigenous microorganisms.
Yellowtop (Alyssum murale Waldst. and amp; Kit.) is regarded as a metal hyperaccumulator plant and is able to solubilize Ni. A. murale has been used in combination with other medicinal plants for gynecological disorders. It has also been found that Microbacterium oxydans AY509223 increased Ni uptake of A. murale [177]. NBRI K28 Enterobacter sp. also has aminocyclopropane-1-carboxylic acid deaminase activity and increased the growth of the brown mustard (Brassica juncea (L.) Czern.) plants. NBRI K28 Enterobacter sp. enhanced phytoextraction of metals of Ni, Zn, and Cr accumulated by B. juncea [178,179]. P. putida strain PS9, isolated from the turnip (Brassica campestris L.), solubilized phosphate and produced significant amount of salicylic acid, 2,3-dihydroxy benzoic acid, and indole acetic acid [180]. Antioxidant, antibacterial, and anticancer properties are present in Brassica spp.
A considerable number of bacterial strains have been isolated from heavy metal-polluted soil in Nanjing, China, which promoted plant growth and cadmium uptake in rape [Brassica napus L.) [181]. Some of these bacterial isolates had the potential to solubilize cadmium carbonate in solution culture. It has been also confirmed that these cadmium-resistant isolates exhibit the presence of indole acetic acid. These bacterial isolates colonized and developed in B. napus after root inoculation [181]. P. fluorescens G10 and Microbacterium sp. G16 were isolated and identified by means of 16S rDNA gene sequence analysis from the roots of B. napus grown in Pb-contaminated soils. There was significant increase in root elongation of inoculated B. napus seedlings. Endophytic bacterium JN6 isolated from roots of the drooping knotweed (Polygonum pubescens Blume) was identified as Rahnella sp. This showed very high Cd, Pb, and Zn tolerance and effectively solubilized CdCO3, PbCO3, and Zn3(PO4)2 in culture solution [10]. Microbacterium sp. G16 produced indole acetic acid, siderophores, and 1-amino cyclopropane-1-carboxylate deaminase [181]. It has been demonstrated that P. pubescens works well as a traditional Chinese medicine. The Proteobacteria, Actinobacteria, and Bacteroidetes Chloropid isolated from the goat willow (Salix caprea L.) were resistant to Zn/Cd as they produced aminocyclopropane-1-carboxylic acid deaminase, indole acetic acid, and siderophores [182]. The leaves S. caprea are made into a decoction which is used to cure fevers. The isolated Bradyrhizobium sp. (vigna) RM8 from nodules of V. radiata sampled from nickel and zinc in India promoted the growth of the host plant [183]. This was evidently shown by the increase in nodule numbers, leghaemoglobin, seed yield, grain protein, root N, and shoots.
Using HPLC analysis, Enterobacter sp. was isolated from the long-stamen onion (Allium macrostemon Bunge) plants grown in polycyclic aromatic hydrocarbon-contaminated soils [184]. This bacterial species also promoted the growth of wheat and maize and removed pyrene from pyrene-amended soil in pot experiments. Enterobacter sp. produced indole acetic acid, siderophore, and solubilize inorganic phosphate. A. macrostemon has historically been used to alleviate thoracic pain, stenocardia, heart asthma, and diarrhea. Bacillus sp., isolated from the roots of venboksal (Alnus firma Siebold and Zucc.) using 16S rRNA sequence analysis, demonstrated the capacity to produce siderophores and indole acetic acid. There was increased root elongation of inoculated B. napus seedlings [185]. The isolates facilitated the capability of reducing heavy metal phytotoxicity and increasing Pb accumulation in A. firma. Alnus spp. are well recognized for their traditional medical uses, which include treating conditions including cancer, hepatitis, uterine cancer, rheumatism, and dysentery, as well as causing stomachaches, diarrhea, and fever. The bacterial population associated with T. caerulescens subsp. calaminare sampled had Zn and Cd capabilities due to the increased availability of the metals in soils near the roots [186]. Based on 16S rRNA sequence analysis, Methylobacterium spp., Rhodococcus spp., and Okibacterium spp. were isolated from the pennycress (Thlaspi goesingense Halácsy) accumulated Ni in ultramafic soils. These isolates produced 1-amino cyclopropane-1-carboxylic acid deaminase and siderophore [187]. Four groups of heavy metal-resistant bacterial such as Actinobacteria, Proteobacteria, Bacteroidetes, and Firmicutes were isolated from the roots, stems, and leaves of black nightshade (Solanum nigrum L.) [188]. These isolates were re-inoculated into S. nigrum under Cd stress which resulted in Cd phytotoxicity decrease. S. nigrum has historically been used to treat bacterial infections, coughs, and indigestion. An endophytic bacteria Serratia sp. RSC-14 isolated from the roots of S. nigrum displayed phosphate solubilization and produced indole acetic acid [189].
Endophytic bacteria associated with the roots, stems, and leaves of Alyssum bertolonii Desv. sampled from central Italy influenced plant growth [190]. These endophytic bacteria also shown potential for nickel-hyperaccumulation There was significant increase in biomass and metal accumulation. Cupriavidus taiwanensis TJ208 isolated from the bashful (Mimosa pudica L.) removed Pb, Cu, and Cd from polluted soils [191]. Since ancient times, M. pudica has been administered topically to heal wounds as well as urogenital disorders, piles, dysentery, and sinuses. Bacillus thuringiensis GDB-1 enhanced growth of A. firma, through production of aminocyclopropane-1-carboxylic acid deaminase activity, indole acetic acid, and siderophores; as well as P solubilization. B. thuringiensis GDB-1 also accumulated As, Cu, Pb, Ni, and Zn in seedlings of A. firma [192]. Zn-tolerant bacterial strains such as B. subtilis, B. cereus, Flavobacterium sp., and P. aeruginosa, isolated from the Chinese violet cress (Orychophragmus violaceus (L.)), significantly increased the shoot biomass and Zn accumulation in O. violaceus [3]. On the other hand, B. subtilis, B. cereus, B. megaterium, and P. aeruginosa isolated from O. violaceus significantly enhanced growth plant and Cd accumulation [193]. O. violaceus oil can be used to make a variety of cosmetic products for the care of the skin, hair, and lips, as well as to make external preparations for the treatment of burns. The diversity of endophytic bacteria associated with the root, stem, and leaf of Poplus sp. enhanced phytoremediation on localities contaminated with BTEX compounds [194].
From S. nigrum grown in metal-polluted soil, Acinetobacter sp. LSE06, Enterobacter aerogenes LRE17, Enterobacter sp. LSE04, and Serratia nematodiphila LRE07 isolates possesses aminocyclopropane-1-carboxylic acid deaminase, indole acetic acid, siderophores, and P solubilizing activity. Acinetobacter sp., E. aerogenes, Enterobacter sp., and S. nematodiphila significantly increased Cd extraction from the soils [195]. From a pot experiment Pseudomonas sp. Lk9 isolated from S. nigrum produces biosurfactants, siderophores, and organic acids [196]. Serratia sp. isolated from S. nigrum was resistant to the toxic effects of heavy metals through the production of indole acetic acid, siderophore, and solubilized mineral phosphate [197]. Species of Microbacterium, Arthrobacter, Agreia, Bacillus, Sthenotrophomonas, Kocuria, and Variovorax isolated from the roots of Noccaea caerulescens displayed significant increases in shoot biomass, root length, and root-to-shoot Ni translocation [198]. B. pumilus E2S2 isolated from the stonecrop (Sedum plumbizincicola X.H.Guo and S.B.Zhou ex L.H.Wu) improved its phytoextraction capacity [199]. Common stonecrop is used by people for a variety of things, including coughing, high blood pressure, and wound healing. Endophytic bacterial species isolated from the Chinese brake (Pteris vitata L.) and the spider brake (Pteris multifida Poir.) improved arsenic tolerance and speciation in plants [200]. Pteris spp.’s bioactive potential includes some cytotoxic, anticancer, antiproliferative, neuroprotective, wound-healing, antibacterial, antiviral, hepatoprotective, leishmanicidal, trypanocidal, antinociceptive, anti-inflammatory, immunomodulatory, and chemopreventive properties.
Root-colonizing beneficial bacteria can improve plant growth through resistance to biotic and abiotic stresses. Drought is an environmental condition affecting the productivity of medicinal plants globally. PGP rhizobacteria produce secondary metabolites that could relief drought stress in plants [201]. Pseudomonas pseudoalcaligenes and B. pumilus have a significant ability to withstand adverse effects caused by saline stress [202].
In vitro inoculation of grapevine (Vitis vinifera L.) explants with Burkholderia phytofirmans increased grapevine growth and physiological activity at a low temperature [203]. Root zone bacterial species such as Arthrobacter, Azotobacter, Azospirillum, Bacillus, Enterobacter, Pseudomonas, Serratia, and Streptomyces produce compounds that benefit living plants through abiotic stress relief [204]. Streptomyces coelicolor, S. geysiriensis, and S. olivaceus are drought tolerant plants grown in arid and drought-affected regions [205]. It has been established that proanthocyanidin-rich V. vinifera seed extract protects against a wide range of illnesses, including infections, cancer, diabetes, hypertension, peptic ulcers, and cardiovascular disease. These endophytic actinobacteria produce phytohormones, contain PGP traits, and have the water-stress tolerance potential to promote growth plants grown in stressed environments. P. fluorescens and B. subtilis isolated from V. radiata produce water-stress-related proteins and enzymes [206]. B. saurashtrense and Pseudomonas sp. isolated from Salicornia brachiate significantly increased the host’s growth under salt stress conditions [55]. Methylobacterium sp. (strain BJ001) isolated from Populus deltoides × nigra DN34 degraded 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine (HMX) [56,158]. Rheumatism, arthritis, lower back pains, urinary complaints, digestive and liver problems, debility, anorexia, fevers, and menstrual cramp discomfort are all traditionally treated with Populus spp. [207]. Bacillus, Pseudomonas, Klebsiella, Serratia, Arthrobacter, Streptomyces, Isoptericola, and Microbacterium species isolated from the leaves, stems and roots of sea lavender (Limonium sinense (Girard) Kuntze) produced Aminocyclopropane-1-carboxylic acid deaminase and indole acetic acid. They are also capable of N2-fixation and phosphate-solubilization [57]. Limonium species have antibacterial, antioxidant, free radical-scavenging, and antiviral properties.
A. linearis and Cyclopia spp. are South African indigenous herbal leguminous species grown in acidic soils. Among the rhizobial isolates from root nodules of A. 24spalathus and Cyclopia spp., bacterial species of genera Rhizobium, Burkholderia, Mesorhizobium, and Bradyrhizobium produce bioactive compounds that affect the growth of leguminous plants [58].
A heavy-metal-resistant strain of Bacillus edaphicus NBT was evaluated on B. juncea for its plant growth promotion. B. edaphicus NBT produced indole acetic acid, siderophores, and aminocyclopropane-1-carboxylic acid deaminase. There was also an increase in Pb uptake by B. juncea inoculated with B. edaphicus NBT [208]. In pot experiments, 16S rDNA sequencing identified E. aerogenes and R. aquatilis isolated from B. juncea. These isolates stimulated the growth of B. juncea exposed to environments contaminated with Ni and Cr [209]. These bacteria also produced siderophores, aminocyclopropane-1-carboxylic acid deaminase, indole acetic acid, and phosphate solubilization [209]. B. pumilus (STR2) and Exiguobacterium oxidotolerans (STR36) promoted the growth of the water hyssop (Bacopa monnieri (L.) Pennell) grown in salt-stressed soils, enhanced proline levels and decreased lipid peroxidation [76]. Traditional medicine from B. monnieri may improve cognitive performance, cure ADHD symptoms, and lessen stress and anxiety.
The jute mallow or nalta jute (Corchorus olitorius L.) inoculated with P. extremorientalis TSAU6, indole acetic acid, and gibberellic acid exhibited a significant increase in root length, shoot length, and fresh weight, indicating that plant growth regulators such as auxins and gibberellins play an important role in plant salinity tolerance [59]. C. olitorius is a leafy vegetable that is frequently used in soup recipes and traditional medicine to treat tumors, chronic cystitis, and fever. B. megaterium MTCC446 isolated from gale of the wind (Phyllanthus amarus Schumach. and Thonn.) promoted a higher vigor index, germination (%), plant biomass, P content, plant phenolic content, radical scavenging, and antioxidant activity [60]. P. amarus is frequently used in African traditional medicine to treat a variety of illnesses, including kidney stones, dysentery, jaundice, diarrhea, and urogenital problems.
Under the pot experiment, Achromobacter xylosoxidans isolated from the bright eyes (Catharanthus roseus (L.) G. Don) exposed to saline soils in Tamilnadu, India, produced aminocyclopropane-1-carboxylic acid deaminase [210]. C. roseus is a significant medicinal plant that is found around the world. It contains a variety of phytochemicals that have biological effects (antioxidant, antibacterial, antifungal, and anticancer). Under drought conditions, the ringed lavender (Lavandula dentata L.) isolates of B. thuringiensis increased plant growth and nutrition. B. thuringiensis produced indole acetic acid and aminocyclopropane-1-carboxylic acid deaminase and solubilized P, demonstrating its capacity to enhance plant growth under stress conditions [102]. In traditional medicine, L. dentata has been used to cure rheumatism, headaches, colds, and the flu.
Environmental contamination became a major challenge in recent decades due to rapid industrialization in developed countries. Mining activities, wastewater discharge, volcanic eruptions, and rock weathering affected the growth and productivity of soil. Endophytic bacterial species could be a potential mechanism in phytoremediation strategies for the management of environmental contaminants, while plants benefit through growth promotion (Table 3).

3. Conclusions

The sustainable production of medicinal and herbal plants has been one of the major challenges facing agriculture in recent years, with the ongoing over-utilization of chemicals to meet the population demands. To solve these problems, an environmentally friendly way forward focusing on the minimal usage of agrochemicals is require. Endophytic bacterial isolates could be a potential source of phytochemical compounds to enhance plant production. In addition, endophytic bacteria enable the plant species to resist abiotic stress conditions. Endophytic bacterial living in plant tissues produce plant growth-promoting compounds such as phytohormones; enzymes such as Aminocyclopropane-1-carboxylic acid deaminase, which reduce the levels of ethylene; organic acids aiding in P solubilization; and siderophores, cellulases, and chitinases inhibiting the phytopathogens growth. Sustainable agriculture provides a platform to medicinal and herbal plant producers from which to apply new agricultural techniques and biotechnologies to enhance plant growth by using bacterial isolates as biofertilizers. The modes of actions of several endophytic bacterial species have been well documented; they are recognised as plant growth promotion agents based on other biochemical and physiological attributes such as biological nitrogen fixation, phosphate solubilization, siderophore production, and the synthesis of PGP substances. In addition to improving plant nutrient availability and providing protection against varied abiotic and biotic stresses, endophytic bacteria play a pivotal role in enhancing medicinal and herbal plant productivity while simultaneously ensuring the sustainable maintenance of soil health.

