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Abstract: Acquired Immunodeficiency Syndrome (AIDS), which chiefly originatesfroma retrovirus
named Human Immunodeficiency Virus (HIV), has impacted about 70 million people worldwide.
Even though several advances have been made in the field of antiretroviral combination therapy, HIV is
still responsible for a considerable number of deaths in Africa. The current antiretroviral therapies
have achieved success in providing instant HIV suppression but with countless undesirable adverse
effects. Presently, the biodiversity of the plant kingdom is being explored by several researchers for
the discovery of potent anti-HIV drugs with different mechanisms of action. The primary challenge
is to afford a treatment that is free from any sort of risk of drug resistance and serious side effects.
Hence, there is a strong demand to evaluate drugs derived from plants as well as their derivatives.
Several plants, such as Andrographis paniculata, Dioscorea bulbifera, Aegle marmelos, Wistaria floribunda,
Lindera chunii, Xanthoceras sorbifolia and others have displayed significant anti-HIV activity. Here,
weattempt to summarize the main results, which focus on the structures of most potent plant-based
natural products having anti-HIV activity along with their mechanisms of action and IC50 values,
structure-activity-relationships and important key findings.

Keywords: AIDS; anti-HIV; natural products; MOAs

1. Introduction

Acquired immunodeficiency syndrome (AIDS) is a disease of the cell-mediated immune system
or T-lymphocytes of the human body. In AIDS, the count of helper T cells isreduced, which directly
stimulates the production of antibodies from B-cells. Consequently, the body’s natural defense system
against AIDS infection isdestroyed [1]. According tothe World Health Organization (WHO), it is
estimated that about 75 million individuals have been infected from the human immunodeficiency
virus (HIV), and about 37 million people are still under the fighting stage. The prevalence of HIV
is expected to increase significantly due to illiteracy, non-hygienic living conditions, unsafe sexual
relationships and lack of awareness [2]. Initially, the first human retrovirus was founded at the National
Cancer Institute, in the USA by Robert Galloand his colleagues, after being first discovered in 1981
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among homosexuals. In 1983, Professor Luc Montagnier and co-workers later discovered the AIDS
virus at the Institute Pasteur, in Paris [3]. In 1986, the International Committee on Viral Nomenclature
were the first to officially name the AIDS virus the human immunodeficiency virus (HIV) [4]. Currently,
Africans worldwide are stricken by this illness more than any other race [5].

1.1. The HIV Structure

The motor agent for AIDS is an animal retrovirus named HIV that is ready to replicate and
integrate its infectious DNA into the host cell’s healthy DNA. It is an animal virus that chiefly attacks
the body’s helper T cells [6,7]. The virus is spherically shaped, having a diameter of around 90–120 nm.
Its genetic material generally contains a single standard RNA fiber metameric into two similar fibers
and is connected with an enzyme called reverse transcriptase (RT). The viral coating contains a lipid
bilayer that is derived from the membrane of the host cells and spikes of glycoprotein that are like
projecting knob. It consists of two protein coats, as depicted in Figure 1 [8,9]. Internally, the virus
contains a protein layer (the matrix), which consists of the necessary proteins and nuclear material.
The virus also contains an enzyme known as a protease that disintegrates the viral polyproteins to
form new functional proteins. The role of reverse transcriptase is to catalyse the conversion of the viral
RNA into viral DNA and integrase, which allows the entry of viral DNA into the host nucleus [10,11].
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Figure 1. Structure of human immunodeficiency virus (HIV) virus [10]. Image was originally published
within Open Access license.

1.2. Replication Cycle of HIV

The complete HIV replication cycle is represented in Figure 2. After the entrance of the virus
into the body of an individual, the virus invades the body cells through CCRS or CXCR4 receptors
shown on the top of the macrophages, known as T-lymphocytes, dendritic cells and monocytes [6,7].
After entering the host cell, the virus binds with chemokine receptors and interacts with cell membrane
proteins. The virus then releases and utilizes its reverse transcriptase (RT) enzyme for the synthesis of
viral DNA from its viral genome i.e., HIV RNA. This conversion allows the virus to enter into the host
cell nucleus, where the enzyme integrase releases and perform integration of its viral DNA into the
host cell’s DNA [8–11]. Newly formed HIV proteins and viral RNA shifts towards the cell membrane
and reuniteswith immature HIV. The new immature (non-infectious) virus then buds off from the
host cells, which inturn initiates the release of the protease enzyme from the viruses that cause the
breakdown of long-chain polypeptides of immature viruses. The newly formed small protein particles
make the new mature viruses that enter into the new host cells for spreading the infection [12,13].
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1.3. Diagnosis

The level of HIV infection is diagnosed from the blood plasma of the host through their viral
RNA mass estimation. The infection has been associated with the period of acute symptoms viz;
lymphadenopathy, fever, weight loss, lethargy, general malaise, pharyngitis, rashes, nausea, headache,
myalgias and meningitis, etc. [2,6]. During acute HIV infection, the viral RNA is at the highest levels
in the blood plasma. It is estimated that the amount and characteristics of the virus indicate its
pathogenesis and replication. Hence, the clinical details and infection progression depend on the host
characteristics, along with the viral genotype [14–16]. ELISA and Western Blotting were the two main
tests employed for the diagnosis of AIDS in the past. ELISA is used for the detection and measurement
of the antibodies that are produced against a specific pathogen [17], while Western Blotting was
employed for confirmation of ELISA positive tests. It is used to check the specific proteins in the blood
sample. The samples go through the protein denaturation and then gel electrophoresis. The combined
effect of both tests is found to be 99% accurate. Nowadays, various advantageous alternatives are
available in place of Western Blotting.Among the advantages associated with such alternatives is less
time-consuming testing [18].

1.4. Present Therapy for HIV/AIDS

The knowledge of HIV has beenmade public since the 1980s. However, there is currently no
availability of efficacious therapy or vaccine for the entire destruction of the virus [2]. Current AIDS
treatments have many drawbacks, e.g., complex and tedious treatment protocols, requiring expertise
from medical practitioners, solid motivation and patient’s commitment. Antiretroviral therapy (ART)
is only about twenty years old, meaning that further approaches are still in progress. The usage of
certain medications can slow the progress of the disease without the patient necessarily being promised
total recovery. However, with the development of new entities and immune modulators, it is now
feasible to fight this deadly disease [19–21]. The drugs provide a meaningful advancement in mitigation,
control, cure, and prevention. With the establishment of highly active antiretroviral therapy (HAART)
and anti-retroviral agents in 1996 decreased the mortality and morbidity of AIDS has been observed.
Antiretroviral therapy is presently prescribed for all adult patients living with HIV [2]. Many types of



Molecules 2020, 25, 2070 4 of 48

combination approaches such as the use of nucleoside reverse transcriptase inhibitors, fusion inhibitors,
non-nucleoside reverse transcriptase inhibitors, integrase inhibitors, protease inhibitors, together with
immunomodulators have been prescribed to achieve a proficient therapeutic response [3,6,9–11].
Due to the lack of non-accessible effective regimens, it has been noted that the objective of therapy is to
sturdily and maximally prohibit viral replication so that the individual can achieve and maintain an
adequate immune response against the potential viral pathogens. The higher the abolition of viral
replication, the lower the incidence of development of the drug-resistant virus. The minimization in
the mortality and morbidity of the disorder has turned it from a lethal syndrome to a chronic and
controllable situation [5,19,21]. It is now advised that all HIV positive individuals with the perceptible
virus, disregarding their count of CD4 cells, should be recommended with ART quickly after diagnosis,
to avoid further progression [20].

