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Summary25

• Plant phenology drives population demography and ecosystem functioning. We urgently26

need to better understand whether species and communities can cope with changing envi-27

ronmental cues of phenology, especially in tropical dry forests that may experience more28

droughts.29

• We analysed long-term monthly foliar and reproductive phenology (2003–2021) of 62330

trees across 94 taxa in a seasonally-dry Afromontane forest in Nigeria and related them31

to climate trends (1976–2023).32

• We found decreasing trends in leaf flush and fruit production, but leaf shedding has in-33

creased. Community synchrony decreased markedly for leaf shedding but increased for34

fruiting.35

• These phenological trends corresponded to signs of increased aridity. Minimum temper-36

ature has increased, with greater warming in the dry and intermediate seasons than the37

wet season. Rainfall fluctuated, but the dry season has become significantly wetter and38

the wet season drier.39

• Our study highlights the discordant trends in foliar and reproductive phenologies. Fewer40

fruits and increasing leaf shedding indicate reduced productivity that will impact fru-41

givores and nutrient cycling. More asynchronous leaf shedding suggests a decoupling42

from leaf flush and reproduction, potentially disrupting ecosystem regimes. Interspecific43

variation in response to climate change implies forest composition may shift towards the44

dominance of deciduous species.45

Keywords: Cameroon highlands, climate change, cosinor rhythmometry, Fourier series, Ngel46

Nyaki forest reserve, Nigeria, resilience47

Introduction48

Climate change, such as increasing drought and aridity, is expected to severely weaken the role49

of tropical forests as carbon sinks (Corlett, 2016). Tropical dry-forest assemblages, despite50

their long evolutionary history under water deficit, are also not exempt from diversity loss51

(Siyum, 2020; Moura et al., 2023). These seasonally dry forests, characterised by alternating52

wet and dry seasons that last between four to seven months (Allen et al., 2017), are widespread53

across sub-Saharan Africa where they are central to biodiversity conservation and people’s54

livelihoods (Siyum, 2020). For example, the seasonally dry montane forests of the Cameroon55

highlands are some of the most diverse and threatened plant communities in Africa (Cheek et56

al., 2000), and being montane they may be especially vulnerable to climate change (Salinas et57

al., 2021; Mata-Guel et al., 2023). These forests provide essential ecosystem services including58

carbon storage (Cuni-Sanchez et al., 2021), freshwater provision, flood mitigation (Abiem et59
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al., 2023), pollinators and pest control agents of crops (Tela et al., 2021), but are additionally60

threatened by land use change, overgrazing, fire and bush meat hunting (Cheek et al., 2000;61

Chapman et al., 2004; Cheek et al., 2021). It is thus imperative that we understand the resilience62

of these forests to climate change.63

While the impact of climate change on forest tree demography (e.g., mortality and growth)64

is relatively well studied (Corlett, 2016), we are only beginning to understand how climate65

change influences phenology, i.e., the timing of life-cycle events (Sakai & Kitajima, 2019).66

Shifts in the phenology of photosynthetic and reproductive organs provide finer insights into67

the underlying mechanisms that drive demographic changes under climate change (Iler et al.,68

2021). In seasonally dry forests, for example, the timing of leaf shedding (deciduousness or69

senescence) and leaf flush are especially important because they strongly reflect tree water sta-70

tus (Borchert, 1994; Kushwaha & Singh, 2005; Pires et al., 2018; Kaewthongrach et al., 2020).71

Moreover, plant phenology provides a more direct link to ecosystem functioning (Chapman et72

al., 2005; Zhao et al., 2013; Gray & Ewers, 2021; Hacket-Pain & Bogdziewicz, 2021), af-73

fecting processes such as carbon sequestration, multitrophic networks, and species coexistence74

(Tang et al., 2016). Consequently, the sensitivity of species phenology to climate change holds75

critical information for ecosystem resilience, contingent upon the responses of both individual76

species and the entire community (Sullivan et al., 2023).77

Individual species vary in their phenology or “temporal niche” (Sakai, 2001), which has78

evolved in response to both abiotic and biotic selection pressures (Pau et al., 2011). Key79

climate-related cues include temperature, precipitation, solar irradiance (Van Schaik et al.,80

1993; Butt et al., 2015; Chapman et al., 2018; Numata et al., 2022) and climate anomalies81

such as the El Niño–Southern Oscillations and in Africa, the Inter-Tropical Convergence Zone82

(Igboabuchi et al., 2018). Biotic cues include pollinators, seed dispersers, herbivores, and83

predators (Bawa, 1990; Chapman et al., 1999). Cues are not mutually exclusive and interact to84

drive complex plant phenologies (Van Schaik et al., 1993). For instance, while the stressful con-85

ditions brought about by wet or dry seasons may promote community synchrony (Van Schaik86

et al., 1993; Lasky et al., 2016), biotic factors can lead to either synchronous or asynchronous87

phenologies (Lasky et al., 2016). As climate change modifies environmental cues, species may88

adjust their phenology accordingly (Thébault & Fontaine, 2010; Clark et al., 2013; Butt et al.,89

2015; Deb et al., 2018; Flores et al., 2023). Given the diverse responses of different species to90

these changes (Rafferty et al., 2015; León-Sánchez et al., 2018; Samplonius et al., 2021; Flores91

et al., 2023), phenological mismatches may, for example, arise between the timing of leaf flush92

and flowering and their associated herbivores or mutualists, potentially disrupting community93

synchrony (Ovaskainen et al., 2013; Renner & Zohner, 2018). The impact of species-specific94

phenological shifts on overall community synchrony remains uncertain however (Lima et al.,95