Author Contributions

All authors (P.P.T., K.N. and F.N.M.) contributed equally to this work. K.N. and F.N.M. critically reviewed the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data is unavailable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Melotto, M.; Underwood, W.; He, S.Y. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 2008, 46, 101–122. [Google Scholar] [CrossRef]
  2. Çakmakçı, R.; Mosber, G.; Milton, A.H.; Alatürk, F.; Ali, B. The effect of auxin and auxin-producing bacteria on the growth, essential oil yield, and composition in medicinal and aromatic plants. Curr. Microbiol. 2020, 77, 564–577. [Google Scholar]
  3. Suman, A.; Yadav, A.N.; Verma, P. Endophytic microbes in crops: Diversity and beneficial impact for sustainable agriculture. In Microbial Inoculants in Sustainable Agricultural Productivity; Springer: New Delhi, India, 2016; pp. 117–143. [Google Scholar]
  4. De Melo Pereira, G.V.; Magalhães, K.T.; Lorenzetii, E.R.; Souza, T.P.; Schwan, R.F. A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb. Ecol. 2012, 63, 405–417. [Google Scholar] [CrossRef]
  5. Fira, D.; Dimkić, I.; Berić, T.; Lozo, J.; Stanković, S. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 2018, 285, 44–55. [Google Scholar] [CrossRef] [PubMed]
  6. Duhan, P.; Bansal, P.; Rani, S. Isolation, identification, and characterization of endophytic bacteria from medicinal plant Tinospora cordifolia. S. Afr. J. Bot. 2020, 134, 43–49. [Google Scholar] [CrossRef]
  7. Franche, C.; Lindström, K.; Elmerich, C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 2009, 321, 35–59. [Google Scholar] [CrossRef]
  8. Cocking, E.C. Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 2003, 252, 169–175. [Google Scholar] [CrossRef]
  9. Arshad, M.; Saleem, M.; Hussain, S. Perspectives of bacterial ACC deaminase in phytoremediation. TRENDS Biotechnol. 2007, 25, 356–362. [Google Scholar] [CrossRef] [PubMed]
  10. Eid, A.M.; Salim, S.S.; Hassan, S.E.D.; Ismail, M.A.; Fouda, A. Role of endophytes in plant health and abiotic stress management. In Microbiome in Plant Health and Disease; Springer: Singapore, 2019; pp. 119–144. [Google Scholar]
  11. Anjum, N.; Chandra, R. Endophytic bacteria: Optimization of isolation procedure from various medicinal plants and their preliminary characterization. Asian J. Pharm. Clin. Res. 2015, 8, 233–238. [Google Scholar]
  12. Islam, M.R.; Sultana, T.; Joe, M.M.; Yim, W.; Cho, J.C.; Sa, T. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper. J. Basic Microbiol. 2013, 53, 1004–1015. [Google Scholar] [CrossRef]
  13. Costacurta, A.; Vanderleyden, J. Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 1995, 21, 1–18. [Google Scholar] [CrossRef]
  14. Jiménez-Gómez, A.; García-Estévez, I.; García-Fraile, P.; Escribano-Bailón, M.T.; Rivas, R. Increase in phenolic compounds of Coriandrum sativum L. after the application of a Bacillus halotolerans biofertilizer. J. Sci. Food Agric. 2020, 100, 2742–2749. [Google Scholar] [CrossRef] [PubMed]
  15. Ibrahim, E.; Fouad, H.; Zhang, M.; Zhang, Y.; Qiu, W.; Yan, C.; Li, B.; Mo, J.; Chen, J. Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Adv. 2019, 9, 29293–29299. [Google Scholar] [CrossRef] [PubMed]
  16. Nouri, J.; Khorasani, N.; Lorestani, B.; Karami, M.; Hassani, A.H.; Yousefi, N. Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ. Earth Sci. 2009, 59, 315–323. [Google Scholar] [CrossRef]
  17. Ghorbani, R.; Wilcockson, S.; Koocheki, A.; Leifert, C. Soil management for sustainable crop disease control: A review. Org. Farming Pest Control. Remediat. Soil Pollut. 2008, 6, 177–201. [Google Scholar] [CrossRef]
  18. Yu, H.; Zhang, L.; Li, L.; Zheng, C.; Guo, L.; Li, W.; Sun, P.; Qin, L. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol. Res. 2010, 165, 437–449. [Google Scholar] [CrossRef] [PubMed]
  19. Dimkpa, C.O.; Bindraban, P.S. Fortification of micronutrients for efficient agronomic production: A review. Agron. Sustain. Dev. 2016, 36, 1–27. [Google Scholar]
  20. Maghanga, J.K.; Kituyi, J.L.; Kisinyo, P.O.; Ng’Etich, W.K. Impact of nitrogen fertilizer applications on surface water nitrate levels within a Kenyan tea plantation. J. Chem. 2013, 2013, 196516. [Google Scholar] [CrossRef]
  21. Çakmakçı, R.; Dönmez, M.F.; Ertürk, Y.; Erat, M.; Haznedar, A.; Sekban, R. Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils. Plant Soil 2010, 332, 299–318. [Google Scholar] [CrossRef]
  22. Sen, S.; Rai, M.; Das, D.; Chandra, S.; Acharya, K. Blister blight a threatened problem in tea industry: A review. J. King Saud Univ. Sci. 2020, 32, 3265–3272. [Google Scholar] [CrossRef]
  23. Photolo, M.M.; Mavumengwana, V.; Sitole, L.; Tlou, M.G. Antimicrobial and antioxidant properties of a bacterial endophyte, Methylobacterium radiotolerans MAMP 4754, isolated from combretum erythrophyllum seeds. Int. J. Microbiol. 2020, 2020, 9483670. [Google Scholar] [CrossRef] [PubMed]
  24. Narkhede, M.B. Investigation of in vitro α-amylase and α-glucosidase inhibitory activity of polyherbal extract. Int. J. Pharm. Res. Dev. 2021, 3, 97–103. [Google Scholar]
  25. Punithavathi, M.; Aranganathan, J.; Janani, M. Antibacterial activity and phytochemical screening of Ocimum sanctum Linn. (Leaves). Int. J. Life Sci. 2014, 3, 28–30. [Google Scholar] [CrossRef]
  26. Sankuratri, A.; Talari, A.K.; Pokala, T. A review on endophytic bacteria, and their uses. Int. J. Eng. Sci. Comput. 2021, 11, 28105–28111. [Google Scholar]
  27. Mitra, S.; Naskar, N.; Chaudhuri, P. A review on potential bioactive phytochemicals for novel therapeutic applications with special emphasis on mangrove species. Phytomed. Plus 2021, 1, 100107. [Google Scholar] [CrossRef]
  28. Ali, M.; Khan, T.; Fatima, K.; Ali, Q.U.A.; Ovais, M.; Khalil, A.T.; Ullah, I.; Raza, A.; Shinwari, Z.K.; Idrees, M. Selected hepatoprotective herbal medicines: Evidence from ethnomedicinal applications, animal models, and possible mechanism of actions. Phytother. Res. 2018, 32, 199–215. [Google Scholar] [CrossRef]
  29. Anagha, K.; Manasi, D.; Priya, L.; Meera, M. Antimicrobial activity of yashtimadhu (Glycyrrhiza glabra L.)-a review. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 329–336. [Google Scholar]
  30. Messier, C.; Epifano, F.; Genovese, S.; Grenier, D. Licorice, and its potential beneficial effects in common oro-dental diseases. Oral Dis. 2012, 18, 32–39. [Google Scholar] [CrossRef] [PubMed]
  31. El-Saber Batiha, G.; Magdy Beshbishy, A.; El-Mleeh, A.; Abdel-Daim, M.M.; Prasad Devkota, H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020, 10, 352. [Google Scholar] [CrossRef]
  32. Yang, R.; Han, M.; Fu, Z.; Wang, Y.; Zhao, W.; Yu, G.; Ma, Z. Immune responses of Asian seabass Lates calcarifer to dietary Glycyrrhiza uralensis. Animals 2020, 10, 1629. [Google Scholar] [CrossRef]
  33. Krishna, P.M.; KNV, R.; Banji, D. A review on phytochemical, ethnomedical and pharmacological studies on genus Sophora, Fabaceae. Rev. Bras. Farmacogn. 2012, 22, 1145–1154. [Google Scholar] [CrossRef]
  34. Wang, R.; Deng, X.; Gao, Q.; Wu, X.; Han, L.; Gao, X.; Zhao, S.; Chen, W.; Zhou, R.; Li, Z.; et al. Sophora alopecuroides L.: An ethnopharmacological, phytochemical, and pharmacological review. J. Ethnopharmacol. 2020, 248, 112172. [Google Scholar] [CrossRef] [PubMed]
  35. Zhao, L.; Deng, Z.; Yang, W.; Cao, Y.; Wang, E.; Wei, G. Diverse rhizobia associated with Sophora alopecuroides grown in different regions of Loess Plateau in China. Syst. Appl. Microbiol. 2010, 33, 468–477. [Google Scholar] [CrossRef]
  36. Yang, W.; Xu, Q.; Liu, H.X.; Wang, Y.P.; Wang, Y.M.; Yang, H.T.; Guo, J.H. Evaluation of biological control agents against Ralstonia wilt on ginger. Biol. Control. 2012, 62, 144–151. [Google Scholar] [CrossRef]
  37. Zadeh, J.B.; Kor, N.M. Physiological and pharmaceutical effects of ginger (Zingiber officinale Roscoe) as a valuable medicinal plant. Eur. J. Exp. Biol. 2014, 4, 87–90. [Google Scholar]
  38. Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical aspects, and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2019, 69, 546–556. [Google Scholar] [CrossRef]
  39. Lötter, D.; le Maitre, D. Modelling the distribution of Aspalathus linearis (Rooibos tea): Implications of climate change for livelihoods dependent on both cultivation and harvesting from the wild. Ecol. Evol. 2014, 4, 1209–1221. [Google Scholar] [CrossRef]
  40. Hassen, A.I.; Bopape, F.L.; Habig, J.; Lamprecht, S.C. Nodulation of rooibos (Aspalathus linearis Burm. f.), an indigenous South African legume, by members of both the α-Proteobacteria and β-Proteobacteria. Biol. Fertil. Soils 2012, 48, 295–303. [Google Scholar] [CrossRef]
  41. Mudau, F.N.; Araya, H.T.; Du Toit, E.S.; Soundy, P.; Olivier, J. Bush Tea (Athrixia Phylicoides DC.) as an Alternative Herbal and Medicinal Plant in Southern Africa: Opportunity for Commercialization—2007. Available online: https://repository.up.ac.za/handle/2263/5852 (accessed on 18 December 2022).
  42. Mudau, F.N.; Mogotlane, I.D.; Mashela, P.W.; Soundy, P. Seasonal Variation of Total Antioxidant Contents of Wild Bush Tea. Acta Hortic. 2008, 802, 1–4. [Google Scholar] [CrossRef]
  43. Mabogo, D.N.E. The Ethnobotany of Vhavenda. Ph.D. Thesis, University of Pretoria, Pretoria, Republic of South Africa, 1990. [Google Scholar]
  44. Mudau, F.N.; Mariga, I.K. Bush tea as an herbal beverage and medicinal plant in South Africa. In Tea Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2013; pp. 183–189. [Google Scholar]
  45. Araya, H.T. Seed Germination and Vegetative Propagation of Bush Tea (Athrixia phylicoides). Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2017. [Google Scholar]
  46. Padayachee, K. The phytochemistry and biological activities of Athrixia phylicoides. Master’s Thesis, University Witwatersrand, Johannesburg, South Africa, 2011. [Google Scholar]
  47. Mashimbye, M.J.; Mudaua, F.N.; Soundy, P.; Van Ree, T. A new flavonol from Athrixia phylicoides (bush tea). S. Afr. J. Chem. 2006, 59, 1–2. [Google Scholar]
  48. Mavundza, E.J.; Tshikalange, T.E.; Lall, N.; Mudau, F.N.; Hussein, A.A. Antioxidant activity and cytotoxicity of three flavonoids from Athrixia phylicoides ethanol extract. S. Afr. J. Bot. 2010, 76, 398. [Google Scholar] [CrossRef]
  49. Mudau, F.N.; Soundy, P.; Du Toit, E.S.; Olivier, J. Variation in polyphenolic content of Athrixia phylicoides (L.) (bush tea) leaves with season and nitrogen application. S. Afr. J. Bot. 2006, 72, 398–402. [Google Scholar] [CrossRef]
  50. Nchabeleng, L.; Mudau, F.N.; Mariga, I.K. Effects of chemical composition of wild bush tea (Athrixia phylicoides DC.) growing at locations differing in altitude, climate, and edaphic factors. J. Med. Plants Res. 2012, 6, 1662–1666. [Google Scholar] [CrossRef]
  51. Tshivhandekano, I.; Ntushelo, K.; Ngezimana, W.; Tshikalange, T.E.; Mudau, F.N. Chemical compositions and antimicrobial activities of Athrixia phylicoides DC. (bush tea), Monsonia burkeana (special tea) and synergistic effects of both combined herbal teas. Asian Pac. J. Trop. Med. 2014, 7, S448–S453. [Google Scholar] [CrossRef]
  52. Nnzeru, L.R.; Ntushelo, K.; Mudau, F.N. Prevalence of Bacillus in the interior tissues of Monsonia burkeana and other medicinal plants in South Africa. S. Afr. J. Bot. 2017, 113, 19–22. [Google Scholar] [CrossRef]
  53. Bachir Raho, G.; Benattouche, Z.; Bevilacqua, A.; Corbo, M.R.; Sinigaglia, M.; Pignatiello, S. Inhibitory effects of Echinacea angustifolia essential oils on the growth of five pathogenic organisms: Poliform spp.; Pseudomonas spp.; Saccharomyces cerevisiae, Zygosaccharomyces bailii and Lactobacillus plantarum. Int. J. Adv. Res. Bot. 2015, 1, 10–14. [Google Scholar]
  54. Giles, J.T.; Palat III, C.T.; Chien, S.H.; Chang, Z.G.; Kennedy, D.T. Evaluation of echinacea for treatment of the common cold. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2000, 20, 690–697. [Google Scholar] [CrossRef]
  55. Hui, S.; Yan, H.; Qing, X.; Renyuan, Y.; Yongqiang, T. Isolation, characterization, and antimicrobial activity of endophytic bacteria from Polygonum cuspidatum. Afr. J. Microbiol. Res. 2013, 7, 1496–1504. [Google Scholar] [CrossRef]
  56. Seo, W.T.; Lim, W.J.; Kim, E.J.; Yun, H.D.; Lee, Y.H.; Cho, K.M. Endophytic bacterial diversity in the young radish and their antimicrobial activity against pathogens. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 493–503. [Google Scholar] [CrossRef]
  57. Arunachalam, C.; Gayathri, P. Studies on bioprospecting of endophytic bacteria from the medicinal plant of Andrographis paniculata for their antimicrobial activity and antibiotic susceptibility pattern. Int. J. Curr. Pharm. Res. 2010, 2, 63–68. [Google Scholar]
  58. Aravind, R.; Kumar, A.; Eapen, S.J.; Ramana, K.V. Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: Isolation, identification, and evaluation against Phytophthora capsici. Lett. Appl. Microbiol. 2009, 48, 58–64. [Google Scholar] [CrossRef]
  59. Yang, R.X.; Zhang, S.W.; Xue, D.; Xuan, J.H.; Zhang, Y.B.; Peng, B.B. Culturable endophytes diversity isolated from and the genetic basis for their bioactivity. Pol. J. Microbiol. 2018, 67, 441–454. [Google Scholar] [CrossRef]
