Academia.eduAcademia.edu
The comparative pollen morphology of genera Matricaria L. and Tripleurospemum Sch. Bip. (Asteraceae) in Turkey Talip Çeter, Nur Münevver Pinar, Hüseyin İnceer, Sema Hayirlioğlu-Ayaz & Ahmet Emre Yaprak Plant Systematics and Evolution ISSN 0378-2697 Volume 299 Number 5 Plant Syst Evol (2013) 299:959-977 DOI 10.1007/s00606-013-0776-z 1 23 Your article is protected by copyright and all rights are held exclusively by SpringerVerlag Wien. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Plant Syst Evol (2013) 299:959–977 DOI 10.1007/s00606-013-0776-z ORIGINAL ARTICLE The comparative pollen morphology of genera Matricaria L. and Tripleurospemum Sch. Bip. (Asteraceae) in Turkey Talip Çeter • Nur Münevver Pinar • Hüseyin İnceer • Sema Hayirlioğlu-Ayaz Ahmet Emre Yaprak • Received: 27 January 2013 / Accepted: 25 February 2013 / Published online: 20 March 2013 Ó Springer-Verlag Wien 2013 Abstract Pollen morphology of four Matricaria species and 28 Tripleurospermum species was investigated with light microscopies (LM) and scanning electron microscopies (SEM). Pollen slides were prepared using Wodehouse technique. Measurements were based on 20 or more pollen grains per specimen. For SEM studies, dried pollen grains were transferred on aluminum stubs and coated with gold for 4 min in a sputter-coater. The pollen grains of Matricaria and Tripleurospermum are radially symmetric and isopolar. The pollen grains of the Matricaria are oblate-spheroidal with the polar axes 16.6–31.2 lm and the equatorial axes 18.7–23.9 lm. Tripleurospermum is oblatespheroidal, suboblate and prolate-spheroidal with the polar axes 15.6–32.2 lm and the equatorial axes 17.7-38.5 lm. The pollen grains of Tripleurospermum are operculate and tricolporate. Matricaria is operculate and usually tricolporate or rarely syncolporate, tricolpate and tetracolporate. The pollen grain of both taxa shows echinate ornamentation. The spines are commonly conical with a broadened base and a tapered apical portion. The spine length varies between 1.8–4 lm in Tripleurospermum and 2.3–3.3 lm in Matricaria. The width of spines varies between 2.8–4.6 lm in Tripleurospermum and 2.4–3.6 lm in T. Çeter (&) Department of Biology, Faculty of Arts and Science, Kastamonu University, Kastamonu, Turkey e-mail: talipceter@hotmail.com N. M. Pinar  A. E. Yaprak Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey H. İnceer  S. Hayirlioğlu-Ayaz Department of Biology, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey Matricaria. Inter-spinal area shows granulate–perforate, reticulate–perforate, rugulate–perforate ornamentations and the tectum surrounding the spine base is micro perforate. Overall exine thickness ranges from 2.8 to 4.8 lm in Tripleurospermum, 3.6 to 5.2 lm in Matricaria. Intine is thicker under pores in Tripleurospermum (0.3–0.62 lm) than in Matricaria (0.6–0.8 lm). Inter-spinal ornamentations, pollen shape and the numbers of perforations at the spin base have been observed as important morphological characters. Keywords Asteraceae  Anthemideae  Tripleurospermum  Matricaria  Pollen morphology  Turkey Introduction Matricaria L. with about seven taxa, and Tripleurospermum Sch.Bip. with about 40 taxa are two closely related genera in the tribe Anthemideae of the Asteraceae family. Both genera are widespread in Europe, Central Asia, North America and North Africa (Oberprieler et al. 2007). In Turkey, Tripleurospermum and Matricaria are represented by 30; 14 endemic and six taxa, respectively (Inceer et al. 2012). Taxonomic problems of these genera cannot be ignored. Species of Tripleurospermum and Matricaria are similar to each other in their morphological characteristics such as floral architecture and leaf shape. Therefore, they have been confused both taxonomically and nomenclaturally with each other (Jeffrey 1979; Xifreda 1985; Kerguélen et al. 1987; Applequist 2002; Hansen and Christensen 2009; Inceer and Ozcan 2011). The taxonomy of these genera continues to be subject of much confusion mainly 123 Author's personal copy 960 T. Çeter et al. Table 1 The collections data of the investigated Matricaria and Tripleurospermum Taxon Locality Voucher Matricaria aurea (Loefl.) Sch. Bip. C6 Gaziantep/Şanlıurfa: between Nizip and Birecik, Dutlu, roadsides, near cultivated area, 440 m a.s.l., 08.v.2007 Inceer 322 M. chamomilla L. var. chamomilla C1 Muğla: Marmaris, between Marmaris and Köyceğiz, roadsides, 20 m a.s.l., 18.iv.2007 Inceer 305 M. chamomilla L. var. recutita (L.) Fiori C1 Muğla: Marmaris, between Kizilkaya and Fethiye, roadsides, 24 m a.s.l., 18.iv.2007 Inceer 307 M. matricarioides (Less.) Porter ex Britton A9 Kars (Ardahan): between Ardahan and Göle, roadsides, 1,800 m a.s.l., 18.vii.2007 Inceer 420 Tripleurospermum baytopianum E. Hossain A1 (E) Tekirdağ: Between Şarköy and Gölcük, slopes, meadows and roadsides, 250 m a.s.l., 17.iv.2008 Inceer 508 T. callosum (Boiss. & Heldr.) E. Hossain A7 Gümüşhane: Keçikaya village, roadsides, 1,494 m a.s.l., 04.vii.2007 Inceer 380 T. caucasicum (Willd.) Hayek A8 Rize: Ayder, Yukari kavrun, meadows, streamsides, 2,333 m a.s.l., 23.vii.2008 Inceer 683 T. conoclinium (Boiss. & Bal.) Hayek B2 Izmir: Boz Dağ, cultivated fields, meadows and pastures, 1,178 m a.s.l., 07.iv.2008 Inceer 478 T. corymbosum E. Hossain B9 Ağrı: Suluçem (Musun), Balık Gölü, meadows, cultivated fields, 2,098 m a.s.l., 11.vii.2008 Inceer 612 T. decipiens (Fisch. & Mey) Bornm. B3 Eşkişehir: Han, Midas road, among gardens, 1,290 m a.s.l., 28.vi.2007 Inceer 375 T. disciforme (C. A. Meyer) Sch.Bip. B2 Izmir: Boz Dağ, roadsides, water meadows, 1,021 m a.s.l., 06.vii.2008 Inceer 592 T. elongatum (Fisch. & Mey.) Bornm. A7 Giresun: Between Şehitler pass and Şebinkarahisar, meadows, roadsides, 1,317 m a.s.l., 21.vii.2008 Inceer 664 T. fissurale (Sosn.) E. Hossain A8 Artvin: Between Yusufeli and Ispir, among stones, 653 m a.s.l., 31.v.2008 Inceer 533 T. heterolepis (Freyn & Sint.) Bornm A7 Gümüşhane: Keçikaya Village, roadsides, 1,618 m a.s.l., 04.vii.2007 Inceer 382b T. hygrophilum (Bornm.) Bornm. B1 Izmir: Yamanlar Dağı, above Karagöl, meadows, 820 m a.s.l., 14.iv.2007 Inceer 273 T. inodorum (L.) Sch. Bip A9 Erzurum: Between Pasinler and Horasan, near Horasan, Köprü village, roadsides, 1,600 m a.s.l., 11.vii.2008 Inceer 600 T. kotschyi (Boiss.) E. Hossain T. melanolepis (Boiss. & Buhse) Pobed. C5 Niğde: Ulukışla, Bolkar mountains, near Karagöl, 2,600 m a.s.l., 29.vii.2008 A7 Gümüşhane: Torul, roadsides, 1,100 m a.s.l., 09.vi.2002 Inceer 702 Inceer 152 T. monticolum (Boiss. & Huet) Bornm B8 Erzurum: Palandöken mountain, 2,907 m a.s.l., 13.vii.2008 Inceer 639 T. microcephalum (Boiss.) Bornm. B8 Muş: Fallow fields, banks, roadsides, 1,323 m a.s.l., 09.vii.2008 T. oreades (Boiss.) Rech. f. var. oreades A7 Giresun: Kümbet yaylasi, roadsides, meadows, 1,719 m a.s.l., 21.vii.2008 Inceer 594 Inceer 658 T. oreades (Boiss.) Rech. f. var. tchihatchewii (Boiss.) E. Hossain A8 Artvin: Şavşat, above Sahara National Park, damp alpine pastures, 2,185 m a.s.l., 17.vii.2007 Inceer 414 T. parviflorum (Willd.) Pobed. B2 Izmir: Boz Dağ, rocky places, cultivated fields, roadsides, 1,178 m a.s.l., 07.iv.2008 A2 Bursa: Uludağ, meadows, damp woods, near hotels, 1,828 m a.s.l., 11.vi.2008 Inceer 479 Inceer 553 T. repens (Freyn & Sint.) Bornm. A7 Gümüshane: Gezge village, meadows, 1,987 m a.s.l., 08.vii.2007 Inceer 385 T. rosellum (Boiss. & Orph.) Hayek var. album E. Hossain T. sevanense (Manden.) Pobed. A3 Bolu: Near Abant Lake, meadows, 1,331 m a.s.l.,, 12.vi.2008 Inceer 555 Inceer 369b T. pichleri (Boiss.) Bornm. 123 B3 Eskişehir: Çatacık, near Pinus forest, roadsides, 1,304 m a.s.l., 27.vi.2007 Author's personal copy The comparative pollen morphology of Matricaria L. and Tripleurospemum Sch. Bip. 961 Table 1 continued Taxon Locality Voucher T. tempskyanum (Freyn & Sint.) Hayek A2 Bursa: Uludağ, near hotels, meadows, open places, 1,900 m a.s.l., 27.vi.2007 Inceer 361 T. tenuifolium (Kit.) Freyn A2 Bursa: Uludağ, near hotels, meadows, open places, 1,690 m a.s.l., 27.vi.2007 Inceer 353 T. transcaucasicum (Manden.) Pobed. B8 Erzurum: Palandöken mountain, 2,946 m a.s.l., 13.vii.2008 Inceer 638 T. subnivale Pobed. A8 Rize: Ikizdere, above Ayder, grassy stream banks, stony pastures on limestone, 1,600 m a.s.l., 20.vi.2001 Inceer 118 T. ziganaense Inceer & Hayırlıoglu-Ayaz A7 Gümüshane: Zigana mountain, between Zigana Pass and Torul, 1,300 m a.s.l., 22.vii.2008 Inceer 666 Fig. 1 a Triplurospermum for P., b Matricaria for P., c Triplurospermum for E, d Matricaria for E; P polar axes, E equatorial axes 123 Author's personal copy 962 T. Çeter et al. because of the approaches to species delimitation that have been employed, resulting in varying numbers of recognized species. Initially, Tripleurospermum was assigned to the genus Matricaria but later was recognized as a separate genus on the basis of the different structure of its achenes and the occurrence of a tetrasporic embryo sac (Harling 1951). However, Rauschert (1974) and Kay (1976) misapplied the name Matricaria to refer exclusively to the species of Tripleurospermum (Bremer and Humphries 1993). In addition, Oberprieler (2001) showed that Tripleurospermum is closely related to Anthemis in the strict sense and not to Matricaria. This is supported by the tetrasporic embryo sac shared by Tripleurospermum and Anthemis (versus monosporic in Matricaria and other Anthemideae genera). Cytological studies conducted in Matricaria and Tripleurospermum have concentrated on the chromosome count, with little work focusing on detailed caryological criteria for taxonomic purposes (Watanabe 2009). All the members of the genera show a base chromosome number of x = 9, the most common basic number in the tribe Anthemideae and the family Asteraceae (Inceer and Hayırlıoglu-Ayaz 2010). To date, one ploidy level (2x) in Matricaria and four ploidy levels (2x, 3x, 4x, 5x) in