2021; Chen et al., 2023), partly because responses are often subjected to multiple climatic cues96

(Chang-Yang et al., 2016).97

Given that periods of drought define seasonally dry forests (Feng et al., 2013) and that98
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Afromontane forests have expanded and contracted with climatic fluctuations since the Pleis-99

tocene (Meadows & Linder, 1993; Lézine et al., 2019), a reasonable hypothesis would be that100

they are relatively resilient to climate change. Afromontane forests comprise a diverse array101

of species that have migrated from a wide range of habitats (White, 1983); they have a broad102

ecological tolerance and adaptive strategies. This is also evident in the wide range of species-103

specific responses we found to changes in rainfall, and especially temperature in this study.104

Pollen records suggest that in the Cameroon highlands submontane forests such as Ngel Nyaki,105

which include species from lowland forest and grassland or forest edge, have been composi-106

tionally stable over the past 90,000 years (Lézine et al., 2019). Alternatively, Afromontane107

forests might be especially sensitive to changes in rainfall patterns (Allen et al., 2017) such108

as extended drought into historically wet periods of the year, if most Afromontane species are109

already at the limit of their climate range (Bennett et al., 2021).110

In this study, we analysed 19 years of phenological data for leaf shedding, leaf flush, flow-111

ering and fruiting from the observations of 623 trees across 94 taxa in a submontane dry forest112

in northeast Nigeria. This dataset contributes to the long-term phenological data that remain113

rare from African tropical forests relative to other regions (Abernethy et al., 2018; Adole et114

al., 2018; Hacket-Pain & Bogdziewicz, 2021; Flores et al., 2023). Even among the limited115

long-term data from African forests, the majority are from humid or moist tropical lowland116

or montane forests (Adamescu et al., 2018), representing non-random subsets of tree commu-117

nities, often selected to include species with fleshy fruits important for frugivores or valuable118

timber trees (Abernethy et al., 2018; Adamescu et al., 2018). Furthermore, most of these stud-119

ies focus solely on flowering and fruiting, neglecting leaf phenologies as they are deemed less120

important for wildlife (Abernethy et al., 2018). We combined the 19-year phenology data with121

concurrent monthly weather data and 48 years of historical rainfall and temperature climate122

data to answer the following questions:123

1. What are the overall species-level patterns in leaf shedding, leaf flush, flowering and124

fruiting?125

2. What are the community-level phenological patterns including peak phenology and com-126

munity synchrony?127

3. How does weather influence phenology?128

4. How is the climate changing on the Mambilla Plateau and how might this influence forest129

phenology in the long term?130

5. How resilient is the forest to climate change?131
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Materials and Methods132

Study system133

The study was carried out in the 46-km2 Ngel Nyaki Forest Reserve (7.06◦N, 11.1◦E) on the134

south west escarpment of the Mambilla Plateau in Taraba State, Nigeria (Fig 1). Within the135

reserve, Ngel Nyaki forest is a 5.2-km2 stand of submontane forest on the steep slopes of an136

ancient volcano, which offer protection from fire and grazing (Chapman & Chapman, 2001;137

Abiem et al., 2020). The mean annual rainfall is approximately 1,800 mm, with most of the138

rain falling between April and October, followed by a six-month dry season. During the wet139

season, the forest can be covered in mist or fog for weeks on end, severely reducing irradiation140

(Chapman & Chapman, 2001). The mean annual temperature is 19◦C and the monthly mean141

maximum and minimum temperatures for the wet and dry seasons are 25.6 and 15.4◦C, and142

28.1 and 15.5◦C, respectively (Nigerian Montane Forest Project weather data). The soil in143

Ngel Nyaki forest is clay-loam with pH of 5.8–4.7 (Chapman & Chapman, 2001).144

Ngel Nyaki forest is relatively diverse for the Afromontane with approximately 105 tree145

species from 47 families and 87 genera (Abiem et al., 2020). Rubiaceae is the most diverse fam-146

ily with nine species. Abundant tree species include Garcinia smeathmannii, Deinbollia pin-147

nata and Pleiocarpa pycnantha. The three principle emergent species are Pouteria altissima,148

Entandrophragma angolense and Newtonoia buchanannii, which reach to 36–46 m in height149

(Chapman & Chapman, 2001). A middle canopy layer sensu Richards (1952) between 15–150

30-m tall comprises species such as Cordia millenii, Chrysophyllum albidum, Leptalus zenkeri151

and Drypetes gossweileri. Forest species comprise a mix of Afromontane endemics or near-152

endemics (White, 1983), lowland forest and forest edge/grassland species. There is a gradient153

in species composition from forest core to edge, with edge species comprising more drought154

tolerant, often grassland species (Abiem et al., 2020). The forest is a Birdlife International155

Important Bird Area and rich in primate species including the endangered Nigeria–Cameroon156

chimpanzee (Pan troglodytes ssp. ellioti). While the forest is a State Forest Reserve and there-157

fore theoretically protected from hunting and grazing, in practice there is very little protection.158