  60. Chlebek, D.; Hupert-Kocurek, K. Endophytic bacteria in the phytodegradation of persistent organic pollutants. Postępy Mikrobiol.-Adv. Microbiol. 2019, 58, 70–79. [Google Scholar] [CrossRef]
  61. Rakotoniriana, E.F.; Rafamantanana, M.; Randriamampionona, D.; Rabemanantsoa, C.; Urveg-Ratsimamanga, S.; El Jaziri, M.; Munaut, F.; Corbisier, A.M.; Quetin-Leclercq, J.; Declerck, S. Study in vitro of the impact of endophytic bacteria isolated from Centella asiatica on the disease incidence caused by the hemibiotrophic fungus Colletotrichum higginsianum. Antonie Leeuwenhoek 2013, 103, 121–133. [Google Scholar] [CrossRef] [PubMed]
  62. Falcäo, L.L.; Silva-Werneck, J.O.; Vilarinho, B.R.; Da Silva, J.P.; Pomella, A.W.V.; Marcellino, L.H. Antimicrobial and plant growth-promoting properties of the cacao endophyte Bacillus subtilis ALB 629. J. Appl. Microbiol. 2014, 116, 1584–1592. [Google Scholar] [CrossRef]
  63. Dat, T.T.H.; Oanh, P.T.T.; Tam, V.T.T.; Anh, H.L.T. Antimicrobial and antioxidant activity of bacterial endophytes isolated from leaves of the mangrove plant Rhizophora stylosa. Acad. J. Biol. 2019, 41. [Google Scholar] [CrossRef]
  64. Li, X.; Wang, X.; Wang, Y.; Liu, X.; Ren, X.; Dong, Y.; Ma, J.; Song, R.; Wei, J.; Yu, A.; et al. A systematic review on polysaccharides from Dendrobium genus: Recent advances in the preparation, structural characterization, bioactive molecular mechanisms, and applications. Am. J. Chin. Med. 2022, 50, 471–509. [Google Scholar] [CrossRef] [PubMed]
  65. Sebola, T.E.; Uche-Okereafor, N.C.; Tapfuma, K.I.; Mekuto, L.; Green, E.; Mavumengwana, V. Evaluating antibacterial and anticancer activity of crude extracts of bacterial endophytes from Crinum macowanii Baker bulbs. MicrobiologyOpen 2019, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
  66. Shukla, S.; Naik, G.; Mishra, S.K. Potential antimicrobial activity of bacterial endophytes isolated from Flacourtia jangomas (Lour.) Raeusch, a less explored medicinal plant. J. Microbiol. Biotechnol. Food Sci. 2021, 4, 473–477. [Google Scholar] [CrossRef]
  67. Ahmed, H.; Shehu, S. Ethno-botanical and Pharmaceutical Properties of Mollucan Spinach (Gynura procumbens Lour. Merr). J. Appl. Sci. Environ. Manag. 2022, 26, 1925–1935. [Google Scholar] [CrossRef]
  68. Gupta, C.; Prakash, D.; Bakar, M.F.A.; Kitdamrongtham, W. Omic Route to Utilize Endophytes and Their Functional Potentials in Plant Growth Advancement. In Plant Microbiome for Plant Productivity and Sustainable Agriculture; Springer: Singapore, 2023; pp. 289–311. [Google Scholar]
  69. Haque, E.; Kamal, M.S.; Tahsin, M.; Ahmed, R.; Choudhury, J.A.; Chowdhury, A.A.; Kabir, S.; Amran, M.; Uddin, M. Current knowledge regarding pharmacological profile and chemical constituents of Gynura procumbens. Curr. Top. Med. Chem. 2021, 21, 2671–2686. [Google Scholar] [CrossRef]
  70. Solaiman, Z.M.; Anawar, H.M. Rhizosphere microbes’ interactions in medicinal plants. In Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants; Springer: Cham, Switzerland, 2015; pp. 19–41. [Google Scholar]
  71. Kumar, G.; Kanaujia, N.; Bafana, A. Functional and phylogenetic diversity of root-associated bacteria of Ajuga bracteosa in Kangra valley. Microbiol. Res. 2012, 167, 220–225. [Google Scholar] [CrossRef]
  72. Akinsanya, M.A.; Goh, J.K.; Lim, S.P.; Ting, A.S.Y. Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera. FEMS Microbiol. Lett. 2015, 362, 1–8. [Google Scholar] [CrossRef] [PubMed]
  73. Taechowisan, T.; Peberdy, J.F.; Lumyong, S. Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J. Microbiol. Biotechnol. 2003, 19, 381–385. [Google Scholar] [CrossRef]
  74. El-Deeb, B.; Fayez, K.; Gherbawy, Y. Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. J. Plant Interact. 2012, 8, 56–64. [Google Scholar] [CrossRef]
  75. Purity, K.; Viviene, M.; Mary, N. Antimicrobial activities of secondary metabolites produced by endophytic bacteria from selected indigenous Kenyan plants. Afr. J. Microbiol. Res. 2012, 6, 7253–7258. [Google Scholar]
  76. Egamberdieva, D.; Jabborova, D. Plant microbiome: Source for biologically active compounds. Biodivers. Biomed. 2020, 1–9. [Google Scholar] [CrossRef]
  77. Bhoonobtong, A.; Sawadsitang, S.; Sodngam, S.; Mongkolthanaruk, W. Characterization of endophytic bacteria, Bacillus amyloliquefaciens for antimicrobial agents’ production. Int. Proc. Chem. Biol. Environ. Eng. (IPCBEE) 2012, 40, 6–11. [Google Scholar]
  78. Ebrahimi, A.; Asgharian, S.; Habibian, S. Antimicrobial Activities of Isolated Endophytes from Some Iranian Native Medicinal Plants. 2010. Available online: https://www.sid.ir/en/vewssid/j_pdf/106720100309.pdf (accessed on 21 December 2022).
  79. Asraful Islam, S.M.; Math, R.K.; Kim, J.M.; Yun, M.G.; Cho, J.J.; Kim, E.J.; Lee, Y.H.; Yun, H.D. Effect of plant age on endophytic bacterial diversity of balloon flower (Platycodon grandiflorum) root and their antimicrobial activities. Curr. Microbiol. 2010, 61, 346–356. [Google Scholar] [CrossRef] [PubMed]
  80. Pal, A.; Chattopadhyay, A.; Paul, A.K. Diversity and antimicrobial spectrum of endophytic bacteria isolated from Paederia foetida L. Int. J. Curr. Pharm. Res. 2012, 4, 123–127. [Google Scholar]
  81. Guan, S.H.; Sattler, I.; Lin, W.H.; Guo, D.A.; Grabley, S. p-Aminoacetophenonic Acids Produced by a Mangrove Endophyte: Streptomyces g riseus subsp. J. Nat. Prod. 2005, 68, 1198–1200. [Google Scholar] [CrossRef]
  82. Strobel, G.; Daisy, B.; Castillo, U.; Harper, J. Natural products from endophytic microorganisms. J. Nat. Prod. 2004, 67, 257–268. [Google Scholar] [CrossRef] [PubMed]
  83. Castillo, U.F.; Strobel, G.A.; Mullenberg, K.; Condron, M.M.; Teplow, D.B.; Folgiano, V.; Gallo, M.; Ferracane, R.; Mannina, L.; Viel, S.; et al. Munumbicins E-4 and E-5: Novel broad-spectrum antibiotics from Streptomyces NRRL 3052. FEMS Microbiol. Lett. 2006, 255, 296–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  84. Puri, A. Plant Growth Promotion and Nitrogen Fixation by Paenibacillus Polymyxa in Corn and Canola. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2015. [Google Scholar]
  85. Ezra, D.; Castillo, U.F.; Strobel, G.A.; Hess, W.M.; Porter, H.; Jensen, J.B.; Condron, M.A.; Teplow, D.B.; Sears, J.; Maranta, M.; et al. Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 2004, 150, 785–793. [Google Scholar] [CrossRef]
  86. Pandey, P.K.; Singh, S.; Singh, M.C.; Singh, A.K.; Yadav, S.K.; Pandey, A.K.; Heisnam, P. Diversity, ecology, and conservation of fungal and bacterial endophytes. In Microbial Resource Conservation; Springer: Cham, Switzerland, 2018; pp. 393–430. [Google Scholar]
  87. Ding, L.; Maier, A.; Fiebig, H.H.; Lin, W.H.; Hertweck, C. A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org. Biomol. Chem. 2011, 9, 4029–4031. [Google Scholar] [CrossRef]
  88. Ding, L.; Münch, J.; Goerls, H.; Maier, A.; Fiebig, H.H.; Lin, W.H.; Hertweck, C. Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorganic Med. Chem. Lett. 2010, 20, 6685–6687. [Google Scholar] [CrossRef] [PubMed]
  89. Qin, S.; Li, J.; Chen, H.H.; Zhao, G.Z.; Zhu, W.Y.; Jiang, C.L.; Xu, L.H.; Li, W.J. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl. Environ. Microbiol. 2009, 75, 6176–6186. [Google Scholar] [CrossRef]
  90. Hu, H.Q.; Li, X.S.; He, H. Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biol. Control. 2010, 54, 359–365. [Google Scholar] [CrossRef]
  91. Kumaravel, S.; Ranganathan, R. Survey of mangroves and their associates in pichavaram mangrove forest. Int. J. Sci. Invent. Today. 2018, 7, 176–182. [Google Scholar]
  92. Soni, R.; Nanjani, S.; Keharia, H. Genome analysis reveals probiotic propensities of Paenibacillus polymyxa HK4. Genomics 2021, 113, 861–873. [Google Scholar] [CrossRef] [PubMed]
  93. Song, C.Z.; Chen, X.W.; Chen, D.H. Research progress on endophytes in medicinal plant Artemisia annua. Biotechnol. Bull. 2016, 32, 1. [Google Scholar]
  94. Verma, V.C.; Gond, S.K.; Kumar, A.; Mishra, A.; Kharwar, R.N.; Gange, A.C. Endophytic actinomycetes from Azadirachta indica A. Juss.: Isolation, diversity, and anti-microbial activity. Microb. Ecol. 2009, 57, 749–756. [Google Scholar] [CrossRef] [PubMed]
  95. Han, J.; Song, Y.; Liu, Z.; Hu, Y. Culturable bacterial community analysis in the root domains of two varieties of tree peony (Paeonia ostii). FEMS Microbiol. Lett. 2011, 322, 15–24. [Google Scholar] [CrossRef]
  96. Young, M.K.; Chong, K.L.; Kye, M.C. Diversity and antimicrobial activity of isolated endophytic bacteria from Deodeok (Codonopsis lanceolata) of different locations and ages. Afr. J. Microbiol. Res. 2013, 7, 1015–1028. [Google Scholar]
  97. Ma, L.; Cao, Y.H.; Cheng, M.H.; Huang, Y.; Mo, M.H.; Wang, Y.; Yang, J.Z.; Yang, F.X. Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex. Antonie Leeuwenhoek 2013, 103, 299–312. [Google Scholar] [CrossRef]
  98. Sultan, R.A.; Mahmood, S.B.Z.; Azhar, I.; Ahmed, S.W.; Mahmood, Z.A. Biological activities assessment of Centella asiatica (Linn.). J. Herbs Spices Med. Plants 2014, 20, 319–327. [Google Scholar] [CrossRef]
  99. Shurigin, V.; Davranov, K.; Wirth, S.; Egamberdieva, D.; Bellingrath-Kimura, S.D. Medicinal plants with phytotoxic activity harbour endophytic bacteria with plant growth inhibitory properties. Environ. Sustain. 2018, 1, 209–215. [Google Scholar] [CrossRef]
  100. Kan, F.L.; Chen, Z.Y.; Wang, E.T.; Tian, C.F.; Sui, X.H.; Chen, W.X. Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai–Tibet plateau and in other zones of China. Arch. Microbiol. 2007, 188, 103–115. [Google Scholar] [CrossRef] [PubMed]
  101. Saleem, M.; Karim, M.; Qadir, M.I.; Ahmed, B.; Rafiq, M.; Ahmad, B. In vitro antibacterial activity and phytochemical analysis of hexane extract of Vicia sativa. Bangladesh J. Pharmacol. 2014, 9, 189–193. [Google Scholar] [CrossRef]
  102. Jia, X.; Liu, Y.; Wang, S.; Ma, J.; Yu, J.; Yue, X.; Zhang, Y.; Wang, X. Screening of metabolic markers present in Oxytropis by UHPLC-Q-TOF/MS and preliminary pharmacophylogenetic. Front. Plant Sci. 2022, 13, 958460. [Google Scholar] [CrossRef] [PubMed]
  103. Krakowska, A.; Rafińska, K.; Walczak, J.; Buszewski, B. Enzyme-assisted optimized supercritical fluid extraction to improve Medicago sativa polyphenolics isolation. Ind. Crops Prod. 2018, 124, 931–940. [Google Scholar] [CrossRef]
  104. Chang, Y.L.; Wang, E.T.; Sui, X.H.; Zhang, X.X.; Chen, W.X. Molecular diversity and phylogeny of rhizobia associated with Lablab purpureus (Linn.) grown in Southern China. Syst. Appl. Microbiol 2011, 34, 276–284. [Google Scholar] [CrossRef] [PubMed]
  105. Anwer, M.S.; Shamim, S.; Ahmed, S.; Hasan, M.M.; Azhar, I. Hypotensive activity of Melilotus officinalis (L.) Pallas. Eur. J. Medicine. Ser. B. 2015, 3, 80–85. [Google Scholar] [CrossRef]
  106. Hayot Carbonero, C.; Carbonero, F.; Smith, L.M.; Brown, T.A. Phylogenetic characterization of Onobrychis species with special focus on the forage crop Onobrychis viciifolia Scop. Genet. Resour. Crop Evol. 2012, 59, 1777–1788. [Google Scholar] [CrossRef]
  107. Al-Snafi, A.E. The pharmacology and medical importance of Dolichos lablab (Lablab purpureus)-A review. IOSR J. Pharm. 2017, 7, 22–30. [Google Scholar] [CrossRef]
  108. Hossain, S.; Ahmed, R.; Bhowmick, S.; Mamun, A.A.; Hashimoto, M. Proximate composition, and fatty acid analysis of Lablab purpureus (L.) legume seed: Implicates to both protein and essential fatty acid supplementation. SpringerPlus 2016, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
  109. Saha, L.; Tiwari, J.; Bauddh, K.; Ma, Y. Recent developments in microbe–plant-based bioremediation for tackling heavy metal-polluted soils. Front. Microbiol. 2021, 12. [Google Scholar]
  110. Li, M.; Li, Y.; Chen, W.F.; Sui, X.H.; Li Jr, Y.; Li, Y.; Wang, E.T.; Chen, W.X. Genetic diversity, community structure and distribution of rhizobia in the root nodules of Caragana spp. from arid and semi-arid alkaline deserts, in the north of China. Syst. Appl. Microbiol. 2012, 35, 239–245. [Google Scholar] [CrossRef]
  111. Dai, J.X.; Liu, X.M.; Wang, Y.J. Diversity of endophytic bacteria in Caragana microphylla grown in the desert grassland of the Ningxia Hui autonomous region of China. Genet. Mol. Res. 2014, 13, 2349–2358. [Google Scholar] [CrossRef] [PubMed]
  112. Jishtu, V.; Goraya, G.S. Leguminosae (nom. alt. Fabaceae)—Its Diversity, Use and Role in Environmental Conservation in the Harsh Environs of the Cold Deserts of North-West India. In The Plant Family Fabaceae; Springer: Singapore, 2020; pp. 261–285. [Google Scholar]
  113. Yasseen, B.T.; Al-Thani, R.F. Endophytes and halophytes to remediate industrial wastewater and saline soils: Perspectives from Qatar. Plants 2022, 11, 1497. [Google Scholar] [CrossRef] [PubMed]
  114. Jha, B.; Gontia, I.; Hartmann, A. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 2012, 356, 265–277. [Google Scholar] [CrossRef]
  115. Pandey, P.; Kang, S.C.; Maheshwari, D.K. Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr. Sci. 2005, 89, 177–180. [Google Scholar]
  116. Patil, S.V.; Mohite, B.V.; Patil, C.D.; Koli, S.H.; Borase, H.P.; Patil, V.S. Azotobacter. In Beneficial Microbes in Agro-Ecology; Academic Press: Cambridge, MA, USA, 2020; pp. 397–426. [Google Scholar]