Tripleurospermum have been reported from Turkey, which is regarded as one of the main centers of diversification and speciation (Inceer and Beyazoglu 2004; Inceer and Hayırlıoglu-Ayaz 2010). The diploid and tetraploid levels are more common than the triploid and pentaploid levels in Tripleurospermum. The stability of ploidy level in Matricaria is noteworthy in Turkish populations (Inceer and Hayırlıoglu-Ayaz 2010). Pollen morphology has provided an approach to the systematic relationships among the genera of the Asteraceae (Wagenitz 1955; Stix 1960; Erdtman 1969; Skvarla and Larson 1965; Blackmore 1982, 1990; Pinar and Oybak Dönmez 2000; Pinar and İnceoğlu 1996; Pinar and Adigüzel 1998; Punt and Hoen 2009). Stix (1960) studied pollen morphology of Matricaria chamomilla L. and placed it into the Anthemis type. Beug (2004) described a Matricaria type. Pollen morphology of M. maritima subsp. inodora, M. maritima subsp. maritima, M. matricarioides and M. recutita were examined by Punt and Hoen (2009). They placed it into Anthemis arvensis type. There are only a few studies conducted on the pollen morphology of Tripleurospermum. Inceoglu and Karamustafa (1977) defined pollen morphology of T. elongatum (Fish. & Mey.) Bornm. In this study, the pollen grains of Matricaria and Tripleurospermum showing morphological similarities were investigated with LM and SEM so that palynological comparisons could be made and inter and intra-generic relationships based on pollen morphological data could be discussed. This study attempts to clarify the systematics of these genera. Materials and methods Plant materials Materials used for this study were collected from wild populations. Collectors and localities are shown in the specimens investigated below. The specimens of the plants are deposited in the Karadeniz Techinal University Herbarium (KTUB). The list of investigated species of the Matricaria and Tripleurospermum taxa are given below. The order of the species was adapted by Grierson (1975), Enayet Hossain (1975) and Inceer and Hayırlıoglu-Ayaz (2008) (Table 1). Palynological analysis Pollen slides were prepared using the Wodehouse (1935) technique. Pollen grains were stained with glycerin-jelly Table 2 Four palynological characters to distinguish the 32 taxa of the genara Matricaria and Tripleurospermum Taxa/character states T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 Pollen shape 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 Orn bet. spin 0 0 0 0 2 2 1 2 2 2 2 1 2 2 2 1 Perf. number 22 45 15 15 35 24 14 33 45 28 35 15 45 18 35 16 Exine (lm) 2.8 5.1 3.6 3.6 3.6 4.2 2.8 3.2 4.7 3.6 3.8 3.2 4.2 3.8 3.2 3.75 Taxa/character states T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 M1 M2 M3 M4 Pollen shape 1 0 2 1 0 1 0 0 0 0 1 0 1 1 1 1 Orn bet. spin 1 1 1 2 2 1 1 2 2 2 1 1 3 3 3 3 Perf. number 19 13 45 28 10 15 28 38 40 25 25 38 12 13 12 14 Exine (lm) 2.8 4.4 3.6 2.3 3.1 4.8 3 3.8 2.8 4.7 3.1 4.2 5.2 3.6 3.6 3.9 123 Taxa Polar axis (P) (lm) Equatorial axes (E) (lm) Min Max Mean Min Max Mean T. caucasicum (T1) 18 or 36 (2x or 4x) 20.8 28.1 24.2 26 32.2 28.3 0.80 Suboblate 2.8 T. melanolepis (T2) 18 (2x) 20.8 28.1 24.2 26 32.2 28.6 0.85 Suboblate 5.1 T. oreades var. oreades (T3) T. oreades var. tchihatchewii (T4) 36 (4x) 36 (4x) 21.8 20.8 28.4 27 24.3 23.9 23.9 24.1 31.2 28.9 26.7 26.9 0.91 0.89 Oblate-spheroidal Oblate-spheroidal T. rosellum var. album (T5) 36 (4x) 20.8 27 23 22.9 27 24.9 0.92 T. hygrophilum (T6) 18 (2x) 22.9 30.2 25.2 24.5 31.2 27.5 T. baytopianum (T7) 18 (2x) 19.8 25.9 22.4 20.8 28.1 24.6 T. elongatum (T8) 18 (2x) 19.8 25.9 22.6 20.8 27 T. parviflorum (T9) 18 (2x) 22.7 28.1 25.8 26 T. inodorum (T10) 36 (4x) 23.9 30.2 25.9 T. kotschyi (T11) 36 (4x) 21.8 28.1 T. conoclinium (T12) 18 (2x) 19.8 27 T. tenufoliaum (T13) 18 (2x) 20.8 T. pichleri (T14) 36 (4x) T. sevanense (T15) P/E Pollen shape Exine (lm) İntine (lm) Colpus (lm) Pore (lm) Clt Clg Plt Plg 0.32 6.5 14.6 8.3 8.3 0.52 6.1 16.4 8.2 8.1 3.6 3.6 0.4 0.41 4.4 4.1 12.7 14.3 5.2 5.2 5.2 5.2 Oblate-spheroidal 3.6 0.3 5.6 14.2 6.4 6.3 0.92 Suboblate 4.2 0.35 5 15.2 6.2 6.1 0.91 Oblate-spheroidal 2.8 0.3 5.8 12.3 8.2 8.1 24.7 0.91 Oblate-spheroidal 3.2 0.48 5 12.4 5.8 6 31.2 28.2 0.92 Oblate-spheroidal 4.7 0.53 4.8 17.2 5.6 5.7 27 34.3 30.1 0.86 Suboblate 3.6 0.5 4.8 15.3 6.2 6.2 24.5 22.9 30.1 26.3 0.93 Oblate-spheroidal 3.8 0.3 5.9 16.2 6.5 6.5 23.7 20.8 30.1 26.1 0.91 Oblate-spheroidal 3.2 0.31 5.8 11.4 6.9 6.9 27 25 23.9 28.1 27.1 0.93 Oblate-spheroidal 4.2 0.52 4.2 12.5 5.2 5.2 22.9 32.2 27.9 24.1 34.3 30.3 0.92 Oblate-spheroidal 3.8 0.4 5.3 16.5 6.7 6.7 36 (4x) 15.6 28.1 21.8 17.7 32.2 23.6 0.93 Oblate-spheroidal 3.2 0.54 3.7 13.8 4.5 4.5 Tipleurospermum T. callosum (T16) 36 (4x) 19.8 28.1 23.1 22.9 30.1 26.4 0.88 Oblate-spheroidal 3.75 0.34 6 13.1 8.1 8.1 T. corymbosum (T17) 27 (3x) 19.6 27 23.2 20.8 28.1 24.4 0.95 Oblate-spheroidal 2.8 0.3 5.2 14.4 6.2 6.2 T. heterolepis (T18) 36 (4x) 20.8 28.1 25.6 22.9 32.2 27.7 0.92 Suboblate 4.4 0.4 5.1 15.1 6.1 6.1 T. transcaucasicum (T19) T. repens (T20) 18 (2x) 36 (4x) 21.8 17.7 31.2 28.4 26 22.6 20.8 19.8 28.1 31.2 23.9 23.1 1.09 0.99 Prolate-spheroidal Oblate-spheroidal 3.6 2.3 0.62 0.32 4.4 4.7 20.6 12.8 5.4 5.8 5.4 5.8 T. fissurale (T21) 18 (2x) 20.7 25.9 23.1 22.9 30.1 26.3 0.88 Suboblate 3.1 0.34 4.3 14.2 7.4 7.2 T. monticolum (T22) 36 (4x) 20.5 27 24.3 21.8 28.9 25.6 0.95 Oblate-spheroidal 4.8 0.52 5.2 16.8 6.3 6.1 T. decipiens (T23) 18 (2x) 20.8 28.1 24.2 24.5 34.3 30.1 0.80 Suboblate 3 0.3 5.8 15.8 7.1 7 T. microcephalum (T24) ? 