Academia.eduAcademia.edu
TAXON 58 (3) • August 2009: 793–810 Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia Evolutionary relationships in the Spermacoceae alliance (Rubiaceae) using information from six molecular loci: insights into systematic affinities of Neohymenopogon and Mouretia Catarina Rydin1, Sylvain G. Razafimandimbison2, Anbar Khodabandeh2 & Birgitta Bremer2 1 University of Zürich, Institute of Systematic Botany, Zollikerstrasse 107, 8008 Zürich, Switzerland. Catarina.Rydin@systbot.uzh.ch (author for correspondence) 2 Bergius Foundation, Royal Swedish Academy of Sciences and Botany Department, Stockholm University, 106 91 Stockholm, Sweden Several recent phylogenetic studies of Rubiaceae have dealt with enigmatic taxa whose systematic positions have been previously unknown or controversial. We address evolutionary relationships in the Spermacoceae alliance (Rubioideae) with special emphasis on the Asian genera Mouretia and Neohymenopogon, here sequenced for the first time. Both genera belong in the tribe Argostemmateae and have persistent calyx lobes on the fruit in common with Argostemma and Mycetia. Other previous uncertainties are resolved with strong support; Saprosma is sister to Paederieae s.str. and Carpacoce is sister to remaining Anthospermeae. Our results further reveal some phylogenetic problems. Danaideae is sister to remaining taxa in the Spermacoceae alliance with high posterior probability, which contradicts results in a recent study. The uncertainty concerning evolutionary relationships of Dunnia and Theligonum is reinforced, despite a denser taxon sampling in the Spermacoceae alliance compared with earlier studies. We also demonstrate yet another example of the controversial correlation between molecular substitution rate and plant life history. KEYWORDS: Anthospermeae, Argostemmateae, Danaideae, Paederieae, rate heterogeneity, Saprosma, Theligonum INTRODUCTION The large coffee family, Rubiaceae, comprises more than 13,000 species (Govaerts & al., 2006), a diversity which is estimated to have originated in the mid-Cretaceous (Bremer & Eriksson, 2009). Rubiaceae display a great diversity in growth habit ranging from arborescent, suffrutescent, lianescent, epiphytic to herbaceous habits (Robbrecht, 1988; Bremer & al., 1995). A woody habit is the predominant life form in the subfamilies Cinchonoideae and Ixoroideae, whereas herbaceous as well as woody habits occur in Rubioideae (Verdcourt, 1958). Climbers are also relatively common in the family and about 250 species are epiphytic (Robbrecht, 1988), but a parasitic habit is very unusual, probably unknown. The epiphytic to terrestrial plant Neohymenopogon parasiticus (Wallich, 1824; Bennet, 1981), distributed in Bhutan, Vietnam, Tibet and China (Yunnan) (Govaerts & al., 2006), was originally described under the name Hymenopogon parasiticus, as a small branchy shrub, attached parasitically to trees by means of fibrous roots (Wallich, 1824). The interpretation of the plant as a parasite was likely a misconception (see, e.g., Puff & al., 2005), but the matter has to our knowledge never been thoroughly investigated. The leaves are membranous (but green), the flowers are pentamerous with the stamina inserted near the apex of the corolla lobe and the capsule has numerous seeds. A thin but leafy bract, “elegantly nerved” underneath is attached to the node where the peduncles unite (Wallich, 1824: 157). Hymenopogon Wall. (Wallich, 1824), comprising three species, was an illegitimate homonym and Bennet (1981) suggested it should be replaced by Neohymenopogon. Andersson & Persson (1991) included the genus in a morphological study and found support for Bremekamp’s (1952, 1966) transfer of Neohymenopogon from Cinchoneae to Hedyotideae. Apart from this work, short descriptions in floras and other surveys (Wallich, 1824; Hooker, 1880; Classen-Bockhoff, 1996) and Puff & al.’s more comprehensive flora (2005), we have not found any published information on Neohymenopogon. In order to get a first indication on the systematic affinity of this genus, we produced and analysed a nrITS sequence and the preliminary results indicated that Neohymenopogon parasiticus belongs in Rubioideae, Rubiaceae, probably in the Spermacoceae alliance (further described below). Several recent phylogenetic studies of Rubiaceae have investigated enigmatic taxa whose systematic positions have been unknown or controversial, e.g., Kelloggia (Nie & al., 2005), Rhopalobrachium (Mouly & al., 2007), Dunnia (Rydin & al., 2008), Schizocolea (Razafimandimbison & al., 2008; Rydin & al., 2008), Petitiocodon (Tosh & al., 2008) and Acranthera (Rydin & al., 2009). Another 793 TAXON 58 (3) • August 2009: 793–810 Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia genus of uncertain systematic affinity is Mouretia (Pitard, 1922), which comprises five species distributed in China, Laos, Vietnam and Thailand (Govaerts & al., 2006). Tange (1997) made a revision of the genus and described Mouretia as herbs to small shrubs, often anisophyllous and with distylous flowers (Tange, 1997; see also Puff & al., 2005). Mouretia is currently classified in the tribe Hedyotideae (Robbrecht, 1988, 1993), and this was tentatively accepted by Tange (1997). Tange suggested a possible affinity between Mouretia and Mycetia but did not do any formal changes of the classifications. Mycetia was at that time placed in the tribe Isertieae, subfamily Cinchonoideae (Robbrecht, 1988, 1993), though Bremekamp (1952, 1966) had suggested that it belonged in Hedyotideae. Hypotheses on the systematic position of Mouretia have to our knowledge never been tested using phylogenetic analyses. The Spermacoceae alliance and the aim of this study. — The Spermacoceae alliance (Bremer & Manen, 2000), also known as the Hedyotideae-Rubieae clade (Andersson & Rova, 1999) and supertribe Rubiidinae (Robbrecht & Manen, 2006), is a well-corroborated clade consisting of nearly 3,000 species. It comprises two major subclades (Bremer & Manen, 2000); subclade 1: the tribes Knoxieae and Spermacoceae (Bremer, 1996; Robbrecht & Manen, 2006; Kårehed & Bremer, 2007) (not discussed in the present paper), and subclade 2: Anthospermeae, Argostemmateae, Dunnieae, Paederieae, Putorieae, Rubieae and Theligoneae (Bremer & Manen, 2000; Backlund & al., 2007; Rydin & al., 2008, 2009). Further, the small tribe Danaideae belongs to the Spermacoceae alliance (Bremer & Manen, 2000) but its relationship to the remaining tribes has been inconsistent (results differ between studies). Here, we investigate evolutionary relationships within the Spermacoceae alliance with special focus on Neohymenopogon and Mouretia. The study is based on information from six loci and utilises a denser taxon sampling in the Spermacoceae alliance compared with previous studies. MATERIALS AND METHODS Selection of species and laboratory procedures. — We selected 159 taxa from subfamily Rubio- ideae for this study (Appendix). We have included 91 terminals from the ingroup, the Spermacoceae alliance (Bremer & Manen, 2000), representing ten tribes. Due to limited access to material, we were only able to include one species each of Mouretia and Neohymenopogon. The material investigated during the revision of Mouretia (Tange, 1997) has unfortunately not been possible to trace but other material of Mouretia larsenii Tange has been studied and used to produce sequences in a first attempt to 794 elucidate the evolutionary origin of the genus. Neohymenopogon parasiticus is investigated using material from two specimens. Relationships within the Knoxieae-Spermacoceae clade are investigated elsewhere (i.e., Kårehed & Bremer, 2007; Kårehed & al., 2008; Groeninckx & al., 2009) and will not be discussed here, but to relevantly address the topics of the present paper, we have included 24 representatives from the Knoxieae-Spermacoceae clade. We further included a comprehensive set of terminals (68) from remaining Rubioideae, representing 14 tribes. All trees were rooted on Colletoecema, the sister group of all other Rubioideae species (Robbrecht & Manen, 2006; Rydin & al., 2008; Sonké & al., 2008). We utilised information from six loci: five chloroplast regions (rbcL, the rps16 intron, ndhF, atpB-rbcL spacer, the trnT-L-F region), and the internal transcribed spacer of the nuclear ribosomal DNA, nrITS (nrITS1, 5.8S, nrITS2). Primer references are given in Table 1. We used information from GenBank if available and we also produced 252 new sequences for this study (Table 2). GenBank accession numbers are given in Appendix. DNA was extracted, amplified and sequenced using standard procedures previously described (Kårehed & Bremer, 2007). Table 1. Primers. DNA region Primer name Reference rbcL 5 F, 3 R and 427F Bremer & al. (2002) rbcL Z895R Zurawski, DNAX rps16 F and 2R Oxelman & al. (1997) nrITS P17 and 26S-82R Popp & Oxelman (2001) nrITS P25 Oxelman (1996) nrITS ITSForwRub Rydin & al. (2009) nrITS ITSRevRub Rydin & al. (2009) ndhF 2F Rydin & al. (2008) ndhF 1000R Rydin & al. (2008) ndhF 720F Rydin & al. (2008) ndhF 1700R Rydin & al. (2008) ndhF 1320F Rydin & al. (2008) ndhF 2280R Rydin & al. (2008) atpB-rbcL spacer rbcL5 R atpB-rbcL spacer atpB5 R Rydin & al. (2008) Rydin & al. (2008) trnT-L-F A1 Bremer & al. (2002) trnT-L-F 940R Rydin & al. (2008) trnT-L-F 820F Rydin & al. (2008) trnT-L-F IR Bremer & al. (2002) trnT-L-F 1250F Rydin & al. (2008) trnT-L-F D Taberlet & al. (1991) trnT-L-F 1880F Rydin & al. (2008) trnT-L-F 2670R Rydin & al. (2008) 5,000/10 5 million GTR + I + Γ Taxon rbcL rps16 trnT/F nrITS Total number of taxa in matrix (number of new sequences) 155 (32) 153 (30) 149 (32) 134 (44) Total number of characters in matrix 1,402 1,689 3,513 893 Number of variable characters 517 967 1,905 586 Number of informative characters 393 636 1,183 486 Best fitting evolutionary model; AICc weightsa GTR + I + Γ HKY + Γ GTR + I + Γ GTR + I + Γ Best fitting evolutionary model; AIC weightsa GTR + I + Γ HKY + Γ GTR + I + Γ GTR + I + Γ Best fitting evolutionary model; BIC weightsa GTR + I + Γ HKY + Γ GTR + I + Γ GTR + I + Γ Best fitting evolutionary model; hLRTsb GTR + I + Γ GTR + Γ GTR + I + Γ GTR + I + Γ Conflicts between Bayesian and parsimony analyses No No No No Bootstrap analysis (bootstrap replicates /random sequence additions in each replicate) 1,000/10 1,000/10 1,000/10 1,000/10 1,000/10 1,000/10 5,000/10 Bayesian analysis (number of generations run) 1.5 million 1.5 million 1.5 million 1.5 million 1.5 million 1.5 million 5 million Employed evolutionary model (AICc weights) GTR + I + Γ HKY + Γ GTR + Γ GTR + Γ GTR + I + Γ GTR + I + Γ ←c a AIC, Akaike information criterion; AICc, corrected AIC; BICC, Bayesian information criterion; all alculated in software MrAIC.pl (Nylander, 2004a). b hLRTs, hierarchical likelihood ratio tests; calculated in software MrModeltest (Nylander, 2004b). c Evolutionary model employed for each data partition are as specified to the left (for single genes). Combined matrix, 6 partitions 159 (252) 10,864 5,591 3,801 — — — — No atpB-rbcL ndhF spacer 127 (61) 139 (53) 2,223 1,144 1,060 556 765 338 GTR + Γ GTR + Γ GTR + Γ GTR + Γ GTR + Γ GTR + Γ GTR + I + Γ GTR + Γ No No Sequence fragments were assembled using the Staden package (Staden, 1996). Alignment and phylogenetic reconstruction. — Sequences were aligned visually, using computer programs Seaview 2.2 (Galtier & al., 1996) and Se-Al v.2.0 (Rambaut, 1996). Insertion/deletion events were visually inferred, following the alignment criteria outlined in Oxelman & al. (1997). All matrices were analysed with two approaches: Bayesian inference and parsimony. We