  117. Benhizia, Y.; Benhizia, H.; Benguedouar, A.; Muresu, R.; Giacomini, A.; Squartini, A. Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst. Appl. Microbiol. 2004, 27, 462–468. [Google Scholar] [CrossRef]
  118. Van Berkum, P.; Beyene, D.; Bao, G.; Campbell, T.A.; Eardly, B. DRhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int. J. Syst. Evol. Microbiol. 1998, 48, 13–22. [Google Scholar]
  119. Zakhia, F.; Jeder, H.; Domergue, O.; Willems, A.; Cleyet-Marel, J.C.; Gillis, M.; Dreyfus, B.; De Lajudie, P. Characterisation of wild legume nodulating bacteria (LNB) in the infra-arid zone of Tunisia. Syst. Appl. Microbiol. 2004, 27, 380–395. [Google Scholar] [CrossRef]
  120. Wang, E.T.; Van Berkum, P.; Beyene, D.; Sui, X.H.; Dorado, O.; Chen, W.X.; Martínez-Romero, E. Rhizobium huautlense sp. nov.; a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int. J. Syst. Evol. Microbiol. 1998, 48, 687–699. [Google Scholar] [CrossRef]
  121. Wei, G.H.; Wang, E.T.; Tan, Z.Y.; Zhu, M.E.; Chen, W.X. Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov.; Respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int. J. Syst. Evol. Microbiol. 2002, 52, 2231–2239. [Google Scholar]
  122. Squartini, A.; Struffi, P.; Döring, H.; Selenska-Pobell, S.; Tola, E.; Giacomini, A.; Vendramin, E.; Velázquez, E.; Mateos, P.F.; Martínez-Molina, E.; et al. Rhizobium sullae sp. nov. (formerly ‘Rhizobium hedysari’), the root-nodule microsymbiont of Hedysarum coronarium L. Int. J. Syst. Evol. Microbiol. 2002, 52, 1267–1276. [Google Scholar] [PubMed]
  123. Tan, Z.Y.; Kan, F.L.; Peng, G.X.; Wang, E.T.; Reinhold-Hurek, B.; Chen, W.X. Rhizobium yanglingense sp. nov.; isolated from arid and semi-arid regions in China. Int. J. Syst. Evol. Microbiol. 2001, 51, 909–914. [Google Scholar] [CrossRef]
  124. Nick, G.; De Lajudie, P.; Eardly, B.D.; Suomalainen, S.; Paulin, L.; Zhang, X.; Gillis, M.; Lindström, K. Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov.; Isolated from leguminous trees in Sudan and Kenya. Int. J. Syst. Evol. Microbiol. 1999, 49, 1359–1368. [Google Scholar] [CrossRef]
  125. Wang, E.T.; Tan, Z.Y.; Willems, A.; Fernández-López, M.; Reinhold-Hurek, B.; Martínez-Romero, E. Sinorhizobium morelense sp. nov.; a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int. J. Syst. Evol. Microbiol. 2002, 52, 1687–1693. [Google Scholar] [PubMed]
  126. De Lajudie, P.; Laurent-Fulele, E.; Willems, A.; Torek, U.; Coopman, R.; Collins, M.D.; Kersters, K.; Dreyfus, B.; Gillis, M. Allorhizobium undicola gen. nov.; sp. nov.; nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int. J. Syst. Evol. Microbiol. 1998, 48, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
  127. Wang, E.T.; Van Berkum, P.; Sui, X.H.; Beyene, D.E.S.T.A.; Chen, W.X.; Martínez-Romero, E. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int. J. Syst. Evol. Microbiol. 1999, 49, 51–65. [Google Scholar] [CrossRef]
  128. Velázquez, E.; Igual, J.M.; Willems, A.; Fernández, M.P.; Muñoz, E.; Mateos, P.F.; Abril, A.; Toro, N.; Normand, P.; Cervantes, E.; et al. Mesorhizobium chacoense sp. nov.; a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int. J. Syst. Evol. Microbiol. 2001, 51, 1011–1021. [Google Scholar] [CrossRef]
  129. Rivas, R.; Velázquez, E.; Willems, A.; Vizcaíno, N.; Subba-Rao, N.S.; Mateos, P.F.; Gillis, M.; Dazzo, F.B.; Martínez-Molina, E. A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (Lf) Druce. Appl. Environ. Microbiol. 2002, 68, 5217–5222. [Google Scholar] [CrossRef] [PubMed]
  130. Rivas, R.; Willems, A.; Subba-Rao, N.S.; Mateos, P.F.; Dazzo, F.B.; Kroppenstedt, R.M.; Martínez-Molina, E.; Gillis, M.; Velázquez, E. Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst. Appl. Microbiol. 2003, 26, 47–53. [Google Scholar] [CrossRef]
  131. Yao, Z.Y.; Kan, F.L.; Wang, E.T.; Wei, G.H.; Chen, W.X. Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int. J. Syst. Evol. Microbiol. 2002, 52, 2219–2230. [Google Scholar] [PubMed]
  132. Chen, W.M.; Laevens, S.; Lee, T.M.; Coenye, T.; De Vos, P.; Mergeay, M.; Vandamme, P. Ralstonia taiwanensis sp. nov.; isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int. J. Syst. Evol. Microbiol. 2001, 51, 1729–1735. [Google Scholar] [CrossRef]
  133. Zhang, X.G.; Li, X.R.; Wang, Q.L.; Wang, W.N.; Chen, X.Q. Study on effects of endophytes on growth and production of Z-Ligustilide and ferulic acid in Angelica sinensis. Braz. J. Bot. 2016, 39, 417–426. [Google Scholar] [CrossRef]
  134. Čeksterytė, V.; Navakauskienė, R.; Treigytė, G.; Jansen, E.; Kurtinaitienė, B.; Dabkevičienė, G.; Balžekas, J. Fatty acid profiles of monofloral clover beebread and pollen and proteomics of red clover (Trifolium pratense) pollen. Biosci. Biotechnol. Biochem. 2016, 80, 2100–2108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  135. Sturz, A.V.; Christie, B.R.; Matheson, B.G. Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can. J. Microbiol. 1998, 44, 162–167. [Google Scholar] [CrossRef]
  136. Sturz, A.V.; Christie, B.R.; Matheson, B.G.; Nowak, J. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol. Fertil. Soils 1997, 25, 13–19. [Google Scholar] [CrossRef]
  137. Etesami, H.; Mirsyedhosseini, H.; Alikhani, H.A. Rapid screening of berseem clover (Trifolium alexandrinum) endophytic bacteria for rice plant seedlings growth-promoting agents. Int. Sch. Res. Not. Int. Sch. Res. Not. 2013, 2013, 371879. [Google Scholar] [CrossRef]
  138. Eswaraiah, G.; Peele, K.A.; Krupanidhi, S.; Kumar, R.B.; Venkateswarulu, T.C. Studies on phytochemical, antioxidant, antimicrobial analysis, and separation of bioactive leads of leaf extract from the selected mangroves. J. King Saud Univ. -Sci. 2020, 32, 842–847. [Google Scholar] [CrossRef]
  139. Ye, D.; Li, T.; Yu, H.; Zou, L.; Huang, H.; Zhang, X.; Liu, J. Characteristics of bacterial community in root-associated soils of the mining ecotype of Polygonum hydropiper, a P-accumulating herb. Appl. Soil Ecol. 2020, 150, 1–9. [Google Scholar] [CrossRef]
  140. Tariq, M.; Naveed, A.; Barkat, A.K. The morphology, characteristics, and medicinal properties of Camellia sinensis tea. J. Med. Plants Res. 2010, 4, 2028–2033. [Google Scholar] [CrossRef]
  141. Negukhula, S.; Mudau, F.N.; Mariga, I.K.; Liphadzi, K.B. Effects of soaking conditions on total phenolic and antioxidant activity of black tea and black tea combined (50:50) with bush tea. Indian J. Hortic. 2011, 68, 91–95. [Google Scholar]
  142. Varmazyari, A.; Çakmakçı, R. Diversity and metabolic potential of the dominant culturable N2-fixing and P-solubilising bacteria from tea (Camellia sinensis L.) rizosphere. Front. Environ. Microbiol. 2018, 4, 45–54. [Google Scholar] [CrossRef]
  143. Archana, S.; Abraham, J. Comparative analysis of antimicrobial activity of leaf extracts from fresh green tea, commercial green tea, and black tea on pathogens. J. Appl. Pharm. Sci. 2011, 1, 149–152. [Google Scholar]
  144. Mandal, S.; DebMandal, M.; Pal, N.K.; Saha, K. Inhibitory and killing activities of black tea (Camellia sinensis) extract against Salmonella enterica serovar Typhi and Vibrio cholerae O1 biotype El Tor serotype Ogawa isolates. Jundishapur J. Microbiol. 2011, 4, 115–121. [Google Scholar]
  145. Ho, Y.N.; Mathew, D.C.; Hsiao, S.C.; Shih, C.H.; Chien, M.F.; Chiang, H.M.; Huang, C.C. Selection, and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants. J. Hazard. Mater. 2012, 219, 43–49. [Google Scholar] [CrossRef] [PubMed]
  146. Mbata, T.I. Preliminary studies of the antibacterial activities of processed Kenyan and Nigerian tea. Afr. J. Biotechnol. 2007, 6, 278–279. [Google Scholar]
  147. Rozoy, E.; Bazinet, L.; Araya-Farias, M.; Guernec, A.; Saucier, L. Inhibitory effects of commercial and enriched green tea extracts on the growth of Brochothrix thermosphacta, Pseudomonas putida and Escherichia coli. J. Food Res. 2013, 2, 1–7. [Google Scholar] [CrossRef]
  148. Vasudeo, Z.; Sonika, B. Antimicrobial activity of tea (Camellia sinensis). Biomed. Pharmacol. J. 2009, 2, 173. [Google Scholar]
  149. Hamilton-Miller, J.M.T. Anti-cariogenic properties of tea (Camellia sinensis). J. Med. Microbiol. 2001, 50, 299–302. [Google Scholar] [CrossRef] [PubMed]
  150. Dong, F.; Yang, Z.; Baldermann, S.; Sato, Y.; Asai, T.; Watanabe, N. Herbivore-induced volatiles from tea (Camellia sinensis) plants and their involvement in intraplant communication and changes in endogenous nonvolatile metabolites. J. Agric. Food Chem. 2011, 59, 13131–13135. [Google Scholar] [CrossRef]
  151. Hara-Kudo, Y.; Yamasaki, A.; Sasaki, M.; Okubo, T.; Minai, Y.; Haga, M.; Kondo, K.; Sugita-Konishi, Y. Antibacterial action on pathogenic bacterial spore by green tea catechins. J. Sci. Food Agric. 2005, 85, 2354–2361. [Google Scholar] [CrossRef]
  152. Kumar, A.; Kumar, A.; Thakur, P.; Patil, S.; Payal, C.; Kumar, A.; Sharma, P. Antibacterial activity of green tea (Camellia sinensis) extracts against various bacteria isolated from environmental sources. Recent Res. Sci. Technol. 2012, 4, 19–23. [Google Scholar]
  153. Aeon, A.; Maheshwari, D.K.; Meena, V.S. Endophytic bacteria promote growth of the medicinal legume Clitoria ternatea L. by chemotactic activity. Arch. Microbiol. 2020, 202, 1049–1058. [Google Scholar]
  154. Gupta, M.; Kiran, S.; Gulati, A.; Singh, B.; Tewari, R. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiol. Res. 2012, 167, 358–363. [Google Scholar] [CrossRef]
  155. Juneby, H. B Aloe barbadensis—A legendary medicinal plant. Pharmacognosy 2009, 15, 1–14. [Google Scholar]
  156. Ye, D.; Li, T.; Yi, Y.; Zhang, X.; Zou, L. Characteristics of endophytic fungi from Polygonum hydropiper suggest potential application for P-phytoextraction. Fungal Ecol. 2019, 41, 126–136. [Google Scholar] [CrossRef]
  157. Sharma, H.; Rai, A.K.; Dahiya, D.; Chettri, R.; Nigam, P.S. Exploring endophytes for in vitro synthesis of bioactive compounds similar to metabolites produced in vivo by host plants. AIMS Microbiol. 2021, 7, 175. [Google Scholar] [CrossRef]
  158. Taghavi, S.; Garafola, C.; Monchy, S.; Newman, L.; Hoffman, A.; Weyens, N.; Barac, T.; Vangronsveld, J.; van der Lelie, D. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl. Environ. Microbiol. 2009, 75, 748–757. [Google Scholar] [CrossRef]
  159. Braga, N.R.; Vieira, C. Effect of Bradyrhizobium sp.; nitrogen, molybdenum, and other micronutrients on the chickpea yield. Bragantia 1998, 57, 349–353. [Google Scholar] [CrossRef]
  160. Parul, B.; Chandra, R. Interaction of Mesorhizobium icero and rhizospheric bacteria on nodulation, growth, and yield of chickpea. J. Food Legumes 2009, 22, 137–139. [Google Scholar]
  161. Datta, C.; Basu, P.S. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol. Res. 2000, 155, 123–127. [Google Scholar] [CrossRef]
  162. Gupta, A.; Saxena, A.K.; Gopal, M.; Tilak, K.V.B.R. Effects of co-inoculation of plant growth promoting rhizobacteria and Bradyrhizobium sp. (Vigna) on growth and yield of green gram [Vigna radiata (L.) Wilczek]. Trop. Agric.-Lond. Trinidad 2003, 80, 28–35. [Google Scholar]
  163. Sy, A.; Giraud, E.; Jourand, P.; Garcia, N.; Willems, A.; De Lajudie, P.; Prin, Y.; Neyra, M.; Gillis, M.; Boivin-Masson, C.; et al. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol. 2001, 183, 214–220. [Google Scholar] [CrossRef]
  164. Silva, C.F.D.; Vitorino, L.C.; Mendonça, M.A.C.; Araújo, W.L.; Dourado, M.N.; Albuquerque, L.C.; Soares, M.A.; Souchie, E.L. Screening of plant growth-promoting endophytic bacteria from the roots of the medicinal plant Aloe vera. S. Afr. J. Bot. 2020, 134, 3–16. [Google Scholar] [CrossRef]
  165. Pongsilp, N. Classification and Taxonomy of Rhizobia. In Phenotypic and Genotypic Diversity of Rhizobia; Bentham Science Publishers: Potomac, MD, USA, 2012. [Google Scholar]
  166. Sindhu, S.S.; Jangu, O.P.; Sivaramaiah, N. Genetic engineering of diazotrophic bacteria to improve nitrogen fixation for sustainable agriculture. In Biotechnology Emerging Trends; Scientific Publishers: Jodhpur, India, 2009; pp. 73–112. [Google Scholar]
  167. Wang, E.T.; Rogel, M.A.; García-De Los Santos, A.; Martinez-Romero, J.; Cevallos, M.A.; Martínez-Romero, E. Rhizobium etli bv. mimosae, a novel biovar isolated from Mimosa affinis. Int. J. Syst. Evol. Microbiol. 1999, 49, 1479–1491. [Google Scholar] [CrossRef]
  168. Moreira, F.M.S. 11 Nitrogen-fixing Leguminosae-nodulating Bacteria. Soil Biodivers. Amazon. Other Braz. Ecosyst. 2006, 237–280. [Google Scholar]
  169. Gupta, C.P.; Kumar, B.; Dubey, R.C.; Maheshwari, D.K. Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut. BioControl 2006, 51, 821–835. [Google Scholar] [CrossRef]
  170. Kumar, K.V.; Srivastava, S.; Singh, N.; Behl, H.M. Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J. Hazard. Mater. 2009, 170, 51–57. [Google Scholar] [CrossRef]
  171. Shi, P.; Zhu, K.; Zhang, Y.; Chai, T. Growth and cadmium accumulation of Solanum nigrum L. seedling were enhanced by heavy metal-tolerant strains of Pseudomonas aeruginosa. Water Air Soil Pollut. 2016, 227, 1–11. [Google Scholar] [CrossRef]
  172. Ullah, A.; Heng, S.; Munis, M.F.H.; Fahad, S.; Yang, X. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environ. Exp. Bot. 2015, 117, 28–40. [Google Scholar] [CrossRef]
  173. Chaudhary, D.R. Halophytes of Semi-Arid Areas: Resources for Mitigation of Climate Change. In Climate Change Adaptations in Dryland Agriculture in Semi-Arid Areas; Springer: Singapore, 2022; pp. 93–109. [Google Scholar]