Forest edges have been farmed on the lower slopes of the forest and cattle have damaged a159

substantial proportion of the reserve.160

Data collection161

Approximately 10 km2 of phenology transects were established in 2004. Under a systematic162

design, the transects are 500 m apart (Beck & Chapman, 2008), running east to west to criss-163

cross the forest and obtain a good representation of the community composition. Along the164

transects, 800 trees > 10 cm in diameter-at-breast-height (DBH), comprising 95 species were165

tagged, numbered and DBH measured. The number of trees per species ranged from 1 to 36166

(median = 18.5). Voucher specimens are deposited in the Nigerian Montane Forest Project167
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Figure 1: Map of the Cameroon Highlands showing the Mambilla Plateau and the location of
Ngel Nyaki forest reserve. Modified from Thia (2014).

herbarium. Samples were sent to the Royal Botanical Gardens Kew for identification and other168

were confirmed through the ForestGeo DNA fingerprinting protocol (Kenfack et al., 2022).169

Tagged trees were chosen to ensure a representative sample of the forest composition including170

taxonomy, dispersal modes and flower types. Since then, the transects have been walked ev-171

ery month for tree phenology monitoring. Trees are observed close-up, with binoculars when172

necessary, to observe flowers and fruits. As an indicator of monthly leaf shedding, leaf flush,173

flowering and fruiting, the proportion of crown occupied by each phenological variable in a174

given tree is given an ordinal score between zero and four (0 = 0%, 1 = 1–25%, 2 = 26–50%,175

3 = 51–75%, 4 = 76–100%) following Sun et al. (2009). To test the influence of concur-176

rent monthly weather on phenology, we then matched monthly field observations with local177

monthly weather data of temperature and rainfall obtained remotely from NASA’s Prediction178

of Worldwide Energy and Resources portal (https://power.larc.nasa.gov/).179

To quantify changes in longer-term climate and provide context for climate change im-180

pacts on phenology, we used a 48-year monthly time series from 1976–2023 from weather181

model-reanalysis data and in-situ observations. In-situ measurements of rainfall were gathered182

from the Gembu State Government weather station in the Sardauna Province (6◦ 41′ 13.08 N;183

11◦ 17′ 33.48 E), which is 40 km from our study site. Records of rainfall were corrected for184

annotation errors, but missing values were not filled. The minimum and maximum tempera-185

tures recorded at the Gembu station showed a long-term cooling, likely caused by tree planting186

in the vicinity of the weather station and thus reflecting the micro-meteorology surrounding the187

weather station. Therefore, we instead used the 2-m air temperature product from the ERA5-188

Land hourly data reanalysis dataset (Muñoz Sabater, 2019). The ERA5 hourly land product189

has a 0.1◦× 0.1◦ horizontal resolution. To match the Gembu time series, we also used data190
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from 1976–2023. Hourly values were converted to monthly means of daily minimum temper-191

ature (hereafter simply as “minimum temperature”), using Python v3.11.5 including packages192

numpy v1.24.3, pandas v2.0.3, and scipy v1.11.1.193

Statistical analyses194

To quantify temporal trends in phenology, we modelled the ordinal canopy scores195

(k = 1,2, ...,5) of leaf shedding, leaf flush, flowering and fruiting of individual tree i of196

species j in transect n, month m and year t as in a multivariate generalised linear mixed model197

(GLMM) as cumulative processes with logit link:198

Ypi jnmt ∼ Cumulative-logit(κpk, ηpi jnmt)

ηpi jnmt = αp j + fp jt(m)+gp j(Rmt , Tmt)+ εpt + εpn + εpi

fp jt(m) = ∑
2
d=1

(
β1p jt,dCm,d +β2p jt,dSm,d

)
gp j(Rmt , Tmt) = ρp jRmt + τp jTmt ,

where subscript p denote phenology of leaf shedding, leaf flush, flowering or fruiting. For199

each phenology, the cumulative-logit model estimates an underlying latent, continuous variable200

η from which the k ordinal scores were categorised and partitioned from k − 1 cutpoints, κ201

(Bürkner & Vuorre, 2019).202

In the linear predictor η , we began by including species-specific random intercepts α j that203

model the average intensities of phenology for each species. We then included two predictor204

components to the model. First, fp jt(m) denotes the Fourier decomposition (Fidino & Magle,205

2017) of calendar months (m = 1,2, ...,12) into the first two dominant components with pe-206

riodicity of 12 and 6 months (based on Bush et al., 2017) in the time series. Each periodic207

component consists of two Fourier terms, C and S, and the respective coefficients, β1 and β2.208

In Appendix S1, we provide the mathematical details of these Fourier terms and coefficients, as209

well as how to derive the amplitude of both periodicities to define whether annual (12 months)210

or subannual (6 months) is the predominant cycle. This decomposition, also known as ‘cosinor’211

(Nelson et al., 1979), allowed us to model the periodic cycles in phenology. The same tech-212

nique has been used to quantify leaf phenology (e.g., Williams et al., 2008 who coined ‘circular213

statistics’) but not expanded into GLMM as here. We allowed the Fourier coefficients β1 and214

β2 to vary by species and year to accommodate interspecific and interannual (nonstationary)215

variations in phenological periods.216

In the second component gp j(R, T ), we included two monthly-average weather variables,217

precipitation R and temperature T , and their effects, ρ and τ , on phenology, which varied by218

species to capture interspecific variations in weather responses. Between the Fourier com-219

ponent fp jt(m) and the weather component gp j(R, T ), we will interpret the former as the220

longer-term variation in phenology responding to climate regimes, and the latter as shorter-221
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term variation in phenology responding to monthly weathers.222