16.6 22.9 19.6 19.8 27 22.9 0.86 Suboblate 3.8 0.47 3.3 13.4 4.3 4.2 T. disciforme (T25) 18 (2x) 15.6 21.8 18.3 17.7 26 23.7 0.77 Suboblate 2.8 0.3 4 10.9 5.1 5.1 T. subnivale (T26) 42–48 (5x) 22.9 32.2 28.9 24.1 38.5 32.7 0.88 Suboblate 4.7 0.78 6.2 17.7 7.3 7.3 T. tempskyanum (T27) 36 (4x) 20.8 27 24.9 21.8 30.1 27.4 0.91 Oblate-spheroidal 3.1 0.52 4.2 14.6 5.2 5.2 T. ziganaense (T28) 18 (2x) 18.7 28.1 22.7 20.8 31.2 27 0.84 Suboblate 4.2 0.42 5.7 20.8 7.3 7.3 Matricaria 18 (2x) 16.6 20.8 18.7 18.7 21.8 20.3 0.92 Oblate-spheroidal 3.6 0.62 3.1 10.7 4.2 4.2 M. chamomilla var. chamomilla (M2) 18 (2x) 18.7 24.1 21.8 21.8 28.1 25 0.96 Oblate-spheroidal 5.2 0.8 4.4 12.5 5.6 5.6 M. chamomilla var. recutita (M3) 18 (2x) 20.8 27 23.9 22.9 28.1 25.5 0.94 Oblate-spheroidal 3.6 0.62 5.6 10.7 6.8 6.8 963 123 M. aurea (M1) Author's personal copy Chromosome number (2n)/ploidy level (x)* The comparative pollen morphology of Matricaria L. and Tripleurospemum Sch. Bip. Table 3 Pollen measurements of different taxa of Tipleurospermum and Matricaria 964 123 Table 3 continued Taxa M. matricarioide (M4) Taxa Chromosome number (2n)/ploidy level (x)* Polar axis (P) (lm) Equatorial axes (E) (lm) Min Max Mean Min Max Mean 18 (2x) 20.8 31.2 24.8 23.9 32.2 27.2 Aperture type P/E 0.9 Pollen shape Oblate-spheroidal Exine (lm) 3.9 Spine Length (lm) Width at base (lm) Perforation number at base İntine (lm) 0.62 Colpus (lm) Pore (lm) Clt Clg Plt Plg 5.7 14.5 6.8 6.8 Ornamentation Ornamentation of inter-spinal area Tipleurospermum Tricolporate Tricolporate 4 3.3 4.2 4.2 18–25 30–60 Echinate Echinate Granulate–perforate Granulate–perforate T. oreades var. oreades (T3) Tricolporate 2.7 3.5 10–20 Echinate Granulate–perforate T. oreades var. tchihatchewii (T4) Tricolporate 2.8 3.6 10–20 Echinate Granulate–perforate T. rosellum var. album (T5) Tricolporate 4 4.4 20–50 Echinate Reticulate–perforate T. hygrophilum (T6) Tricolporate 2.8 3.4 12–35 Echinate Reticulate–perforate T. baytopianum (T7) Tricolporate 2.8 3.5 10–18 Echinate Granulate–perforate T. elongatum (T8) Tricolporate 3.2 4.1 20–45 Echinate Reticulate–perforate T. parviflorum (T9) Tricolporate 3.2 3.8 30–60 Echinate Reticulate–perforate T. inodorum (T10) Tricolporate 3.7 4.2 15–40 Echinate Reticulate–perforate T. kotschyi (T11) Tricolporate 4 4.6 20–50 Echinate Reticulate–perforate T. conoclinium (T12) Tricolporate 2.7 3.3 10–20 Echinate Reticulate–perforate T. tenufoliaum (T13) Tricolporate 3.4 4.3 30–60 Echinate Reticulate–perforate T. pichleri (T14) Tricolporate 2.1 2.4 10–25 Echinate Reticulate–perforate T. sevanense (T15) Tricolporate 2.5 3.6 20–50 Echinate Reticulate–perforate T. callosum (T16) T. corymbosum (T17) Tricolporate Tricolporate 2.1 3.4 3 4 12–20 12–25 Echinate Echinate Granulate–perforate Granulate–perforate T. heterolepis (T18) Tricolporate 3.1 2.8 5–20 Echinate Granulate–perforate T. transcaucasicum (T19) Tricolporate 2.6 4.2 30–60 Echinate Granulate–perforate T. repens (T20) Tricolporate 2.4 2.8 15–40 Echinate Reticulate–perforate T. fissurale (T21) Tricolporate 1.8 2.8 5–15 Echinate Reticulate–perforate Tricolporate 2.5 3.4 10–20 Echinate Granulate–perforate T. decipiens (T23) Tricolporate 2.5 4.1 15–40 Echinate Granulate–perforate T. microcephalum (T24) Tricolporate 2.4 3.1 25–50 Echinate Reticulate–perforate T. disciforme (T25) Tricolporate 2 3.7 30–50 Echinate Reticulate–perforate T. subnivale (T26) Tricolporate 3.6 4 15–35 Echinate Reticulate–perforate T. tempskyanum (T27) Tricolporate 3.5 4.2 15–35 Echinate Granulate–perforate T. ziganaense (T28) Tricolporate 3.1 3.7 25–50 Echinate Granulate–perforate T. Çeter et al. T. monticolum (T22) Author's personal copy T. caucasicum (T1) T. melanolepis (T2) Author's personal copy Rugulate–perforate Rugulate–perforate Echinate Numerical analysis Echinate 2.5 Clg colpus length, Clt colpus width, Plt pore width, Plg pore length * Watanabe 2009; Inceer and Hayirlioglu-Ayaz 2010 2.3 2 % tetracolporate, 5 % syncolporate, 93 % tricolporate M. matricarioide (M4) 965 with safranin, and slightly heating the slide and then a cover slip was placed on it. The prepared slides were studied under the light microscope. Their photographs were taken with the Leica DM3000 digital photomicrograph system (Germany). Measurements were based on 20 or more pollen grains per specimen. For scanning electron microscopy (SEM) studies, dried pollen grains were transferred on aluminum stubs and coated with gold for 4 min in a sputter-coater (Pinar et al. 2009b; Altuner et al. 2012). Morphological observations were made in a Jeol JSM 6490LV Scanning electron microscope at TPAO Research Center SEM Laboratory. Terminology was adopted from Faegri and Iversen (1975), Salgado-Labouriau (1982), Mesfin et al. (1995) and Punt and Hoen (2009) and shape classification follows that of Erdtman (1969) based on P/E ratio in Table 3. 