  174. El-Tarabily, K.A.; Youssef, T. Improved growth performance of the mangrove Avicennia marina seedlings using a 1-aminocyclopropane-1-carboxylic acid deaminase-producing isolate of Pseudoalteromonas maricaloris. Plant Growth Regul. 2011, 65, 473–483. [Google Scholar] [CrossRef]
  175. Li, H.Y.; Wei, D.Q.; Shen, M.; Zhou, Z.P. Endophytes, and their role in phytoremediation. Fungal Divers. 2012, 54, 11–18. [Google Scholar] [CrossRef]
  176. Dary, M.; Chamber-Pérez, M.A.; Palomares, A.J.; Pajuelo, E. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J. Hazard. Mater. 2010, 177, 323–330. [Google Scholar] [CrossRef] [PubMed]
  177. Abou-Shanab, R.A.I.; Angle, J.S.; Chaney, R.L. Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate, and high Ni soils. Soil Biol. Biochem. 2006, 38, 2882–2889. [Google Scholar] [CrossRef]
  178. Wu, S.C.; Cheung, K.C.; Luo, Y.M.; Wong, M.H. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ. Pollut. 2006, 140, 124–135. [Google Scholar] [CrossRef]
  179. Zaidi, S.; Usmani, S.; Singh, B.R.; Musarrat, J. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 2006, 64, 991–997. [Google Scholar] [CrossRef]
  180. Ahemad, M.; Khan, M.S. Evaluation of plant-growth-promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. Ann. Microbiol. 2012, 62, 1531–1540. [Google Scholar] [CrossRef]
  181. Sheng, X.F.; Xia, J.J.; Jiang, C.Y.; He, L.Y.; Qian, M. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ. Pollut. 2008, 156, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
  182. Unterbrunner, R.; Puschenreiter, M.; Sommer, P.; Wieshammer, G.; Tlustos, P.; Zupan, M.; Wenzel, W.W. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ. Pollut. 2007, 148, 107–114. [Google Scholar] [CrossRef] [PubMed]
  183. Wani, P.A.; Khan, M.S.; Zaidi, A. Effect of metal tolerant plant growth promoting Bradyrhizobium sp.(vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 2007, 70, 36–45. [Google Scholar] [CrossRef]
  184. Mitter, E.K.; de Freitas, J.R.; Germida, J.J. Hydrocarbon-degrading genes in root endophytic communities on oil sands reclamation covers. Int. J. Phytoremediation 2020, 22, 703–712. [Google Scholar] [CrossRef]
  185. Shin, M.N.; Shim, J.; You, Y.; Myung, H.; Bang, K.S.; Cho, M.; Kamala-Kannan, S.; Oh, B.T. Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J. Hazard. Mater. 2012, 199, 314–320. [Google Scholar] [PubMed]
  186. Lodewyckx, C.; Mergeay, M.; Vangronsveld, J.; Clijsters, H.; Van Der Lelie, D. Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. Int. J. Phytoremediation 2002, 4, 101–115. [Google Scholar] [CrossRef] [PubMed]
  187. Idris, R.; Trifonova, R.; Puschenreiter, M.; Wenzel, W.W.; Sessitsch, A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 2004, 70, 2667–2677. [Google Scholar] [CrossRef] [PubMed]
  188. Sun, R.L.; Zhou, Q.X.; Sun, F.H.; Jin, C.X. Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ. Exp. Bot. 2007, 60, 468–476. [Google Scholar] [CrossRef]
  189. Khan, A.R.; Park, G.S.; Asaf, S.; Hong, S.J.; Jung, B.K.; Shin, J.H. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLoS ONE 2017, 12, e0171534. [Google Scholar] [CrossRef]
  190. Mengoni, A.; Pini, F.; Bazzicalupo, M. Bacterial flora of the nickel-hyperaccumulator plant Alyssum bertolonii. In Biomanagement of Metal-Contaminated Soils; Springer: Dordrecht, The Netherlands, 2011; pp. 167–181. [Google Scholar]
  191. Chen, W.M.; Wu, C.H.; James, E.K.; Chang, J.S. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J. Hazard. Mater. 2008, 151, 364–371. [Google Scholar] [CrossRef]
  192. Santra, H.K.; Banerjee, D. Induction of stress tolerance in plants by endophytes for sustainable development. In Endophytic Association: What, Why and How; Academic Press: Amsterdam, The Netherlands, 2023; pp. 533–554. [Google Scholar]
  193. Liang, X.; Chi-Quan, H.E.; Gang, N.I.; Tang, G.E.; Xue-Ping, C.H.E.N.; Yan-Ru, L.E.I. Growth and Cd accumulation of Orychophragmus violaceus as affected by inoculation of Cd-tolerant bacterial strains. Pedosphere 2014, 24, 322–329. [Google Scholar] [CrossRef]
  194. Weyens, N.; van der Lelie, D.; Taghavi, S.; Vangronsveld, J. Phytoremediation: Plant–endophyte partnerships take the challenge. Curr. Opin. Biotechnol. 2009, 20, 248–254. [Google Scholar] [CrossRef]
  195. Khan, A.R.; Ullah, I.; Khan, A.L.; Park, G.S.; Waqas, M.; Hong, S.J.; Jung, B.K.; Kwak, Y.; Lee, I.J.; Shin, J.H. Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp. RSC-14 inoculation. Environ. Sci. Pollut. Res. 2015, 22, 14032–14042. [Google Scholar] [CrossRef] [PubMed]
  196. Chen, L.; Luo, S.; Xiao, X.; Guo, H.; Chen, J.; Wan, Y.; Li, B.; Xu, T.; Xi, Q.; Rao, C.; et al. Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Appl. Soil Ecol. 2010, 46, 383–389. [Google Scholar] [CrossRef]
  197. Luo, S.; Wan, Y.; Xiao, X.; Guo, H.; Chen, L.; Xi, Q.; Zeng, G.; Liu, C.; Chen, J. Isolation, and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl. Microbiol. Biotechnol. 2011, 89, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
  198. Visioli, G.; D’Egidio, S.; Vamerali, T.; Mattarozzi, M.; Sanangelantoni, A.M. Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens. Chemosphere 2014, 117, 538–544. [Google Scholar] [CrossRef] [PubMed]
  199. Ma, Y.; Oliveira, R.S.; Nai, F.; Rajkumar, M.; Luo, Y.; Rocha, I.; Freitas, H. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J. Environ. Manag. 2015, 156, 62–69. [Google Scholar] [CrossRef] [PubMed]
  200. Yang, C.; Ho, Y.N.; Makita, R.; Inoue, C.; Chien, M.F. A multifunctional rhizobacterial strain with wide application in different ferns facilitates arsenic phytoremediation. Sci. Total Environ. 2020, 712, 1–11. [Google Scholar] [CrossRef]
  201. Vurukonda, S.S.K.P.; Vardharajula, S.; Shrivastava, M.; SkZ, A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 2016, 184, 13–24. [Google Scholar] [CrossRef]
  202. Jha, Y.; Subramanian, R.B. PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol. Mol. Biol. Plants 2014, 20, 201–207. [Google Scholar] [CrossRef]
  203. Ait Barka, E.; Nowak, J.; Clément, C. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl. Environ. Microbiol. 2006, 72, 7246–7252. [Google Scholar] [CrossRef]
  204. Kour, D.; Rana, K.L.; Yadav, A.N.; Yadav, N.; Kumar, V.; Kumar, A.; Sayyed, R.Z.; Hesham, A.E.L.; Dhaliwal, H.S.; Saxena, A.K. Drought-tolerant phosphorus-solubilizing microbes: Biodiversity and biotechnological applications for alleviation of drought stress in plants. In Plant Growth Promoting Rhizobacteria for Sustainable Stress Management; Springer: Singapore, 2019; pp. 255–308. [Google Scholar]
  205. Chouychai, W.; Sangdee, A.; Phunee, A.; Senarit, P.; Somtrakoon, K. Using Streptomyces spp. as Plant Growth-Promoting Inoculants for Growth of Napier Grass under Low Water System. Pertanika J. Trop. Agric. Sci. 2022, 45, 491–504. [Google Scholar] [CrossRef]
  206. Saravanakumar, D.; Kavino, M.; Raguchander, T.; Subbian, P.; Samiyappan, R. Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol. Plant. 2011, 33, 203–209. [Google Scholar] [CrossRef]
  207. Guleria, I.; Kumari, A.; Lacaille-Dubois, M.A.; Kumar, V.; Saini, A.K.; Dhatwalia, J.; Lal, S. A review on the genus Populus: A potential source of biologically active compounds. Phytochem. Rev. 2021, 21, 987–1046. [Google Scholar] [CrossRef]
  208. Sheng, X.F.; Jiang, C.Y.; He, L.Y. Characterization of plant growth-promoting Bacillus edaphicus NBT and its effect on lead uptake by Indian mustard in a lead-amended soil. Can. J. Microbiol. 2008, 54, 417–422. [Google Scholar] [CrossRef] [PubMed]
  209. Ahemad, M.; Iqbal, J. Phosphate-solubilizing bacteria as plant growth promoters and accelerators of phytoremediation. In Phytoremediation of Environmental Pollutants; CRC Press: Boca Raton, FL, USA, 2017; pp. 227–244. [Google Scholar]
  210. Joe, M.M.; Islam, M.R.; Karthikeyan, B.; Bradeepa, K.; Sivakumaar, P.K.; Sa, T. Resistance responses of rice to rice blast fungus after seed treatment with the endophytic Achromobacter xylosoxidans AUM54 strains. Crop Prot. 2012, 42, 141–148. [Google Scholar] [CrossRef]
  211. Siciliano, S.D.; Germida, J.J. Enhanced phytoremediation of chlorobenzoates in rhizosphere soil. Soil Biol. Biochem. 1999, 31, 299–305. [Google Scholar] [CrossRef]
  212. Rentz, J.A.; Alvarez, P.J.; Schnoor, J.L. Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates. Environ. Microbiol. 2004, 6, 574–583. [Google Scholar] [CrossRef]
  213. Taghavi, S.; Barac, T.; Greenberg, B.; Borremans, B.; Vangronsveld, J.; van der Lelie, D. Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl. Environ. Microbiol. 2005, 71, 8500–8505. [Google Scholar] [CrossRef]
  214. Weyens, N.; Truyens, S.; Saenen, E.; Boulet, J.; Dupae, J.; Taghavi, S.; van der Lelie, D.; Carleer, R.; Vangronsveld, J. Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation. Int. J. Phytoremediation 2011, 13, 244–255. [Google Scholar] [CrossRef] [PubMed]
  215. Afzal, M.; Yousaf, S.; Reichenauer, T.G.; Sessitsch, A. Ecology of alkane-degrading bacteria and their interaction with the plant. Mol. Microb. Ecol. Rhizosphere 2013, 2, 975–989. [Google Scholar]
  216. Manzoor, M.; Gul, I.; Ahmed, I.; Zeeshan, M.; Hashmi, I.; Amin, B.A.Z.; Kallerhoff, J.; Arshad, M. Metal tolerant bacteria enhanced phytoextraction of lead by two accumulator ornamental species. Chemosphere 2019, 227, 561–569. [Google Scholar] [CrossRef]
  217. He, L.Y.; Zhang, Y.F.; Ma, H.Y.; Chen, Z.J.; Wang, Q.Y.; Qian, M.; Sheng, X.F. Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl. Soil Ecol. 2010, 44, 49–55. [Google Scholar] [CrossRef]
  218. Sun, L.N.; Zhang, Y.F.; He, L.Y.; Chen, Z.J.; Wang, Q.Y.; Qian, M.; Sheng, X.F. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour. Technol. 2010, 101, 501–509. [Google Scholar] [CrossRef]
  219. Sheng, X.; Chen, X.; He, L. Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge. Int. Biodeterior. Biodegrad. 2008, 62, 88–95. [Google Scholar] [CrossRef]
  220. Yousaf, S.; Andria, V.; Reichenauer, T.G.; Smalla, K.; Sessitsch, A. Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J. Hazard. Mater. 2010, 184, 523–532. [Google Scholar] [CrossRef] [PubMed]
  221. Wu, X.Q.; Yuan, W.M.; Tian, X.J.; Fan, B.; Fang, X.; Ye, J.R.; Ding, X.L. Specific and functional diversity of endophytic bacteria from pine wood nematode Bursaphelenchus xylophilus with different virulence. Int. J. Biol. Sci. 2013, 9, 34. [Google Scholar] [CrossRef] [PubMed]
  222. Moore, F.P.; Barac, T.; Borremans, B.; Oeyen, L.; Vangronsveld, J.; Van der Lelie, D.; Campbell, C.D.; Moore, E.R. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: The characterization of isolates with potential to enhance phytoremediation. Syst. Appl. Microbiol. 2006, 29, 539–556. [Google Scholar] [CrossRef]
  223. Khan, Z.; Roman, D.; Kintz, T.; delas Alas, M.; Yap, R.; Doty, S. Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1. Environ. Sci. Technol. 2014, 48, 12221–12228. [Google Scholar] [CrossRef] [PubMed]
  224. Rajkumar, M.; Ae, N.; Freitas, H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 2009, 77, 153–160. [Google Scholar] [CrossRef]
  225. Babu, A.G.; Kim, J.D.; Oh, B.T. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J. Hazard. Mater. 2013, 250, 477–483. [Google Scholar] [CrossRef]
  226. Singh, D.; Singh, V.K.; Singh, A.K. Endophytic Microbes: Prospects and Their Application in Abiotic Stress Management and Phytoremediation. In Seed Endophytes; Springer: Cham, Switzerland, 2013; pp. 313–333. [Google Scholar]
  227. Ma, Y.; Rajkumar, M.; Zhang, C.; Freitas, H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J. Environ. Manag. 2016, 174, 14–25. [Google Scholar] [CrossRef] [PubMed]
  228. Luo, S.L.; Chen, L.; Chen, J.L.; Xiao, X.; Xu, T.Y.; Wan, Y.; Rao, C.; Liu, C.B.; Liu, Y.T.; Lai, C.; et al. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 2011, 85, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
  229. Zhang, Y.F.; He, L.Y.; Chen, Z.J.; Zhang, W.H.; Wang, Q.Y.; Qian, M.; Sheng, X.F. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J. Hazard. Mater. 2011, 186, 1720–1725. [Google Scholar] [CrossRef]
  230. He, L.; Ren, Y.; Zeng, W.; Wu, X.; Shen, L.; Yu, R.; Liu, Y.; Li, J. Deciphering the endophytic and rhizospheric microbial communities of a Metallophyte Commelina communis in different Cu-polluted soils. Microorganisms 2021, 9, 1689. [Google Scholar] [CrossRef]
  231. Bisht, S.; Pandey, P.; Kaur, G.; Aggarwal, H.; Sood, A.; Sharma, S.; Kumar, V.; Bisht, N.S. Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. Eur. J. Soil Biol. 2014, 60, 67–76. [Google Scholar] [CrossRef]
  232. Kuffner, M.; De Maria, S.; Puschenreiter, M.; Fallmann, K.; Wieshammer, G.; Gorfer, M.; Strauss, J.; Rivelli, A.R.; Sessitsch, A. Culturable bacteria from Zn-and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J. Appl. Microbiol. 2010, 108, 1471–1484. [Google Scholar] [CrossRef] [PubMed]
  233. Ruppel, S.; Franken, P.; Witzel, K. Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct. Plant Biol. 2013, 40, 940–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Figure 1. Roles of endophytic bacteria on plant growth, protection, and phytoremediation.