Lastly, we included transect-, individual- and year-specific random intercepts (εn, εi and εt)223

to account for spatial, among-tree, and temporal non-independence, respectively. Importantly,224

the year random intercepts also accounted for potential nonstationary in the time series, by225

allowing each year to have different mean intensity in phenology.226

Prior to modelling, we selected living tree individuals with at least 10 years of records and227

which had no observation gap for > 3 months, were not too tall for reliable measurement, and228

did not have constant phenology during the study period. We also grouped all Ficus spp. into a229

single taxonomic unit. This resulted in a total of 121,340 observations from 623 trees across 94230

taxa, 17 transects and 19 years. The climate variables were centred and scaled to unit standard231

deviation to promote model convergence; as a consequence, the intercepts are interpretable as232

the overall phenology under the average climate condition within the study period.233

The model was fitted in Stan (Stan Development Team, 2022), implemented with the brms234

package v2.18.3 (Bürkner, 2017) in R v4.2.1 (R Core Team, 2022). Bayesian inference was235

performed in four chains of Hamiltonian Monte Carlo (HMC) iterations, each with 2,000 iter-236

ations and the first 1,000 samples as warmup. We used the default weakly informative priors237

for all parameters in brms. Chain convergence was assessed visually using trace plots and the238

Gelman–Rubin diagnostic R̂ < 1.05.239

Long-term climate trends in rainfall and minimum temperature were estimated the using240

linear regression, performed in Python v3.11.5 using the package Seaborn v0.12.2. Trends241

were fitted for individual months, as well as grouped months for dry (December, January and242

February), wet (June, July, August and September) and intermediate seasons (March, April,243

May, October and November). In addition, we performed trend analysis of all months to look244

at overall changes in the climate data.245

Calculating community-level phenology246

To understand what species-level phenology means at the community level, we leverage on247

the hierarchical nature of GLMM to extract community-mean patterns. This is done by using248

the fixed effects in the GLMM and marginalising over random species effects when predicting249

community-mean phenology. While the community-mean predictions are not exactly what is250

called “community-weight mean” in trait ecology, they can be interpreted similarly because251

they are both conceptually the expected value of a randomly drawn individual from an assem-252

blage.253

Next, we extracted the community-mean magnitude of peak intensity for each phenology254

in each year, as well as the month in which the peak occurred. We acknowledge that ampli-255

tudes and phase shifts can be analytically derived from the Fourier coefficients (Nelson et al.,256

1979; Shumway & Stoffer, 2010, see also Supplementary Information), but they are calculated257

for each Fourier components and hence may not reflect the overall shape of the cycles. We258
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therefore opted to numerically calculate peaks to obtain the total magnitudes across all Fourier259

components, i.e., by computing fitted values from the model and then locate the highest peaks.260

For every year, we also calculated community synchrony in phenology as the mean pairwise261

Spearman’s ranked correlation in the fitted values between individuals (Loreau & De Mazan-262

court, 2008). Finally, we quantified the prediction accuracy of whole-community phenology263

in every year using the continuously ranked probability score (CRPS, which indicates how264

well the predicted ordinal values match the observed, Gneiting & Raftery, 2007) using the loo265

package v2.6.0 (Vehtari et al., 2017). Assessing prediction accuracy allows us to understand266

whether some phenologies are less deterministic than others, and if phenology has become267

more unpredictable under climate disruptions.268

Results269

Species-level phenology270

Our model explained 49%, 39%, 61% and 58% of variation in leaf shedding, leaf flush, flow-271

ering and fruiting, respectively. Of the explained variation, most were captured by the fourier272

decomposition of monthly trends followed by interspecific variation, with the exception of very273

high interannual variation in leaf shedding (Fig. 2). Interspecific variation was greater than in-274

traspecific variation. Monthly temperature and precipitation did not capture a lot of variation275

in phenology, and there was very little variation among transects. Almost all species exhibited276

annual patterns in leaf shedding, flowering and fruiting, while relatively more species exhibited277

some degree of sub-annual cycles in leaf flush (Figs S1–S2).278

Fruiting

Flowering

Leaf flush

Leaf shedding

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of total explained variance

Component Fourier Weather Taxa Individual Year Transect

Figure 2: Variance partitioning of each phenology variable. Key to the variance components:
Fourier = the fourier component f in the main text, Climate = the climate component g, Taxa
= taxon-specific random intercept α j, Individual = tree-specific random intercept εi, Year =
year-specific random intercept εt , Transect = transect-specific random intercept εn.
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Forty-eight species (51%) showed seasonal deciduousness whereby at least half of the279

crown was bare for 1–2 months (Fig. 3). Of the deciduous species, 29 shed their leaves during280

the height of the dry season, while the remaining 20 species shed leaves during the mid-late281

wet season. All other species lost varying amounts of leaves across the year. There were fewer282

species that shed leaves at the beginning of the wet season (Fig. S3A). Seven of the 94 species283

(7%) showed strong seasonal leaf flush, whereby over half of the crown had fresh leaves at any284

one month (Fig. 3). Of these, 2 species flushed in the dry season and 5 in the wet season. The285

remaining 77 species had small amounts of leaf flush throughout the year. Species with signals286

of sub-annual cycles seemed to produce leaves around the beginning and end of the wet season287