analysed each gene separately, and we also analysed all gene regions together in a combined dataset. Bayesian analyses were performed in MrBayes 3.1 (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 2003). For each single-gene dataset, the best-performing evolutionary model was identified under several different model selection criteria: Akaike information criterion (AIC) (Akaike, 1973), AICc, the Bayesian information criterion (BIC) (Schwartz, 1978) and hierarchical likelihood ratio tests (four different hierarchies described in Posada & Crandall, 2001). We performed these calculations in softwares MrAIC ver. 1.4.3 and PHYML (Guindon & Gascuel, 2003; Nylander, 2004a), and in MrModeltest ver. 2.3 and PAUP* ver. 4.0b10 for Unix (Swofford, 1998; Nylander, 2004b). Prior probabilities were set following outputs from MrAIC: a flat Dirichlet prior probability (all values are 1.0) was selected for the substitution rates (revmatpr) and the nucleotide frequencies (statefreqpr). The prior probability for the shape parameter of the gamma distribution of rate variation (shapepr) was uniformly distributed in the interval (0.1, 50.0). For analyses using a gamma distribution with a proportion of invariable sites, we specified a prior probability for this proportion (pinvarpr), uniformly distributed on the interval (0.0, 1.0). When applicable, the prior for the transition/transversion rate ratio (tratio) was set so as to put equal emphasis on transition/transversion rate ratios above 1.0 and below 1.0 (beta 1.0, 1.0). The combined dataset was partitioned in two ways: (1) six partitions (one for each locus) and (2) two partitions (chloroplast data and nuclear data). Partitions were unlinked so that each partition was allowed to have its own set of parameters. Five million generations were run with a sample frequency of 1,000, six parallel chains and the temperature set to 0.15. For single-gene analyses, 1.5 million generations were run with a sample frequency of 1,000, four parallel chains and the temperature set to 0.2. Convergence of the Markov chain was assumed to be reached when the likelihood values and individual parameters were stably fluctuating. At this point, the potential scale reduction factor was approaching 1.000 for all parameters and standard deviation of split frequencies for the two parallel runs was < 0.007. Trees sampled from the first two million generations (200,000 generations for single-gene analyses) were discarded as burn-in. Combined matrix, 2 partitions 159 (252) 10,864 5,591 3,801 — — — — No Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia Table 2. Data description. TAXON 58 (3) • August 2009: 793–810 795 Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia Parsimony analyses were performed for single gene datasets, as well as for the combined dataset, in PAUP* ver. 4.0b10 for Unix (Swofford, 1998). Most parsimonious trees were calculated using the heuristic search option, 500 random sequence additions and tree bisection reconnection branch swapping and multrees off. Support values were obtained by using bootstrap in PAUP*, performing 5,000 bootstrap replicates, each with ten random sequence additions. For single-gene analyses, 1,000 bootstrap replicates were run. A majority rule consensus tree was produced from the resulting trees, in which nodes with a bootstrap support < 50% were collapsed. RESULTS Data and model choice. — The combined matrix comprised 10,864 aligned characters. Of the 5,591 variable characters, 3,801 were phylogenetically informative (Table 2). The hierarchical likelihood ratio tests (hLRTs in MrModeltest) and calculations of AIC, AICc, and BIC weights (performed in MrAIC) for estimation of best performing nucleotide substitution models sometimes identified different optimal models for a given locus (Table 2). Bayesian and AIC approaches have been shown to have important advantages over the hLRTs for model selection (Posada & Buckley, 2004) and when forced to make a choice (ndhF, rps16 intron), we used the model identified under the corrected Akaike information criterion because AICc is appropriate when the ratio between sample size and number of parameters is small (n / K < 40; Burnham & Anderson, 2003: 66), but also for higher ratios because AICc will then converge to AIC (Posada & Buckley, 2004). For the rbcL, trnT-L-F and nrITS data, the general time reversible model (GTR; Tavare, 1986) with gamma distributed rates (Yang, 1993) and a proportion of invariable sites was selected (GTR + Γ + I). For ndhF and the atpB-rbcL spacer, GTR + Γ was selected. For the rps16 intron the Hasegawa, Kishino and Yano model (Hasegawa & al., 1985) with gamma distributed rates (HKY + Γ) was selected (see also Table 2). For the combined analysis with two partitions (chloroplast data; nuclear data), GTR + Γ + I was selected for the chloroplast partition. Phylogenetic relationships in the Spermacoceae alliance: the combined analyses. — The majority rule consensus tree from the Bayesian analysis with six data partitions is shown in Fig. 1 with posterior probabilities of clades above branches. Bootstrap indices for nodes in the ingroup (the Spermacoceae alliance) and major divergences in the Rubioideae are mapped below branches. Results from the two different Bayesian analyses of the combined dataset (six partitions; two partitions) did not differ, but a few more nodes were resolved and/or better supported 796 TAXON 58 (3) • August 2009: 793–810 in the six-partition analysis. There were no supported conflicts between Bayesian and parsimony analyses. All nodes presented below received 100% posterior probability and ≥ 85% bootstrap support unless otherwise is stated as follows (Bayesian posterior probability/bootstrap support). The Spermacoceae alliance was monophyletic with Danaideae being sister clade to remaining species (Fig. 1A, B). The genera Danais and Schismatoclada were monophyletic. One Malagasy species, Danais nigra, was sister to remaining Danais, within which the African species Danais xanthorrhoea was sister to Danais comorensis. Remaining species of the Spermacoceae alliance (95/–), consist of the sister clades Knoxieae-Spermacoceae and Anthospermeae-Argostemmateae-Dunnieae-Paederieae-Putorieae-Theligoneae-Rubieae. Within the latter, Anthospermeae are sister to the other tribes. Anthospermeae are well resolved; Carpacoce is sister to the remaining species: a (Phyllis(Anthospermum-Nenax)) clade and an ((Opercuclaria-Pomax) + ((Normandia(CoprosmaNertera))) clade (100/64). Within the next diverging clade (Argostemmateae), Mouretia is sister to the remaining species, followed by Mycetia. Neohymenopogon and Argostemma are sisters (97/70). Mycetia javanica and M. malayana are sister to a poorly supported (71/–) clade ((M. gracilis + (M. cauliflora + (two unknown species of Mycetia))). (Argostemma bifolium + (A. gracile + (A. brachyantherum–A. psychtrioides))) are sisters to a clade comprising ((A. elatostemma– A. hookerii) and (A. geesinkii + (A. yappii + (A. rupestre + (A. parvifolium var. involucratum–A. parvifolium)))). Support was less than 100% posterior probability and 85% bootstrap for the (A. yappii + (A. rupestre + (A. parvifolium var. involucratum–A. parvifolium) clade (85/–), and for the (A. rupestre + (A. parvifolium var. involucratum– A. parvifolium) clade (98/–). Argostemmateae + (Dunnieae-Paederieae-PutorieaeTheligoneae-Rubieae) are well supported in Bayesian analysis (100%) but the node is collapsed in the bootstrap analysis. Within the latter clade (64/–), Dunnieae are sister to the other tribes. Within Paederieae-Putorieae-Theligoneae-Rubieae (100/72), Paederieae s.str. (Backlund & al., 2007) is sister to the other tribes and Saprosma is well supported as sister to remaining Paederieae. The (Theligoneae + (RubieaeKelloggia)) clade is poorly supported (58/75). Single-gene datasets. — Generally, single gene analyses (not shown) produced the same topologies as those described above, but partly collapsed. There are some deviations and “supported” differences (here arbitrarily defined as nodes receiving a Bayesian posterior probability higher than 85%, and/or a bootstrap support higher than 50%) are presented here. The differences mainly concern TAXON 58 (3) • August 2009: 793–810 Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia groups, whose systematic positions are poorly supported in the combined tree (Dunnieae, Theligoneae). rps16. In the single-gene rps16 analyses, Theligoneae are sister to a clade containing three species of Putorieae (100/86). Neohymenopogon is sister to Mycetia (99/70). ndhF. In the ndhF trees, Danaideae are sister to the Knoxieae-Spermacoceae clade (96/57). Dunnieae are sister to the Anthospermeae-Argostemmateae-PaederieaePutorieae-Theligoneae-Rubieae clade (96/-). atpB-rbcL spacer. Theligoneae are part of a paraphyletic Putorieae (98/72). nrITS. Anthospermeae are sister (98/–) to (Theligoneae + (Rubieae-Putorieae)) (99/–). Neohymenopogon is sister to Mycetia (–/77). DISCUSSION New insights into evolutionary relationships. — The present study reveals several new findings on the phylogeny of the Spermacoceae alliance, for example within Argostemmateae, Anthospermeae, Danaideae and Paederieae. These results are discussed in detail below. We were particularly interested in the phylogenetic position of Mouretia and Neohymenopogon, here sequenced for the first time, and the results show that both genera belong to Argostemmateae. Neohymenopogon parasiticus is sister to Argostemma (Fig. 1B), thus, the type species of a small genus comprising only three species in Southeast Asia (Neohymenopogon) is sister to the large genus Argostemma, which comprises more than 160 species (Govaerts & al., 2006), with a probable centre of origin in tropical Asia. Mouretia, also sequenced here for the first time, is strongly supported as sister to remaining species of Argostemmateae (Fig. 1B). Tange’s (1997) argumentation for strong similarity between Mouretia and Mycetia is thus supported, even if the clade also comprises Argostemma and Neohymenopogon. Conflicting results. — The results also reveal several conflicts and potentially difficult phylogenetic problems, i.e., regarding Danaideae, Dunnieae and Theligoneae. The position of Danaideae is perhaps the most striking example. Danaideae comprise the woody climber genus Danais and the arborescent genera Schismatoclada and Payera, all with heterostylous flowers and capsular fruits (Buchner & Puff, 1993; Bremer & Manen, 2000). In previous studies, Danaideae has been suggested to be sister to the remaining species of the Spermacoceae alliance (Bremer & Manen, 2000) or sister to the Anthospermeae-Argostemmateae-Paederieae-Rubieae-Theligoneae clade (Robbrecht & Manen, 2006) and in a recent study (Rydin & al., 2009), Danaideae were sister to the Spermacoceae-Knoxieae clade, a result which was very well supported. Here, Danaideae are sister to remaining species in the Spermacoceae alliance. The relationship is well supported in Bayesian analysis, but collapses in the bootstrap analysis (Fig. 1B) and ndhF data resolve Danaideae as sister to Knoxieae-Spermacoceae. Thus, there are supported conflicts on the position of Danaideae and the result presented here should probably be considered uncertain despite a high posterior probability and a much denser species representation in Danaideae; we have included nine terminals, whereas previous studies used one or two terminals. Dunnieae contain a single species, the highly endangered Dunnia sinensis (Tutcher, 1905), endemic to the southern Guangdong Province of China (Chen, 1999). It is a woody shrub