1.5. Drawbacks of Current Anti-Retroviral Therapy

Even though it is impressive to deal with all the symptomatic and asymptomatic HIV infected
persons, no long-lasting clinical outcomes have been illustrated in asymptomatic patients with
acceptable immune competency [22]. Arguments in contrast to early remedies in asymptomatic patients
involve the dangerous side effects of anti-HIV drugs, their toxicity and destructive effect of anti-HIV
drugs on quality of life, the possibility of drug resistance restricting future treatment opportunities,
big cost, drug interactions, the limited capability of available regimens, failure of treatment [23–25].
The right time to start anti-HIV therapy remainsuncertain. The antiviral drugs that act on the HIV
also affect the host cells; they may harm the host cell’s nuclear material along with the HIV genome.
With nucleoside reverse transcriptase inhibitors, toxicity is primarily due to the partial provision
of cellular DNA polymerase. Neutropenia and Anaemia are extremely critical and dose-dependent
adverse effects. Moreover, to date, there is no vaccine or cure for HIV infection, and the efficacy of
antiretroviral therapy consist of a combination of two or three antiviral agents, targeting different steps
of the virus replication cycle, can be compromised by the selection of strains resistant to one or multiple
drug classes and current treatment-associated toxicity. However, these drugs have only limited or
transient clinical benefit due to their noxious side effects and the emergence of viral variants resistant
to HIV-1 inhibitors. Unfortunately, their use is limited due to the speedy emergence of resistant viral
strains and to the severe toxic side effects. Hence, new natural products can be considered as novel
leads for the development of new effective and selective anti-AIDS agents [24–26].

2. Plants with Anti-HIV Potential

Presently, strategies available to combat AIDS are restricted by the evolution of multidrug
resistance. That is why novel targets and new efficacious drugs are required for achieving the goal of
an entire eradication of AIDS. Also, infected cells persist and constitutea basic barrier to the elimination
of HIV-1. For the past 10 years, the mechanism by which the virus persists hasnecessitated anovel
pathway in the discovery of new drug compounds that work efficaciously against HIV without
activating the T cells of the immune system [27,28]. To attain this goal, it has been recommended
by the WHO that ethnomedicines and various other natural constituents should be systematically
tested to combat HIV [29,30]. Interestingly, in the 1990s, natural products with their mechanisms
against HIV-1 enzymes like reverse transcriptase, integrase, protease and some fusion inhibitors were
discovered. The natural drugs have chemical diversity with higher hit rates in high throughput
screening and high capability to reach the target site [31–33]. Several alkaloids, flavonoids, coumarins,
terpenoids, and polyphenolic compounds, aswell as known therapeutic agents having an array of
biological activities like anticancer, analgesics, anti-inflammatory and exert anti-HIV activity extracted
from various plants, were found [34–44]. These became the sources of inspiration for many research
activities, e.g., the anti-HIV potential of components of Dioscorea bulbifera [45], Euphorbia sikkimensis [46],
Culendula officinalis [47], Sceletium tortuosum [48], Brazilian propolis, Kadsura lancilimba, Lithocarpus
litseifolius, and Ocimum labiatum [49–52].
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Taken together, the present review highlights the discovery of plant-based molecules during
the last few decades that have been used in the management of HIV. A detailed account of plants
according to their mechanism of action and activity of secondary metabolites has been discussed.
In addition to the structures of most potent phytochemicals, mechanistic insights revealed during the
biological evaluation, IC50 values and important key findings have also been presented. The detailed
mechanisms of this action and structure-activity-relationships of some of the compound classes remain
to be further investigated. This assemblage will be of great help for the scientific community working
towards the development of anti-HIV drugs. In this review, the natural medicinal plants are described
in two categories:

1. Plants according to their mechanism of action.
2. Plants according to the activity of secondary metabolites.

2.1. Natural Plants According to Their Mechanism of Action

Therapeutic agents of natural origin may be an encouraging alternative solution for the treatment
of several disorders and conditions [53–59]. In anti-HIV research, attention is chiefly paid tocompounds
which interfere with several steps involved in the HIV replication process. For example, almost all the
anti-HIV drugs act against the viral proteins represented by the viral protease, integrase, and reverse
transcriptase [60]. Anti-HIV drugs can be classified into several groups according to their action on the
life cycle of HIV [61]. Hence, different drugs act on these different steps of replication and inhibit the
further expansion of the virus into the body. A group of researchers reported the activities of HIV-PR
inhibitors from different plants primarily divided into the following categories [62–71]:

(a) Fusion inhibitors (FI)
(b) Reverse transcriptase inhibitors (RTI)
(c) Integrase inhibitors (ITI)
(d) Protease inhibitors (PRI)
(e) Immunomodulators
(f) Antioxidants

2.1.1. Fusion Inhibitors

Fusion inhibitors are also known as Entry inhibitors. These are mainly CCR5 co-receptor antagonists
which inhibit the binding of HIV surface glycoproteins with the host cell’s receptor [72]. Infection
primarily starts with the binding of the viral gp120 to the CD4 cell receptor expressed on the surface of
T cells, macrophages, and some monocytes. This results in the conformational change which further
stimulates the interaction of secondary gp120 with co-receptor CCR5 [73]. FIs prevent the entry of the
virus into the host cell by inhibiting the fusion of virus particles with the membrane of the host cell,
which is the early first step of virus replication [74].

Phytoconstituents from some plants, like Listeria ovate, Cymbidium hybrid, Hippeastrum hybrid,
Epipactis helleborine and Urtica dioica possessing the activities of fusion inhibitors and act against the
HIV-1 and HIV-2 [75,76]. Matsuda et al. reported an alkaloid Cepharanthine (1) isolated from Stephania
cepharantha having anti-HIV and anti-tumour potential without exerting any type of serious toxic
effects. This compound modifies the plasma membrane fluidity and prevents viral cell fusion [77].
A diterpene lactone named Andrographolide (2) shown in Figure 3 was obtained from the herb
Andrographis paniculata and possesses HIV-1 fusion inhibition propertiesevaluated in vitro using AZT
(Zidovudine) as a positive control [78–82]. Several other derivatives have been derived synthetically to
exert more potent anti-HIV properties [83,84].
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2.1.2. Plant Extracts as Reverse Transcriptase Inhibitors

The HIV virus utilizes the reverse transcriptase enzyme for the conversion of its viral RNA into
DNA. RT inhibitors mainly act upon this enzyme and prohibit one of the essential steps of viral
replication [85,86]. Several natural products have been isolated from plants are available in theliterature,
which have been screened for their activity against RT [66]. The plants which tested positively for reverse
transcriptase inhibition include; Culendula officinalis, Acacia mellifera, Uvaria angolensis, Hypericum scruglii,
Spaganium stoloniferum, Calophyllum brasiliense, Maytenus buchanani, Prunus Africana, Vernonia jugalis,
Maytenus senegalensis, Melia azedarach, Calophyllum inophyllum, Lomatium suksdorfii, Coriandrum sativum,
Chrysanthemum morifolium and Swertia franchetiana [47,66–93]. Capryl aldehyde and methyl-n-nonyl
ketone obtained from Houttuyniu cordata directly inhibit the RT enzyme [66]. Calanolides A (3) and B
(4) [89] have been obtained from the plant Calophyllum inophyllum. The introduction of bulky groups
has been shown to be essential at the C-4 position to enhance anti-HIV activity. The stereochemistry of
the C-12 hydroxyl (R or S configured) is not, however, as critical for activity. Methyl groups at the
C-10 and C-11positions were also shown to be required for activity. Hydrogen bond acceptors at C-12
were also shown to be responsible for the activity, both in calanolides and inophyllums. In vitro assay
results revealed that (+)-Calanolide-A inhibits RT in two diverse template primer systems. The action
of (+)-Calanolide-A is possible due to the bi-bi prearranged mechanism of RT. Calanolide is at least
partially competitive about dNTP binding. Structure-activity-relationships and important key findings
of Calanolides are shown in Figure 4.
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(RT) inhibitors.