(Fig. S3B).288

Compared to foliar phenology, reproduction had stronger seasonality and a greater propor-289

tion of variations explained by the Fourier components (Fig. S1). Almost all species showed290

strong annual seasonality in flowering (Fig. 3), with most of these showing peak flowering291

either throughout the dry season or towards the end and into the beginning of the rains (Fig.292

S3C). Very few species had peak flowering towards the end of the wet season. Fruiting varied293

strongly among species (Fig. 3). Species of Anthocleista, Leea, Pavetta, Rothmania, Trema294

and Vitex are among those that produced abundant fruit all year round (up to 6–11 months an-295

nually). Compared to other phenologies, interspecific peak fruiting seems to be the most evenly296

distributed phenology throughout the year (Fig. S3D).297

Community-level phenology298

At the community-level, the timing of peak foliar phenologies varied inconsistently across299

years. Peak leaf flushing was mostly in the mid-dry season (January or February), but in some300

years was earlier or later (Fig. 4A). In 2017 it was in the middle of the rains. Leaf shedding301

used to peak towards the end of wet season, but more recently has shown signs of delay into302

the dry season. Peak flowering was consistently towards the end of the dry season in March303

or April, followed by fruiting between March and July. Intensity of community peaks showed304

trends over time in all phenologies except flowering: leaf shedding has increased, coupled with305

less intense leaf flush and a slight decline in fruit production.306

Community synchrony was inconsistent across years for leaf flush and shedding, varying307

between 0.5 (highly synchronised) and 0.1 (asynchronous). Flowering was more consistently308

synchronous between 0.2–0.4. Fruiting showed a clear trend of increased synchrony over time309

(Fig. 4B). Community synchrony did not always translate to greater whole-community predic-310

tive accuracy. Although leaf shedding, flowering and fruiting seemed to be most predictable311

when the community was most synchronous, the prediction accuracy of leafing seemed to be312

decoupled from its community synchrony (Fig. 4C).313
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Strombosia scheffleri
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Rauvolfia vomitoria
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Prunus africana
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Polyscias fulva

Pleiocarpa pycnantha
Pittosporum viridiflorum
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Pavetta corymbosa

Parkia filicoidea
Oxyanthus speciosus

Nuxia congesta
Noronhia africana

Newtonia buchananii
Mystroxylon aethiopicum

Millettia barteri
Memecylon sp

Margariteria dioscoidea
Mallotus sp

Maesa lanceolota
Macaranga occidentalis

Lovoa trichilioides
Leptaulus zenkeri
Leea guineensis

Lannea barteri
Kigelia africana

Isolona deightonii
Ilex mitis

Harungana madagascariensis
Guarea cedrata

Garcinia smeathmannii
Ficus spp.

Eugenia gilgii
Erythrococca hispida

Entandrophragma angolense
Entada abyssinica

Ekebergia bengalensis
Drypetes gosweileri

Dombeya ledermannii
Discoclaoxylon hexandrum

Diospyros monbuttensis
Dicranolepis grandiflora

Deinbollia onanae
Dasylepis racemosa

Dalbergia sp
Cussonia arborea

Croton macrostachyus
Cordia sp

Cordia millenii
Combretum molle
Clausena anisata

Chrysophyllum albidum
Celtis gomphophylla

Carapa oreophila
Canthium vulgare

Campylospermum flavum
Brucea antidysenterica

Bridelia speciosa
Bombax sp

Berlinia grandiflora
Beilschmedia mannii
Aubregrinia taiensis
Antidesma venosum
Anthonotha noldeae
Anthocleista vogelii

Allophylus africanus
Albizia gummifera

Calendar month

Figure 3: Overall phenological calendar for each species. Darker colours indicate more intense
phenology (posterior median of of η j). Predictions are made under the average climate condi-
tions in this study and are marginalised across all other random effects.
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Figure 4: Community-level phenology across years. (A) Calendar month when the community
is predicted to reach peak phenology. Points and error bars are circular median and interquar-
tile range, respectively. Larger point size indicates higher peak intensity. Light-blue shaded
regions denote the historical wet season. (B) Yearly change in synchrony of phenology across
species within the community, calculated as the mean pairwise Spearman correlation in tem-
poral trends. Solid points and vertical bars are posterior median and 89% credible intervals,
respectively. (C) Yearly change in the model’s prediction accuracy measured as mean contin-
uously ranked probability score (CRPS) within year. Higher values indicate greater prediction
accuracy.
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Weather influence on phenology314

Although local weather variables explained relatively little of the variation in species phenolo-315

gies, our model revealed that species varied more in their responses to monthly temperature316

than monthly precipitation, especially in terms of leaf shedding and flowering (Fig. 5). For317

most species, leaf shedding and flowering was more intense under high precipitation. The318

weather responses of leafing were more varied: there were different species that leafed more319

intensely under all four factorial combinations of cool–warm and dry–wet conditions (Fig. 5).320

The weather responses of fruiting were similarly variable among species, except that there were321

no species that fruited more intensely under cool–dry conditions.322

Climate trends323

Using the Gembu weather station rainfall data and the ERA5-Land temperature data, our study324

site had a long-term (i.e., 1976–2023) average minimum temperature of 19.9◦C and an annual325

rainfall of 1,848 mm. The dry-season (December, January and February) mean temperature326

was 20.8◦C with a mean rainfall of 14 mm per month (Fig. S4). The intermediate-season327