with pentamerous flowers in clusters, subtended by a few showy, petaloid structures, often referred to as enlarged calyx lobes (e.g., Chen, 1999; Ge & al., 2002). New investigations show, however, that they are modified bracts (C. Taylor, pers. comm.; Chen & Taylor, in prep.) and this seems also to be in line with the original description, in which the showy structures are described as bract-like lobes near the inflorescence (Tutcher, 1905). Dunnieae were sister to the Anthospermeae-Argostemmateae-Paederieae-Rubieae-Theligoneae clade in Rydin & al. (2008) and to the Paederieae-Rubieae-Theligoneae clade in Rydin & al. (2009). The studies of Rydin & al. (2008, 2009) addressed major evolutionary events within the entire family (Rubiaceae) and many nodes within the Spermacoceae alliance were poorly supported, conceivably due to limited taxon sampling. However, despite the much denser taxon sampling within the Spermacoceae alliance employed here, the position of Dunnieae (sister to the Paederieae-Putorieae-Rubieae-Theligoneae clade in the present study; Fig. 1B) is again poorly supported due to conflicting information in investigated loci. The species of Theligonum are herbs, anisophyllous and with unisexual, anemophilous flowers (Bremer & Manen, 2000). The genus has an interesting disjunct distribution, with one species in Macaronesia, the Mediterranean region and the Near East and three species in Taiwan, China and Japan (one in each region). In recent studies, Theligoneae are generally resolved as sister to Rubieae (Nie & al., 2005; Backlund & al., 2007; Rydin & al., 2009), but often with week support. Moreover, it has generally been the same sequences (i.e., those originally produced by Bremer & al., 1995; Andersson & Rova, 1999) that have been used over again. Based on new data from two additional specimens of Theligonum cynocrambe, we confirm its sister relationship to Rubieae. The support is very low, however, and some loci support a sister relationship between Theligoneae and Putorieae (rps16, atpB-rbcL spacer) or between between Theligoneae and Putorieae– Rubieae (nrITS). The morphology of Theligonum is in many respects different from that of other Rubiaceae (see, e.g., 797 100 100 100 100 71 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 95 100 100 100 100 100 100 100 71 100 100 100 97 100 100 100 100 100 100 100 100 100 --- 100 100 100 100 100 100 100 100 100 56 100 97 100 100 100 100 100 100 100 100 100 100 100 100 100 100 Mitchella repens Damnacanthus indicus Damnacanthus macrophyllus Appunia guatemalensis Morinda citrifolia Coelospermum monticolum Gynochthodes coriacea Gynochthodes sp. Schismatoclada sp. 1 Schismatoclada psychotrioides Schismatoclada farahimpensis Schismatoclada sp. 2 Danais nigra Danais comorensis Danais xanthorrhea Danais sp. Danais fragrans P t il ti Colletoecemateae Urophylleae Ophiorrhizeae Lasiantheae Coussareeae Psychotrieae alliance TAXON 58 (3) • August 2009: 793–810 100 100 100 100 100 100 97 76 100 100 98 100 99 100 Colletoecema dewevrei Amphidasya ambigua Pauridiantha paucinervis Pauridiantha symplocoides Urophyllum ellipticum Maschalocorymbus corymbosus Pravinaria leucocarpa Urophyllum arboreum Neurocalyx zeylanicus Neurocalyx championii Xanthophytum capitellatum Xanthophytum borneense Lerchea bracteata Spiradiclis bifida Ophiorrhiza elmeri Ophiorrhiza mungos Lasianthus strigosus Lasianthus lanceolatus Lasianthus kilimandscharicus Lasianthus pedunculatus Saldinia sp. 1 Saldinia sp. 2 Trichostachys aurea Trichostachys sp. Faramea multiflora Coussarea hydrangeifolia Coussarea macrophylla Cruckshanksia hymenodon Coccocypselum condalia Coccocysepselum hirsutum Declieuxia cordigera Declieuxia fruticosa Schizocolea linderi 1 Schizocolea linderi 2 Craterispermum sp. 1 Craterispermum sp. 2 Craterispermum laurinum Palicourea crocea Psychotria poeppigiana Margaritopsis nudiflora Chassalia catatii Geophila obvallata Cremocarpon lantzii Hydnophytum formicarum Psychotria capensis Psychotria kirkii Psychotria holtzii Psychotria amboniana Psychotria schliebenii Prismatomeris beccariana Prismatomeris albidiflora Prismatomeris sp. 1 Prismatomeris sp. 2 Schradera subandina Schradera sp. 1 Schradera sp. 2 Schradera sp. 3 Pagamea guianensis Gaertnera phyllosepala Gaertnera phyllostachya Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia 798 100 100 100 100 79 96 85 100 100 100 97 100 53 100 100 100 53 86 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 71 100 100 100 100 100 97 100 100 100 100 82 100 100 100 85 98 100 100 100 100 100 100 52 64 100 799 Fig. 1A. Phylogeny of Rubioideae (overview), estimated using Bayesian inference of phylogeny (six-data partitions) based on molecular data from chloroplast regions rbcL, rps16 intron, ndhF, atpB-rbcL spacer, trnT-L– F and from the nuclear ribosomal ITS. Posterior probabilities are given above branches. Selected bootstrap values (under parsimony) are mapped on this Bayesian tree (below branches). 100 100 100 100 100 100 100 100 100 56 100 58 89 100 100 100 100 100 99 Spermacoceae alliance Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia 100 100 100 99 95 g Parapentas silvatica Paratriaina xerophila Triainolepis mandrarensis Dirichletia glaucescens Placopoda virgata Knoxia platycarpa Pentas lanceolata Batopedina pulvinellata Otiophora scabra Otomeria oculata Pentanisia prunelloides Kohautia caespitosa Manostachya ternifolia Dentella repens Pentodon pentandrus Dibrachionostylus kaessneri Mitrasacmopsis quadrivalvis Arcytophyllum aristatum Houstonia caerulea Ernodea littoralis Bouvardia ternifolia Spermacoce remota Oldenlandia corymbosa Thecorchus wauensis Carpacoce sp. Phyllis nobla Anthospermum herbaceum Nenax acerosa Opercularia vaginata Pomax umbellata Normandia neocaledonica Coprosma pumila Coprosma granadensis Mouretia larsenii Mycetia javanica Mycetia malayana Mycetia gracilis Mycetia cauliflora Mycetia sp. 1 Mycetia sp. 2 Neohymenopogon parasiticus 1 Neohymenopogon parasiticus 2 Argostemma bifolium Argostemma gracile Argostemma brachyantherum Argostemma psychotrichoides Argostemma elatostemma Argostemma hookeri 2 Argostemma hookeri 1 Argostemma geesinkii Argostemma yappii Argostemma rupestre Argostemma involucratum Argostemma parvifolium Dunnia sinensis 1 Dunnia sinensis 2 Dunnia sinensis 3 Dunnia sinensis 4 Dunnia sinensis 5 Saprosma fruticosum Saprosma foetens Saprosma ternatum Spermadictyon suaveolens Leptodermis potaninii Serissa foetida Paederia sambiranensis Paederia bojeriana Paederia majungensis Plocama calabrica Plocama hymenostephana Plocama aucheri Plocama pendula Theligonum cynocrambe 2 Theligonum cynocrambe 1 Theligonum cynocrambe 3 Kelloggia galioides Kelloggia chinensis Didymaea alsinoides Rubia tinctoria Galium album Sherardia arvensis Valantia hispida TAXON 58 (3) • August 2009: 793–810 100 100 Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia 100 100 100 100 100 100 100 100 100 92 100 100 100 100 100 100 79 --- 100 100 100 100 100 87 100 100 86 79 100 96 100 100 100 100 100 64 71 --100 100 100 100 97 70 100 98 100 100 100 99 100 54 100 100 98 86 100 100 100 100 85 --- 100 100 100 100 58 75 100 100 100 97 82 76 98 --- 100 100 100 100 100 100 98 100 100 52 100 --100 100 100 100 100 91 100 100 100 100 100 85 100 72 100 100 100 100 100 100 64 --- 99 57 100 100 100 92 100 --- 100 97 100 96 100 100 100 100 96 84 97 100 85 53 100 63 85 75 100 100 100 100 53 66 100 89 100 100 99 100 100 100 100 100 100 99 95 --- 100 97 100 97 100 100 100 100 100 100 100 100 56 77 89 77 100 84 100 59 100 99 99 90 TAXON 58 (3) • August 2009: 793–810 Schismatoclada sp. 1 Schismatoclada psychotrioides Schismatoclada farahimpensis Schismatoclada sp. 2 Danais nigra Danais comorensis Danais xanthorrhea Danais sp. 2 Danais fragrans Parapentas silvatica Paratriaina xerophila Triainolepis mandrarensis Dirichletia glaucescens Placopoda virgata Knoxia platycarpa Pentas lanceolata Batopedina pulvinellata Otiophora scabra Otomeria oculata Pentanisia prunelloides Kohautia caespitosa Manostachya ternifolia Dentella repens Pentodon pentandrus Dibrachionostylus kaessneri Mitrasacmopsis quadrivalvis Arcytophyllum aristatum Houstonia caerulea Ernodea littoralis Bouvardia ternifolia Spermacoce remota Oldenlandia corymbosa Thecorchus wauensis Carpacoce sp. Phyllis nobla Anthospermum herbaceum Nenax acerosa Opercularia vaginata Pomax umbellata Normandia neocaledonica Coprosma pumila Coprosma granadensis Mouretia larsenii Mycetia javanica Mycetia malayana Mycetia gracilis Mycetia cauliflora Mycetia sp. 1 Mycetia sp. 2 Neohymenopogon parasiticus 1 Neohymenopogon parasiticus 2 Argostemma bifolium Argostemma gracile Argostemma brachyantherum Argostemma psychotrichoides Argostemma elatostemma Argostemma hookeri 2 Argostemma hookeri 1 Argostemma geesinkii Argostemma yappii Argostemma rupestre Argostemma involucratum Argostemma parvifolium Dunnia sinensis 1 Dunnia sinensis 2 Dunnia sinensis 3 Dunnia sinensis 4 Dunnia sinensis 5 Saprosma fruticosum Saprosma foetens Saprosma ternatum Spermadictyon suaveolens Leptodermis potaninii Serissa foetida Paederia sambiranensis Paederia bojeriana Paederia majungensis Plocama calabrica Plocama hymenostephana Plocama aucheri Plocama pendula Theligonum cynocrambe 2 Theligonum cynocrambe 1 Theligonum cynocrambe 3 Kelloggia galioides Kelloggia chinensis Didymaea alsinoides Rubia tinctoria Galium album Sherardia arvensis Valantia hispida Danaideae Knoxieae Spermacoceae Anthospermeae Argostemmateae Dunnieae Paederieae Putorieae Theligoneae Rubieae Fig. 1B. Phylogeny of the Spermacoceae alliance, estimated using Bayesian inference of phylogeny (six-data partitions) based on molecular data from chloroplast regions rbcL, rps16 intron, ndhF, atpB-rbcL spacer, trnT-L-F and from the nuclear ribosomal ITS. Posterior probabilities are given above branches, bootstrap values (under parsimony) are mapped on this Bayesian tree (below branches). 