Some naphthoquinones, e.g., Michellamines A, B and C, isolated from the plant Ancistrocladus
korupensis, exhibited inhibitory activity against the HIV-RT enzyme [94]. The compound Acetogenin
protolichensterinic acid is a RT inhibitory agent, obtained from Cetraria islandica [95]. The compounds
Mallotochromene (5) and Mallotojaponin (6) (Figure 5) from Mallotus japonicas have shown strong
inhibition against HIV-RT [96]. Nigranoic acid, from Schisandra lancifolia, acted effectively on the RT of
HIV [97]. A few more examples of plants showing HIV-RT inhibitory properties are given in Table 1.
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Table 1. Plant-based reverse transcriptase inhibitors.

Compound Class Plant Species Chemical Constituents Reference
Terpenoid Excoecaria agallocha Phorbol [98]
Terpenoid Trypterygium wilfordii Salaspermic acid [99]

Terpenoid Euphorbia myrsinites 15-O-acetyl-3-O-butanoyl-5-O-propionyl-7-O-
nicotinoylmyrsinol [100]

Terpenoid Polyalthia suberosa Suberosol [101]
Terpenoid Andrographis paniculata Dehydroandrographolide succinic acid monoester [102]
Terpenoid Glycyrrhiza radix Glycyrrhizin [103]
Terpenoid Cowania Mexicana Cucurbitacin F [104]
Terpenoid Tripterygium wilfordii Tripterifordin [105]
Terpenoid Maprounea Africana 1 β-hydroxymaprounic acid 3-p-hydroxybenzoate [106]
Terpenoid Szigium claviforum Betulinic acid, platonic acid [107]
Terpenoid Houttuynia cordata Lauryl aldehyde, capryl aldehyde [108]
Flavonoid Chrysanthemum morifolium Acacetin-7-O-β-galactopyranoside [92]
Flavonoid Scutellaria baicalensis Baicalin [109]
Flavonoid Buchenavia capitata Buchenavianine [110]
Flavonoid Kummerolvia striata Apigenin-7-O-β-D-glucopyranoside [111]
Coumarin Calophyllum inophyllum Inophyllums [112]
Coumarin Coriandrum sativum Coriandrin [91]
Coumarin Lomatium suksdorfii Suksdorfin [90]
Coumarin Aegle marmelous Imperatorin, xanthotoxol, xanthotoxin [113,114]
Tannin Euphorbia jolkini Putranjivain A [115]
Tannin Cornus officinalis Cornusin A [116]
Tannin Mallotus repandus Repandusinic acid [117]
Tannin Hyssop officinalis Caffeic acid [118]
Polysaccharide Thuja occidentalis Thujone [119]
Polysaccharide Prunella vulgar Sulfated polysaccharide [120]
Polysaccharide Viola yedoensis Sulfonated polysaccharide [121]
Xanthone Tripterospermum lenceolaum 1,3,5,6-tetrahydroxyxanthone, [122]

3,4,5,6-tetrahydroxyxanthone
Lignan Haplophyllum ptilostylum Ptilostin [123]
Lignan Schisandra chinensis Gomisin J [124]
Lignan Ipomoea cairica Arctigenin, trachelogenin [125]
Marine origin Hyatella intestinalis Hyatellaquinone [126]
Marine origin Fascaplysinopis reticulate Fascaplysin, isodehydroluffariellolide, [127]

Homofascaplysin C
- Toxiclona toxius Toxiusol [128]
- Plakortis sp. Plakinidine A [129]
- Kelletia kelletii Kelletinin 1 [130]
- Buccinulum corneum Kelletinin A [131]
- Maprounea Africana 1β-hydroxyaleuritolic acid 3-p-hydroxybenzoate [132]

The compounds obtained from different plants, showing anti-HIV RT activity show the presence of
certain pharmacophores which are essential for the therapeutic activity. These pharmacophoresinclude;
coumarin, chromone, indole moiety and steroidal nucleous in the compounds, e.g., suksdorfin
(7) [90], salaspermic acid (8) [99], cucurbitacin F (9) [104], batulinic acid (10) [107], baicalin (11) [109],
buchenavianine (12) [110], thujone (13) [117], hyatellaquinone (14) [126], isodehyroluffariellolide
(15) [127], homofascaplysin-C (16) [127], toxiusol (17) [128] reperesented in Figure 5.
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2.1.3. Plants Exhibiting Integrase Inhibition

The insertion of HIV DNA into the DNA of the host cell is generally catalyzed by
the integrase enzyme of HIV. The reaction proceeds in two phases; the first phase is the
processing phase and the second phase includes strand transfer [133]. Various active components
have been separated from the plant Dioscorea bulbifera and exhibited several therapeutic
properties such as: anticancer, antibacterial, analgesic, and antidiabetic [134–138]. Chaniad et al.
isolated seven different compoundsfrom D. bulbifera which showed anti-HIV properties [45].
These include; allantoin (18), 5,7,4′-trihydroxy-2-styrylchromone,2,4,3′,5′-tetrahydroxybibenzyl,
quercetin-3-O-β-D-galacto-pyranoside, 2,4,6,7-tetrahydroxy-9,10-dihydrophenanthrene, quercetin-3-
O-β-D-glucopyranoside (19), and myricetin (20) (Figure 6). The results indicate that compound 20 had
the best binding affinity within the active site of the integrase enzyme, forming strong interactions
with amino acids. Moreover, significant activity is due to the presence of the galloyl, catechol,
and sugar moieties which are responsible for the potential actions. In another study, Panthong et al.
revealed that Albizia procera is a medicinal plant that has been used in antiretroviral therapy [139,140].
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Catechin (21), suramin and protocatechuic acid (22) were shown to be the components identified
from the plant extract and were considered to act on the integrase enzyme of HIV, thus prohibiting
viral replication [139]. Compound 21 interacted with Thr66, Gly148, and Glu152 in the core domain
of the enzyme, whereas compound 22 interacted with Thr66, His67, Glu152, Asn155, and Lys159.
Some ribosome-inactivating proteins are considered to act on the integrase enzyme [141]. It was
observed that compound 20, having a galloyl moiety, possessed the most potent activity due to its
strong binding with amino acids of the integrase enzyme. In compound 19, the catechol group was
partly responsible for the activity. Since compound 19 contains sugar moiety as well, which increases
the solubility of the molecule, this enhances its activity. A ribosome-inactivating protein (RIP) named
MAP30, which has been extracted from Momordica charantia, has been reported to act against HIV
and cancer [142,143]. Zhao et al. discovered another RIP trichosanthin, from the roots of Trichosanthes
kirilowii, which showed inhibitory activity against the integrase enzyme [144]. A variety of plant RIPs
including agrostin, saporin, R-momorcharin, gelonin, α-momorchain, trichosanthin and luffin have
also exhibited an inhibitory effect on HIV replication [145].

2.1.4. Plants Containing Protease Inhibitors

Protease is a viral enzyme that acts at the last step of replication of the virus. It causes
the breakdown of long polypeptides and proteins into the small functional proteins that are
generally infectious [146–149]. Hence, protease is another target for the antiretroviral therapy and
by inhibiting this enzyme the viral replication can be prohibited. Mostly, drugs act on this enzyme
preferentially [147,149,150]. From the Camellia japonica pericarp, the plant components camelliatannins
A, F and H have been reported that exhibited potent anti-HIV PR inhibitory properties [148].
Several Korean therapeutic plants, e.g., Viburnum furcatum, IIex cornuta, Berberis amurensis, Lonicera
japonica, Chloranthus glaber, Geranium nepalense, Lindera sericea, Wistaria floribunda, Smilax china, Hibiscus
hamabo, Lingustrum lucidum, Zanthoxylum piperitum, Styrax obassia, Viola mandshurica, Schisandra nigra,
and Cocculus trilobus have also been reported potent activities against protease [71]. From the plant
stems of Stauntonia obovatifoliola, various components that act against HIV protease have been identified,
e.g., lupenone (23) [151], 3-O-acetyloleanolic acid (24) [152], resinone (25) [153], lupeol (26) [154] and
mesenbryanthemoidgenic acid (27) (Figure 7) [155]. Moreover, the therapeutic compounds like oleanolic
acid (28), dihydromyricetin, epigallocatechin gallate, myricetin [156,157] and epiafzelechin [158] have
been extracted from the wood of Xanthoceras sorbifolia and have the potential for the treatment of
AIDS [68,156].
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2.1.5. Plants Containing Immunomodulators

Immunomodulators are the agents that stimulate the cellular and humoral immune system
against any pathogenic infection [159–161]. The dendritic cells of the immune system act as antigen
representing cells and move along with antigens into the lymph nodes from the tissues. They represent
the antigen to the T cells and the T cells then initiate an immune response. T cells stimulate
the B cells for the production of antibodies that bind with the antigen and the T cells activate
killer T cells which attack the pathogens [162]. There are several classes of naturally occurring
compounds that exhibit immunomodulatory properties, e.g., alkaloids, tannins, terpenoids, coumarins,
glycosides, flavonoids, polysaccharides, lignans, etc [163,164]. Among alkaloids, berberine (29) from
Hydrasti Canadensis [159,165], sinomenine (30) from Sinomenium acutum [159,166], piperine (31) from
Piper longum [159,167], and tetrandrine from Stephania tetrandra [168] have shown immunomodulatory
properties in HIV. Among glycosides, aucubin from Plantago major [169], isorhamnetin-3-O-glucoside
from Urtica dioica [170], and mangiferin from Mangifera indica [171] have exhibited immune-stimulatory
properties in HIV. Among phenols, ellagic acid (32) from Punica granatum [172], curcumin from Curcuma
longa [173], ferulic acid (33), vanilic acid (34) (Figure 8) [159] were shown to be immunostimulators
in HIV. Chlorogenic acid from Plantago major [169], also expressed effective immunomodulatory
potential in AIDS [159]. Within tannins, chebulagic acid and corilagin from Terminalia chebula [174] and
punicalagin [175] acted as immunomodulatory agents. Among flavonoids, centaurein from Bidens
pilosa [176] and apigenin 7-O-β-D-neohesperidoside, orientin, vitexin and apigenin 7-O-β-D-galactoside
from Jatropha curcas [177] have exhibited the effective immunomodulatory action against HIV.
From saponins, asiaticoside obtained from Centella asiatica [178] and glycyrrhizin from the roots
of Glycyrrhiza glabra [179] have shown significant immunomodulatory activities.
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2.1.6. Plants with Antioxidant Potential

In AIDS, many reactive oxygen species (ROS) have been produced due to the alteration in the levels
of antioxidant enzymes [180]. This further leads to the damage of DNA and lipid peroxidation [181].
ROS can also stimulate the nuclear factor kappa B (NF-κB factor) which helps in the transcription of HIV
and thus promote its replication [182]. Antioxidants are agents that reduce the levels of ROS and protect
cellular DNA. N-Acetylcysteine is reported to acts as an antioxidant and inturn used in themanagement
of HIV infection [183]. Various other antioxidants like selenium, lipoic acid, vitamin C, β-carotene and
vitamin E have been utilized for the same purpose [184,185]. The antioxidants Cyanidin-3-glucoside
(35) and peonidin (36), which are obtained from blackberries, have also been shown to slow down
AIDS infection (Figure 9) [159,186].

2.2. Classification of Plants According to Their Secondary Metabolites

Secondary metabolites are the main active compounds in plants that are mainly responsible for
therapeutic effects. They are generally obtained from the primary metabolites such as carbohydrates,
proteins, amino acids, etc. [187–190]. Plant-based secondary metabolites mainly include alkaloids,
glycosides, coumarins, terpenoids, lignans, tannins and flavonoids, etc. [191–193].

2.2.1. Alkaloids

Alkaloids are the basic nitrogen-containing secondary metabolites in plants, active against many
pathogens, including HIV. Buchapine is a quinolone alkaloid obtained from Eodia roxburghiana,
which has shown activity against HIV [194]. From the roots of Tripterygium hypoglaucum,
various alkaloidal compounds have been isolated, e.g., hypoglaumine B, triptonine A (37) and B [159],
which exhibited anti-HIV potential and have potential for antiretroviral therapy [195]. Nitidine is
another alkaloid that was isolated from plant roots of Toddalia asiatica, and has shown efficacy against
HIV [196]. From the plant Symplocos setchuensis, the alkaloid harman (38) and another compound
matairesinoside (39) were isolated andshowed potential for antiretroviral therapy due to their anti-HIV
potential. Compound 39 acts on the viral replication enzymes, thus inhibiting HIV replication [197].
Another aromatic alkaloid polycitone A, from marine source Polycitor sp., exhibited potential activity
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against the reverse transcriptase of HIV. Hence, it efficiently inhibits HIV replication. Several other
marine sponges have acted against the virus as well as other bacterial diseases [198]. The alkaloid
1-methoxy canthionone was reported from Leitneria floridana, and exhibited anti-HIV property [199].
Papaverine was obtained from Papaver sominiferum, and inhibited HIV replication [39]. Norisoboldine
and corydine are two alkaloids obtained from the leaves of Croton echinocarpus, showing anti-HIV
activity [200]. Table 2 summarizes plant-based alkaloids possessing anti-HIV activity.Molecules 2020, 25, x FOR PEER REVIEW 14 of 50 
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Table 2. Alkaloidal compounds as anti-HIV agents.