(March, April, May, October and November) mean minimum temperature was 20.4◦C with a328

mean rainfall of 150 mm per month, while the wet season (June, July, August and September)329

was cooler with a mean minimum temperature of 18.6◦C and a mean rainfall of 271 mm per330

month.331

Minimum temperature had a highly significant increasing trend of 0.017◦C per year, or332

0.8◦C over the 48-year observation period (Fig. S5). The increase during the intermediate sea-333

son was greatest at 0.020◦C per year, or 1.0◦C over 48 years; similarly the dry season increased334

for 0.019◦C per year, or 0.9◦C over 48 years, but less during the wet season at 0.012◦C per year335

or 0.6◦C over 48 years. All seasons and all individual months (except January) showed signifi-336

cant increases in minimum temperature; February and March showed the greatest increases in337

minimum temperature at 1.8 and 1.9◦C over 48 years. Rainfall did not show a significant trend338

overall. When broken down into seasons, however, the dry season was significantly wetter by339

16 mm per month by the end of 48 year observation period. Conversely, the wet season was340

significantly drier by 55 mm per month by the end of the 48 year observation period.341

Discussion342

We described the foliar and reproductive phenological trends over 19 years of 623 trees across343

94 taxa in a seasonally dry submontane forest in the Cameroon highlands, Nigeria. We found344

that annual cycles were by far the most common periodicity across all four phenologies, agree-345

ing with findings for flowering and fruiting phenologies from other West African forests (Bush346

et al., 2017; Adamescu et al., 2018). We also detected discordant trends in the intensity of347

13

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 27, 2024. ; https://doi.org/10.1101/2024.03.24.585819doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.24.585819
http://creativecommons.org/licenses/by-nc/4.0/


Anthonotha noldeae

Bridelia speciosa

Carapa oreophila

Clausena anisata Nuxia congesta

Strombosia scheffleriTrema orientalis

Bridelia speciosa

Croton macrostachyus

Discoclaoxylon hexandrum

Garcinia smeathmannii

Strombosia scheffleri

Syzygium guineense

Tabernaemontana contorta

Anthonotha noldeae

Deinbollia onanae

Dombeya ledermannii

Entandrophragma angolense

Isolona deightonii

Pleiocarpa pycnantha

Schefflera abyssinica

Syzygium guineense

Voacanga africana

Zanthoxylum leprieurii

Bridelia speciosa

Dombeya ledermannii
Maesa lanceolota

Polyscias fulva

Flowering Fruiting

Leaf shedding Leaf flush

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

Temperature effect

P
re

ci
pi

ta
tio

n 
ef

fe
ct

Figure 5: Species-specific phenological responses to total monthly precipitation and mean
monthly temperature. Solid points and error bars are posterior median and 89% credible in-
tervals, respectively. Each point corresponds to a focal species. Higher values lead to more
intense phenology with increasing weather values and vice versa. Name labels denote species
with strong responses to both monthly temperature and precipitation (do not overlap with zero
on both axes).
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leaf shedding, leaf flush and fruit production; leaf flush and fruit production have reduced in348

intensity while leaf shedding has increased. Community synchrony decreased markedly for349

leaf shedding and increased for fruiting. The climate at nearby Gembu township has changed350

over the past 48 years; minimum temperature has increased by 0.8◦C on average, but more so351

in the dry and intermediate seasons. Total rainfall has not changed, but there is a trend for the352

dry season becoming significantly wetter and the wet season drier.353

Species and community level patterns, peak phenology and synchrony354

Leaf shedding355

Over half the species (~51%) in our study were fully or semi-deciduous. Qualitatively, we356

found no obvious common phylogeny or ecological niche explaining deciduousness. While357

most deciduous species lost their leaves during the dry season as a common adaptation to358

avoid water stress in seasonally dry forests (Wright & Cornejo, 1990; Reich, 1995; Yang et359

al., 2021), a suite of species shed their leaves during the wet season instead. Among forest360

edge species (e.g., Psorospermum aurantiacum, Scheffleria abysinica, Cussonia arborea and361

Nuxia congesta), leaf shedding during the rains may be an adaptation to low nitrogen (February362

& Higgins, 2016); tropical montane forests have low nitrogen availability relative to lowland363

forests (Ostertag et al., 2022). In the forest core, another explanation may be an adaptive364

strategy to low light during the rains (Cornforth, 1970; Yang et al., 2021) caused by cloud365

cover and fog (Chapman & Chapman, 2001).366

At the community level, we found a noticeable trend towards peak leaf shedding now align-367

ing more closely with the dry season. This shift corresponds with increasing temperatures and368

decreasing wet-season rainfall, leading to heightened drought conditions. An additional factor369

contributing to this trend may be the intensification of the desiccating desert Harmattan wind370

during the dry season (November–March), which also brings in more dust than previously,371

negatively impacting irradiation (Jenik & Hall, 1966; Balarabe, 2018). The most significant372

escalation in peak leaf shedding occurred concurrently with the onset of the 2015–16 El Niño373

phenomenon, mirroring the findings of Detto et al. (2018), Kaewthongrach et al. (2020) and374