10–18 Rugulate–perforate Echinate 10–16 3.6 2.4 Tricolporate M. chamomilla var. recutita (M3) 2.4 Tricolporate M. chamomilla var. chamomilla (M2) 3.3 8–15 Rugulate–perforate Echinate 3.2 1 % tricolpate, 2 % syncolporate, 97 % tricolporate M. aurea (M1) 2.3 Length (lm) Matricaria Taxa Table 3 continued Aperture type Spine Width at base (lm) 8–15 Perforation number at base Ornamentation of inter-spinal area Ornamentation The comparative pollen morphology of Matricaria L. and Tripleurospemum Sch. Bip. The Simpson and Roe graphical test (Van der Pluym and Hideux 1997) was used for statistical calculations. Pollen characters of the taxa, coefficient of correlation were determined, and they were grouped using the clustering analysis method (UPGMA, dissimilarity, standardized variable) as well as ordination based on principal component analysis (PCA) (Fig. 1). Four palynological (consisting of binary nominal, multistate nominal and qualitative) characters were selected to distinguish the 32 taxa (OTUs) of the genara Matricaria and Tripleurospermum (Table 2). Four morphological character states and their values or scales are given at Table 2. A primary mixed data matrix was created for 32 taxa (OTUs) and four palynological characters (Table 2) for the analysis. Since Gower’s formula (Gower 1971) modified by Podani (1999) allows the inclusion of ordinal variables and missing scores in the data matrix, it was used to calculate the primary mixed data for dissimilarities. Unweighted pair group method using arithmetic averages (UPGMA) was selected because it is the most commonly used method (Mohammadi and Prasanna 2003) and it has advantages to other methods in: accurate reflection of the similarity matrix as measured by the co-phenetic correlation coefficient of Sokal and Rohlf (1962), symmetrical hierarchical structure [the ‘‘structural value’’ concept of McNeill (1979)], and congruence with classification derived by traditional methods (Ward 1993). All computations were made by the SYNTAX 2000 software (Podani 2001). Results Detailed pollen morphological features of the investigated taxa are summarized in Table 3 and representative pollen grains are illustrated in figures. 123 Author's personal copy 966 Fig. 2 SEM microphotograph of Tripleurospermun. 1, 2 T. caucasicum; 3, 4 T. melanolepis; 5, 6 T. oreades var. oreades; 7, 8 T. oreades var. tchihatchewii; 9, 10 T. rosellum var. album; 11, 12 123 T. Çeter et al. T. hygrophilum; 13, 14 T. baytopianum; 15, 16 T. elongatum; 17, 18 T. parviflorum; 19, 20 T. inodorum Author's personal copy The comparative pollen morphology of Matricaria L. and Tripleurospemum Sch. Bip. 967 Fig. 3 Light microscope microphotograph of Tripleurospermun. 1–4 T. caucasicum; 5–8 T. melanolepis; 9–12 T. oreades var. oreades; 13–16 T. oreades var. tchihatchewii; 17–20 T. rosellum var. album 123 Author's personal copy 968 T. Çeter et al. Fig. 4 Light microscope microphotograph of Tripleurospermun. 1–4 T. hygrophilum; 5–8 T. baytopianum; 9–12 T. elongatum; 13–16 T. parviflorum; 17–20 T. inodorum 123 Author's personal copy The comparative pollen morphology of Matricaria L. and Tripleurospemum Sch. Bip. 969 Fig. 5 SEM microphotograph of Tripleurospermun. 1, 2 T. kotschyi; 3, 4 T. conoclinium; 5, 6 T. tenufoliaum; 7, 8 T. pichleri; 9, 10; T. sevanense; 11, 12 T. callosum; 13, 14 T. corymbosum; 15, 16 T. heterolepis; 17, 18 T. transcaucasicum; 19, 20 T. repens 123 Author's personal copy 970 T. Çeter et al. Fig. 6 Light microscope microphotograph of Tripleurospermun. 1–4 T. kotschyi; 5–8 T. conoclinium; 9–12 T. tenufoliaum; 13–16 T. pichleri; 17–20 T. sevanense 123 Author's personal copy The comparative pollen morphology of Matricaria L. and Tripleurospemum Sch. Bip. 971 Fig. 7 Light microscope microphotograph of Tripleurospermun. 1–4 T. callosum; 5–8 T. corymbosum; 9–12 T. heterolepis; 13–16 T. transcaucasicum; 17–20 T. repens 123 Author's personal copy 972 123 T. Çeter et al. Author's personal copy The comparative pollen morphology of Matricaria L. and Tripleurospemum Sch. Bip. Fig. 8 SEM microphotograph of Tripleurospermun. 