800 TAXON 58 (3) • August 2009: 793–810 Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia Rutishauser & al., 1998, for a discussion of this) and the systematic affinity of the genus has been much debated, even its inclusion in Rubiaceae. Robbrecht & Manen (2006) argue, based on investigations in Dessein & al. (2005), that pollen morphology supports the relationship between Theligoneae and Rubieae. They maintain that Paederieae and Putorieae (and Kelloggia) have retained ancestral 3-colpate pollen, whereas evolutionary changes have occurred, to 4–8-porate grains in Theligonum and to pluricolpate pollen in Rubieae (Robbrecht & Manen, 2006). However, because Kelloggia is sister to Rubieae, an inferred change to several apertures in the common ancestor of Theligoneae and Rubiaceae requires a reversal back to 3-colpate pollen in Kelloggia. Additional data, not least from remaining species of Theligonum, are needed to further assess relationships and character evolution in the Putorieae-Theligoneae-Rubieae clade. Rate heterogeneity. — We find indications that the mostly herbaceous clade, the Spermacoceae alliance, overall has higher substitution rates (longer branches) than its mostly woody sister clade the Psychotrieae alliance (Fig. 2). Danaideae, here resolved as the earliest diverging clade within the Spermacoceae alliance, has shorter branch lengths than remaining Spermacoceae alliance, but this clade comprises woody species. The statistical significance of these results remains to be tested, but several previous studies have indicated significant rate heterogeneity between annual and perennial lineages (Bousquet & al., 1992; Andreasen & Baldwin, 2001), or a (negative) correlation between generation time and rates of molecular evolution (Gaut & al., 1992). These results may be analogous and coupled to generation time rather than to a herbaceous versus woody plant body. Bousquet & al. (1992) found for example no differences between woody and herbaceous perennials. The link between generation time and molecular evolutionary rate variation, including its theoretical basis in plants, has been questioned (Whittle & Johnston, 2003), but accumulating evidence suggests that rates of evolution is consistently lower in angiosperms with longer generation times, than in angiosperms with shorter generation times (Smith & Donoghue, 2008). More details on evolutionary relationships in Danaideae. — The close relationship between Danais and Schismatoclada suggested by Buchner & Puff (1993) was supported by an unpublished rbcL sequence, according to Bremer & Manen (2000: 61) and this has later been confirmed by additional molecular data (Rydin & al., 2008). However, previous studies investigated only one specimen of each genus: the single African species Danais xanthorrhoea and an unknown species of Schismatoclada. We have added new information from three additional species of Schismatoclada and we include new Malagasy and Comoro Island species of Danais. Both genera are monophyletic as investigated here. Payera (suggested to be related to Danais and Schismatoclada based on morphology; Buchner & Puff, 1993) is not investigated in the present study. The 31 recognised species of Danais have an interesting distribution; the majority of species are from Madagascar, but a few are from Mauritius and there is one species each from the Comoro Islands (D. comorensis) and the African mainland (D. xanthorrhea). Because a Malagasy species (D. nigra) is sister to remaining Danais and the African Danais xanthorrhea is nested within the genus (sister to D. comorensis from the Comoro Islands), the topology tentatively indicates dispersal from the islands in the Indian Ocean into the African mainland, but this hypothesis needs to be further tested including more species and biogeographical analysis. Morphology-based conclusions on Anthospermeae supported. — Anthospermeae are herbs, shrubs or small trees with unisexual, wind-pollinated flowers; the fruit can be fleshy or dry and Puff (1982) argued that, e.g., fruit characters and pollination biology (dichogamy) are useful for subdivisions of the ca. 200 species of the group. We included representatives from eight of the twelve genera of Anthospermeae (Puff, 1982; Bremer & Manen, 2000) and our results confirm many of the hypotheses established by Puff (1982). Based on morphology, Puff (1982) subdivided Anthospermeae into three biogeographically supported subtribes. Our (Phyllis + (Anthospermum-Nenax)) clade largely corresponds to the afrotropical subtribe Anthospermineae sensu Puff (1982), characterised by unisexual and/or protandrous hermaphroditic flowers and dry, often dehiscent fruits (Puff, 1982). We further find a clade consisting of (Normandia + (Coprosma-Nertera)), which corresponds to Puff’s circumpacific subtribe Coprosminae, and is characterised by unisexual and/or protogynous flowers and more or less fleshy fruits (Puff, 1982). In contrast to Anderson & al. (2001), we further find strong support for Puff’s Australian subtribe Operculariinae, here represented by Opercularia and Pomax, and characterised by umbel- or head-like inflorescences, unisexual to protogynous hermaphroditic flowers and fruits that open by means of an operculum (Puff, 1982). The only difference between our results and those of Puff (1982) is that the latter study included Carpacoce in subtribe Anthospermineae. In Anderson & al. (2001) Carpacoce was sister to Knoxieae and they questioned the inclusion of Carpacoce in Anthospermeae. However, in Bremer & Eriksson (in press), Carpacoce is included in Anthospermeae (higher-level relationships unresolved) and here, the South African (Cape) endemic Carpacoce is strongly supported as sister to remaining species in Anthospermeae, a finding that may be in accordance with Puff’s (1982) view that the genus is distantly related to the other genera in Anthospermineae. 801 Lasianthus strigosus Lasianthus L i th lanceolatus l Lasianthus kilimandscharicus Lasianthus pedunculatus Saldinia sp. p 1 Saldinia sp. p 2 Trichostachys aurea Trichostachys t hy sp. p Faramea multiflora Palicourea crocea Psychotria poeppigiana Margaritopsis acutifolia Chassalia catatii Geophila obvallata Cremocarpon lantzii Hydnophytum sp. Psychotria capensis Psychotria kirkii Psychotria holtzii Psychotria amboniana Psychotria schliebenii Prismatomeris beccariana Prismatomeris albidiflora Prismatomeris sp. 1 Prismatomeris sp. 2 Schradera subandina Schradera sp. 1 Schradera sp. 2 Schradera sp. 3 Pagamea guianensis Gaertnera phyllosepala Gaertnera phyllostachya Mitchella repens Damnacanthus indicus Damnacanthus macrophyllus Appunia guatemalensis Morinda citrifolia Coelospermum monticolum Gynochthodes coriacea Gynochthodes sp. Schismatoclada sp. 1 Schismatoclada psychotrioides Schismatoclada farahimpensis Schismatoclada sp. 2 Danais nigra Danais comorensis Danais xanthorrhea Danais sp. 2 Danais fragrans Parapentas silvatica Paratriaina xerophila Triainolepis mandrarensis Carphalea glaucescens Placopoda virgata Knoxia platycarpa Pentas lanceolata Batopedina pulvinellata Otiophora scabra Otomeria oculata Pentanisia prunelloides Kohautia caespitosa Mostly woody species Schizocolea linderi 1 Schizocolea linderi 2 Craterispermum sp. 1 Craterispermum sp. 2 Craterispermum laurinum Coussarea macrophylla C phyl Cruckshanksia hymenodon Coccocypselum condalia Coccocysepselum C y p l hirsutum hi Declieuxia cordigera g Declieuxia fruticosa Woody species Colletoecema dewevrei Amphidasya ambigua Pauridiantha P idi th paucinervis p Pauridiantha symplocoides Urophyllum phyll ellipticum llipti Maschalocorymbus y corymbosus y Pravinaria leucocarpa Urophyllum phyll arboreum b Neurocalyx zeylanicus Neurocalyx N ly championii h pi Xanthophytum p y capitellatum p Xanthophytum borneense Lerchea L h bbracteata t t Spiradiclis bifida Ophiorrhiza O phi hi elmeri l Ophiorrhiza mungos Carpacoce sp. Phyllis nobla Anthospermum herbaceum Nenax acerosa Opercularia vaginata Pomax umbellata Normandia neocaledonica Coprosma pumila Coprosma granadensis Mouretia larsenii Mycetia javanica Mycetia malayana Mycetia gracilis Mycetia cauliflora Mycetia sp. 1 Mycetia sp. 2 Neohymenopogon parasiticus 1 Neohymenopogon parasiticus 2 Argostemma bifolium Argostemma gracile Argostemma brachyantherum Argostemma psychotrichoides Argostemma elatostemma Argostemma hookeri 2 Argostemma hookeri 1 Argostemma geesinkii Argostemma yappii Argostemma rupestre Argostemma involucratum Argostemma parvifolium Dunnia sinensis 1 Dunnia sinensis 2 Dunnia sinensis 3 Dunnia sinensis 4 Dunnia sinensis 5 Saprosma fruticosum Saprosma foetens Saprosma ternatum Spermadictyon suaveolens Leptodermis potaninii Serissa foetida Paederia sambiranensis Paederia bojeriana Paederia majungensis Plocama calabrica Plocama hymenostephana Plocama aucheri Plocama pendula Theligonum cynocrambe 2 Theligonum cynocrambe 1 Theligonum cynocrambe 3 Kelloggia galioides Kelloggia chinensis Didymaea alsinoides Rubia tinctoria Galium album 0.04 Mostly herbaceous species Manostachya ternifolia Dentella repens Pentodon pentandrus Dibrachionostylus kaessneri Mitrasacmopsis quadrivalvis Arcytophyllum aristatum Houstonia caerulea Ernodea littoralis Bouvardia ternifolia Spermacoce remota Oldenlandia corymbosa Thecorchus wauensis Sherardia arvensis Valantia hispida Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia m hy N M eo yc et re ia tia en op og A on ps rgo yc st e ho m tri m oi a de s cl ad e A pa rgo rv st ifo em liu m m a cl ad e 1996). Mouretia, Mycetia and Neohymenopogon are all restricted to Southeast Asia. Argostemma has a disjunct, palaeotropical distribution; most species occur in tropical Asia, but two are from the African mainland. In the sister clade of Argostemmateae (i.e., Dunnieae-Paederieae-Putorieae-Theligoneae-Rubieae), several genera have a broad palaeotropical or pantropical distribution (e.g., Paederia, Plocama), sometimes even extending into temperate regions (e.g., Galium, Sherardia). Mycetia is sister to the Argostemma-Neohymenopogon clade (Figs. 1B, 3). The relationship between Mycetia and Argostemma (Neohymenopogon not included) was very well supported in previous studies (e.g., Bremer, 1996; Bremer & Manen, 2000), but only a single specimen from each genus was investigated. Here we have included six species of Mycetia and twelve species of Argostemma, and both genera are monophyletic as represented here. There is little morphological support for the subclade consisting of Mycetia + Argostemma-Neohymenopogon (Fig. 3). A possible synapomorphy is the shape of the stipules, with a change from bilobed in Mouretia to entire in remaining species but with variable states in Argostemma (entire, bilobed–cleftfringed or leaf-like; Bremer, 1989; Puff & al., 2005). The relationship between Argostemma and Neohymenopogon is morphologically manifested in a change ou Saprosma is sister to Paederieae s.str. — Relationships among species assigned to Paederieae have long been debated. Puff (1982) considered Paederieae and Anthospermeae closely related and he transferred insectpollinated genera from Anthospermeae to Paederieae. However, Paederieae was later shown to be paraphyletic (Bremer, 1996; Andersson & Rova, 1999; Bremer & Manen, 2000; Backlund & al., 2007), and Backlund & al. (2007) divided the tribe into a monophyletic Paederieae s.str. and a re-recognised Putorieae comprising the members of the former Paederieae with fruits splitting into two indehiscent, one-seeded mericarps (Backlund & al., 2007). Saprosma (included in Paederieae by Puff, 1992; Robbrecht, 1993) was weakly supported as sister to a PutorieaeRubieae-Theligoneae clade (Backlund & al., 2007). Our results support relationships among and within Paederieae and Putorieae found in Backlund & al. (2007), however, in contrast to Backlund & al. (2007), we find that the Southeast Asian genus Saprosma is strongly supported as sister to Paederieae s.str. Saprosma is monophyletic as represented here (S. foetens, S. fruticosum, S. ternatum), however, the genus comprises more than 40 species and Xiao & Zhu (2007) suggested that one of them (Saprosma crassipes) is nested within Lasianthus. Within remaining Paederieae, Paederia is sister to a clade comprising Spermadictyon, Leptodermis, Serissa, all woody species with their main distribution in Southeast Asia (Paederia has a pantropical distribution). The close relationship between Spermadictyon, Leptodermis and Serissa was recognised by Puff (1982), based on morphology. Phylogeny and morphology of Argostemmateae. — Argostemmateae are here shown to comprise Mouretia, Mycetia, Argostemma and Neohymenopogon (Figs. 1B, 3). A literature survey, based on Wallich (1824), Hooker (1880), Bremer (1989), Tange (1997), Bremer & Manen (2000) and Puff & al. (2005), reveals that Argostemma, Mouretia, Mycetia and Neohymenopogon all have hermaphroditic flowers, bilocular ovaries (sometimes 3–5-celled in Mycetia), fruits crowned by a persistent calyx lobe, and many small seeds (dust seeds). Terminal cymes and stamens inserted near the base of the corolla tube are also ancestral in the group, with a change in Neohymenopogon to stamens inserted in the upper part of the corolla. The showy bract, which subtends the inflorescence is unique to Neohymenopogon within Argostemmateae, but found in some distantly related rubiaceous tribes (Psychotrieae, Robbrecht, 1988; Hymenodictyeae, Razafimandimbison & Bremer, 2006; Dunnieae, Rydin & al., 2008; see also Classen-Bockhoff, M TAXON 58 (3) • August 2009: 793–810 6b 1b 7a 10 6c 5b 4b 9a 7c 8 9b 7b 2 1a 3 9a 6a 5a 4a Fig. 3. An illustration to the discussion of the evolution of selected characters in Argostemmateae. Argostemma is a large genus and many characters are variable within the genus. We do not cover the full variation here. 1, ovaries, a) bilocular, b) 2–5-celled; 2, fruits crowned by persistent calyx lobes; 3, dust seeds; 4, inflorescence, a) terminal cyme, b) umbelliform; 5, stamens, a) inserted near corolla base, b) higher up; 6, fruit, a) fleshy capsule, b) berry, c) dry capsule; 7, stipules, a) bi-lobed, b) entire, c) variable shape; 8, isostylous flowers; 9, shoots, a) often anisophyllous, b) isophyllous; 10, showy bract subtending the inflorescence. ◄ Fig. 2. Rate heterogeneity in Rubioideae as indicated by a phylogram based on the Bayesian analysis of the combined dataset. The mostly woody lineages, the Psychotrieae alliance and Danaideae are marked with bold branches. The mostly herbaceous Spermacoceae alliance (except Danaideae) is marked with thin branches. Gray indicates outgroups. 