Janssen et al. (2021). Since then, not only has leaf shedding become more pronounced, it is375

also less synchronous among species. The underlying explanations for these changes are likely376

multifaceted, intricate and encompass a mix of diverse physiological and ecological strategies377

among species to warming and drying (Janssen et al., 2021), along with shifts in biological378

interactions (Renner & Zohner, 2018). Additionally, the absence of evident parallel shifts in379

the peak timing of other phenological events suggests a potential discordance between leaf380

shedding and the broader community phenology.381
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Leaf flush382

Most species showed year-round leaf production, indicating adaption to a persistent environ-383

mental stressor such as dry-season drought and low wet-season irradiance (Nomura et al.,384

2003). However, a suite of species comprising both understory and canopy trees showed dis-385

tinct seasonal patterns in leaf flushing, mostly during the dry season. Despite the expectation386

of reduced flushing during drought (Aide, 1993; Van Schaik et al., 1993), some studies have387

observed prevalent dry-season leaf flush like ours (Williams et al., 1997; Rivera et al., 2002;388

Williams et al., 2008; Janssen et al., 2021). Dry-season leaf flush may be an adaptation to389

reduce insect herbivory during the dry season (Kasenene & Roininen, 1999) and is perhaps tol-390

erated in the understorey because species are relatively protected from drought by shade from391

taller trees. Furthermore, dry-season leaf flush among forest edge species that experience more392

drought (Abiem et al., 2020) may be an adaptation to limited nitrogen availability (February &393

Higgins, 2016). It is also possible that subsoil water reserves allowed these species to produce394

new leaves weeks before the first rain for a competitive edge (Rivera et al., 2002; Williams et395

al., 2008).396

At the community level, leaf flush also tended to peak in the height of the dry season397

(around January), but its peaks were less distinct compared to flowering and fruiting (Fig. S1).398

We therefore caution against over-interpreting the precise timing of peak community leaf flush.399

Nevertheless, community-level leaf flush peak intensity has shown a gradual yet consistent400

decline across the study period, though the community synchrony of leaf flush did not change401

directionally. The combined trends in leaf shedding and leaf flush suggest a biomass shift from402

living to dead components of the ecosystem, and thus may have negative consequences for403

herbivory (Meineke et al., 2021), nutrient cycling (Sayer et al., 2024) and carbon sequestration404

(Clark et al., 2013) as has been evidenced in the Amazon (Laan-Luijkx et al., 2015; Janssen et405

al., 2021) and southeast Asia (Kaewthongrach et al., 2020).406

Flowering and fruiting407

In contrast to the foliar phenology, the timing of flowering and fruiting were noticeably more408

regular. The majority of species consistently co-flowered towards the end of the dry season,409

around the timing of the first rain. This fairly constant community synchrony in flowering410

over the years has led to a community-level flowering that peaked around March. Flowering411

towards the end of the dry season is a common pattern in tropical dry forests (Van Schaik412

et al., 1993) and may allow for fleshy fruits to later develop during peak rains (Chapman et413

al., 1999), though there were forest edge or grassland species (e.g., Antidesma venosum, Cro-414

ton macrostachyus and Maesa lanceolata) that did not reach peak flowering until later in the415

wet season. After flowering, community-level fruiting peaked during early to mid-wet season416

(April–June). Therefore, fruits were more abundant in the wet than in the dry season, but the417

considerable interspecific variation meant there was always something in fruit, as evidenced418
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by Dutton & Chapman (2015) who in the same study site found equivalent amounts of seeds419

in chimpanzee faeces across the year, but from different seed species. Similar patterns of fruit420

production have been noted elsewhere in Africa (Chapman et al., 2005; Adamescu et al., 2018;421

Potts et al., 2020).422

The community peak and synchrony of flowering have not changed over the 19 years of423

our study, while community fruiting has decreased slightly in peak intensity and became more424

synchronous. It is difficult to tell where our results sit among previous findings, which show425

disparate trends of increased (Pau et al., 2013; Polansky & Boesch, 2013; Dunham et al., 2018;426

Flores et al., 2023), decreased (Bush et al., 2020; Numata et al., 2022), or varying (Chapman et427

al., 2005; Potts et al., 2020) reproductive intensity or synchrony. The stable flowering phenol-428

ogy at Ngel Nyaki may indicate strong internal physiological inertia (Stevenson et al., 2008) or429

that cues for flowering have not changed over the study period. However, the driver of fruit pro-430

duction at Ngel Nyaki remains in question as declining fruit production has decoupled from the431

stable flower production. Irradiation could be important (Chapman et al., 2018) and this may432

be changing with either fog duration or more intense Harmattan (Jenik & Hall, 1966; Balarabe,433

2018). Another explanation could be increased frugivory; while Ngel Nyaki has fewer chim-434

panzees and other primates than in the past (Chapman et al., 2004), these individuals are now435

confined to within the forest boundaries due to extreme habitat fragmentation and edge en-436

croachment (Knight et al., 2016). We have not yet studied the pollinator communities within437

the forest but they could also influence fruiting intensity and synchrony (Wheelwright, 1985;438

Bawa, 1990). Of note is that while collecting seeds for forest restoration, we have recorded an439

apparent decline in fruit production in areas of the forest that field assistants visit regularly, but440

not in more remote parts of the forest. A possible explanation is that our presence has reduced441

bush meat hunting around the phenology transects, thus making the area less threatening to442

frugivores.443

Weather, climate change and forest resilience444

Analyses of the 48 years of ERA5-reanalysis climate for our study site shows that between445

1976 and 2023 minimum temperatures are rising. This is in agreement with other reports of446

increasing minimum temperatures across much of West Africa (Bush et al., 2020; Bedair et al.,447

2023 and citations therein). For example, Bush et al. (2020) found minimum daily temperatures448

at Lopé, Gabon have increased at a rate of +0.25◦C per decade since 1984. Total annual rainfall449

on the Mambilla Plateau showed no significant trend, and no evidence of prolonged droughts,450

which is in contrast to large parts of West Africa which are experiencing markedly reduced451

rainfall (Malhi & Wright, 2004; Polansky & Boesch, 2013; Bush et al., 2020). However, the452

Plateau is experiencing increased variability in the magnitude, timing, and duration of rainfall.453

For example, we found a significant decrease in wet season rainfall, which may lead to rainfall454

shortages during times of the year that were historically wetter, which Allen et al. (2017) define455
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as droughts. These subtle rainfall changes could affect phenology, as Valdez-Hernández et al.456

(2010) found that it was rainfall timing, rather than amount that influences phenology for a dry457

forest in Mexico. In addition, Ho et al. (in review) showed that leaf flush could be related to458

increased seasonality in rainfall.459

Although species varied in their responses to weather, the monthly weather variables did460

not contribute much to the total variance in phenology. However, this should not be inter-461

preted as environmental cues being unimportant or as a sign of the community’s resilience to462

climate change. There were significant variations, especially in reproduction, as elucidated by463

the Fourier components, which indicates that reproductive phenology responds to whole cli-464

mate regimes such as day length, cumulative rainfall and seasonal temperature across months465

(Chapman et al., 2005, 2018; Pau et al., 2013; Pires et al., 2018), rather than the concur-466

rent weather of any particular month. The disproportionately high amount of variance in leaf467

shedding explained by year is also noteworthy; it indicates that leaf shedding may be more468

sensitive to interannual environmental irregularities outside of the Fourier cycles, such as El469

Niño (Chapman et al., 2018; Zhu et al., 2022). Overall, this highlights that long-term shifts470

in climate regime or lag effects are more important than short-term weather fluctuations when471

studying phenology, as well as the importance of long-term monitoring data (Bush et al., 2018).472

To what extent the phenological trends of species and community we found are adaptive473

and might confer resilience to climate change is unclear. African tropical forests may be re-474

silience to drought because many species are pre-adapted to dry conditions (Bennett et al.,475

2021). The survival of trees against future drought, however, does not guarantee the stability476

of ecosystem functions. If droughts do become more frequent and aseasonal, more deciduous477

species will possibly gain a competitive advantage over evergreens in the long term (Vico et al.,478

2017). Such a compositional shift, coupled with the increasing leaf shedding from our results,479

suggests a lower leaf biomass during extended periods of droughts, potentially undermining480

the role of these forests as carbon sinks (Reichstein et al., 2013; Kaewthongrach et al., 2020;481

Bennett et al., 2021; Janssen et al., 2021). Similarly, the stable flowering phenology does not482

guarantee long-term resilience because of its mismatch with leaf flush, which has decreased in483

peak intensity over the years. The reduced leaf production and hence photosynthetic resources484

may led to poorer flower and fruit qualities, even if their quantities do not change (Singh &485

Kushwaha, 2006). Such nuances may be missed from phenology studies that only focus on486

reproductive, but not foliar, organs.487

Ultimately, management actions depend not only on good understandings but also accurate488

predictions of phenology. Leaf shedding was the only phenology that declined in prediction489

accuracy over the years, possibly related to it becoming more asynchronous among trees. The490

decreasing prediction accuracy also indicates nonstationaries due to some missing year-specific491

factor that influenced leaf shedding, for instance species-by-year interactions whereby some492

species were more sensitive to certain interannual anomalies (e.g., deciduous species to El493

Niño). Unfortunately, we were unable to include the species-by-year random effect in our494
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model because of the limited replications of several species, but this could be tested by future495

studies with a more even sampling. Other phenologies had stable or increasing prediction496

accuracies, but they are not necessarily good news; leaf flush may become more predictable497

because most trees produced new leaves consistently at very low intensities, while fruiting may498

become more predictable because it is more synchronous in the wet season but less available499

in the dry season. Further studies could consider functional traits (e.g., leaf physiology, rooting500

depth and the ability to store water in the trunk) to improve the prediction and generalisation501

of phenological responses to drought (Van Schaik et al., 1993; Corlett, 2016; Radford Smith502

et al., 2024). Tree size could also strongly moderate performance under drought (Bennett et503

al., 2015). Our monthly phenology survey did not include repeated measures of tree size due504

to logistic constraints, but we recommend future studies to include tree size as a covariate of505

phenology.506

Whether the studied forest is resilient to climate change as a whole remains an open ques-507

tion without more information. The drivers and consequences of tree phenology do not solely508

involve the plants, but also their interactions with other trophic levels (Ovaskainen et al., 2013;509

CaraDonna et al., 2014; Visser & Gienapp, 2019) as well as the environment (Sayer et al.,510

2024). Importantly, the discordant changes in foliar and reproductive phenology in our data511

suggest that assessments of forest resilience should rely on multiple aspects of phenology rather512

than a single performance indicator. That concurrent weather explains very little compared to513

long-term climatic cycles suggests that tree species may be resilient to short-term weather ir-514

regularities, but they may not be able to withstand prolonged shifts in the climate regime.515
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