1, 2 T. fissurale; 3, 4 T. monticolum; 5, 6 T. decipiens; 7, 8 T. microcephalum; 9, 10 T. disciforme; 11, 12 T. subnivale; 13, 14 T. tempskyanum; 15, 16 T. ziganaense; 17, 18 M. aurea; 19, 20 M. chamomilla var. chamomilla; 21, 22 M. chamomilla var. recutita; 23, 24 M. Matricarioide Size, symmetry and shape The pollen grains of Matricaria and Tripleurospermum are radially symmetrical and isopolar. The pollen grains of the Matricaria are oblate-spheroidal with the polar axes 16.6–31.2 lm and the equatorial axes 18.7–23.9 lm. Tripleurospermum is oblate-spheroidal, suboblate and prolate-spheroidal with the polar axes 15.6–32.2 lm and the equatorial axes 17.7–38.5 lm (Fig. 1). Their dimensions are smaller in T. disciforme and M. aurea, and larger in T. subnivale and T. pichleri. Both of their outlines are elliptic in equatorial view and triangular in polar view: amb intersemiangular. (Table 3; Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10). Apertures The pollen grains of Tripleurospermum are operculate and tricolporate. Matricaria is operulate and usually tricolporate or rarely syncolporate, tricolpate and tetracolporate. Some species have shown heteromorfic characteristics. For example; 1 % tricolpate, 2 % syncolporate and 97 % tricolporate in M. aurea and 2 % tetracolporate, 5 % syncolporate and 93 % tricolporate in M. matricarioides. Colpus is short or long (10.4–20.8 lm) and narrow or broad (2.3–6.5 lm) and ora is circular or lalongated in Tripleurospermum. The colpus of Matricaria is short (10.9–14.5 lm) and narrow (3.6–5.2 lm) and ora, circular. The highest values were observed in T. transcaucasicum and T. ziganaense. M. aurea and M. chamomilla var. recutita have smallest values of colpus. Margins distinct are regular and ends are acute in both of them. Colpus membrane is more or less granulate (Table 3; Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10). Exine The overall thickness of stratified exine ranges from 2.8 to 4.8 lm in Tripleurospermum, 3.6 to 5.2 lm in Matricaria. Ectexine is thicker than endexine without costae and cavea. Intratectal columellae are very distinct under spines, but indistinct in inter-spinal region. The spines are commonly conical with a broadened base and a tapered apical portion. The spine length varies between 1.8–4 lm in Tripleurospermum and 2.3–3.3 lm in Matricaria. The width of spines varies between 2.8–4.6 lm in Tripleurospermum and 2.4–3.6 lm in Matricaria. The base of the spines in almost all species studied has irregular 1 (T. fissurale, 973 T. oreades var. oreades and T. ziganaense), 2 (T. pichleri, M aurea, M. chamomilla var. chamomilla, M. chamomilla var. recutita, M. matricarioides), 3 or 4 seriate perforations with the larger holes often found distally. The number of cavities is 5–60 in Tripleurospermum, 8–18 in Matricaria. Intine is thicker under pores in Tripleurospermum (0.3–0.62 lm) than in Matricaria (0.6–0.8 lm) (Table 3; Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10). The pollen wall is provided with spines and it is either granulate–perforate, reticulate–perforate or rugulate–perforate (Matricaria spp.). In all the species, the tectum surronding the spine base is microperforate. Table 3 provides a summary of the tectal morphology in Tripleurospermum and Matricaria. In Matricaria and Tripleurospermum, numerical analysis of the differential palynological characters, which became evident during the course of our investigations, led to the realization of a dendrogram. This dendrogram shows the similaries or dissimilarities which exist among the taxa being studied. A dendrogram of cluster analysis of Turkish Matricaria and Tripleurospermum taxa based on 4 character states of 32 taxa (OTUs) has been constructed. To evaluate the correlation between the dendrogram and the distance matrix, the cophenetic correlation coefficient was measured: the higher the correlation, the better the representation of distances in the hierarchy. If the value is higher than 0.9, the correlation is high; if the value is lower than 0.74, the correlation is not significant. The cophenetic correlation coefficient of 0.7946 shows a significant correlation between the dendrogram and the distance matrix, but the correlation is not high (Fig. 11). Discussion The grains of the taxa of Matricaria can be ascribed to the ‘‘Anthemis’’ type of Stix (1960), Matricaria type of Beug (2004) and ‘‘Anthemis arvensis’’ type of Punt and Hoen (2009), but Tripleurospermum cannot also be classified by any authors. The general pollen characteristics found in the Matricaria taxa are the same as for the Tripleurospermum taxa. The dimensions (P and E) and the thickness of exine and intine are almost similar. (Table 3; Fig. 1). Similarly, Inceer and Ozcan (2011) found that the leaf morphologies and anatomical structures of Matricaria and Tripleurospermum basically resemble each other. Some of the taxa of Tripleurospermum have 2n = 18 and 2n = 36 chromosomes and some of the taxa of Matricaria have 2n = 18 chromosomes (Inceer and Beyazoglu 2004; Inceer and Hayirlioglu-Ayaz 2010). Stoma and vascular bundle can be used as an anatomical marker to distinguish diploid from polyploid taxa in a 123 Author's personal copy 974 T. Çeter et al. Fig. 9 Light microscope microphotograph of Tripleurospermun. 