803 Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia to isostylous flowers (Fig. 3). Many plants in Rubioideae are heterostylous (e.g., Verdcourt, 1958: 227) and so are most species of Mouretia (Tange, 1997) and Mycetia (Puff & al., 2005). The Argostemma-Neohymenopogon clade might be further supported by a change to isophyllous shoots from mostly anisophyllous, which appear ancestral in Argostemmateae, and by an epiphytic habit. The latter characters are variable within the genera though, not least in Mycetia and Argostemma. Fruit characters are variable in Argostemmateae, but the fruit is generally crowned by the persistent calyx lobes in all genera (occurs also in other rubiaceous plants). Mouretia fruits are fleshy capsules, which open by an operculum (Tange, 1997) and the fruits become aggregated. The fruits of Mycetia are baccate and indehiscent, but crowned by small calyx lobes. Argostemma has retained the ancestral state with a fleshy capsule, which opens by an operculum, but Neohymenopogon has a capsule that splits into valves. There are no reports of fleshiness in the fruits of Neohymenopogon (mature fruits were not available to us). Our results provide a first attempt to test the monophyly of Argostemma, as well as hypotheses on intra-generic relationships based on morphology, using molecular data. Bremer (1989) studied Argostemma in Borneo and argued that the species could be divided into at least three major subclades, of which we have included specimens from two: the parvifolium group and the psychotrioides group. The parvifolium group (Argostemma parvifolium and A. elatostemma with a broader distribution in Southeast Asia, and the Borneo endemics A. rupestre and A. geesinkii plus eight more species not included in the present study) is defined, e.g., by anisophyllous shoots, rotate corollas and a glabrous style (Bremer, 1989). It is, as represented here, very well supported by molecular data (Fig. 1B) and further includes three species not investigated in Bremer (1989): A. parvifolium var. involucratum, A. yappii and A. hookeri, all from Malaysia and Sumatra. The clade appears to ancestrally have had a broad distribution in Southeast Asia. The psychotrioides group (Argostemma psychotrioides, A. gracile, A. brachyantherum and eleven additional species not investigated here) is also very well supported by molecular data (Fig. 1B). Morphologically, it is defined, e.g., by umbelliform inflorescences and the style is often much longer than the stamens (Bremer, 1989). All species of the psychotrioides group are restricted to Borneo, but its sistertaxon (Argostemma bifolium) is from Peninsular Malaysia. Conclusions. — This study presents new insights into the phylogeny of the Spermacoceae alliance (Rubiaceae). Some genera (Neohymenopogon and Mouretia) are sequenced and analysed in a modern cladistic framework for the first time and some previous uncertainties (e.g., the position of Saprosma and relationships within Anthospermeae) are also resolved with strong support; 804 TAXON 58 (3) • August 2009: 793–810 Neohymenopogon and Mouretia belong to Argostemmateae, Saprosma is sister to Paederieae s.str., Carpacoce is sister to the remaining species in Anthospermeae. The results further indicate a possible correlation between molecular substitution rate and generation time, something which has been questioned and considered controversial for plants. However, our results also reveal conflicts and perhaps difficult phylogenetic problems. The small tribe Danaideae is here sister to the remaining Spermacoceae alliance with high posterior probability, but the topology conflicts with well-supported results in a recent study (Rydin & al., 2009). Theligoneae and Dunnieae are additional examples of small isolated clades, which represent unique lineages within the Spermacoceae alliance, also in terms of morphology (see, e.g., Rutishauser & al., 1998; Rydin & al., 2008). The uncertainty of their relationships to other tribes in the group is emphasised in the present study, mainly due to conflicting information. Because of the apparent conflicts between results from different loci in the chloroplast genome, it might conceivably be difficult to confidently resolve these phylogenetic problems only by analysing larger sets of molecular data. Detailed morphological and histological information from reproductive structures (i.e., from serial sectioning and SEM investigations) may allow to discriminate between alternative hypotheses indicated by molecular data. Gross morphological characters are, however, less likely to be useful because of the great diversity of life forms, morphology and ecology among the numerous species of Rubiaceae. TAXONOMIC IMPLICATIONS Based on the new results we re-define the tribe Argostemmateae to comprise four genera: Argostemma, Mouretia, Mycetia and Neohymenopogon. Robbrecht (1993) transferred Saprosma to Paederieae based on morphological observations by Puff (1992) but Paederieae sensu Robbrecht (1993) comprised genera from the PutorieaeRubieae-Theligoneae clade as well as from Paederieae s.str. We re-define Paederieae s.str. to comprise Leptodermis, Paederia, Saprosma, Serissa and Spermadictyon. Family – Rubiaceae Juss. Subfamily – Rubioideae Verdc. Tribe Argostemmateae Bremek. ex Verdc. in Bull. Jard. Bot. État Bruxelles 28: 281. 1958 – Type: Argostemma Wall. in W. Roxburgh (1824). Description: Herbs (mainly), or shrubs to small treelets, iso- or anisophyllous. Stipules entire or slightly cleft, rarely leaf-like. Flowers hermaphroditic. Stamens usually inserted at base of the corolla or higher up (in TAXON 58 (3) • August 2009: 793–810 Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia Neohymenopogon), adnate into an anther cone or free. Anthers open with vertical slits or rarely with pores. Ovary 2(–6)-locular. Fruit a capsule (often fleshy) or a berry (Mycetia), with many small seeds. Genera included: Argostemma, Mouretia, Mycetia, Neohymenopogon. Useful studies: Wallich (1824), Hooker (1880), Bremer (1989), Puff & al., (1995), Tange (1997), Bremer & Manen (2000), Puff & al., (2005), the present study. Tribe Paederieae DC., Prodr. 4: 342, 470. 1830 – Type: Paederia L. (1767). Description: Small shrubs or climbers (Paederia), often foetid. Stipules divided (Paederia) or entire. Flowers 4- (Saprosma) to 5-merous, stamens inserted in the corolla tube, ovary 2–5-locular, with a single erect ovule in each locule. Fruits dry, dehishent into valves (Leptodermis, Paederia, Spermadictyon), or fleshy, indehiscent (Saprosma, Serissa). Genera included: Leptodermis, Paederia, Saprosma, Serissa, Spermadictyon. Useful studies: Puff (1982), Robbrecht (1982), Bremer & Manen (2000), Robbrecht & Manen (2006), Backlund & al., (2007), the present study. ACKNOWLEDGMENTS We thank the curators of the herbaria AAU, BR, GB, K, P, S, and UPS for access to herbarium material, Arnaud Mouly (Bergius Foundation, Stockholm University) for providing material of Danais comorensis and Mouretia larsenii, Mikael Bylund for technical assistance and access to powerful computers and the reviewers for critical comments on the text. The study was supported by grants from the Swedish Research Council to C.R. and B.B., and the Knut and Alice Wallenberg Foundation to B.B. LITERATURE CITED Akaike, H. 1973. Information theory as an extension of the maximum likelihood principle. Pp. 267–281 in: Petrov, B.N. & Csaki, F. (eds), Second International Symposium of Information Theory. Akademiai Kiado, Budapest. Alejandro, G.D., Razafimandimbison, S.G. & LiedeSchumann, S. 2005. Polyphyly of Mussaenda inferred from ITS and trnT-F data and its implication for generic limits in Mussaendeae (Rubiaceae). Amer. J. Bot. 92: 544–557. Anderson, C.L., Rova, J.H.E. & Andersson, L. 2001. Molecular phylogeny of the tribe Anthospermeae (Rubiaceae): systematic and biogeographic implications. Austral. Syst. Bot. 14: 231–244. Andersson, L. 2001. Margaritopsis (Rubiaceae, Psychotrieae) is a pantropical genus. Syst. Geogr. Pl. 71: 73–85. Andersson, L. 2002. Relationships and generic circumscription in the Psychotria complex (Rubiaceae, Psychotrieae). Syst. Geogr. Pl. 72: 167–202. Andersson, L. & Antonelli, A. 2005. Phylogeny of the tribe Cinchoneae (Rubiaceae), its position in Cinchonoideae, and description of a new genus, Ciliosemina. Taxon 54: 17–28. Andersson, L. & Persson, C. 1991. Circumscription of the tribe Cinchoneae (Rubiaceae) — a cladistic approach. Pl. Syst. Evol. 178: 65–94. Andersson, L. & Rova, J.H.E. 1999. The rps16 intron and the phylogeny of Rubioideae (Rubiaceae). Pl. Syst. Evol. 214: 161–186. Andreasen, K. & Baldwin, B.G. 2001. Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): evidence from 18S-26S rDNA internal and external transcribed spacers. Molec. Biol. Evol. 18: 936–944. Backlund, M., Bremer, B. & Thulin, M. 2007. Paraphyly of Paederieae, recognition of Putorieae and expansion of Plocama (Rubiaceae-Rubioideae). Taxon 56: 315–328. Backlund, M., Oxelman, B. & Bremer, B. 2000. Phylogenetic relationships within the Gentianales based on ndhF and rbcL sequences, with particular reference to the Loganiaceae. Amer. J. Bot. 87: 1029–1043. Bennet, S.S.R. 1981. Rubiaceae. Indian Forester 107: 436–437. Bousquet, J., Strauss, S.H., Doerksen, A.H. & Price, R.A. 1992. Extensive variation in evolutionary rate of rbcL gene-sequences among seed plants. Proc. Natl. Acad. Sci. U.S.A. 89: 7844–7848. Bremekamp, C.E.B. 1952. The African species of Oldenlandia L. sensu Hiern et K. Schumann. Verh. Kon. Ned. Akad. Wetensch., Afd. Natuurk., Sect. 2 48: 1–297. Bremekamp, C.E.B. 1966. Remarks on the position, the delimitation and the subdivision of the Rubiaceae. Acta Bot. Neerl. 15: 1–33. Bremer, B. 1989. The genus Argostemma (Rubiaceae-Argostemmateae) in Borneo. Ann. Missouri Bot. Gard. 76: 7–49. Bremer, B. 1996. Phylogenetic studies within Rubiaceae and relationships to other families based on molecular data. Opera Bot. Belg. 7: 33–50. Bremer, B., Andreasen, K. & Olsson, D. 1995. Subfamilial and tribal relationships in the Rubiaceae based on rbcL sequence data. Ann. Missouri Bot. Gard. 82: 383–397. Bremer, B., Bremer, K., Heidari, N., Erixon, P., Olmstead, R.G., Anderberg, A.A., Källersjö, M. & Barkhordarian, E. 2002. Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Molec. Phylog. Evol. 24: 274–301. Bremer, B. & Eriksson, T. 2009. Timetree of Rubiaceae — phylogeny and dating the family, subfamilies and tribes. Int. J. Pl. Sci. 170: 766–793. Bremer, B., Jansen, R.K., Oxelman, B., Backlund, M., Lantz, H. & Kim, K. 1999. More characters or more taxa for a robust phylogeny–case study from the coffee family (Rubiaceae). Syst. Biol. 48: 413–435. Bremer, B. & Manen, J.F. 2000. Phylogeny and classification of the subfamily Rubioideae (Rubiaceae). Pl. Syst. Evol. 225: 43–72. Bremer, B. & Thulin, M. 1998. Collapse of Isertieae, re-establishment of Mussaendeae, and a new genus of Sabiceeae (Rubiaceae); phylogenetic relationships based on rbcL data. Pl. Syst. Evol. 211: 71–92. 805 Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia Buchner, R. & Puff, C. 1993. The genus complex DanaisSchismatoclada-Payera (Rubiaceae). Characters states, generic delimitation and taxonomic position. Adansonia 1–4: 23–74. Burnham, K.P. & Anderson, D.R. 2003. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach, 2nd ed. Springer, New York. Chen, W.C. 1999. Dunnia Tutch. Pp. 233–235, plate 258 in: Lo, H.S., (ed.), Flora Reipublicae Popularis Sinicae, vol. 71/2. Science Press, Beijing. [In Chinese.] Church, S.A. 2003. Molecular phylogenetics of Houstonia (Rubiaceae): descending aneuploidy and breeding system evolution in the radiation of the lineage across North America. Molec. Phylog. Evol. 27: 223–238. Church, S.A. & Taylor, D.R. 2005. Speciation and hybridization among Houstonia (Rubiaceae) species: the influence of polyploidy on reticulate evolution. Amer. J. Bot. 92: 1372–1380. Classen-Bockhoff, R. 1996. A survey of flower-like inflorescences in the Rubiaceae. Opera Bot. Belg. 7: 329–367. Dessein, S., Ochoterena, H., De Block, P., Lens, F., Robbrecht, E., Schols, P., Smets, E., Vinckier, S. & Huysmans, S. 2005. Palynological characters and their phylogenetic signal in Rubiaceae. Bot. Rev. 71: 354–414. Galtier, N., Gouy, M. & Gautier, C. 1996. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 12: 543–548. Gaut, B.S., Muse, S.V., Clark, W.D. & Clegg, M.T. 1992. Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J. Molec. Evol. 35: 292–303. Ge, X.J., Chiang, Y.C., Chou, C.H. & Chiang, T.Y. 2002. Nested clade analysis of Dunnia sinensis (Rubiaceae), a monotypic genus from China based on organelle DNA sequences. Cons. Genet. 3: 351–362. Govaerts, R., Andersson, L., Robbrecht, E., Bridson, D., Davis, A., Schanzer, I. & Sonke, B. 2006. World Checklist of Rubiaceae. The Board of Trustees of the Royal Botanic Gardens, Kew. Groeninckx, I., Dessein, S., Ochoterena, H., Persson, C., Motley, T., Kårehed, J., Bremer, B., Huysmans, S. & Smets, E. 2009 Phylogeny of the herbaceous tribe Spermacoceae (Rubiaceae) based on plastid DNA data. Ann. Missouri Bot. Gard. 96: 109–132. Guindon, S. & Gascuel, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696–704. Hasegawa, M., Kishino, H. & Yano, T. 1985. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J. Molec. Evol. 22: 160–174. Hooker, J.D. 1880. Flora of British India. Reeve, London. Huelsenbeck, J.P. & Ronquist, F.R. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. Kårehed, J. & Bremer, B. 2007. The systematics of Knoxieae (Rubiaceae) — molecular data and their taxonomic consequences. Taxon 56: 1051–1076. Kårehed, J., Groeninckx, I., Dessein, S., Motley, T. & Bremer, B. 2008. The phylogenetic utility of chloroplast and nuclear DNA markers and the phylogeny of the Rubiaceae tribe Spermacoceae. Molec. Phylog. Evol. 49: 843–866. 806 TAXON 58 (3) • August 2009: 793–810 Manen, J.F. & Natali, A. 1995. Comparison of the evolution of ribulose-1,5-biphosphate carboxylase (rbcL) and atpB-rbcL noncoding spacer sequences in a recent plant group, the tribe Rubieae (Rubiaceae). J. Molec. Evol. 41: 920–927. Manen, J.F., Natali, A. & Ehrendorfer, F. 1994. Phylogeny of Rubiaceae-Rubieae inferred from the sequence of a cpDNA intergene region. Pl. Syst. Evol. 190: 195–211. Mouly, A., Razafimandimbison, S.G., Achille, F., Haevermans, T. & Bremer, B. 2007. Phylogenetic placement of Rhopalobrachium fragrans (Rubiaceae): evidence from molecular (rps16 and trnT-F) and morphological data. Syst. Bot. 32: 872–882. Nakamura, K., Chung, S.W., Kokubugata, G., Denda, T. & Yokota, M. 2006. Phylogenetic systematics of the monotypic genus Hayataella (Rubiaceae) endemic to Taiwan. J. Pl. Res. 119: 657–661. Natali, A., Manen, J.F. & Ehrendorfer, F. 1995. Phylogeny of the Rubiaceae Rubioideae, in particular the tribe Rubieae — evidence from a noncoding chloroplast DNAsequence. Ann. Missouri Bot. Gard. 82: 428–439. Nepokroeff, M., Bremer, B. & Sytsma, K.J. 1999. Reorganization of the genus Psychotria and tribe Psychotrieae (Rubiaceae) inferred from ITS and rbcL sequence data. Syst. Bot. 24: 5–27. Nie, Z.L., Wen, J., Sun, H. & Bartholomew, B. 2005. Monophyly of Kelloggia Torrey ex Benth. (Rubiaceae) and evolution of its intercontinental disjunction between western North America and eastern Asia. Amer. J. Bot. 92: 642–652. Novotny, V., Basset, Y., Miller, S.E., Weiblen, G.D., Bremer, B., Cizek, L. & Drozd, P. 2002. Low host specificity of herbivorous insects in a tropical forest. Nature 416: 841– 844. Nylander, J.A.A. 2004a. MrAIC.pl. Program distributed by the author, Evolutionary Biology Centre, Uppsala University, Uppsala. http://www.abc.se/~nylander/. Nylander, J.A.A. 2004b. MrModeltest v2. Program distributed by the author, Evolutionary Biology Centre, Uppsala University, Uppsala. http://www.abc.se/~nylander/. Oxelman, B. 1996. RAPD patterns, nrDNA ITS sequences and morphological patterns in Silene section Sedoineae (Caryophyllaceae). Pl. Syst. Evol. 201: 93–116. Oxelman, B., Liden, M. & Berglund, D. 1997. Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Pl. Syst. Evol. 206: 393–410. Piesschaert, F., Andersson, L., Jansen, S., Dessein, S., Robbrecht, E. & Smets, E. 2000. Searching for the taxonomic position of the African genus Colletoecema (Rubiaceae): morphology and anatomy compared to an rps16-intron analysis of the Rubioideae. Canad. J. Bot. 78: 288–304. Pitard, J. 1922. Rubiaceae. Pp. 71 in: Lecomte, P.H. (ed.), Flore Génerale de L’Indo-Chine. Masson et Cie, Paris. Popp, M. & Oxelman, B. 2001. Inferring the history of the polyploid Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences. Molec. Phylog. Evol. 20: 474–481. Posada, D. & Buckley, T.R. 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53: 793–808. TAXON 58 (3) • August 2009: 793–810 Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia Posada, D. & Crandall, K.A. 2001. Selecting the best-fit model of nucleotide substitution. Syst. Biol. 50: 580–601. Puff, C. 1982. The delimitation of the tribe Antospermeae and its affinities to the Paederieae (Rubiaceae). Bot. J. Linn. Soc. 84: 355–377. Puff, C. 1992. On the correct tribal position of Saprosma Bl. (Rubiaceae). Pp. 34 in: Second Flora Malesiana Symposium, Yogyakarta 7–12 September 1992. Programme & Summaries of Papers and Posters. Herbarium Bogoriense, Bogor. [Abstract.] Puff, C., Chayamarit, K. & Chamchumroon, V. 2005. Rubiaceae of Thailand: A Pictorial Guide to Indigenous and Cultivated Genera. The Forest Herbarium, National Park, Wildlife and Plant Conservation Department, Bangkok. Puff, C., Igersheim, A., Buchner, R. & Rohrhofer, U. 1995. United stamens of Rubiaceae. Morphology, anatomy; their role in pollination ecology. Ann. Missouri Bot. Gard. 82: 357–382. Rambaut, A. 1996. Se-Al: Sequence Alignment Editor. Available at http://evolve.zoo.ox.ac.uk. Razafimandimbison, S.G. & Bremer, B. 2006. Taxonomic revision of the tribe Hymenodictyeae (Rubiaceae, Cinchonoideae). Bot. J. Linn. Soc. 152: 331–386. Razafimandimbison, S.G., Rydin, C. & Bremer, B. 2008. Evolution and trends in the Psychotrieae alliance (Rubiaceae) — a rarely reported evolutionary change of manyseeded carpels from one-seeded carpels. Molec. Phylog. Evol. 48: 207–223. Robbrecht, E. 1982. Pollen morphology of the tribes Anthospermeae and Paederieae (Rubiaceae) in relation to taxonomy. Bull. Jard. Bot. Natl. Belg. 52: 349–366. Robbrecht, E. 1988. Tropical woody Rubiaceae. Opera Bot. Belg. 1: 1–271. Robbrecht, E. 1993. Supplement to the 1988 outline of the classification of the Rubiaceae. Index to genera. Pp. 173–196 in: Robbrecht, E. (ed.), Advances in Rubiaceae Macrosystematics. Opera Botanica Belgica 6. National Botanic Garden of Belgium, Meise. Robbrecht, E. & Manen, J.-F. 2006. The major evolutionary lineages of the coffee family (Rubiaceae, angiosperms). Combined analysis (nDNA and cpDNA) to infer the position of Coptosapelta and Luculia, and supertree construction based on rbcL, rps16, trnL-trnF and atpB-rbcL data. A new classification in two subfamilies, Cinchonoideae and Rubioideae. Syst. Geogr. Pl. 76: 85–146. Ronquist, F. & Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. Rova, J.H.E., Delprete, P.G., Andersson, L. & Albert, V.A. 2002. A trnL-F cpDNA sequence study of the Condamineeae-Rondeletieae-Sipaneeae complex with implications on the phylogeny of the Rubiaceae. Amer. J. Bot. 89: 145–159. Rutishauser, R., Ronse Decraene, L.P., Smets, E. & Mendoza-Heuer, I. 1998. Theligonum cynocrambe: developmental morphology of a peculiar rubiaceous herb. Pl. Syst. Evol. 210: 1–24. Rydin, C., Kainulainen, K., Razafimandimbison, S.G., Smedmark, J.E.E. & Bremer, B. 2009. Deep divergences in the coffee family and the systematic position of Acranthera. Pl. Syst. Evol. 278: 101–123. Rydin, C., Razafimandimbison, S.G. & Bremer, B. 2008. Rare and enigmatic genera (Dunnia, Schizocolea, Colletoecema), sisters to species-rich clades: phylogeny and aspects of conservation biology in the coffee family. Molec. Phylog. Evol. 48: 74–83. Schwartz, G. 1978. Estimating the dimensions of a model. Ann. Statist. 6: 461–464. Smedmark, J.E.E., Rydin, C., Razafimandimbison, S.G., Khan, S.A., Liede-Schumann, S. & Bremer, B. 2008. A phylogeny of Urophylleae (Rubiaceae) based on rps16 intron data. Taxon 57: 24–32. Smith, S.A. & Donoghue, M.J. 2008. Rates of molecular evolution are linked to life history in flowering plants. Science 322: 86–89. Sonké, B., Dessein, S., Taedoumg, H., Groeninckx, I. & Robbrecht, E. 2008. A new speices of Colletoecema (Rubiaceae) from southern Cameroon with a discussion of relationships among basal Rubioideae. Blumea 53: 533–547. Staden, R. 1996. The Staden sequence analysis package. Molec. Biotechnol. 5: 233–241. Struwe, L., Thiv, M., Kadereit, J.W., Pepper, A.S.-R., Motley, T.J., White, P.J., Rova, J.H.E., Potgieter, K. & Albert, V.A. 1998. Saccifolium (Saccifoliaceae), an endemic of Sierra de la Neblina on the Brazilian-Venezuelan border, is related to temperate-alpine lineages of Gentianaceae. Harvard Pap. Bot. 3: 199–214. Swofford, D.L. 1998. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer, Sunderland. Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Molec. Biol. 17: 1105–1109. Tange, C. 1997. A revision of the genus Mouretia (Rubiaceae). Nord. J. Bot. 17: 123–132. Tavare, S. 1986. Some probabilistic and statistical problems on the analysis of DNA sequences. Pp. 57–86 in: Miura, R.M. (ed.), Some Mathematical Questions in Biology — DNA Sequence Analysis. American Mathematical Society, Providence. Thulin, M. & Bremer, B. 2004. Studies in the tribe Spermacoceae (Rubiaceae-Rubioideae): the circumscriptions of Amphiasma and Pentanopsis and the affinities of Phylohydrax. Pl. Syst. Evol. 247: 233–239. Tosh, J., De Block, P., Davis, A.P., Dessein, S., Robbrecht, E. & Smets, E.F. 2008. The tribal placement of the monospecific tropical African genus Petitiocodon (Rubiaceae) based on molecular data and morphology. Blumea 53: 549–565. Tutcher, W.J. 1905. Description of some new species, and notes on other Chinese plants. J. Linn. Soc. Bot. 37: 58–70. Verdcourt, B. 1958. Remarks on the classification of the Rubiaceae. Bull. Jard. Bot. État Bruxelles 28: 209–281. Wallich, N. 1824. Hymenopogon Wall. Pp. 156–158 in: Roxburgh, W. (ed.), Flora Indica. Mission press, Serampore. Whittle, C.A. & Johnston, M.O. 2003. Broad-scale analysis contradicts the theory that generation time affects molecular evolutionary rates in plants. J. Molec. Evol. 56: 223–233. Xiao, L.Q. & Zhu, H. 2007. Paraphyly and phylogenetic relationships in Lasianthus (Rubiaceae) inferred from chloroplast rps16 data. Bot. Stud. 48: 227–232. Yang, Z. 1993. Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molec. Biol. Evol. 10: 1396–1401. 807 Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia TAXON 58 (3) • August 2009: 793–810 Appendix. Information on included species and GenBank accessions. Taxon, classification, voucher (if applicable), rbcL, rps16, ndhF, atpB-rbcL spacer, trnT/F, nrITS (– indicates missing data) Amphidasya ambigua (Standl.) Standl., Rub-Urophylleae, –, Y1184407, AF12927113, –, EU14533736, EU14557636, EU14538336; Anthospermum herbaceum L. f., Rub-Anthospermeae, –, X8362301, EU14549636, AJ23628409, AJ23402802, EU14554436, EU14535536; Arcytophyllum aristatum Standl., Rub-Spermacoceae, Bremer 3371 (UPS), AJ28859502, AF33334810, FJ695282*, FJ695343*, AF33334910, AM18206132; Argostemma bifolium Ridl., Rub-Argostemmateae, B & K Bremer 1797 (S), FJ695220*, –, FJ695283*, FJ695344*, FJ695396*, FJ695428*; Argostemma brachyantherum Stapf, Rub-Argostemmateae, Beaman 8931 (S), FJ695221*, FJ695252*, FJ695284*, FJ695345*, FJ695397*, FJ695429*; Argostemma elatostemma Hook. f., Rub-Argostemmateae, B & K Bremer 1722 (S), FJ695222*, –, –, FJ695346*, –, –; Argostemma geesinkii B. Bremer, Rub-Argostemmateae, Beaman 8935 (S), FJ695223*, FJ695253*, FJ695285*, FJ695347*, FJ695398*, FJ695430*; Argostemma gracile Stapf, Rub-Argostemmateae, Beaman 8885 (S), FJ695224*, FJ695254*, FJ695286*, FJ695348*, FJ695399*, FJ695431*; Argostemma hookeri King Spec. 1, Rub-Argostemmateae, –, Z6878811, EU14549736, EU14541936, AJ23403202, EU14554536, EU14535636; Argostemma hookeri King Spec. 2, Rub-Argostemmateae, Wanntorp 88-27 (S), FJ695225*, FJ695255*, FJ695287*, FJ695349*, FJ695400*, FJ695432*; Argostemma involucratum Hemsl., Rub-Argostemmateae, Wanntorp 3047 (S), FJ695226*, FJ695256*, FJ695288*, FJ695350*, FJ695401*, FJ695433*; Argostemma parvifolium Benn., Rub-Argostemmateae, B & K Bremer 1811 (S), FJ695227*, FJ695257*, FJ695289*, FJ695351*, FJ695402*, FJ695434*; Argostemma psychotrichoides Ridl., Rub-Argostemmateae, B & K Bremer 1744 (S), FJ695228*, FJ695258*, FJ695290*, FJ695352*, –, FJ695435*; Argostemma rupestre Ridl., Rub-Argostemmateae, B & K Bremer 1675 (S), FJ695229*, FJ695259*, –, FJ695353*, –, FJ695436*; Argostemma yappii King, Rub-Argostemmateae, B & K Bremer 1609 (S), FJ695230*, FJ695260*, –, FJ695354*, FJ695403*, FJ695437*; Batopedina pulvinellata Robbr., Rub-Knoxieae, Dessein 264 (BR), AJ28859602, AM11728522, FJ695291*, FJ695355*, AM11734922, AM26698923; Bouvardia ternifolia (Cav.) Schltdl. (synonym: Bouvardia glaberrima Engelm.), Rub-Spermacoceae, Forbes s.n. (S), X8362601, AF00275805, FJ695292*, X7647840, DQ35916503, DQ35888403; Carpacoce sp. Sond., Rub-Anthospermeae, B. Bremer & al. 4365, 4385 (UPS), FJ695231*, FJ695261*, FJ695293*, FJ695356*, FJ695404*, FJ695438*; Chassalia catatii Drake ex Bremek., Rub-Psychotrieae, –, AM94530537, AM94533137, AM94528337, AM94525137, AM94536337, AM94521837; Coccocypselum condalia Pers., Rub-Coussareeae, –, AM11721722, EU14549936, EU14542036, EU14532436, EU14554736, EU14535836; Coccocypselum hirsutum Bartl. ex DC., Rub-Coussareeae, –, X8714522, EU14550036, EU14542136, EU14532536, EU14554836, EU14535936; Coelospermum fragrans (Montrouz.) Baill. ex Guillaumin (synonym: Coelospermum monticolum Baill. ex Guillaumin.), Rub-Morindeae, –, AF33164410, AF00143805, AM94525537, AM94522137, AM94533437, AM94519437; Colletoecema dewevrei (De Wild.) E.M.A. Petit, Rub-Colletoecemeae, –, EU14545736, AF12927213, EU14540936, DQ1317136, EU14553236, EU14535336; Coprosma granadensis Mutis ex L. f. (synonym: Nertera granadensis (Mutis ex L. f.) Druce), Rub-Anthospermeae, –, X8365401, AF00274105, –, –, AF15262306, –; Coprosma pumila Hook. f., Rub-Anthospermeae, Forbes s.n. (S), X8714601, FJ695262*, FJ695294*, –, FJ695405*, FJ695439*; Coussarea hydrangeifolia (Benth.) Benth. & Hook. f. ex Müll.Arg., Rub-Coussareeae, –, EU14546036, EU14550136, EU14542236, EU14532636, EU14554936, EU14536036; Coussarea macrophylla (Mart.) Müll. Arg., Rub-Coussareeae, –, Y1184707, AF00404005, –, –, AF15261206, –; Craterispermum laurinum (Poir.) Benth., Rub-Craterispermeae, –, AM94530037, AM94532537, AM94527637, AM94524337, AM94535637, AM94521237; Craterispermum sp. Benth. Spec. 1, Rub-Craterispermeae, –, AM94529737, –, AM94527337, AM94524137, AM94535337, AM94520937; Craterispermum sp. Benth. Spec. 2, RubCraterispermeae, –, AM94529837, AM94531337, AM94527437, AM94524237, AM94535437, AM94521037; Cremocarpon lantzii Bremek., Rub-Psychotrieae, –, AM11722222, AM11729622, –, –, AM11735622, –; Cruckshanksia hymenodon Hook. & Arn., Rub-Coussareeae, –, AJ28859902, EU14550236, –, AJ23400402, EU14555036, –; Damnacanthus indicus C.F. Gaertn., Rub-Mitchelleae, –, Z6879311, AF33164710, AM94525637, AJ23401502, AM94533537, AY51406129; Damnacanthus macrophyllus Siebold ex Miq., Rub-Mitchelleae, –, AM94528537, AM94530837, AM94525737, AM94522237, AM94533637, AM94519537; Danais comorensis Drake, Rub-Danaideae, Mouly 687 (P), FJ695232*, FJ695263*, –, FJ695358*, FJ695406*, –; Danais fragrans (Lam.) Pers., Rub-Danaideae, Eriksson & al. 966 (S), FJ695233*, FJ695264*, FJ695295*, FJ695359*, FJ695407*, –; Danais sp. Comm. ex Vent., Rub-Danaideae, Eriksson & al. 1032 (S), FJ695234*, FJ695265*, FJ695296*, FJ695360*, FJ695408*, FJ695440*; Danais nigra Homolle, Rub-Danaideae, Kårehed & al. 254 (UPS), FJ695235*, FJ695266*, FJ695297*, FJ695361*, FJ695409*, FJ695441*; Danais xanthorrhoea (K. Schum.) Bremek., Rub-Danaideae, –, Z6879411, AM11729722, AJ23629309, AJ23401902, DQ66213819, EU14536436; Declieuxia cordigera Mart. & Zucc. ex Schult. & Schult. f., Rub-Coussareeae, –, AM11722422, AM11729822, EU14542336, EU14532736, EU14555136, EU14536136; Declieuxia fruticosa (Willd. ex Roem. & Schult.) Kuntze, Rub-Coussareeae, –, AJ00217712, EU14550336, –, DQ1317216, EU14555236, EU14536236; Dentella repens (L.) J.R. Forst. & G. Forst., Rub-Spermacoceae, –, –, AF33337010, –, –, AF38154027, –; Dibrachionostylus kaessneri (S. Moore) Bremek., Rub-Spermacoceae, –, AJ61621117, AF00276105, –, –, EU14557436, –; Didymaea alsinoides (Cham. & Schltdl.) Standl., Rub-Rubieae, Keller 1901 (CAS), Z6879511, –, FJ695298*, AJ23403602, EU14557036, FJ695442*; Dirichletia glaucescens Hiern (synonym Carphalea glaucescens (Hiern) Verdc.), Rub-Knoxieae, SMP 215 (UPS), Z6878911, AM11728822, AJ23628709, FJ695357*, AM11735122, AM26699323; Dunnia sinensis Tutcher Spec. 1, Rub-Dunnieae, –, EU14546736, EU14551536, EU14544236, EU14533936, EU14558336, EU14539036; Dunnia sinensis Tutcher Spec. 2, Rub-Dunnieae, –, EU14546836, EU14551636, EU14544336, EU14534036, EU14558436, EU14539136; Dunnia sinensis Tutcher Spec. 3, Rub-Dunnieae, –, EU14546936, EU14551736, EU14544436, EU14534136, EU14558536, EU14539236; Dunnia sinensis Tutcher Spec. 4, Rub-Dunnieae, –, EU14547036, EU14551836, EU14544536, EU14534236, EU14558636, EU14539336; Dunnia sinensis Tutcher Spec. 5, Rub-Dunnieae, –, EU14547136, EU14551936, EU14544636, EU14534336, EU14558736, EU14539436; Ernodea littoralis Sw., Rub-Spermacoceae, –, AJ28860102, AF00276305, –, AJ23402502, –, –; Faramea multiflora A. Rich., Rub-Coussareeae, –, Z6879611, AF00404805, EU14542436, EU14532836, AF10242226, EU14536336; Gaertnera phyllosepala Baker, Rub-Gaertnereae, –, AM94528837, AM94531137, AM94526137, AM94522737, AM94534037, AM94520037; Gaertnera phyllostachya Baker, Rub-Gaertnereae, –, AM94528937, AM94531237, AM94526237, AM94522837, AM94534137, AM94520137; Galium album Mill., Rub-Rubieae, Bremer 3321 (UPS), X8109016, AF00405005, FJ695299*, X7645940, –, –; Geophila obvallata Didr., Rub-Psychotrieae, –, AM11722822, AF36984515, AM94525937, –, EU14556936, AM94519637; Gynochthodes sp. Blume, Rub-Morindeae, –, AM94528437, AM94530737, AM94525437, AM94522037, AM94533337, AM94519337; Gynochthodes coriacea Blume, Rub-Morindeae, –, AJ28860302, AM11731122, AM94525337, AM94521937, AJ84740725, AM94519237; Houstonia caerulea L., Rub-Spermacoceae, Bremer s.n. (UPS), AJ28860402, AF33337910, FJ695300*, FJ695362*, AF38152427, DQ01270633; DQ01277433; Hydnophytum formicarum Jack, Rub-Psychotrieae, –, X8364501, AF00133905, –, X7648040, –, AF03491212; Kelloggia chinensis Franch., Rub-, –, AY57077638, AY57077138, –, AY57076538, –, –; Kelloggia galioides Torr., Rub-, Garyfield & al. 2437 (UPS), DQ66217904, DQ66220304, FJ695301*, AY57076838, DQ66214604, FJ695443*; Knoxia platycarpa Arn., Rub-Knoxieae, Lundqvist 11302 (UPS), AJ28863102, AM26682623, FJ695302*, FJ695363*, AM11736722, AM26700223; Kohautia caespitosa Schnizl., Rub-Spermacoceae, Bremer & al. 42566B (UPS), Z6880011, AM11732422, FJ695303*, FJ695364*, EU14557336, FJ695444*; Lasianthus kilimandscharicus K. Schum., Rub-Lasiantheae, –, AM11723722, AM11732722, EU14542636, EU14533036, DQ66214719, –; Lasianthus lanceolatus (Griseb.) Urb., Rub-Lasiantheae, –, AM11723822, AF00406205, –, EU14533136, EU14555436, EU14536736; Lasianthus pedunculatus E.A. Bruce, RubLasiantheae, –, Z6880211, EU14550436, EU14542736, AJ23400302, EU14555536, EU14536836; Lasianthus strigosus Wight, Rub-Lasiantheae, –, AM11723922, EU14550536, EU14542836, –, EU14555636, EU14536936; Leptodermis potaninii Batalin, Rub-Paederieae, KA 230 Berkeley (UCBG), AM11724122, DQ66220404, FJ695304*, FJ695365*, DQ66214804, FJ695445*; Lerchea bracteata Valeton, Rub-Ophiorrizeae, –, AJ28861002, EU14550836, EU14543336, AJ23399702, EU14556136, EU14537436; Manostachya ternifolia E.S. Martins, Rub-Spermacoceae, Bamps & Martins 4410 (UPS), AJ61621317, AM11732822, FJ695305*, FJ695366*, EU14557236, FJ695446*; Margaritopsis nudiflora (Griseb.) K. Schum. (synonym: Margaritopsis acuifolia C. Wright, Rub-Psychotrieae, –, AM11724722, AF00134005, –, AM945225, EU14556836, AM94519837; Maschalocorymbus corymbosus (Blume) Bremek., Rub-Urophylleae, –, AJ28861102, AM90061135, –, –, EU14557736, EU14538436; Mitchella repens L., Rub-Mitchelleae, –, Z6880511, AF00144105, AM94525837, AM94522337, AM94533737, AB10353530 AB10353630; Mitrasacmopsis quadrivalvis Jovet, Rub-Spermacoceae, –, AJ61621417, AM11732922, EU14543936, EU14533636, EU14557536, 808 TAXON 58 (3) • August 2009: 793–810 Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia Appendix. Continued. EU14538236; Morinda citrifolia L., Rub-Morindeae, –, AJ31844814, AJ32007814, AJ23630009, AJ23401302, AF15261606, AY76284331; Morinda guatemalensis (Donn. Sm.) Steyerm. (synonym: Appunia guatemalensis Donn. Sm.), Rub-Morindeae, –, AJ28859302, AM94530637, AM94525237, AJ23400902, AM94533237, AM94519137; Mouretia larsenii Tange, Rub-Argostemmateae, Beusekom & al. 4743 (P), FJ695236*, FJ695267*, FJ695306*, FJ695367*, FJ695410*, FJ695447*; Mycetia cauliflora Reinw., Rub-Argostemmateae, Larsen & al. 46287 (AAU), FJ695237*, FJ695268*, FJ695307*, FJ695368*, FJ695411*, FJ695448*; Mycetia gracilis Craib, Rub-Argostemmateae, Larsen & al. 46250 (AAU), FJ695238*, FJ695269*, FJ695308*, FJ695369*, FJ695412*, FJ695449*; Mycetia javanica (Blume) Reinw. ex Korth., Rub-Argostemmateae, Larsen & al. 43970 (AAU), FJ695239*, FJ695270*, FJ695309*, FJ695370*, FJ695413*, FJ695450*; Mycetia malayana (G. Don) Craib, Rub-Argostemmateae, Larsen 42486 (UPS), Z6880611, AF00277105, FJ695310*, AJ23403302, AF15262206, –; Mycetia sp. Reinw. Spec. 1, Rub-Argostemmateae, Larsen & al. 44635 (AAU), FJ695240*, FJ695271*, FJ695311*, FJ695371*, FJ695414*, FJ695451*; Mycetia sp. Reinw. Spec. 2, Rub-Argostemmateae, Larsen & al. 43706 (AAU), FJ695241*, FJ695272*, FJ695312*, FJ695372*, FJ695415*, FJ695452*; Nenax acerosa Gaertn., Rub-Anthospermeae, –, –, AF00360605, –, –, –, –; Neohymenopogon parasiticus (Wall.) Bennet Spec. 1, Rub-Argostemmateae, Vidal 5729 (P), FJ695242*, FJ695273*, FJ695313*, FJ695373*, FJ695416*, FJ695453*; Neohymenopogon parasiticus (Wall.) Bennet Spec. 2, Rub-Argostemmateae, B. Bremer 2743 (UPS), FJ695243*, FJ695274*, FJ695314*, FJ695374*, FJ695417*, –; Neurocalyx championii Benth. ex Thwaites, Rub-Ophiorrizeae, –, EU14546336, EU14550936, EU14543536, –, EU14556336, EU14537636; Neurocalyx zeylanicus Hook., Rub-Ophiorrizeae, –, Z6880711, AM90059435, EU14543436, AJ23399502, EU14556236, EU14537536; Normandia neocaledonica Hook. f., Rub-Anthospermeae, Munzinger 532 (MO), AM11725022, AF25793118, FJ695315*, FJ695375*, EU14554336, AF25793018; Oldenlandia corymbosa L., Rub-Spermacoceae, –, X8365501, AF33338110, AJ13083709, –, AF38153727, AY85405334; Opercularia vaginata Juss., Rub-Anthospermeae, K. Bremer & Gustafsson 25 (UPS), Z6880911, AF25793618, FJ695316*, FJ695376*, FJ695418*, AF25793518; Ophiorrhiza elmeri Merr., Rub-Ophiorrizeae, –, EU14546436, EU14551036, EU14543636, –, EU14556436, EU14537836; Ophiorrhiza mungos L., Rub-Ophiorrizeae, –, X8365601, AF00406405, AJ13083809, –, DQ6621516, EU14537736; Otiophora scabra Zucc., RubKnoxieae, Iversen & Martinson 89078 (UPS), FJ695244*, AM26683923, –, DQ13175603, AM26692823, AM26701523; Otomeria oculata S. Moore, RubKnoxieae, Puff & al. 82/222-21 (K), AJ28861402, AM26684423, FJ695317*, FJ695377*, AM11737422, AM26701923; Paederia bojeriana (A. Rich. ex DC.) Drake, Rub-Paederieae, Razafimandimbison & H. Bremer 483 (UPS), DQ66218104, DQ66220604, FJ695318*, DQ13175703, DQ66215204, FJ695454*; Paederia majungensis Homolle ex Puff, Rub-Paederieae, Nilsson & al. D152 (UPS), DQ66218404, DQ66220904, FJ695319*, FJ695378*, DQ66215504, –; Paederia sambiranensis Homolle ex Puff, Rub-Paederieae, Kårehed & al. 238 (UPS), DQ66218804, DQ66221304, –, FJ695379*, DQ66215904, –; Pagamea guianensis Aubl., Rub-Gaertnereae, –, AM94529037, AF00274405, AM94526337, AM94522937, AM94534237, AF33384662; Palicourea crocea (Sw.) Schult, Rub-Psychotrieae, –, AM11725322, AF14751020, AM94528037, AM94524737, AM94525937, AF14932220; Parapentas silvatica (K. Schum.) Bremek., RubKnoxieae, Bremer 3091 (UPS), X8365701, AM11733222, FJ695320*, AJ23402102, AM11737622, AM26702323; Paratriaina xerophila Bremek., Rub-Knoxieae, Razafimandimbison & Bremer 489 (UPS), AJ2886332, AM26685023, FJ695321*, FJ695380*, AM26693823, AM26702423; Pauridiantha paucinervis (Hiern) Bremek., Rub-Urophylleae, –, Z6881111, AM90060035, AJ23630209, AJ23399802, EU14557836, EU14538536; Pauridiantha symplocoides (S. Moore) Bremek., Rub-Urophylleae, –, AY53850208, AF00406805, EU14544036, EU14533836, AF10246726, EU14538636; Pentanisia prunelloides (Klotzsch) Walp., RubKnoxieae, B. Bremer & al. 4316 (UPS), AM11725522, AM26686023, FJ695322*, FJ695381*, AM26694823, AM26703323; Pentas lanceolata (Forssk.) Deflers, Rub-Knoxieae, –, X8365901, AM11733422, AJ23630409, X7647940, AM11737922, AB24727528; Pentodon pentandrus (Schumach. & Thonn.) Vatke, Oesterr., Rub-Spermacoceae, Bremer 3082 (UPS), X8366001, AF00361205, FJ695323*, AJ23402402, FJ695419*, FJ695455*; Phyllis nobla L., Rub-Anthospermeae, K. Bremer 3008 (UPS), Z6881411, AF00361305, FJ695324*, AJ23403102, AY53846808, AF25793918; Placopoda virgata Balf. f., Rub-Knoxieae, Thulin & Gifri 8528 (UPS), Z6881511, AM11733522, FJ695325*, FJ695382*, AM11738222, AM26706423; Plocama aucheri (Guill.) M. Backlund & Thulin, Rub-Putorieae, Thulin 9963 (UPS), DQ66217804, DQ66220204, FJ695326*, FJ695383*, DQ66214504, FJ695456*; Plocama calabrica (L. f.) M. Backlund & Thulin, Rub-Putorieae, Jonsell 4216 (UPS), AJ28862002, FJ695275*, FJ695327*, FJ695384*, DQ66216604, FJ695457*; Plocama hymenostephana (Jaub. & Spach) M. Backlund & Thulin, Rub-Putorieae, Thulin 9993 (UPS), DQ66219004, DQ66221504, FJ695328*, FJ695385*, DQ66216304, FJ695458*; Plocama pendula Aiton, Rub-Putorieae, Andreasen 1 (UPS), Z6881601, FJ695276*, FJ695329*, AJ23403502, DQ66216204, FJ695459*; Pomax umbellata (Gaertn.) Sol. ex A. Rich., Rub-Anthospermeae, B. & K. Bremer 3918 (UPS), AM11726022, AF25794118, –, DQ13176703, FJ695420*, AF25794018; Pravinaria leucocarpa Bremek., Rub-Urophylleae, –, AJ28861702, AM90061335, EU14544136, AJ23400102, EU14558036, EU14538836; Prismatomeris albidiflora Thwaites, RubPsychotrieae, –, AM94529637, AM94532037, AM94527037, AM94523737, AM94535137, AM94520537; Prismatomeris beccariana (Baill. ex K. Schum.) J.T. Johanss., Rub-Psychotrieae, –, AJ28861802, AF33165210, AM94527137, AM94523837, AM94535237, AM94520637; Prismatomeris sp. Thwaites Spec. 1, RubPsychotrieae, –, AM94529237, AM94531637, AM94526637, AM94523337, AM94534737, AM94520237; Prismatomeris sp. Thwaites Spec. 2, Rub-Psychotrieae, –, AM94529337, AM94531737, AM94526737, AM94523437, AM94534837, –-; Psychotria amboniana K. Schum., Rub-Psychotrieae, –, AM94530237, AM94532837, AM94528137, AM94524837, AM94536037, AM94521537; Psychotria capensis (Eckl.) Vatke, Rub-Psychotrieae, –, AM94530137, AM94532637, AM94527737, AM94524537, AM94535737, AM94521337; Psychotria holtzii (K. Schum.) E.M.A. Petit, Rub-Psychotrieae, –, AM94530437, AM94533037, –, AM94525037, AM94536237, AM94521737; Psychotria kirkii Hiern, Rub-Psychotrieae, –, X8366301, AF41072821, AJ23630709, X7648140, AY53846908, AF07203812; Psychotria poeppigiana Müll.Arg., Rub-Psychotrieae, –, Z6881811, AF00274805, AM94527937, AJ23401802, –, AF14940020; Psychotria schliebenii E.M.A. Petit, Rub-Psychotrieae, –, AM94530337, AM94532937, AM94528237, AM94524937, AM94536137, AM94521637; Rubia tinctorum L., RubRubieae, Bremer 3300 (UPS), X8366601, –, DQ35916703, X7646540, FJ695421*, DQ35888503; Saldinia sp. A. Rich. ex DC. Spec. 1, Rub-Lasiantheae, –, AM11726922, AF12927513, EU14542936, EU14533236, EU14555736, EU14537036; Saldinia sp. A. Rich. ex DC. Spec. 2, Rub-Lasiantheae, –, EU14546136, EU14550636, EU14543036, EU14533336, EU14555836, EU14537136; Saprosma foetens (Wight) K. Schum., Rub-Paederieae, Klackenberg 325 (S), DQ66219304, DQ66221804, –, FJ695386*, DQ66216804, FJ695460*; Saprosma fruticosum Blume, Rub-Paederieae, Ridsdale IV.E.157 (L), DQ66219404, FJ695277*, FJ695330*, FJ695387*, DQ66216904, FJ695461*; Saprosma ternatum (Wall.) Hook. f., Rub-Paederieae, –, –, DQ28264639, –, –, –, –; Schismatoclada farahimpensis Homolle, Rub-Danaideae, Kårehed & al. 267 (UPS), FJ695245*, FJ695278*, FJ695331*, FJ695388*, FJ695422*, FJ695462*; Schismatoclada sp. Baker Spec. 1, Rub-Danaideae, Razafimandimbison 375 (S), AM11727122, AM11734122, EU14542536, EU14532936, EU14555336, EU14536536; Schismatoclada sp. Baker Spec. 2, Rub-Danaideae, Razafimandimbison & Ravelonarivo 625 (S), FJ695246*, FJ695279*, FJ695332*, FJ695389*, FJ695423*, FJ695463*; Schismatoclada aff. psychotrioides Baker, Rub-Danaideae, Eriksson & al. 988 (S), FJ695247*, –, FJ695333*, FJ695390*, FJ695424*, FJ695464*; Schizocolea linderi (Hutch. & Dalziel) Bremek. Spec. 1, Rub-Schizocoleeae, Adam 20116 (UPS), AM11727222, EU14549836, FJ695334*, EU14532336, EU14554636, EU14535736; Schizocolea linderi (Hutch. & Dalziel) Bremek. Spec. 2, Rub-Schizocoleeae, Adam 789 (P), AM94528637, AM94530937, FJ695335*, AM94522437, AM94533837, AM94519737; Schradera subandina K. Krause, Rub-Schradereae, –, Y1185907, AM94531337, AM94526437, AJ23401402, AM94534337, –; Schradera sp. Vahl Spec. 1, Rub-Schradereae, ––, –-, AF00361705, –, –, AF15261306, –; Schradera sp. Vahl Spec. 2 , Rub-Schradereae, –, –-, AM94531437, AM94526537, AM94523037, AM94524437, –; Schradera sp. Vahl Spec. 3, Rub-Schradereae, –, –-, AM94531537, –, AM94523137, AM94534537, –; Serissa japonica Thunb. (synonym: Serissa foetida (L. f.) Lam.), Rub-Paederieae, Bremer 2717 (UPS), Z6882211, AF00408105, FJ695336*, AJ23403402, AF15261806, FJ695465*; Sherardia arvensis L., Rub-Rubieae, K. Andreasen 345 (SBT), X8110616, AF00408205, FJ695337*, X7645840, EU14557136, FJ695466*; Spermacoce remota Lam., Rub-Spermacoceae, Bremer 3062 (UPS), Z6882311, –, AJ23630909, –, FJ695425*, FJ695467*; Spermadictyon suaveolens Roxb., Rub-Paederieae, Bremer 3133 (UPS), Z6882411, DQ66221904, FJ695338*, FJ695391*, DQ66217104, FJ695468*; Spiradiclis bifida Kurz, Rub-Ophiorrizeae, , EU14546536, EU14551136, EU14543736, –, EU14556536, EU14537936; Thecorchus wauensis (Schweinf. ex Hiern) Bremek., RubSpermacoceae, Friis & al. 2560 (C), AM11728222, AM26690123, –, FJ695392*, AM26698723, AM26707023; Theligonum cynocrambe L. Spec. 1, 809 Rydin & al. • Systematic affinities of Neohymenopogon and Mouretia TAXON 58 (3) • August 2009: 793–810 Appendix. Continued. Rub-Theligoneae, –, X8366801, AF00408705, –, X8168024, AF15262106, –; Theligonum cynocrambe L. Spec. 2, Rub-Theligoneae, Thor 654 (S), FJ695248*, FJ695280*, FJ695339*, FJ695393*, FJ695426*, FJ695469*; Theligonum cynocrambe L. Spec. 3, Rub-Theligoneae, Reuterswärd & Forsslund 2 (S), FJ695249*, FJ695281*, FJ695340*, –, FJ695427*, FJ695470*; Triainolepis mandrarensis Homolle ex Bremek., Rub-Knoxieae, Razafimandimbison 521 (UPS), FJ695250*, AM26689923, FJ695341*, FJ695394*, AM26698523, AM26706823; Trichostachys aurea Hiern, Rub-Lasiantheae, –, EU14546236, EU14550736, EU14543136, EU14533436, EU14555936, EU14537236; Trichostachys sp. Hook. f., Rub-Lasiantheae, –, AJ28862602, AM90059535, EU14543236, DQ1317926, EU14556036, EU14537336; Urophyllum arboreum (Reinw. ex Blume) Korth., Rub-Urophylleae, –, –, AM90061735, –, DQ13179303, EU14558236, –; Urophyllum ellipticum (Wight) Thwaites, Rub-Urophylleae, –, AJ28862702, AM90061935, –, AJ23400202, EU14558136, EU14538936; Valantia hispida L., Rub-Rubieae, Bremer 3131 (UPS), FJ695251*, AF00409005, FJ695342*, FJ695395*, AM11738522, FJ695471*; Xanthophytum borneense (Valeton) Axelius, Rub-Ophiorrizeae, –, EU14546636, EU14551336, EU14543836, EU14533536, EU14556736, EU14538136; Xanthophytum capitellatum Ridl., Rub-Ophiorrizeae, –, AJ28862802, EU14551236, –, AJ23399602, EU14556636, EU14538029. *Previously unpublished sequence. Published sequences: 01: Bremer & al. (1995). 02: Bremer & Manen (2000). 03: Manen, J.-F. (GenBank unpublished). 04: Backlund & al. (2000). 05: Andersson & Rova (1999). 06: Rova & al. (2002). 07: Bremer & Thulin (1998). 08: Andersson & Antonelli (2005). 09: Bremer & al. (1999). 10: Andersson, L. (GenBank unpublished). 11: Bremer (1996). 12. Nepokroeff & al. (1999). 13: Piesschaert & al. (2000). 14: Novotny & al. (2002). 15: Andersson (2001). 16: Manen & Natali (1995). 17: Thulin & Bremer (2004). 18: Anderson, C.L. & al. (GenBank unpublished). 19: Backlund, M. (GenBank unpublished). 20: Andersson, L. & Taylor, C. (GenBank unpublished). 21: Andersson (2002). 22: Bremer & Eriksson (2009). 23: Kårehed & Bremer (2007). 24: Natali & al. (1995). 25: Alejandro & al. (2005). 26: Struwe & al. (1998). 27: Church (2003). 28: Nakamura & al. (2006). 29: Ding, P. & al. (GenBank unpublished). 30: Yokoyama, J. & al. (GenBank unpublished). 31: Proujansky, A.D. & Stern, D.L. (GenBank unpublished). 32: Wolff, D. & Liede-Schumann, S. (GenBank unpublished). 33: Church & Taylor (2005). 34: Yuan, C.I. (GenBank unpublished). 35: Smedmark & al. (2008). 36: Rydin & al. (2008, 2009). 37: Razafimandimbison & al. (2008). 38: Nie & al. (2005). 39: Xiao L.-Q. & Zhu H. (GenBank unpublished). 40. Manen & al. (1994). 810 All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.