Figure 1. Roles of endophytic bacteria on plant growth, protection, and phytoremediation.
Microorganisms 11 00453 g001
Table 1. Endophytic bacteria with antimicrobial activity and associated secondary metabolites from medicinal and herbal plant species.
Table 1. Endophytic bacteria with antimicrobial activity and associated secondary metabolites from medicinal and herbal plant species.
Isolated Bacterial SpeciesBiochemical/Physiological ActivityHost Medicinal Plant SpeciesHost Plant Part/RegionReferences
Pseudomonas sp., Bacillus sp., Enterobacter sp., Pantoea sp., Chryseobacterium sp., Sphingobacterium sp., Aeromonas sp., Providencia sp., Cedecea sp., Klebsiella sp., Cronobacter sp., Macrococcus sp., Shigella sp.1,1-diphenyl-2-picrylhydrazyl, ascorbic acid productionAloe veraStem, leaf, root[72]
Streptomyces sp., Micromonospora sp., Microbiospora sp., Nocardia sp.Coronamycin, hydroxamate type siderophores productionAzadirachta indicaStem, leaf, root[73]
Bacillus sp., Bacillus megaterium, Bacillus pumilus, Bacillus licheniformis, Micrococcus luteus, Paenibacillus sp., Pseudomonas sp., Acinetobacter calcoaceticusAmylase, esterase, lipase, protease, pectinase, xylanase, and cellulose productionPlectranthus tenuiflorusStem, leaf, root[74]
21 endophytic bacteriaAmines, amides, acids, quinines, indole derivatives, steroids, azoles, alcohols, and hydrocarbons productionCleodendrum myricoides, Lannea flavus, Dichrostachys cinerea, Gomphocarpus fruticosus, Balanites aegyptica, Jasminium floribundum, Hibiscus fuscusRoot[75]
Bacillus polyfermenticus, Bacillus subtilis, Bacillus licheniformis, Bacillus pumilusCellulase production, Xylanase production, annanase production
Pectinase, Amylase, Protease, Lipase, Esterase, DNase, Chitinase production
Codonopsis lanceolataRoot[76]
Bacillus amyloliquefaciensdiethyl ether, ethyl acetate productionMemecylon edule, Tinospora cordifolia, Phyllodium pulchellum, Dipterocarpus tuberculatusWhole plant[77]
Bacillus spp.NMRumex pulcherLeaf, stem[78]
Bacillus amyloliquefaciensdiethyl ether; chloroform and ethyl acetate productionTinospora cordifolia, Phyllodium pulchellum, Dipterocarpus tuberculatus [77]
Bacillus spp.NMHypericum scabrumLeaf[78]
Bacillus licheniformis,
Bacillus pumilus
cellulase, xylanase, mannase, pectinase, amylase, protease, lipase, esterase, DNase, linchinase, chitinase productionPlatycodon grandiflorumRoot[79]
Bacillus sp., Paenibacillus sp., Pseudomonas sp., Ralstonia sp., Micrococcus sp., Alcaligenes spp.Catalase, Amylase, Gelatinase, Lipase, Nitrate Reductase, Dextrose, Fructose, Lactose, Maltose and Sucrose productionPaederia foetidaLeaf, stem[80]
Streptomyces griseusp-Aminoacetophenonic acids productionKandelia candelNM[81]
Serratia marcescensOocydin A productionRhyncholacis penicillataNM[82]
Streptomyces spp.Munumbicins,
Munumbicin D production
Kennedia nigriscansNM[83]
Paenibacillus polymyxaFusaricidin A–D productionArabidopsis thaliana, Canola spp.NM[84]
Streptomyces sp.Coronamycin productionMonstera sp.NM[85]
Phyllobacterium sp.Fatty acids productionEpimedium brevicornumStem, root[86]
Streptomyces sp.Indolosesquiterpenes, xiamycin, indosespene, sespenine productionKandelia candelStem[87]
Streptomyces sp.Xiamycin productionBruguiera gymnorrhizaStem[88]
Saccharopolyspora flava, Pseudonocardia zijingensis, Nocardia carnea, Streptomyces hainanensis, Polymorphospora rubra, Janibacter melonis, Nocardiopsis dassonvillei, Glycomyces sambucusNMMaytenus austroyunnanensisRoot[89]
Gordonia sputi, Gordonia polyisoprenivorans, Microbacterium paraoxydans, Nocardiopsis dassonvillei, Jiangella alkaliphila, Tsukamurella tyrosinosolvensNMMaytenus austroyunnanensisStem[89]
Saccharopolyspora gregoriiNMGloriosa superbaStem[89]
Amycolatopsis pretoriensisNMSaccharopolyspora gregoriiRoot[89]
Lentzea albidaNMFicus tikouaRoot[89]
Pseudonocardia alniNMCallicarpa longifoliaLeaf[89]
Pseudonocardia kongjuensisNMLobelia clavataLeaf[89]
Rhodococcus fasciansNMCercidiphyllum japonicumLeaf[89]
Micromonospora narashino, Micromonospora peucetia, Promicromonospora aerolata, Arthrobacter mysorens, Actinomadura atramentaria, Nonomuraea candidaNMMycobacterium monacenseLeaf[89]
Dietzia marisNMSchima sp.Stem[89]
Dietzia natronolimnaeaNMCercidiphyllum japonicumRoot[89]
Streptomyces specialisNMSedum sp.Root[89]
Blastococcus aggregatus, Dactylosporangium aurantiacumNMTripterygium wilfordiiRoot[89]
Catellatospora chokoriensisNMBerberis chingiiRoot[89]
Kineosporia aurantiaca, Saccharopolyspora flavaNMTripterygium wilfordiiStem[89]
Promicromonospora sukumoeNMCymbopogon citratusRoot[89]
Oerskovia jenensisNMGinkgo sp.Leaf[89]
Micrococcus flavusNMPolyspora axillarisRoot[89]
Micrococcus flavusNMAquilaria sinensisRoot[89]
Actinocorallia aurantiacaNMDuranta repensRoot[89]
Actinocorallia herbidaNMMillettia reticulataLeaf[89]
Herbidospora cretaceaNMOsyris wightianaStem[89]
Glycomyces algeriensisNMCarex baccansRoot[89]
Glycomyces algeriensisNMScoparia dulcisRoot[89]
Unidentified bacterial endophytes (gram positive)Amines, amides, acids, quinines, indole derivatives, steroids, azoles, alcohols, hydrocarbons productionCleodendrum myricoides, Lannea flavus, Dichrostachys cinerea, Gomphocarpus fruticosus, Balanites aegyptica, Jasminium floribundum, Hibiscus fuscusRoot[89]
Lysinibacillus sp., Paenibacillus sp., Pseudomonas sp., Bacillus sp., Kocuria sp., Streptomyces sp., Providencia sp., Rhizobium sp., Leucobacter sp., Brachybacterium sp., Mycobacterium sp.fengycins, surfactants productionPolygonum cuspidatumRoot[55]
Enterobacter sp., B. subtilisamylase, cellulase, xylanase, mannase, PGAase, DNase, protease, and esterase productionRaphanus sativusLeaf, root[55]
Bacillus spp. Andrographis paniculataLeaves[57]
Pseudomonas spp.,
Serratia sp., Bacillus sp., Arthrobacter sp., Micrococcus sp., Curtobacterium sp.
Piper nigrumRoot, stem[58]
Bacillus amyloliquefaciensBacteriocins productionBruguiera gymnorrhizaLeaf[90]
Bacillus thuringiensis, B. pumilus Suaeda monoica, Suaeda maritima, Salicornia brachiata, Lumnitzera racemosa, Sesuvium portulacastrum, Rhizophora apiculata, Rhizophora mucronata, Bruguiera cylindrica, Ceriops decandra, Avicennia marina, Aegiceras corniculatumLeaf[91]
Paenibacillus sp.Cellulases, xylanases, pectinase, fusaricidin, peptide synthetase, lipopeptides, and bacitracin productionAloe chinensisRoot[92]
Actinomadura sp., Amycolatopsis sp., Dactylosporangium sp., Kocuria sp., Kribbella sp., Micrococcus sp., Micromonospora sp., Nonomuraea sp., Promicromonospora sp., Pseudonocardia sp., Rhodococcus sp., Streptomyces sp., Streptosporangium sp.Antibiotics productionArtemisia annuaLeaf, stem, root[93]
Streptomyces sp., Streptosporangium sp.,
Microbispora sp., Streptoverticillium sp., Sacchromonospora sp., Nocardia sp.
Munumbacin A-D, Kakadumy, Coronamyncin productionAzadirachta indicaLeaf, stem, root[94]
Bacillus sp., Enterobacter sp., Streptomyces sp.NMPaeonia ostiiRoot[95]
Pseudomonas aeruginosa2,4-Dichlorophenoxyacetic acid ichlorophenoxyacetic acid, Phenazone productionPlatycodon grandiflorumRoot[79]
Paenibacillus polymyxa, Bacillus sp., Pseudomonas poaeCellulase, xylanase, pectinase productionPanax ginsengRoot[96]
Bacillus amyloliquefaciens subsp. Plantarum, Bacillus methylotrophicusNMPanax notoginsengroot, stem, Petiole, leaf, seed[97]
Bacillus subtilis,
Pseudomonas fluorescens
Iturin A, surfactant productionCentella asiaticaLeaf[98]
Arthrobacter sp., Achromobacter sp., Bacillus sp., Enterobacter sp., Erwinia sp.,
Pseudomonas sp., Pantoea sp., Serratia sp., Stenotrophomonas sp.
Cellulase, protease, β-1,3-glucanase, hydrogen cyanide productionHypericum perforatumRoot, stem, leaf[99]
Achromobacter sp., Bacillus sp., Enterobacter sp., Erwinia sp.,
Pseudomonas sp., Pantoea sp.
Cellulase, Protease, β-1,3-glucanase, hydrogen cyanide productionZiziphora capitataRoot, stem, leaf[99]
Pseudomonas hibiscicola, Macrococcus caseolyticus, Enterobacter
ludwigii, Bacillus anthracis
1,1-diphenyl-2-picrylhydrazyl productionAloe veraRoot, stem, leaf[72]
B. tequilensis, Pseudomonas entomophila, Chryseobacterium indologenes, B. aerophilusAscorbic acid productionAloe veraRoot, stem, leaf[72]
NM = not mentioned.
Table 2. Growth-promoting bacteria and associated secondary metabolites from medicinal and herbal plant species.
Table 2. Growth-promoting bacteria and associated secondary metabolites from medicinal and herbal plant species.
Isolated Bacterial SpeciesBiochemical/Physiological ActivityHost Medicinal Plant SpeciesHost Plant Part/RegionReferences
Enterobacter sp. strain 638, Stenotrophomonas maltophilia R551-3, Pseudomonas putida W619, Serratia proteamaculans 568Root/ biomass developmentPopulus spp.Root and shoot[158]
Bradyrhizobium sp.Increased Nitrogen and phosphorus uptakeCicer arietinumRoot[159]
Mesorhizobium ciceriIncreased Nitrogen and phosphorus uptakeVigna radiataRoot[160]
Rhizobium sp.Indole acetic acidCajanus cajanRoot[161]
Bradyrhizobium sp.Increased uptake of P, N and Mg
High chlorophyll content
Vigna radiataRoot[162]
Methylobacterium sp.NMCrotalaria glaucoidesRoot[163]
Azotobacter sp., Azospirillum sp.indole acetic acid productionAloe veraRoot[164]
Pantoea agglomerans,
Enterobacter kobei,
Enterobacter cloacae,
Leclercia adecarboxylata,
Escherichia vulneris
NMHedysarum carnosum, H. spinosissimum subsp. capitatum, H. pallidumRoot[117]
Rhizobium
leguminosarum
NMPisum sativum, Vicia sp., Lathyrus sp., Lens sp., Trifolium pratense, Trifolium spp., Phaseolus vulgaris, P. angustifolius, P. multiflorusNM[165]
R. elti biovar phaseoliNMPhaseolus vulgaris, Leucaena sp.NM[166]
R. etli biovar mimosaeNMMimosa affinisNM[167]
R. hainanenseNMDesmodium sinuatum, Desmodium gyroides,
Desmodium triquetrum, Desmodium heterophyllum, Acacia sinicus, Arachis hypogaea, Centrosema pubescens,
Macroptilium lathyroides, Stylosanthes guianensis, Tephrosia candida, Uraria crinita, Zornia diphylla
NM[168]
R. gallicum biovar gallicumNMPhaseolus vulgaris, Leucaena leucocephala, Macroptilium atropurpureum, Onobbrychis viciifoliaNM[168]
R. gallicum biovar phaseoliNMPhaseolus vulgarisNM[168]
R. mongolenseNMMedicago ruthenica, Phaseolus vulgarisNM[168]
R. galegae biovar orientalisNMGalega orientalisNM[168]
R. galegae biovar officinalisNMGalega officinalis, Astragalus cruciatus, Argyrolobium
uniflorum, Anthyllis henoniana, Lotus creticus, Medicago spp.