Plant Species Parts Used Chemical Constituents References
Ancistrocladus korupensis Leaves Michellamine A, B and C [201]
Stephania cepharantha Roots Cepharantine [202]
Murraya siamensis Roots, leaves Siamenol [203]

Clausena excavate Leaves O-Methylmukonal, clauszoline and
3-formyl-2,7-dimethoxy-carbazole [204]

Drymaria diandra Leaves Canthin-4-one drymaritin [205]

Glycosmis montana Twigs, leaves (E)-3-(3-hydroxymethyl-2-butenyl)-7-(3-methyl-2-butenyl)-
1H-indole [206]

Aniba sp. Stems Anibamine [207]
Zanthoxylum ailanthoides Root bark Decarine, γ-fagarine and tembamide [208]
Nelumbo nucifera Leaves Coclaurine, norcoclaurine, reticuline [209]
Pericampylus glaucus Leaves Norruffscine, 8-oxotetrahydro-palmatine [210]
Begonia nantoensis Rhizomes Indole-3-carboxylic acid [211]
Leucojum vernum Bulbs Lycorine, homolycorine [212]
Epinetrum villosum Root bark Cycleanine [213]
Argemone mexicana Roots 6-acetonyldihydrochelerythrine, nuciferine [214]
Monanchora sp. Stems Crambescidin 826, fromiamycalin and crambescidin 800 [215]

Manadomanzamines A and B [216]

Acanthostrongylophora sp. - Hernandonine, lindechunine,7-oxohernangerine and
laurolistine [217]

Roots
Lindera chunii
Artemisia caruifolia Stems [218]
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Several alkaloidal compounds, e.g., michellamine A (40) [201], siamenol (41) [203], decarine
(42) [208], reticuline (43), norcoclaurine (44) [209], indole-3-carboxylic acid (45) [211], lycorine (46) [212],
homolycorine (47) [212], cycleanine (48), 6-acetonyldihydrochelerythrine (49) [214] and hernandonine
(50) [217] have revealed significant HIV inhibitory potential (Figures 10 and 11).
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2.2.2. Terpenoids

Terpenoids are the secondary metabolites that are derived from the isoprene unit (C5H8).
Terpenoids are the most abundant plant-based secondary metabolites and several compounds from
this class have been derived from plants and found useful for their therapeutic potential [210,219,220].
Examples of terpenoids that have exhibited inhibition of HIV replication include betulinic acid,
oleanolic acid, and platanic acid from Syzigium claviflorum leaves [221]. Celasdin B (51), is a triterpene
from Celastrus hindsii (Celastraceae), reported inhibiting the HIV replication [222]. Prostratin from
Homalanthus nutans (Euphorbiaceae) has also expressed significant anti-HIV activities [223]. From the
stem bark of Garcinia speciosa, some anti-HIV therapeutic constituents have been isolated viz;
garcisaterpenes A and C and theprotostanes. These compounds have been found to inhibit the activity of
HIV reverse transcriptase and thus stop the HIV life cycle [224]. Maslinic acid (52), a terpenoid compound
obtained from Geum japonicum also acts against the HIV protease enzyme [225]. From the stems and
roots of plant Kadsura lancilimba, another triterpene lancilactone C (53) has been isolated whch is used to
restrict the viral replication [226]. Oleanolic acid is the main terpenoid isolated from many plant species
including Xanthoceras sorbifolia (Sapindaceae). The compound is known to inhibit HIV replication and
play an important role in the treatment of AIDS [227]. Suberosol (54) is a lanostane type triterpenoid
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from the leaves of Polyalthia suberosa (Annonaceae) known toact through the same mechanism [228].
Another phorbol diester from Croton tiglium (Euphorbiaceae), 12-O-tetradecanoylphorbol-13-acetate,
exhibited anti-HIV activity [223]. A Brazilian alga isolated from Dictyota pfaffii, from which an active
diterpene component 8,10,18-trihydroxy-2,6-dolabelladiene has been isolated and has shown inhibitory
activity of HIV reverse transcriptase [229,230]. A butenolide triterpene known as 3-epi-litsenolide has
been articulated significant anti-HIV activity and was extracted from Litsea verticilla [231]. The alga
Dictyota menstrualis is an important source for various diterpenes that exhibit HIV reverse transcriptase
inhibition potential [232]. From the roots and rhizomes of plant Clausena excavate, a limonoid terpene
named clausenolide-1-ethyl ether has shown potential for antiretroviral therapy [233]. Glycyrrhizin
from the Glycyrrhiza glabra roots is another saponin terpenoid that showed anti-HIV activity by inhibiting
the viral life cycle [234]. Oleanolic acid is a potent anti-HIV compound and is widely distributed in
various plants including the leaves of Rosa woodsii, the leaves of Syzygium claviflorum, the aerial parts
of Ternstromia gymnanthera, and the whole plants Hyptis capitata and Phoradendron juniperinum [227].
12-Deoxyphorbol-13-phenylacetate, a phorbol ester from Euphorbia poissonii, has been reported for
possessing anti-tumour activity and recently, it has potential for antiretroviral therapy because of
its anti-HIV activity [235]. Pedilstatin [13-O-acetyl-12-O-(2′-Z-4′-Eoctadienoyl)-4-α-deoxyphorbol]
is another phorbol ester from Pedilanthus sp., possessing anticancer and anti-HIV properties [236].
Some other plant species containing terpenoid based compounds with efficient anti-HIV activity have
been summarized in Table 3.Molecules 2020, 25, x FOR PEER REVIEW 17 of 50 
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Table 3. Terpenoids act as Anti-HIV agents.

Plant Species Parts Used Chemical Constituents References
Excoecaria acerifolia Roots Agallochin J, ribenone, angustanoic acid B [237–239]
Propolis Roots Melliferone, moronic acid, betulonic acid [49,240]
Homalanthus nutans Leaves Prostratin [241,242]
Cassine xylocarpa Stem Germanicol, nivadiol [243]
Glycyrrhiza uralensis Roots Galacturonic acid, xylose, uralsaponin C [244]
Daphne gnidium Aerial parts Daphnetoxin, gniditrin, gnidicin [245]
Euphorbia micractina Roots Lanthyrane diterpenoids [246]
Kaempferia pulchra Rhizomes Kaempulchraol A, C, E [247]
Picrasama javanica Bark Picrajavanicin A, javanicin B, picrasin A [248]
Schisandra lancifolia Leaves, stem Lancifodilactone F [249]
Stellera chamaejasme Roots Stelleralide D, gnidimacrin [250]
Lindera strychnifolia Roots Lindenanolides E, G and F [251]
Daphne acutiloba Roots Wikstroelide M [252]
Annona squamosa Leaves 16-β,17-dihydroxy-entkauran-19-oic acid [253]
Cimicifuga racemosa Rhizomes Actein [254]
Schisandra sphaerandra Leaves Nigranoic acid [255]
Allanthus altissima Roots Shinjulactone B [256]
Panax ginseng Roots Isodehydroprotopanaxatriol [257]
Garcinia hanburyi Stem, roots 3-acetoxyalphitolic acid, 2-acetoxyalphitolic acid [258]

8-methoxyingol-7,12-diacetate-3-phenylacetate
Euphorbia officinarum Leaves Dihydrocucurbitacin F [259]

Forskolin, 1-deoxyforskolin
Hemsleya jinfushanensis Tubers 28-hydroxy-3-oxo-lup-20(29)-en-3-O-al [260]
Coleus forskohlii Roots Betulonic acid [261]
Microtropis fokienensis Stem 25-hydroxy-3-oxoolean-12-en-28-oic acid [262]
Betula platyphylla Roots Capilliposide B [263]
Amoora rohituka Stem bark Ganoderic acid D [264]

Ganoderiol F
Lysimachia capillipes Roots Impatienside A, bivittoside D [265]
Ganoderma lucidum Stem, Leaves 25-methoxyhispidol A [266]
Ganoderma amboinense Stem 23,24-dihydrocucurbitacin B [267]
Holothuria impatiens - Dichapetalin A [268]
Poncirus trifoliate Fruits Acutissimatriterpene A, B, E [269]
Trichosanthes kirilowii Roots Celastrol [270]
Dichapetalum gelonioides Stem bark 3α,7α-dideacetylkhivorin [271]
Phyllanthus acutissima Aerial parts Nimbolide [272]
Celastrus orbiculatus Bark Gedunin, 1 α–hydroxy-1,2-dihydrogedunin [273]
Khaya senegalensis Roots 6α-tigloyloxychaparrinone [274]
Azadirachta indica Flowers [275]
Xylocarpus granatum Roots [276]
Ailanthus integrifolia [277]

Many of the terpenoid compounds, e.g., melliferone (55), whoseanti-HIV potentialhas been
evaluated inanti-HIV assays towards T cell line H9, and compared with the positive control AZT has
been shown in Figures 12 and 13. Melliferone exhibited an IC50 value of 0.205 µg/mL [49], moronic
acid (56), [49], ribenone (57) [237], germanicol (58) [243], nivadiol (59) [243], wikstroelide M (60) [252],
shinjulactone B (61) [256], ganoderic acid D (62) [266], ganoderiol F (63) [267] gedunin (64) [276] and
1-α–hydroxy-1,2-dihydrogedunin (65) [276] also exhibited anti-HIV activities.
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2.2.3. Flavonoids

Flavonoids are well-known phytoconstituents reported to exhibit several antiviral and antioxidant
properties [278]. Flavonoids like quercetin 3-O-(2-galloyl)-L-arbinopyranose and gallate ester
from Acer okamotoanum (Aceraceae), exhibited significant activity against integrase of HIV [279].
Xanthohumol (66), an important flavonoid from Humulus lupulus, has shown anti-HIV activity [280].
The flavonoid moiety (4H-chromen-4-one) is known to be mainly responsible for the therapeutic activity,
while glycosidic portion attached to the flavonoid enhances the solubility of the compounds and thus
boosts its therapeutic activity. Two flavonoids 6,8-diprenylkaempferol and 6,8-diprenylaromadendrin
isolated from Monotes africanus have expressed potential activity against the AIDS virus [281].
Another anti-HIV biflavonoid named wikstrol B (67) (Figure 14) has been isolated from Wikstroemia
indica (Thymelaeaceae) roots [282]. Baicalin is a flavonoid compound that inhibits HIV replication
and is derived from Scutellaria baicalensis [282]. From the twigs and leaves of the medicinal plant
Rhus succedanea, various anti-HIV flavonoids (robustaflavone, biflavonoids, and hinokiflavone)
have been reported to act on the polymerase of the reverse transcriptase of HIV-1 [283,284].
2-methoxy-3-methyl-4,6-dihydroxy-5-(3′-hydroxy)-cinnamoylbenzaldehyde, a chalcone flavonoid
that has been extracted from Desmos sp. roots and exhibited strong activity against HIV-1 [285].
Another chalcone, Hydroxypanduratin A, from the rhizomes of Boesenbergia pandurata depicted its
action on the HIV protease enzyme [286].
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Several naturally obtained flavonoids, e.g., chrysin, epigallocatechin gallate (68) and quercetin
(69) have been reported to show potent inhibitory activities against the replication of HIV [276,277].
The flavonoids Thalassiolin A, B and C from the grass Thalassia testudinum acted against HIV integrase,
which inturn inhibited the life cycle of HIV-1. Thalassiolin A was found to be the most potent compound
which inhibits the terminal cleavage [287–289]. Some biflavonoids, e.g., 2′′,3′′-dihydroochnaflavone
7′′-O-methylether and ochnaflavone 7′′-O-methyl ether from Ochna integerrima, have shown moderate
to weak anti-HIV activities [290,291]. Taxifolin (70), also known as dihydroquercetin, is mostly found
the stems of Juglans mandshurica, and expressed strong inhibitory activity on the reverse transcriptase
enzyme of HIV and thus plays a role in the prevention of HIV replication [292]. From Chrysanthemum
morifolium flowers, two important flavonoids apigenin-7-O-β-D-(4′-caffeoyl)glucuronide and
glucuronide have been isolated, which exhibited significant activity against the integrase of HIV-1 [293].
Mentha longifolia is another plant whose methanolic extracts are used for the isolation of several
therapeutic flavonoids those were found to be active through the same mechanism [294]. Compound 70
was demonstrated to inhibitthe activity of HIV-1 replication. Several other flavonoids such as
flemiphyllin, formosanatin C (71), euchretin I (72) and quercetin are reported to inhibit the HIV
replication and obtained from the alcoholic extracts of Euchresta formosana [295]. Many important
flavonoids such as epicatechin-3-O-gallate and epicatechin have extracted from Detarium
microcarpum, have shown anti-HIV potential [296]. 4′-methylepigallocatechin-3′-O-β–glucopyranoside,
and 4′-methylepigallocatechin-5-O-β-gluco-pyranoside from Maytenus senegalensis shown anti-HIV
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potential [297]. Kaempferol (73) (Figure 14), a tetrahydroxyflavonol was isolated from Rosa damascene
and showed inhibitory activity on the protease enzyme [298,299].
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2.2.4. Coumarins

Calanolides are a group of coumarins that act as non-nucleoside reverse transcriptase inhibitors
and are derived from plants of the genus Calophyllum (Clusiaceae) [300]. The coumarin (+)-Calanolide
A has already been subjected to in vivo studies and up to phase II clinical trials in healthy, HIV-negative
subjects. These studies revealthat (+)-calanolide A has a favourable safety profile in humans as well as
in animals [301,302], while calanolide B alongwith its derivative known as 7,8-dihydrocalanolide B from
the plant Calophyllum lanigerum, showedsignificant anti-HIV potential based on cytopathogenic results
of HIV on the cells of the host [300]. Another coumarin named suksdorfin (74) [303,304] isolated from the
fruits of Lomatium suksdorfii belonging to the family Apiaceae, which has expressed inhibitory property
on the HIV replication [303]. The compounds Cordatolides A and B from Calophyllum cordato-oblongum,
were similar in structureto the Calanolides and were found to inhibit the replication of the HIV [300].
The coumarin skeleton is essential for anti-HIV activity (Figure 15). Other coumarins like heraclenol
(75) and heraclenin (76) exhibit IC50 value of 20.1 µg/mL against H9 lymphocytes, while imperatorin
(77) from the roots of Ferula sumbul falls under the same therapeutic category [305]. Bulky groups at the
C-4 are also required to retain the anti-HIV activity, which is present in the prototype of a molecule like



Molecules 2020, 25, 2070 21 of 48

(+)-Calanolide-A. (+)-Calanolide-A is the most potent compound when compared with Cordatolide A
(less active and devoid of the bulky group at the C-4 position). Several furanocoumarins (e.g., bergapten
(78) and psolaren) from the roots of Prangos tschimganica, have exhibited significant activities against
the HIV virus [306]. Mesuol (79) is another coumarin (from the category 4-phenylcoumarin) reported to
inhibit the replication of HIV-1through the prohibition of the reverse transcription and phosphorylation
of HIV [307]. A semisynthetic derivative of calanolide (known as oxocalanolide) was alsoreported
to act efficiently against HIV [308]. Various furanocoumarins (e.g., imperatorin, xanthotoxin and
xanthotoxol) have been extracted from the Aegle marmelos fruits [121,122]. The stem, roots, fruits, leaves,
seeds and bark of the A. marmelous showed variable antiviral effects and have played an important
role in Ayurvedic medicine. Imperatorin (77) is reported to exhibit about 60% inhibition of HIV-RT.
The absence of a prenyl group resulted in the observed weak activity. This is exemplified in the cases
of other furanocoumarins xanthotoxin (80) and xanthotoxol (81), shown in Figure 15 [309,310].Molecules 2020, 25, x FOR PEER REVIEW 24 of 50 
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2.2.5. Proteins

Proteins are the amino acid-containing plant components that usually contain
ribosome-inactivating proteins as well as lectins [311]. A plant protein called MAP30 from Momordica
charantia is known to possess anticancer potential along with anti-HIV properties [312]. Various plant
ribosome-inactivating proteins have been identified for their anti-HIV activities. Trichosanthin is a
ribosome-inactivating protein isolated from Trichosanthes kirilowii that has shown anti-HIV activity [313].
Various plant ribosome-inactivating proteins have been identified for their anti-HIV activities,
e.g., an anti-HIV ribosome-inactivating protein balsamin has been extracted from Momordica
balsamina [314]. Pf-gp6 is another protein reported from Perilla frutescens which has exhibited an
inhibitory action on HIV replication [315]. Some ribosome-inactivating proteins known as Pokeweed
antiviral proteins have been separated from a pokeweed plant (Phytolacca americana) and have expressed
efficient anti-HIV activities [316]. A list of plant proteins has been given in Table 4, along with their
botanical sources.

Table 4. Proteins containing plants used in HIV.

Plant Species Parts Used Proteins References
Allium ascalonicum Bulbs Ascalin [317]
Chrysanthemum coronarium Seeds Chrysancorin [318]
Ginkgo biloba Seeds Ginkbilobin [319]
Arachis hypogaea Seeds Hypogin [320]
Lyophyllum shimeji Fruit bodies Lyophyllin [321]
Panax quinquefolium Roots Quinqueginsin [322]
Flammulina velutipes Fruit bodies Velutin [323]
Tricholoma giganteum Fruit bodies Laccase protein [324]
Castanea mollisima Seeds Mollisin [325]
Treculia obovoidea Bark Treculavirin [326]
Vigna sesquipedalis Seeds Ground bean lectin [327]
Delandia unbellata Seeds Delandin [328]
Dorstenia contrajerva Leaves Contrajervin [326]
Vigna angularis Seeds Angularin [329]
Castanopsis chinensis Seeds Castanopsis thaumatin protein [330]
Vigna unguiculata Seeds Cowpea α protein [331]
Phaseolus vulgaris Seeds A homodimeric lectin [332]
Actinidia chinensis Fruits Kiwi fruit thaumatin protein [333]
Lentinus edodes Fruit bodies Lentin [334]
Allium tuberosum Shoots A mannose-binding lectin [335]
Phaseolus vulgaris Seeds Phasein A [336]
Lilium brownie Bulbs Lilin [337]
Vicia faba Seeds A trypsin-chymotrypsin [338]

Inhibitor peptide
Vigna unguiculata Seeds Unguilin [339]
Panax notoginseng Roots A xylanase [340]
Phaseolus vulgaris Seeds Vulgin [341]
Cicer arietinum Seeds Chickpea cyclophilin-like protein [342]

α–Basrubrin
Basella rubra Seeds Rice bean peptide [343]
Delandia unbellata Seeds [344]

2.2.6. Tannins

Tannins are mainly categorized into gallotannins and ellagitannins. While gallotannins are
hydrolysable and contain gallic acid polyesters ellagitannins are non-hydrolyzable, so-called condensed
tannins conatining hexahydroxydiphenic acids, i.e., flavan-3-ol (proanthocyanidins) moieties [345,346].
Corilagin (82) and Geraniin (83) (Figure 16), from roots of Phyllanthus amarus, are two ellagitannins
that possess anti-HIV activities [347]. Besides, a proanthocyanidin compound from the plant Cupressus
sempervirens, exerted anti-HIV properties [348]. Catechins, the polyphenols that are obtained from green
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tea, and theaflavins (e.g., compound 84) isolated from black tea, possess antiviral activity. Theaflavins
and their derivatives are potent inhibitors of HIV replication [349]. Compounds 82 and 83 blocked the
interaction of HIV-1 gp120 with its primary cellular receptor CD4. Besides, the observed results showed
that compound 83 exhibited inhibitory effects on HIV, not only in vitro but also in vivo. Compound 84
inhibited HIV-1 entry into target cells by blocking the HIV-1 envelope glycoprotein-mediated membrane
fusion. The ability of this compound to block the formation of the gp41 six-helix bundle was determined
using Fluorescence native polyacrylamide gel electrophoresis, while detection of the binding of gp120
to CD4 was done by ELISA. Molecular docking analyses suggested that compound 84 may bind with
to the highly conserved hydrophobic pocket on the surface of the central trimeric coiled-coil of gp41.
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2.2.7. Lignans

Several extensive reports on plant-based lignans which have shown strong activities against
viral diseases, including AIDS, exist [350]. Several lignans like anolignan A (85) and anolignan B,
alongwith dibenzylbutadiene lignans have been isolated from Anogeissus acuminate and have exhibited
significant activity against HIV [351]. From Phyllanthus myrtifolius (Euphorbiaceae), phyllamyricin D
(86) and phyllamyricin F (87) (Figure 17) were isolated and shown to possess inhibitory activity
against the HIV-RT enzyme [352]. The benzoaryl moiety was proven to be essential for the
anti-HIV activity of lignans. This group is responsible for inhibiting HIV replication. Gomisin is
another example of lignan isolated from Kadsura interior and showed potent inhibitory activity
against the RT enzyme of HIV [353]. From Arnebia euchroma, some caffeic acid isomers have been
evaluated but have only expressed weak activities against HIV replication [354]. The compound
2-hydroxy-2 (3′,4′-dihydroxyphenyl)-methyl-3-(3′′,4′′-dimethoxyphenyl) methyl γ–butyrolactone is a
dibenzylbutyrolactone type lignan from Phenax angustifolius with established anti-HIV activity [355].
From Schisandra rubriflora fruits, other dibenzocyclooctadiene type lignans (rubrisandrin A and
rubrisandrin B) have been isolated having anti-HIV activities [356].
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2.2.8. Miscellaneous Plant-Based Anti-HIV Agents

Numerous plants have been evaluated for their anti-HIV activities and are being used in
antiretroviral therapy for AIDS [1,2]. Various phenolic compounds isolated from plants such as
Quercus pedunculata, Terminalia horrida, Phyllanthus emblica and Rumex cyprius have been identified
for their anti-HIV activities [357,358]. From the leaves and twigs of plant Strychnos vanprukii, various
betulinic acid derivatives, such as 3-β-O-cis-feruloylbetulinic acid (88-B), 3-β-O-trans-feruloylbetulinic
acid (88-A), ursolic acid and 3-β-O-trans-coumaroylbetulinic acid (89) have exhibited potential
against HIV [359]. Compounds 88-A, 88-B and 89 have been evaluated for anti-HIV activities
against HOG.R5 cells in the anti-HIV assay. Compound 88-A showed significant inhibition
against HIV-1 replication. The trans-isomer (88-A) showed a more favourable activity when
compared with the cis-isomer (88-B) (Figure 18). The compounds shown in Figure 18 exhibited
significant potential against HIV due to the presence of the pharmacophore/heterocyclic moieties,
such as chromone, indole, steroidal nucleus, benzodioxole, quinolizine, etc. These compounds
also demonstrated various therapeutic properties, e.g., anti-inflammatory, anti-cancer, antiviral,
antioxidant and immunomodulatory properties [360]. The constituents of Cinnamomum zylanicum bark
have shown anti-inflammatory [361], anti-cancer, antiviral, antioxidant and immunomodulatory
properties [362]. The ingenol compounds from Euphorbia ingens have exhibited anti-HIV
activities [363], apart from their anti-inflammatory and immunomodulatory potentials [364,365].
Oldenlandia affinis is a medicinal plant from which various cyclotides have been isolated and
tested for their activities against HIV [366,367]. Plectranthus barbatus has also shown diverse
antiviral, antibacterial and antifungal properties along with antioxidant and anti-inflammatory
effects [368,369]. From Clausena excavate some therapeutic constituents like O-methylmukonal (90),
3-formyl-2,7-dimethoxycarbazole, limonoids, and clausenidin have been reported for their anti-HIV
properties [370,371]. Several antiviral components like tectorigenin, cytisine (91), formononetin,
trifolirhizin (92), mattrine (93), blumenol A (94), pterocarpin (95), 30,40,5-trihydroxyisoflavone,
euchretin and 5,7-dihydroxy-3-(2-hydroxy-4-methoxy-phenyl)-chromen-4-one have been isolated from
Euchresta formosana and exhibited anti-HIV activities [372–375].

Extracts from Alepidea amatymbica, have shown efficient anti-HIV activities, as well as inhibitory
effect on HIV replication [376]. Artemisinin from the plant Artemisia annua, has established
antimalarial and anti-HIV activities [377]. Rosmarinic acid is a polyphenolic compound from
the plant Prunella vulgaris, usedfor the treatment of isolated HIV [378]. From Polygonum
glabrum, various bioactive constituents with antiretroviral activities have been reported,
e.g., (-)-2-methoxy-2-butenolide-3-cinnamate, pinocembrin (96), 3-hydroxy-5-methoxystilbene (97),
sitosterol-3-O-β-D-glucopyranoside, and pinocembrin-5-methyl ether [379]. Actein (98) from the
rhizomes of Cimicifuga racemosa, possessed a significant activity against HIV [380]. Chrysoeriol
from Eurya ciliate is known for its anti-HIV activity [381]. Several constituents such as
demethylaristofolin E (99), aristofolin, denitroaristolochic acid, aristolochic acid, aristomanoside
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(100), N-p-coumaroyltyramine, p-hydroxybenzoic acid, etc. have been isolated for their anti-HIV
potential from the stem bark of Aristolochia manshuriensis [382–386]. Malaferin A, from Malania oleifera,
was also tested for its antiviral property [387]. Diptoindonesin D, Acuminatol (101), Shoreaphenol,
Hopeahainol, and Vaticanol B from Vatica mangachapoi have shown positive effects in the management
of antiretroviral therapy [388–391]. Cararosinol C and D, maackin and scirpusin B (102) from Caragana
rosea have been evaluated for their anti-HIV effects [392]. Structures of some important constituents
obtained from plants effective in HIV therapy are represented in Figure 18. A list of other plants having
anti-HIV potential has been listed in Table 5.
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Table 5. Assortments of other plant species have been given in Table 5.

Plant Species Family Parts Used References
Khaya grandifoliola Meliaceae Leaves [393]
Diospyros mespiliformis Ebenaceae Bark [394]
Alternanthera brasiliana Amaranthaceae Roots [395]
Ricinus communis Euphorbiaceae Leaves [396]
Butea monosperma Fabaceae Roots [397]
Prosopis glandulosa Fabaceae Leaves [398]
Sophora tonkinensis Fabaceae Roots [399]
Gunnera magellanica Gunneraceae Stem [400]
Swertia franchetiana Gentianaceae Roots [401]
Curcuma longa Zingiberaceae Rhizomes [402]
Stewartia koreana Theaceae Leaves [403]
Cissus quadrangularis Vitaceae Stems [404]
Withania somnifera Solanaceae Roots [405]
Ailanthus altissima Simaroubaceae Stem bark [406]
Toddalia asiatica Rutaceae Roots [407]
Oldenlandia herbacea Rubiaceae Roots [408]
Aloe vera Xanthorrhoeaceae Leaves [409]
Urtica dioica Urticaceae Rhizomes [410]
Rheum tanguticum Polygonaceae Leaves [411]
Saccharum officinarum Poaceae Stems [412]
Ochna integerrima Ochnaceae Leaves [413]
Nelumbo nucifera Nelumbonaceae Leaves [414]
Aglaia lawii Meliaceae Leaves [415]
Fritillaria cirrhosa Liliaceae Rhizomes [416]
Magnolia biondii Magnoliaceae Flower buds [417]
Lythrum salicaria Lythraceae Leaves [418]
Reseda lutea Resedaceae Whole plant [419]
Hypericum perforatum Hypericaceae Leaves [420]
Trigonostemon thyrsoideus Euphorbiaceae Stems [421]
Hemsleya endecaphylla Cucurbitaceae Tubers [422]
Garcinia kingaensis Clusiaceae Stem bark [423]
Woodwardia unigemmata Blechnaceae Rhizomes [424]
Berberis holstii Berberidaceae Roots, leaves [425]
Foeniculum vulgare Apiaceae Fruits [406]
Alepidea amatymbica Apiaceae Roots [426]
Stachytarpheta jamaicensis Verbenaceae Whole plant [427]
Schisandra sphaerandra Schisandraceae Stems [428]
Alpinia galangal Zingiberaceae Roots [429]
Zanthoxylum chalybeum Rutaceae Root bark [430]
Berchemia berchemiifolia Rhamnaceae Bark [431]
Scoparia dulcis Plantaginaceae Leaves [432]
Phyllanthus myrtifolius Phyllanthaceae Fruits [433]
Arundina graminifolia Orchidaceae Whole plant [434]
Ximenia Americana Olacaceae Stem bark [435]

3. Conclusions

Plants are known to exhibit a huge repertoire of bioactive metabolites [436]. A significant number
of reports on the capability of natural compounds with potential as anti-HIV agents have appeared
during the last few decades. This review article presents the rational approaches for the design of
therapeutic potential candidates as anti-HIV agents. Even though there have been many extensive
achievements in the field of HIV chemotherapy, there remains a great demand for novel lead compounds
for anti-HIV drug discovery and drug development. Numerous plant species have been evaluated
for their inhibitory activities on the essential HIV enzymes such as RT, protease, and integrase,
which play an important role in HIV replication. Several secondary metabolites have been extracted
from the various parts of plantsthat act as potent anti-HIV agents via different mechanisms of action.
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Therapeutically active compounds from plants can also aid as necessary leads for the discovery and
development of novel and more potent compounds that can be derived synthetically. For instance,
synthetic ingenol compounds have been derived based on naturally occurring compound Ingenol
and a variety of synthetic derivatives have been evolved from the naturally occurring compound
Artemisinin, which exhibits significant anti-HIV activitiesof potential scaffolds from them for the
complete eradication of HIV/AIDS. A recent review has attempted to show themost successful medical
therapeutics derived from natural products, including those studied in the field of HIV/AIDS [437].
Besides, computer-aided (virtual) [438] and large-scale in vitro screening [439] approaches have
recently been carried out on natural compound libraries to identify natural products with anti-HIV
properties. Novel therapeutic approaches have been attempted, including searching for new HIV-1
latency-reversing agents, i.e., compounds not only capable of HIV suppression but also eliminating
HIV reservoirs [440,441].
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