1–4 T. fissurale; 5–8 T. monticolum; 9–12 T. decipiens; 13–16 T. microcephalum; 17–20 T. disciforme; 21–24 T. subnivale 123 Author's personal copy The comparative pollen morphology of Matricaria L. and Tripleurospemum Sch. Bip. 975 Fig. 10 Light microscope microphotograph of Tripleurospermun and Matricaria. 1–4 T. tempskyanum; 5–8 T. ziganaense; 9–12 M. aurea; 13–16 M. chamomilla var. chamomilla; 17–20 M. chamomilla var. recutita; 21–24 M. Matricarioide 123 Author's personal copy 976 T. Çeter et al. Fig. 11 Dendrogram showing dissimilarity distance of the examined taxa Matricaria and Tripleurospermum (Inceer and Ozcan 2011). Also, Chatuverdi et al. (1990) and Brochman (1992) reported that pollen grain size strongly correlates with the level of polyploid, but the data presented here does not show such a correlation. Mean values for P and E diploid and poliploid species are very similar (Table 3; Fig. 1). Similarly, great variations in the values of P and E in diploid, triploid and tetraploid species of section Onorbyoidei of Astragalus have not been observed by Pinar et al. (2009a, b). The position and size of the basal cavities are speciesdependent (Salgado-Labouriau 1982; Mesfin et al. 1995). Observations using LM and SEM methods show that the number of the basal cavities and seriate values found in Tripleurospermum are highest, and thus the Matricaria taxa had smaller values. Mesfin et al. (1995) stated that the ornamentations between spines are an important characteristic for Asteraceae. Ornamentations between spines are granulate–perforate or reticulate–perforate in Tripleurospermum, and rugulate–perforate in Matricaria. The general aperture form is tricolporate, but M. aurea (1 % tricolpate, 2 % syncolporate and 97 % tricolporate) and M. matricarioides (2 % tetracolporate, 5 % syncolporate and 93 % tricolporate) show considerable aperture type variation (Table 3; Figs. 8, 10). Variations in pollen size and aperture type were attributed to heteromorphy in pollen grains by Nair and Kaul (1965) and Inceoglu (1973). 123 Cluster analysis divided taxa into three main groups, namely cluster A, B and C; Cluster A includes: T. caucasicum, T. melanolepis, T. decipiens, T. ziganaense, T. heterolepis, T. transcaucasicum; B1 includes T. oreades var. oreades, T. oreades var. tchihatchewii, T. conoclinium, T. callosum, T. baytopianum, T. corymbosum, T. tempskyanum, T. monticolum; B2 only includes Matricaria namely: Matricaria chamomilla var. chamomilla, M. chamomilla var. recutita, M. aurea, M. matricarioides. Cluster C1 includes T. rosellum var. album, T. sevanense, T. elongatum, T. kotschyi, T. repens, T. pichleri, T. parviflorum, T. tenufoliaum; Cluster C2 includes T. hygrophilum, T. subnivale, T. inodorum, T. microcephalum, T. disciforme, T. fissurale. Results presented according to palynological data in this study showed that all Matricaria are clustered together but are not separated from Tripleurospermum. Acknowledgments The authors thank Scientific and Technological Research Council of Turkey (TUBITAK, TBAG Project No. 106T162) for financial support. References Altuner EM, Çeter T, Alpas H (2012) High hydrostatic pressure processing: a method having high success potential in pollen protein extraction. High Pres Res 32(2):291–298 Author's personal copy The comparative pollen morphology of Matricaria L. and Tripleurospemum Sch. Bip. Applequist WL (2002) A reassesment of the nomenclature of Matricaria L. and Tripleurospermum Sch. Bip. (Asteraceae). Taxon 51:757–761 Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friederich Pfeil, München Blackmore S (1982) The apertures of Lactuceae (Compositae) pollen. Pollen Spores 24:453–462 Blackmore S (1990) Sporoderm homologies and morphogenesis in land plants, with a discussion of Echinops sphaerocephala (Compositae). Plant Syst Evol (Suppl 5):1–12 Bremer K, Humphries CJ (1993) Genetic monograph of the Asteraceae–Anthemideae. Bull Nat His Mus Lond (Bot) 23:71–177 Brochman C (1992) Pollen and seed morphology of Nordic Draba (Brassicacea): phylogenetic and ecological implications. Nord J Bot 12:657–673 Chatuverdi M, Yunus D, Nair PK (1990) Cytopalynological studies of Arachis L. (Leguminosae). Cultivated and wild species and their hybrids. Grana 29:109–117 Enayet Hossain ABM (1975) Tripleurospermum Schultz Bip. In: Davis PH (ed) Flora of turkey and the east aegean islands, vol 5. Edinburgh University Press, Edinburgh, pp 295–311 Erdtman G (1969) Handbook of palynology, morphology, taxonomy and ecology. Munksgaard, Copenhagen Faegri K, Iversen J (1975) Textbook of pollen analysis, 4th edn. Wiley, New York Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–871 Grierson AJC (1975) Matricaria L. In: Davis PH (ed) Flora of turkey and the east aegean islands, vol 5. Edinburgh University Press, Edinburgh, pp 293–295 Hansen HV, Christensen KI (2009) The common chamomilla and the scentless mayweed revisited. Taxon 58(1):261–264 Harling G (1951) Embryological studies in the compositae, part II, Anthemideae–Chrysantheminae. Acta Horti Berg 16:1–56 Inceer H, Beyazoglu O (2004) Karyological studies in Tripleurospermum (Asteraceae, Anthemideae) from north-east Anatolia. Bot J Linn Soc 146(4):427–438 Inceer H, Hayirlioglu-Ayaz S (2008) Tripleurospermum ziganaense (Asteraceae, Anthemideae), a new species from north-east Anatolia, Turkey. Bot J Linn Soc 158:696–700 Inceer H, Hayirlioglu-Ayaz S (2010) Chromosome numbers in Tripleurospermum Sch. Bip. (Asteraceae) and closely related genera: relationships between ploidy level and stomatal length. Plant Syst Evol 285(3–4):149–157 Inceer H, Ozcan M (2011) Leaf anatomy as an additional taxonomy tool for 18 taxa of Matricaria L. and Tripleurospermum Sch. Bip. (Anthemideae–Asteraceae) in Turkey. Plant Syst Evol 296(3–4):205–215 Inceer H, Bal M, Ceter T, Pinar NM (2012) Fruit structure of 12 Turkish endemic Tripleurospermum Sch. Bip. (Asteraceae) taxa and its taxonomic implications. Plant Syst Evol 298:845–855 İnceoğlu O (1973) Asyneuma canescens (W.K.) Griseb. & Schenk’in polen morfolojisi ve heteremof polenler. Türk Biyoloji Derg 23:89–94 Inceoğlu Ö, Karamustafa F (1977) The pollen morphology of plant in Ankara region I. Compositae. Communications 21:77–100 Jeffrey C (1979) Note on the lectotypification of the names Cacalia L. Matricaria and Gnaphalium L. Taxon 28:349–351 Kay QON (1976) Chamomilla S.F.Gray and Matricaria L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 4. Camridge University Press, Camridge, pp 165–167 Kerguélen M, Bosc C, Lambinon J (1987) Données taxonomiques nomenclaturales et chrologiques pour une révision de la flore de France. Lejeunia 120:1–264 977 McNeill J (1979) Structural value: a concept used in the construction of taxonomic classifications. Taxon 28:481–504 Mesfin T, Crawford DJ, Smith EB (1995) Pollen morphology of North Coreopsis (Compositae). Grana 34:21–27 Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants. Salient statistical tools and considerations. Crop Sci 43:1235–1248 Nair PK, Kaul KN (1965) Pollen grain in a gigantic of Rauwolfia serpentine. Current Sci 34:256–257 Oberprieler C (2001) Phylogenetic relationships in Anthemis L. (Compositae, Anthemideae) based on nrDNA ITS sequence variation. Taxon 50:745–762 Oberprieler C, Vogt R and Watson LE (2007) XVI. Tribe Anthemidea Cass. In: Kadereit JW, Jeffrey C, Kubitzki K (eds) Flowering plants Eudicots. The families and genera of vascular plants 1819, vol 8. Springer, Berlin, pp 342–374 Pınar NM, Adıgüzel N (1998) Pollen morphology of some Turkish Artemisia L. (Compositae) species. Ot Sistematik Botanik Dergisi 5(2):87–92 Pınar NM, İnceoğlu Ö (1996) A Comparative study on the pollen morphology of Centaurea triumfettii All. groups A, B and C with light and electron microscopy. Turk J Bot 20:395–398 Pınar NM, Oybak Dönmez E (2000) Pollen morphology of some Turkish endemic Helichrysum Gaertner species (Compositae). Pakistan J Bot 32(2):295–301 Pınar NM, Ekici M, Aytac Z, Akan H, Ceter T, Alan Ş (2009a) Pollen morphology of Astragalus L. sect. Onobrychoidei DC. (Fabaceae) in Turkey. Turk J Bot 33:291–303 Pınar NM, Duran A, Çeter T, Tuğ GN (2009b) Pollen and Seed Morphology of the Genus Hesperis L. (Brassicaceae) in Turkey. Turk J Bot 33(2):83–96 Podani J (1999) Extending Gower’s coefficient of similarity to ordinal characters. Taxon 48:331–340 Podani J (2001) SYN-TAX 2000. Computer programs for data analysis in ecology and systematics. User’s manual. Scientia, Budapest, Hungery, pp 1–53 Punt W, Hoen PP (2009) The Northwest European Pollen Flora, 70: Asteraceae–Asteroideae. Rev Palaeobot and Palynol 157:22–183 Rauschert S (1974) Nomenklatorische probleme in den gatung Matricaria L. Folia Geobot Phytotax 9:249–260 Salgado-Labourıau ML (1982) On cavities in spines of Compositae pollen. Grana 21:97–102 Skvarla JJ, Larson DA (1965) An electron microscopic study of pollen morphology in the Compositae with special referencemto the Ambrosiinae. Grana Palynol 6(2):210–269 Sokal RR, Rohlf FJ (1962) The comparison of dendrograms by objective methods. Taxon 11:33–40 Stix E (1960) Pollenmorphologische Untersuchungen an Compositen. Grana Palynol 2(2):41–114 Van der Pluym A, Hideux M (1997) Applications d’une methodologie quantitative a la palynologie d’Eryngium maritimum (Umbelliferae). Plant Syst Evol 127:55–85 Wagenitz G (1955) Pollenmorphologie und Systematik in der Gattung Centaurea L. s.l. Flora 142:213–277 Ward JM (1993) Systematics of New Zealand Inuleae (Compositae– Asteraceae)-2, A numerical phenetic study of Raoulia in relation to allied genera. New Zeal J Bot 31:29–42 Watanabe W (2009) Index to chromosome numbers in Asteraceae. http://www.lib.kobe-u.ac.jp/infolib/meta_pub/G0000003asteraceae_e, updated September 2009, Accessed 17 July 2012 Wodehouse PP (1935) Pollen grains. McGraw-Hill, New York Xifreda CC (1985) Sonre el nombre cientifica correcta de la manzanilla (Matricaria recutita L., Asteraceae). Darwiniana 26:373–375 123