Root[168]
R. giardinii biovar giardiniiNMLeucaena leucocephala, Macroptilium atropurpureumNM[168]
R. giardinii biovar phaseoliNMPhaseolus vulgarisNM[168]
R. huautlenseNMSesbania herbaceaNM[168]
R. indigoferaeNMIndigofera amblyantha, I. carlesii, I. potaniniNM[168]
R. sullaeNMHedysarum coronariumNM[168]
R. loessenseNMAstragalus sp., Lespedeza sp.NM[168]
R. yanglingenseNMCoronilla varia, Amphicarpaea trisperma, Gueldenstaedtia multifloraNM[168]
Sinorhizobium melilotiNMMedigaco sp., Melilotus sp., Trigonella sp.NM[168]
S. sahelenseNMSesbania sp., Acacia sp.NM[168]
S. terangaeNMAcacia sp., Sesbania sp.NM[168]
S. medicaeNMMedicago sp.NM[168]
S. kostienseNMAcacia sp., Prosopis sp.NM[168]
S. morelenseNMLeucaena leucocephalaNM[168]
S. americanumNMAcacia sp.NM[168]
S. arborisNMAcacia sp., Prosopis sp.NM[168]
S. kummerowiaeNMKummerowia stipulaceaNM[168]
Ensifer adhaerensNMSesbania sp., Medicago sp., Sesbania grandiflora, Leucaena leucocephala, Pithecellobium dulce, Medicagosativa sp.NM[168]
Allorhizobium undicolaNMNeptunia natans, Acacia senegal, A. seyal, A tortilis, Lotus arabicus, Faidherbia albidaNM[168]
Mesorhizobium lotiNMLotus corniculatus, L. tenuis, L. japonicum, L. krylovii, L. filicalius, L. schoelleri, Anthyllis spp., Lupinus spp.NM[168]
M. huakuiiNMAstragalus sinicus, Acacia spp.NM[168]
M. ciceriNMCicer arietinumNM[168]
M. tianshanenseNMGlycyrrhiza pallidiflora, G. uralensis, Sophora alopecuroides, Glycine max, Swainsonia salsula, Halimodendron holodendron, Caragana polourensisNM[168]
M. mediterraneumNMCicer arietinumNM[168]
M. plurifariumNMAcacia senegal, A. seyal, A. tortilis, Leucaena leucocephala, L. diversifolia, Prosopisjuliflora, Chamaecrista ensiformisNM[168]
M. amorphaeNMAmorpha fruticosaNM[168]
M. chacoenseNMProsopis albaNM[168]
Methylobacterium nodulansNMCrotalaria podocarpa, C. Perottetti, C. glaucoides.NM[168]
Ochrobactrum spp.NMA. mangium, Faidherbia albida, Paraserianthes falcatariaNM[168]
Devosia neptuniaeNMNeptunia natansNM[168]
Azorhizobium caulinodansNMSesbania rostrataNM[168]
A. johannenseNMSesbania virgataNM[168]
Azorhizobium sp.NMSesbania rostrataNM[168]
Bradyrhizobium japonicumNMGlycine max, Glycine soja, Macroptilium atropurpureumNM[168]
B. elkaniiNMGlycine max, Vigna spp., Macroptilium atropurpureumNM[168]
B. liaoningenseNMGlycine max, Glycine sojaNM[168]
B. yuanmingenseNMLespedeza cuneataNM[168]
B. betaeNMBeta vulgarisNM[168]
B. canarienseNMGenisteae and Loteae plantsNM[168]
Bradyrhizobium sp.NMLupinus spp., Mimosa spp., Faidherbia spp., Acacia spp., 27 herb legumesNM[168]
Blastobacter denitrificansNMAeschynomene indicaNM[168]
Burkholderia caribensisNMMimosa pudica, M. diplotrichaNM[168]
B. tuberumNMAlysicarpus glumaceusNM[168]
B. phymatumNMAspalatus carnosa
Machaerium lunatum
NM[168]
Ralstonia taiwanensisNMMimosa pudica, M. diplotricha.NM[168]
Pantoea agglomeransNMHedysarum carnosum, H. spinosissimum subsp. capitatum, H. pallidumNM[168]
Enterobacter kobeiNMHedysarum carnosum, H. spinosissimum subsp. capitatum, H. pallidumNM[168]
Enterobacter cloacaeNMHedysarum carnosum, H. spinosissimum subsp. capitatum, H. pallidumNM[168]
Leclercia adecarboxylataNMHedysarum carnosum, H. spinosissimum subsp. capitatum, H. pallidumNM[168]
Escherichia vulnerisNMHedysarum carnosum, H. spinosissimum subsp. capitatum, H. pallidumNM[168]
Pseudomonas sp.NMHedysarum carnosum, H. spinosissimum subsp. capitatum, H. pallidumNM[168]
Pseudomonas sp.Indole acetic acid, hydrogen cyanide, and siderophore productionSolanum sp.Rhizosphere[169]
Enterobacter aerogenes
NBRI K24, Rahnella
aquatilis NBRI K3
Aminocyclopropane-1-carboxylic acid deaminase,
indole acetic acid, siderophore production
Brassica junceaNM[170]
Enterobacter sp.Aminocyclopropane-1-carboxylic acid deaminase,
indole acetic acid, siderophore production
Brassica junceaNM[170]
Pseudomonas aeruginosaAminocyclopropane-1-carboxylic acid deaminase,
indole acetic acid, siderophore production
Solanum nigramNM[171]
Bacillus thuringiensis GDB-1 Aminocyclopropane-1-carboxylic acid deaminase, indole acetic acid, Siderophores, Phosphate solubilizationAlnus firmaRoot, shoot[172]
B. pumilus E2S2, Bacillus sp. E1S2indole acetic acid, ACC deaminase, siderophores, phosphate solubilizationSedum plumbizincicolaRoot, shoot[172]
Pseudomonas tolaasii ACC23, P. fluorescens ACC9ACC deaminase, siderophores indole acetic acidproductionB. napusRoot, shoot[172]
Pseudomonas veroniiindole acetic acid, decrease soil pH, supply P, and FeS. alfrediiRoot, shoot[172]
Rhizobium indigoferae sp. nov. and
Sinorhizobium kummerowiae sp.
NMIndigofera spp. and
Kummerowia stipulacea
Root[121]
Achromobacter xylosoxidans Ax10 Aminocyclopropane-1-carboxylic acid deaminase, indole acetic acidproduction; P solubilizationB. JunceaRoot, shoot[172]
Psychrobacter sp. SRA1,
Bacillus cereus SRA10
Aminocyclopropane-1-carboxylic acid deaminase indole acetic acid, P solubilizationB. JunceaRoot, shoot[172]
Pseudomonas sp. SRI2,
Psychrobacter sp. SRS8,
Bacillus sp. SN9
Aminocyclopropane-1-carboxylic acid deaminase, indole acetic acid production; P solubilization,B. JunceaRoot, shoot[172]
Pseudomonas sp. SRI2,
Psychrobacter sp. SRS8,
Bacillus sp. SN9
Aminocyclopropane-1-carboxylic acid deaminase indole acetic acid production; P solubilizationBrassica oxyrrhinaRoot, shoot[172]
Bacillus subtilis, B. cereus, B. megaterium, Pseudomonas aeruginosaImprove plant growth and root elongationOrychophragmus
violaceus
Root, shoot[172]
Pantoea agglomerans Jp3-3, Pseudomonas thivervalensis Y1-3-9Indole acetic acid, siderophores, Aminocyclopropane-1-carboxylic acid deaminase production; phosphate solubilizationB. napusRoot, shoot[172]
Enterobacter sp. JYX7, Klebsiella sp. JYX10Indole acetic acid, siderophores, Aminocyclopropane-1-carboxylic acid deaminase production, phosphate solubilizationPolygonum pubescensRoot, shoot[172]
Rahnella sp.Indole acetic acid, siderophores, Aminocyclopropane-1-carboxylic acid deaminase production; phosphate solubilizationAmaranthus hypochondriacus, A. mangostanus, Solanum nigrumRoot, shoot[172]
Kluyvera ascorbata SUD165 Increased biomass; Aminocyclopropane-1-carboxylic acid deaminase productionBrassica napusNM[172]
K. ascorbata SUD165, SUD165/26Increased biomass; Aminocyclopropane-1-carboxylic acid deaminase, siderophores productionBrassica junceaNM[172]
Enterobacter cloacae CAL2 Increased biomass; Aminocyclopropane-1-carboxylic acid deaminase productionBrassica napusEnterobacter cloacae CAL2[172]
B. subtilis SJ-101Indole acetic acid production; phosphate solubilizationBrassica junceaNM[172]
Enterobacter sp. NBRI K28Increased biomass; indole acetic acid, siderophores, Aminocyclopropane-1-carboxylic acid deaminase production; phosphate solubilizationBrassica junceaNM[172]
Bacillus sp. J119Increased biomass, indole acetic acid, siderophores production; biosurfactant productionBrassica napusNM[172]
P. aeruginosa MKRh3Increased biomass and rooting, indole acetic acid, siderophores, aminocyclopropane-1-carboxylic acid deaminase production; phosphate solubilizationVigna mungoNM[172]
Bacillus sp. J119I indole acetic acid, siderophores production; biosurfactant productionBrassica napusNM[172]
Pseudomonas sp. M6, Pseudomonas jessenii M15Increased biomass; indole acetic acid, aminocyclopropane-1-carboxylic acid deaminase production; phosphate solubilizationRicinus communisNM[172]
Achromobacter xylosoxidans Ax10 Increased root and shoot length and biomass; aminocyclopropane-1-carboxylic acid deaminase production; phosphate solubilization, indole acetic acid productionBrassica junceaNM[172]
Enterobacter aerogenes, Rahnella aquatilisIncreased biomass and metal uptake; indole acetic acid, siderophores, aminocyclopropane-1-carboxylic acid deaminase production, phosphate solubilizationBrassica junceaNM[172]
B. subtilis SJ-101indole acetic acid, P solubilizationBrassica junceaNM[172]
P. putida ARB86Increased biomass and chlorophyll contentArabidopsis thalianaNM[172]
Bradyrhizobium sp. RM8Increased growth, seed yield, seed protein, nodule number, plant nutrition, indole acetic acid, siderophores, hydrogen cyanide, ammonia productionVigna mungoNM[172]
Rhizobium sp. RP5Increased biomass, nodule number and plant nutrition, indole acetic acid, siderophores productionPisum sativumNM[172]
Enterobacter sp. NBRI K28Increased biomass, protein, and chlorophyll content, indole acetic acid, siderophores, Aminocyclopropane-1-carboxylic acid deaminase production; P solubilizationBrassica junceaNM[172]
Pseudomonas sp. 29C, Bacillus sp. 4CIncreased biomass; indole acetic acid, siderophores production, Aminocyclopropane-1-carboxylic acid deaminase, P solubilizationBrassica junceaNM[172]
Pseudomonas sp. M6, Pseudomonas jessenii M15Increased biomass; indole acetic acid, aminocyclopropane-1-carboxylic acid deaminase production; P solubilizationRicinus communisNM[172]
Pseudomonas sp.Increased biomass; siderophores productionCicer arietinumNM[172]
Enterobacter erogenes, Rahnella aquatilisIncreased biomass, indole acetic acid, siderophores, aminocyclopropane-1-carboxylic acid deaminase production, P solubilizationBrassica junceaNM[172]
Psychrobacter sp. SRA1 and SRA2, Bacillus cereus SRA10Increased biomass, indole acetic acid, siderophores,
aminocyclopropane-1-carboxylic acid deaminase production.
P solubilization
Brassica juncea, B. oxyrrhinaNM[172]
Rahnella sp. JN6Indole acetic acid, aminocyclopropane-1-carboxylic acid deaminase, siderophores, phosphate solubilizationB. napusRoot, shoot[172]
Psuedomonas aspleniIncreased biomass; indole acetic acid productionBrassica napusNM[172]
Variovorax paradoxus, Rhodoccus sp., Flavobacterium sp.Increased root length; indole acetic acid, siderophores, production Aminocyclopropane-1-carboxylic acid deaminase productionBrassica junceaNM[172]
Pseudomonas fluorescens, P. putidaIncreased seed germination and growthBrassica napusNM[172]
P. putida UW4, P. putida HS-2Increased biomass in the field; indole acetic acid, Aminocyclopropane-1-carboxylic acid deaminase productionBrassica napusNM[172]
Sinorhizobium sp. Pb002Aminocyclopropane-1-carboxylic acid deaminase productionBrassica junceaNM[172]
Azotobacter chroococcum HKN-5, B. megaterium HKP-1, B. mucilaginosus HKK-1Increased biomassBrassica junceaNM[172]
Pseudomonas sp. RJ10, Bacillus sp. RJ16Increased biomass; indole acetic acid productionBrassica napusNM[172]
Mesorhizobium huakuii subsp. rengei B3Phytochelatin and metallothionein productionAstragalus sinicusNM[172]
Burkholderia cepaciaIncreased biomassSedum alfrediiNM[172]
P. putida ARB86Increased biomass and chlorophyll contentArabidopsis thalianaNM[172]
P. putida HS-2Increased seed germination and biomass; siderophores, indole acetic acid, aminocyclopropane-1-carboxylic acid deaminase productionBrassica napusNM[172]
Pseudomonas sp. 29C, Bacillus sp. 4CIncreased biomass; indole acetic acid, siderophores, aminocyclopropane-1-carboxylic acid deaminase production; phosphate solubilizationBrassica junceaNM[172]
Proteus vulgaris KNP3 Increased germination, biomass, and chlorophyllCajanus cajanNM[172]
Pseudomonas sp.Increased biomass siderophores productionCicer arietinumNM[172]
P. fluorescens G10, Microbacterium sp. G16Increased biomass; indole acetic acid, siderophores, aminocyclopropane-1-carboxylic acid deaminase productionBrassica napusNM[172]
Bacillus edaphicus NBT Increased biomass; indole acetic acid, siderophores, aminocyclopropane-1-carboxylic acid deaminase productionBrassica junceaNM[172]
Flavobacterium sp.Increased root length, biomassOrychophragmus violaceusNM[172]
Kluyvera ascorbata
SSUD165
Increased biomass; aminocyclopropane-1-carboxylic acid deaminase productionBrassica napusNM[172]
K. ascorbata SUD165,
SUD165/26
Increased biomass; aminocyclopropane-1-carboxylic acid deaminase, siderophores productionBrassica napusNM[172]
P. fluorescens, P. putidaIncreased seed germination and growthBrassica napusNM[172]
P. putida HS-2Increased seed germination and biomass; siderophores, indole acetic acid, aminocyclopropane-1-carboxylic acid deaminase productionBrassica napusNM[172]
Different endophytic bacteriaNa+/K+ accumulationSalicornia, Arthrocnemum, Haloxylon, Sesuvium, Suaeda, Aeluropus, Heleochloa, Atriplex, and Salvadoraetshoot and root[173]
Pseudoalteromonas maricaloris1-aminocyclopropane-1-carboxylic acid
Deaminase production
Avicennia marinaRhizosphere[174]
NM = not mentioned.
Table 3. Phytoremediation bacteria and associated secondary metabolites from medicinal and herbal plant species.
Table 3. Phytoremediation bacteria and associated secondary metabolites from medicinal and herbal plant species.
Isolated Bacterial SpeciesBiochemical/Physiological ActivityHost Medicinal Plant SpeciesIsolated Plant Part/RegionReferences
Pseudomonas aeruginosa, Pseudomonas savastanoiMono- and dechlorinated, benzoic acids productionElymus dauricus [211]
Methylobacterium populiMethane; 2,4,6-trinitrotoluene; hexahydro-1,3,5-trinitro-1,3,5-triazene; octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine; benzene, toluene, ethylbenzene, xylene productionPopulus deltoids x nigraNM[212]
Pseudomonas sp., Bacillus cepaciaBenzene, toluene, ethylbenzene, xylene productionPopulus sp.NM[213]
Burkholderia cepaciaVolatile organic compounds, toluene productionLupinus luteusNM[214]
Pseudomonas putida2,4-Dichlorophenoxyacetic acid productionPopulus sp., Trichocarpa deltoides cv. HoogvorstStem[213]
Proteobacteria sp.NMPopulus nigra cv. BrandarisRoot, shoot[215]
Proteobacteria sp.NMLolium multiflorum cv. LolitaRoot, shoot[215]
Proteobacteria sp.NMMedicago sativa cv. EuropRoot, shoot[215]
Pseudomonas! uorescens G10, Microbacterium sp. G16 (EN)indole acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylate deaminase productionBrassica napusRoot[216]
Arthrobacter sp. MT16,
Microbacterium sp. JYC17,
Pseudomonas chlororaphis SZY6
NMBrassica napusWhole plant[217]
Firmicutes sp., Actinobacteria sp.,
Proteobacteria sp. (EN)
NMElsholtzia splendens,
Commelina communis
Whole plant[218]
Enterobacter sp.NMAllium macrostemonStem[219]
Sphingopyxis sp., Pseudomonas sp.NMLolium multiflorum, Lotus corniculatusRoot, shoot[220]
Achromobacter xylosoxidansNMPhragmites australis, Ipomoea
aquatica, Vetiveria zizanioides
Root[221]
Burkholderia macroidesNMPopulus cv. HoogvorstStem[222]
Pseudomonas putidaNMPopulus trichocarpa × deltoides
cv. Hoogvorst
Stem[222]
Pseudomonas tolaasii, P. jessenii, Ps. Rhodesiae,
P. plecoglossicida, P. veronii, P. fulva, P. oryzihabitans, Acinetobacter lwoffi, A. nicotianae, Bacillus megaterium, Paenibacillus amylolyticus
NMPopulus sp. cv. HazendansRoot, stem[15]
Pseudomonas putidaNMPopulus sp.NM[223]
Staphylococcus sp., Microbacterium sp., Pseudomonas sp., Staphylococcus sp., Curtobacterium sp., Microbacterium sp., Curtobacterium sp., Staphylococcus sp., Bacillus sp., Arthrobacter sp., Pseudomonas sp., Curtobacterium sp., Microbacterium sp., Paenibacillus sp., Leifsonia sp.NMAlyssum bertoloniiLeaf, stem, root[224]
Bacillus sp.NMAlnus firmaRoot[225]
Sphingomonas sp., Methylobacterium sp., Sphingobacterium multivorum, Phyllobacterium sp., Devosia sp., Afibia sp., Sphingomonas sp., Rhodococcus sp.NMThlaspi caerulescensStem, root[226]
Alphaproteobacteria sp., Holophaga sp., Acidobacterium sp., Betaproteobacteria sp., Gammaproteobacteria sp., Bacillus sp., Blastococcus sp., Propionibacterium acnes, Flavobacterium sp., Desulfitobacterium metallireductans, M. mesophilicum, M. extorquens, Sphingomonas sp., Curtobacterium sp., Plantibacter flavus, Rhodococcus sp.NMThlaspi goesingenseStem[227]
Microbacterium sp., Bacillus sp., Arthrobacter sp., Flavobacterium sp., Chryseobacterium sp., Agrobacterium sp., Sphingomonas sp., Pseudomonas sp., Serratia sp., Curtobacteriu sp.NMSolanum nigrumRoot, stem, leaf[228]
Acinetobacter sp., Bacillus sp.Aminocyclopropane-1-carboxylic acid deaminase productionCommelina communisRoot, stem, leaf[229]
Acinetobacter sp., Moraxella sp., Serratias sp., Herbaspirillum sp., Bukholderia sp., Paracoccus sp., Sphingomonas sp., Exiguobacterium sp., Bacillus sp., Arthrobacter sp., Microbacterium sp., Micrococcus sp.NMElsholtzia splendens and Commelina communisRoot, stem, leaf[230]
Enterobacter sp.NMAllium macrostemonStem[231]
Microbacterium sp., Frigoribacterium sp., Methylobacterium sp., Sphingomonas sp.NMSalix capreaStem, leaf[232]
Pseudomonas frederisksbergensis sp. Veronii,
P. Putida, Arthrobacter illicis, A. histidinolovorans
NMPopulus sp. cv. Hazendans and Populus sp. cv. HoogvorstRoot, stem[168]
Staphylococcus sp., Microbacterium sp., Pseudomonas sp.,
Curtobacterium sp., Bacillus sp., Arthrobacter sp., Paenibacillus sp., Leifsonia sp.
NMA. bertoloniiWhole plant[168]
Pseudomonas sp., Streptomyces sp.NMA. bertoloniiRhizosphere[168]
Holophaga sp.,
Acidobacterium sp., Gammaproteobacteria sp., Betaproteobacteria sp., Alphaproteobacteria sp., Verrucomicrobia sp., Gemmatimonadetes sp.
NMThlaspi goesingenseRhizosphere, shoot[168]
Pseudomonas fluorescens G10,
Microbacterium sp. G16
Indole acetic acid, aminocyclopro-pane-1-carboxylic acid deaminase, siderophore productionBrassica napusRoot, shoot[172]
Enterobactor cloacae CAL2 Indole acetic acid, aminocyclopropane-1-carboxylic acid deaminase, siderophores, antibiotics productionB. napusRoot, shoot[172]
Cupriavidus taiwanensisBiodegradation, biosorption, release of extracellular productsMimosa pudicaRoot, shoot[172]
Bacillus thuringiensis GDB-1 Aminocyclopropane-1-carboxylic acid deaminase, indole acetic acid, SiderophoresAlnus firmaRoot, shoot[172]
B. pumilus E2S2, Bacillus sp. E1S2Indole acetic acid, aminocyclo-pro-pane-1-carboxylic acid deaminase, siderophoresSedum plumbizincicolaRoot, shoot[172]
Pseudomonas tolaasii ACC23, P. fluorescens ACC9Aminocyclo-pro-pane-1-carboxylic acid deaminase, siderophores, and indole acetic acid productionB. napusRoot, shoot[172]
Pseudomonas sp. LK9Biosurfactants, siderophores, organic acids productionSolanum nigrumRoot, stem, leaf[172]
Pseudomonas sp. PsM6, P. Jessenii PjM15Biosorption, mobilization, aminocyclopropane-1-carboxylic acid deaminase, indole acetic acid, siderophores productionRicinus communisRoot, stem, leaf[172]
Rahnella sp. JN6Indole acetic acid, aminocyclopropane-1-carboxylic acid deaminase, siderophoresB. napusRoot, shoot[172]
Bacilus subtilis, B. cereus,
Flavobacterium sp.,
Pseudomonas aeroginosa
Aminocyclopropane-1-carboxylic acid deaminase, indole acetic acid, siderophoresOrycoprhagmus
violaceus
Root, shoot[172]
Pseudomonas veroniiindole acetic acid production, decrease soil pH, supply P, and FeS. alfrediiRoot, shoot[172]
Staphylococcus arlettae NBRIEAG-6 indole acetic acid, siderophores, Aminocyclopropane-1-carboxylic acid deaminase productionBrassica junceaRoot, shoot[172]
Achromobacter xylosoxidans Ax10 Aminocyclopropane-1-carboxylic acid deaminase, indole acetic acid productionB. JunceaRoot, shoot[172]
Psychrobacter sp. SRA1,
Bacillus cereus SRA10
Aminocyclopropane-1-carboxylic acid deaminase, indole acetic acid, Ni mobilizationB. JunceaRoot, shoot[172]
Pseudomonas sp. SRI2,
Psychrobacter sp. SRS8,
Bacillus sp. SN9
Aminocyclopropane-1-carboxylic acid deaminase, indole acetic acid production; Ni mobilizationB. JunceaRoot, shoot[172]
Pseudomonas sp. SRI2,
Psychrobacter sp. SRS8,
Bacillus sp. SN9
Aminocyclopropane-1-carboxylic acid deaminase, indole acetic acid production; Ni mobilizationBrassica oxyrrhinaRoot, shoot[172]
Paenibacillus macerans NBRFT5, Bacillus endophyticus NBRFT4, B. pumilus NBRFT9Siderophores, organic acids, protons, and other non-specified enzymes productionB. JunceaRoot, stem, leaf[172]
Rhizobium leguminozarumMetal chelationB. JunceaWhole plant[172]
Azotobacter chroococcum HKN-5, Bacillus megaterium HKP-1, Bacillus mucilaginosun HKK-1indole acetic acid, gibberellins productionB. JunceaShoot[172]
Pantoea agglomerans Jp3-3, Pseudomonas thivervalensis Y1-3-9Indole acetic acid, siderophores, Aminocyclopropane-1-carboxylic acid deaminase productionB. napusRoot, shoot[172]
Enterobacter sp. JYX7, Klebsiella sp. JYX10Indole acetic acid, siderophores, Aminocyclopropane-1-carboxylic acid deaminase productionPolygonum pubescensRoot, shoot[172]
Rahnella sp.Indole acetic acid, siderophores, aminocyclopropane-1-carboxylic acid deaminase productionAmaranthus hypochondriacus, A. mangostanus, Solanum nigrumRoot, shoot[172]
Kluyvera sp.Aminocyclopropane-1-carboxylic acid deaminase productionBrassica napusNM[172]
Kluyver spp.Aminocyclopropane-1-carboxylic acid deaminase, siderophores productionBrassica junceaNM[172]
Brevibacillus sp.Decreased lead uptake; indole acetic acid productionTrifolium pratenseNM[172]
Enterobacter cloacae CAL2 Aminocyclopropane-1-carboxylic acid deaminase productionBrassica napusNM[172]
Microbacterium arabinogalactanolyticumIncreased nickel uptakeAlyssum muraleNM[172]
Psuedomonas sp.Increased biomass; indole acetic acid productionBrassica napusNM[172]
Variovorax paradoxus, Rhodoccus sp., Flavobacterium sp.Increased root length; Indole acetic acid, siderophores, production Aminocyclopropane-1-carboxylic acid deaminase productionBrassica junceaNM[172]
Pseudomonas fluorescens, P. putidaIncreased seed germination and growthBrassica napusNM[172]
P. putida UW4, P. putida HS-2Increased biomass in the field; indole acetic acid, Aminocyclopropane-1-carboxylic acid deaminase productionBrassica napusNM[172]
Sinorhizobium sp. Pb002Increased plant survival and lead uptake; aminocyclopropane-1-carboxylic acid deaminase productionBrassica junceaNM[172]
Azotobacter chroococcum HKN-5, B. megaterium HKP-1, B. mucilaginosus HKK-1Increased biomass and metal bioavailabilityBrassica junceaNM[172]
B. subtilis SJ-101Increased nickel uptake; indole acetic acid productionBrassica junceaNM[172]
Pseudomonas sp. RJ10, Bacillus sp. RJ16Increased biomass and metal uptake; indole acetic acid productionBrassica napusNM[172]
Mesorhizobium huakuii subsp. Rengei B3Increased metal accumulation: bacterium expresses phytochelatin, and metallothioneinAstragalus sinicusNM[172]
Burkholderia cepaciaIncreased biomass, metal uptake, and
translocation of metal to shoots
Sedum alfrediiNM[172]
P. putida ARB86Increased biomass and chlorophyll contentArabidopsis thalianaNM[172]
Enterobacter sp. NBRI K28Increased metal uptake; indole acetic acid, siderophores, Aminocyclopropane-1-carboxylic acid deaminase productionBrassica junceaNM[172]
P. putida HS-2Increased seed germination and biomass; siderophores, indole acetic acid, Aminocyclopropane-1-carboxylic acid deaminase productionBrassica napusNM[172]
Bacillus sp. J119Increased cadmium uptake, indole acetic acid, siderophores production; biosurfactant productionBrassica napusNM[172]
P. aeruginosa MKRh3Decreased cadmium uptake; indole acetic acid, siderophores, Aminocyclopropane-1-carboxylic acid deaminase productionVigna mungoNM[172]
Pseudomonas sp. 29C, Bacillus sp. 4CIncreased biomass; indole acetic acid, siderophores, aminocyclopropane-1-carboxylic acid deaminase production;Brassica junceaNM[172]
Pseudomonas sp. M6, Pseudomonas jessenii M15Increased biomass; indole acetic acid, Aminocyclopropane-1-carboxylic acid deaminase productionRicinus communisNM[172]
Proteus vulgaris KNP3 Increased germination, biomass, and chlorophyll, and decreased metal uptakeCajanus cajanNM[172]
Pseudomonas sp.Increased biomass and decreased metal uptake; siderophores productionCicer arietinumNM[172]
P. fluorescens G10, Microbacterium sp. G16Increased biomass and metal uptake; indole acetic acid, siderophores, aminocyclopropane-1-carboxylic acid deaminase productionBrassica napusNM[172]
Bacillus edaphicus NBT Increased biomass; indole acetic acid, siderophores, aminocyclopropane-1-carboxylic acid deaminase productionBrassica junceaNM[172]
Flavobacterium sp.Increased root length, biomass, metal uptakeOrychophragmus violaceusNM[172]
Achromobacter xylosoxidans Ax10 Increased root and shoot length and biomass; aminocyclopropane-1-carboxylic acid deaminase production; indole acetic acid productionBrassica junceaNM[172]
Enterobacter aerogenes, Rahnella aquatilisIncreased biomass and metal uptake; indole acetic acid, siderophores, aminocyclopropane-1-carboxylic acid deaminase productionBrassica junceaNM[172]
Kluyvera sp. Increased biomass; aminocyclopropane-1-carboxylic acid deaminase productionBrassica napusNM[172]
Kluyvera sp.Increased biomass; aminocyclopropane-1-carboxylic acid deaminase, siderophores productionBrassica napusNM[172]
Microbacterium
arabinogalactanolyticum
Increased Ni uptakeAlyssum muraleNM[172]
P. fluorescens, P. putidaIncreased seed germination and growthBrassica napusNM[172]
P. putida UW4, P. putida HS-2Indole acetic acid, aminocyclopropane-1-carboxylic acid deaminase productionBrassica napusNM[172]
B. subtilis SJ-101Increased Ni, indole acetic acid productionBrassica junceaNM[172]
Bradyrhizobium sp. RM8Decreased Ni toxicity and uptake; indole acetic acid, siderophores, hydrogen cyanide, ammonia productionVigna mungoNM[172]
Rhizobium sp. RP5Decreased Ni, Zn uptake, and toxicity; indole acetic acid, siderophores productionPisum sativumNM[172]
Enterobacter sp. NBRI K28Increased Ni, Zn, Cr uptake; I indole acetic acid, siderophores, Aminocyclopropane-1-carboxylic acid deaminase productionBrassica junceaNM[172]
P. putida HS-2Siderophores, indole acetic acid, Aminocyclopropane-1-carboxylic acid deaminase productionBrassica napusNM[172]
Pseudomonas sp. 29C, Bacillus sp. 4Cindole acetic acid, siderophores production, Aminocyclopropane-1-carboxylic acid deaminaseBrassica junceaNM[172]
Pseudomonas sp. M6, Pseudomonas jessenii M15indole acetic acid, aminocyclopropane-1-carboxylic acid deaminase productionRicinus communisNM[172]
Pseudomonas sp.Decreased Ni uptake; siderophores productionCicer arietinumNM[172]
Enterobacter erogenes, Rahnella aquatilisIncreased Ni,
Cr uptake; indole acetic acid, siderophores, aminocyclopropane-1-carboxylic acid deaminase production
Brassica junceaNM[172]
Psychrobacter sp. SRA1 and SRA2, Bacillus cereus SRA10Increased Ni bioavailability and uptake; indole acetic acid, siderophores,
aminocyclopropane-1-carboxylic acid deaminase production
Brassica juncea, B. oxyrrhinaNM[172]
BrachybacteriumProduction of halotolerant propertiesSalicornia brachiate rRhizosphere[233]
Pseudomonas sp. SRI2, Psychrobacter sp. SRS8 and Bacillus sp. SN9NMBrassica juncea, B. oxyrrhinaNM[172]
NM = not mentioned.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Tshikhudo, P.P.; Ntushelo, K.; Mudau, F.N. Sustainable Applications of Endophytic Bacteria and Their Physiological/Biochemical Roles on Medicinal and Herbal Plants: Review. Microorganisms 2023, 11, 453. https://doi.org/10.3390/microorganisms11020453

AMA Style

Tshikhudo PP, Ntushelo K, Mudau FN. Sustainable Applications of Endophytic Bacteria and Their Physiological/Biochemical Roles on Medicinal and Herbal Plants: Review. Microorganisms. 2023; 11(2):453. https://doi.org/10.3390/microorganisms11020453

Chicago/Turabian Style

Tshikhudo, Phumudzo Patrick, Khayalethu Ntushelo, and Fhatuwani Nixwell Mudau. 2023. "Sustainable Applications of Endophytic Bacteria and Their Physiological/Biochemical Roles on Medicinal and Herbal Plants: Review" Microorganisms 11, no. 2: 453. https://doi.org/10.3390/microorganisms11020453

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop