

Head Office – Cape Town 6 Driefontein Lane, Noordhoek Cape Town, 7979

Gauteng Office 6393 Silvera Street Soshanguve Block VV6, 0183

Limpopo Office 91 Celliers Street Bergridge Flat 19 Louis Trichardt, 0920 **GEOTECHNICAL ENGINEERING**

ENGINEERING GEOLOGY

ENVIRONMENTAL SERVICES

CONSTRUCTION MATERIALS TESTING

HYDROGEOLOGY

AIR AND DUST MONITORING

Company Registration 2018/267207/07

Email: <u>lutendo@matavha.com</u>

> Cell: 072 688 7758

www.matavha.com

ECOLOGICAL IMPACT ASSESSMENT FOR THE PROPOSED TOWNSHIP ON FARMS HAAKDOORNBOOM 267 JR AND KRUISFONTEIN 259 JR, WITHIN CITY OF TSHWANE METROPOLITAN MUNICIPALITY IN GAUTENG PROVINCE

Prepared by: MATAVHA Environmental (Pty) Ltd 6393 Silvera Street, Soshanguve Block VV6 Pretoria Cell: (072) 688 7758 E-mail: <u>lutendo@matavha.com</u>

Prepared for: Nali Sustainability Solutions (Pty) Ltd 65 Country Club Drive, Irene Farm Villages Centurion Tel: (012) 676 8315 E-mail: <u>ncube.nali@gmail.com</u>

20/03/2020

Haakdoornboom & Krusifontein Ecological Impact Assessment

DOCUMENT CONTROL

Report Name	MOLEPO, M. NDOU, L. & MOTHWA, R. 2020. ECOLOGICAL IMPACT ASSESSMENT FOR THE PROPOSED TOWNSHIP ON FARMS HAAKDOORNBOOM 267 JR AND KRUISFONTEIN 259 JR, WITHIN CITY OF TSHWANE METROPOLITAN MUNICIPALITY IN GAUTENG PROVINCE				
Reference	ECO-NSS/0320				
Submitted to	Nali Sustainability Solutions (Pty) Ltd				
Authors	Mokgatla Molepo <i>Pr. Nat. Sci</i> (009509)	Indege			
	Ramokone Mothwa (SAAB)	Rendone			
	Lutendo Ndou				

EXECUTIVE SUMMARY

MATAVHA Environmental (Pty) Ltd was appointed by Nali Sustainability Solutions (Pty) Ltd to conduct an ecological impact assessment for the proposed township on Farms Haakdoornboom 267 JR and Kruisfontein 259 JR near Soshanguve within the City of Tshwane Metropolitan Municipality, Gauteng.

The site was investigated to determine the potential impacts on the immediate natural environment. The terms set by the consultants for this project are as follows.

- Field survey for vegetation survey, vegetation communities and habitats
- Terrestrial fauna report and red data listed species
- Verify threatened species
- Impact assessment and recommendations

Below are some of the potential impacts that have been identified.

- Local loss of plant species
- Loss of micro habitat
- Loss of foraging grounds
- Introduction of alien invasive plant species

No Floral species of conservation concern (SCC) were observed within the study area.

The study area has a large number of invasive plant species which require intervention through development and implementation of Invasive Alien Plant Species Control Program.

Sensitive areas that need to be conserved include wetland and associated riparian areas. Overall, Ecological Assessment revealed that the proposed township establishment will be located on habitats that have already been modified. As a result, the proposed development does not pose any high risk to the vegetation on site. The management of the impacts as well as recommendations were developed for the potential impacts identified.

It is therefore the opinion of the specialist that the proposed township be favourably considered. However, it is important that the mitigations and recommendations provided by this study are adhered to.

TABLE OF CONTENTS

DOCUMENT CONTROL	i
EXECUTIVE SUMMARY	ii
List of figures	iv
List of tables	iv
DECLARATION OF INDEPENDENCE	v
INDEMNITY	v
TERMS OF REFERENCES	1
Project Team	1
INTRODUCTION AND PROJECT LOCATION AND DESCRIPTION	2
ASSUMPTIONS, LIMITATIONS, UNCERTAINTIES, AND GAP ANALYSIS	4
SURVEY METHODS AND REPORTING	4
General	4
Climate	4
Vegetation of the study site	7
LEGAL REQUIREMENTS	
Provincial legislation	
Gauteng Conservation Plan	
Sensitivity Analysis	
Red Data Analysis and Floral Assessment	15
Ecological function	
Sensitivity scale	
Conservation status of the vegetation	
RESULTS	
Plants	
Birds	
Mammals	21
Reptiles	22
The main impacts	
Impact Assessment methodology	22
IMPACT SIGNIFICANCE	24
REHABILITATION	27
CONCLUSION	
REFERENCES	
APPENDIX	

Appendix A: Site photos	30
Appendix B: Sabap 2 species list	33
Appendix C: Mammal list (based on known historical distribution data). Enviross CC, 2016	44

List of figures

Figure 1: Location of the study site	3
Figure 2: Climatic figures of the region.	5
Figure 3: World map of Köppen -Geiger Climate Classification	6
Figure 4: Vegetation map of the study site.	11
Figure 5: Gauteng Conservation Plan of the study site.	13
Figure 6: Side Development Plan of the study site.	14

List of tables

Table 1: Project Team	1
Table 2: Red Data Status definitions (SANBI, 2010).	15
Table 3: Plant species observed at the study area	19
Table 4: Weeds and invasive plant species observed at the study area	20
Table 5: List of bird species observed at the study area	21
Table 6: List of mammal species observed at the study area	22
Table 7: List of reptile species observed at the study area	22
Table 8: Impact Assessment Parameters	23
Table 9: Significance threshold limits.	24
Table 10: Vegetation	
Table 11: Birds	24
Table 12: Mammals	25
Table 13: Reptiles and Amphibians	25
Table 14: General impacts and mitigations for the entire site	26

DECLARATION OF INDEPENDENCE

I, Mokgatla Molepo, in my capacity as a lead specialist consultant, hereby declare that I:

- Act/acted as an independent specialist to Nali Sustainability Solutions (Pty) Ltd for this project.
- Do not have any personal, business or financial interest in the project expect for financial remuneration for specialist investigations completed in a professional capacity as specified by the Environmental Impact Assessment Regulations, 2017.
- Will not be affected by the outcome of the environmental process, of which this report forms part of.
- Do not have any influence over the decisions made by the governing authorities.
- Do not object to or endorse the proposed developments but aim to present facts and my best scientific and professional opinion regarding the impacts of the development.
- Undertake to disclose to the relevant authorities any information that has or may have the potential to influence its decision or the objectivity of any report, plan or document required in terms of the Environmental Impact Assessment Regulations, 2017.

INDEMNITY

- This report is based on survey and assessment techniques which are limited by time and budgetary constraints relevant to the type and level of investigation undertaken.
- This report is based on a desktop investigation using available information and data related to the site to be affected, *in situ* fieldwork, surveys and assessments and the specialists best scientific and professional knowledge.
- The Precautionary Principle has been applied throughout this investigation.
- The findings, results, observations, conclusions and recommendations given in this report are based on the specialist's best scientific and professional knowledge as well as information available at the time of study.
- Additional information may become known or available during a later stage of the process for which no allowance could have been made at the time of this report.
- The specialist reserves the right to modify this report, recommendations and conclusions at any stage should additional information become available.
- Information and recommendations in this report cannot be applied to any other area without proper investigation.
- This report, in its entirety or any portion thereof, may not be altered in any manner or form or for any purpose without the specific and written consent of the specialist as specified above.
- Acceptance of this report, in any physical or digital form, serves to confirm acknowledgement of these terms and liabilities.

Mokgatla Molepo Pr. Nat. Sci (009509)

20 March 2020

TERMS OF REFERENCES

It is required that the assessment provides technical advice on the following information, applicable to the proposed project on the site: a brief discussion on the vegetation types in which the study area is situated using available literature in order to place the study in context was summarized as follows;

- A broad-scale map of the vegetation of the proposed site.
- A description of the dominant and characteristic species within the broad-scale plant communities;
- A list of Red Data plant and animal species previously recorded within the site which the study area is situated, obtained from the relevant authorities and literature reviews;
- Identification of sensitive habitats and plant communities;
- Preliminary investigation of the impacts of the project and the provision of recommended mitigation measures;
- Identify and assess any cumulative impacts arising from the project where there
 is major uncertainty, low levels of confidence in predictions and poor data or
 information. Recommend practicable mitigation measures to minimize or
 eliminate negative impacts and or enhance potential project benefits; and
- Recommend appropriate monitoring measures.

Project Team

Table 1: Project Team

Project Role	Name	Qualifications
Floral Specialist	Ramokone Mothwa	BSc. Botany & Microbiology (University of Venda), BSc. Hons. Botany (University of Limpopo) MSc. Botany (University of Pretoria – Current)
Ecologist & Faunal Specialist	Mokgatla Molepo	BSc. Botany & Zoology (University of Venda), BSc. Hons. Zoology (University of Limpopo) MSc. Zoology (Nelson Mandela University)
Environmental Geologist	Lutendo Ndou	Bachelor of Earth Sciences (Honors) in Mining, Environmental and Geology – University of Venda

INTRODUCTION AND PROJECT LOCATION AND DESCRIPTION

MATAVHA (Pty) Ltd represented by Lutendo Ndou, Ramokone Mothwa and Mokgatla Molepo has been appointed as independent ecological specialist to undertake an ecological impact assessment for the proposed township establishment on Farms Haakdoornboom 267 JR and Krusifontein 259 JR in Pretoria North, Gauteng (Fig. 1). The study site is located 25 km North west of Pretoria, and it is accessed via R80. The ecological sensitivity of the entire study area was assessed, however, during the field survey, the ecological impacts from the proposed development were narrowed down to the receiving environment. The important aspect used during the study, was to determine areas where the development and activities around it will result in negative impacts. Each problem area was photographed and assessed in the report. The process included:

- The desktop study to gain background information of the physical habitat, as well as generating potential faunal and floral species lists for the study area;
- The site assessment to determine dominant faunal and floral species;
- Description of the sensitivity of the site;
- Impact assessment.

The investigation determined how several habitats and biota will be affected by the proposed activities on the site. The significance ratings of the anticipated impacts were evaluated, and recommendations and deductions were made.

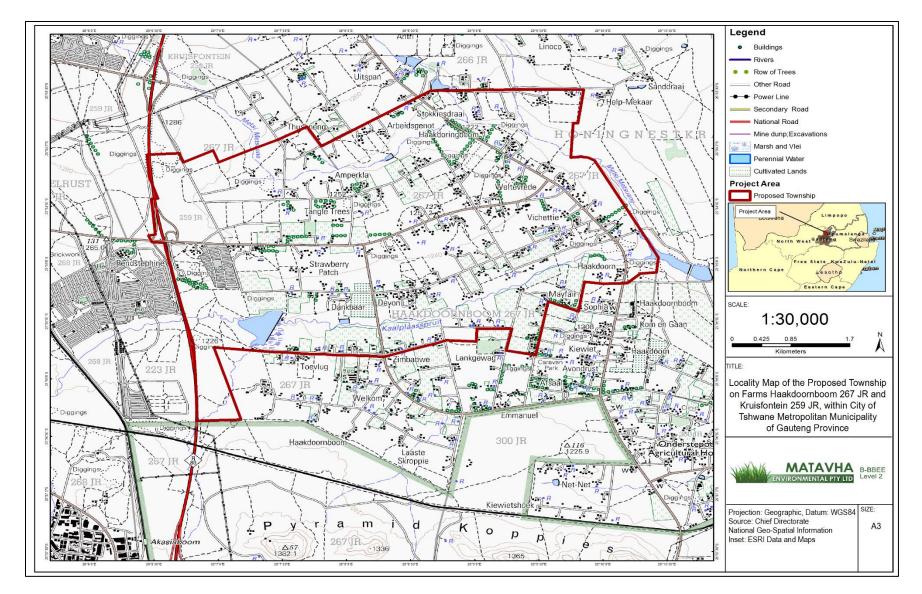


Figure 1: Location of the study site.

ASSUMPTIONS, LIMITATIONS, UNCERTAINTIES, AND GAP ANALYSIS

The findings, results, observations, conclusions, and recommendations provided in this report are based on the author's best scientific and professional knowledge as well as available information regarding the perceived impacts on wetland and terrestrial environment.

A description of vegetation was based on the physical field surveys and site walkthrough and investigations as performed on site. Limited time and access to other private properties was a constraint during field surveys.

The site assessment did not include the adjacent properties.

Results presented in this report are based on a snapshot investigation of the study site and not on detailed and long-term investigations of all environmental attributes and the varying degrees of biological diversity that may be present in the study site.

Once-off assessments such as this may potentially miss certain ecological information, thus limiting accuracy, detail and confidence.

The assessment of impacts and recommendation of mitigation measures were informed by the site-specific ecological issues arising from the field survey and based on the assessor's working knowledge and experience with similar projects.

SURVEY METHODS AND REPORTING

General

The report relies on aerial images and ortho photos to gather background information on a variety of features and vegetation communities occurring on the study site. On site data was collected through walkthrough transects in March 2020 that covered the whole study site. All literature used in this study is listed in the reference section.

Climate

The climate is warm and temperate. In winter, there is much less rainfall than in summer. The average annual temperature around the area is 17.8 °C. In a year, the rainfall is 699 mm (Fig. 2).

According to Köppen -Geiger system (Kottek *et al.* 2006), the study site falls within the Cwa climatic region (Fig. 3).

	January	February	March	April	May	June	July	August	September	October	November	December
Avg. Temperature (°C)	22.5	22	20.7	17.8	13.8	10.8	11	13.5	17.3	20.5	21.1	22.1
Min. Temperature (°C)	16.1	15.6	14	10.4	5.5	1.9	1.8	4.3	8.6	12.7	14.2	15.4
Max. Temperature (°C)	28.9	28.5	27.4	25.2	22.2	19.7	20.2	22.8	28.1	28.3	28	28.8
Avg. Temperature (°F)	72.5	71.6	69.3	64.0	56.8	51.4	51.8	56.3	63.1	68.9	70.0	71.8
Min. Temperature (°F)	61.0	60.1	57.2	50.7	41.9	35.4	35.2	39.7	47.5	54.9	57.6	59.7
Max. Temperature (°F)	84.0	83.3	81.3	77.4	72.0	67.5	68.4	73.0	79.0	82.9	82.4	83.8
Precipitation / Rainfall (mm)	126	91	82	48	21	6	6	7	18	66	112	116

Figure 2: Climatic figures of the region.

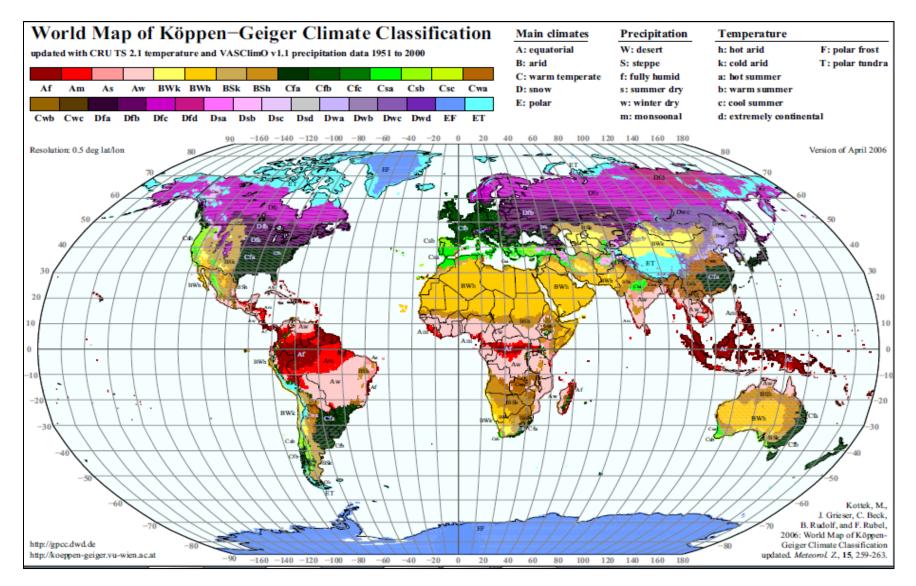


Figure 3: World map of Köppen -Geiger Climate Classification.

Vegetation of the study site

Floral diversity was determined by completing survey transects and sample sites along all the different habitats within the physiographic zones represented in the affected areas. To attain scientifically reliable results, distinct vegetation communities were surveyed by selecting representative site in each homogenous unit. The vegetation units of Mucina and Rutherford (2006) were used as references but where necessary communities are named according to the recommendations of a standardised South African Syntaxonomic nomenclature system. By combining the available literature with the survey results, stratification of vegetation communities was possible.

The aim was to identify distinct vegetation types and to establish their integrity and representation in the study area. The veld types are described on a local level.

Vegetation types and biophysical descriptions

Vegetation units are broadly classed and may include several distinct vegetation communities within a unit. The vegetation types found on the study site are Marikana Thornveld and Central Sandy Bushveld (Fig. 4).

Marikana Thornveld

Vegetation & Landscape Features

Open *Vachellia karroo* woodland, occurring in valleys and slightly undulating plains, and some lowland hills. Shrubs are denser along drainage lines, on termitaria and rocky outcrops or in other habitat protected from fire.

Geology & Soils

Most of the area is underlain by the mafic intrusive rocks of the Rustenburg Layered Suite of the Bushveld Igneous Complex. Rocks include gabbro, norite, pyroxenite and anorthosite. The shales and quartzites of the Pretoria Group (Transvaal Supergroup) also contribute. Mainly vertic melanic clays with some dystrophic or mesotrophic plinthic catenas and some freely drained, deep soils. Land types mainly Ea, Ba and Ae.

Distribution

This vegetation type is found in North West and Gauteng. It occurs on plains from Rustenburg area in the west through Marikana and Brits to the Pretoria area in the east. It occurs on a varying altitude ranging between 1050 -1450 m a.s.l (Bredenkamp & van Rooyen, 1996).

Occurrence of important flora

<u>Tall Tree:</u> Senegalia burkei. <u>Small Trees:</u> Senegalia caffra (d), Vachellia. gerrardii (d), V. karroo (d), Combretum molle (d), Rhus lancea (d), Ziziphus mucronata (d), V. nilotica, V. tortilis subsp. heteracantha, Celtis africana, Dombeya rotundifolia, Pappea capensis, Peltophorum africanum, Terminalia sericea.

<u>Tall Shrubs:</u> Euclea crispa subsp. crispa (d), Olea europaea subsp. africana (d), Rhus pyroides var. pyroides (d), Diospyros lycioides subsp. guerkei, Ehretia rigida subsp. rigida, Euclea undulata, Grewia flava, Pavetta gardeniifolia.

Low Shrubs: Asparagus cooperi (d), Rhynchosia nitens (d), Indigofera zeyheri, Justicia flava.

Woody Climbers: Clematis brachiata (d), Helinus integrifolius.

Herbaceous Climbers: Pentarrhinum insipidum (d), Cyphostemma cirrhosum.

<u>Graminoids:</u> Elionurus muticus (d), Eragrostis lehmanniana (d), Setaria sphacelata (d), Themeda triandra (d), Aristida scabrivalvis subsp. scabrivalvis, Fingerhuthia africana, Heteropogon contortus, Hyperthelia dissoluta, Melinis nerviglumis, Pogonarthria squarrosa.

<u>Herbs:</u> Hermannia depressa (d), Ipomoea obscura (d), Barleria macrostegia, Dianthus mooiensis subsp. mooiensis, Ipomoea oblongata, Vernonia oligocephala.

<u>Geophytic Herbs:</u> Ledebouria revoluta, Ornithogalum tenuifolium, Sansevieria aethiopica.

Conservation

This vegetation is Least Threatened. Conservation target is 24%, but around 22% is statutorily conserved mainly in the Magaliesberg Nature Area and much smaller proportions in the Rustenberg, Wonderboom and Suikerbosrand Nature Reserves. At least an additional 1% conserved in other reserves brings the total conserved very close to target. About 15% transformed mainly by cultivation and urban and built-up areas. Some areas with dense stands of the alien *Melia azedarach* but which is often associated with drainage lines or alluvia (i.e. azonal vegetation) embedded within this unit. Erosion is very low to low.

Central Sandy Bushveld

Vegetation & Landscape Features

Low undulating areas, sometimes between mountains, and sandy plains and catenas supporting tall, deciduous *Terminalia sericea* and *Burkea Africana* woodland on deep sandy soils (with the former often dominant on the lower slopes of sandy catenas) and low, broadleaved *Combretum* woodland on shallow rocky or gravelly soils. Species of

Vachellia, *Ziziphus* and *Euclea* are found on flats and lower slopes on eutrophic sands and some less sandy soils. *V. tortilis* may dominate some areas along valleys. Grass-dominated herbaceous layer with relatively low basal cover on dystrophic sands.

Geology & Soils

The large southern and eastern parts of this area are underlain by granite of the Lebowa Granite Suite and some granophyre of the Rashoop Granophyre Suite (both Bushveld Complex, Vaalian). In the north, the sedimentary rocks of the Waterberg Group (Mokolian Erathem) are most important. Specifically, sandstone, conglomerate and siltstone of the Alma Formation and sandstone, siltstone and shale of the Vaalwater Formation. Well-drained, deep Hutton or Clovelly soils often with a catenary sequence from Hutton at the top to Clovelly on the lower slopes; shallow, skeletal Glenrosa soils also occur. Land types mainly Bb, Fa, Ba, Bd and Ac.

Distribution

This vegetation type is found in Limpopo, Mpumalanga, Gauteng and North-West Provinces: Undulating terrain occurs mainly in a broad arc south of the Springbokvlakte from the Pilanesberg in the west through Hammanskraal and Groblersdal to Ga Masemola in the east. A generally narrow irregular band along the north western edge of the Springbokvlakte (including Modimolle) extending into a series of valleys and lower-altitude areas within the Waterberg including the upper Mokolo River Valley near Vaalwater, the corridor between Rankins Pass and the Doorndraai Dam, and the lowlands from the Mabula area to south of the Hoekberge. Some isolated sandy rises are found on the Springbokvlakte. It occurs on a varying altitude ranging between 850 -1450 m a.s.l (Bredenkamp & van Rooyen, 1996).

Occurrence of important flora

Tall Trees: Vachellia burkei (d), V. robusta, Sclerocarya birrea subsp. caffra.

<u>Small Trees:</u> Burkea africana (d), Combretum apiculatum (d), C. zeyheri (d), Terminalia sericea (d), Ochna pulchra, Peltophorum africanum, Rhus leptodictya.

<u>Tall Shrubs:</u> Combretum hereroense, Grewia bicolor, G. monticola, Strychnos pungens. <u>Low Shrubs:</u> Agathisanthemum bojeri (d), Indigofera filipes (d), Felicia fascicularis, Gnidia sericocephala.

<u>Geoxylic Suffrutex:</u> Dichapetalum cymosum (d).

Woody Climber: Asparagus buchananii.

<u>Graminoids:</u> Brachiaria nigropedata (d), Eragrostis pallens (d), E. rigidior (d), Hyperthelia dissoluta (d), Panicum maximum (d), Perotis patens (d), Anthephora pubescens, Aristida scabrivalvis subsp. scabrivalvis, Brachiaria serrata, Elionurus muticus, Eragrostis

nindensis, Loudetia simplex, Schmidtia pappophoroides, Themeda triandra, Trachypogon spicatus.

<u>Herbs:</u> Dicerocaryum senecioides (d), Barleria macrostegia, Blepharis integrifolia, Crabbea angustifolia, Evolvulus alsinoides, Geigeria burkei, Hermannia lancifolia, Indigofera daleoides, Justicia anagalloides, Kyphocarpa angustifolia, Lophiocarpus tenuissimus, Waltheria indica, Xerophyta humilis.

Geophytic Herb: Hypoxis hemerocallidea. Succulent Herb: Aloe greatheadii var. davyana.

Conservation

This vegetation is Vulnerable. Conservation target is 19%, but less than 3% is statutorily conserved statutorily conserved spread thinly across many nature reserves including the Doorndraai Dam and Skuinsdraai Nature Reserves. An additional 2% conserved in other reserves including the Wallmansthal SANDF Property and a grouping of private reserves, which include most of the Nylsvlei freshwater wetlands. About 24% transformed, including about 19% cultivated and 4% urban and built-up areas. Much of the unit in the broad arc south of the Springbokvlakte is heavily populated by rural communities. Several alien plants are widely scattered but often at low densities; these include *Cereus jamacaru, Eucalyptus* species, *Lantana camara, Melia azedarach, Opuntia ficus-indica* and Sesbania punicea. Erosion very low to high, especially in some places northeast of Groblersdal.

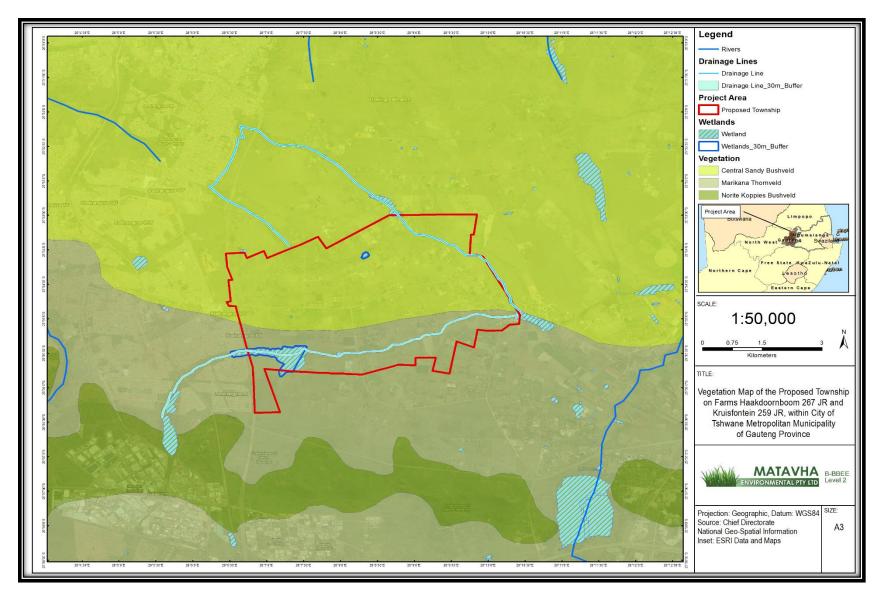


Figure 4: Vegetation map of the study site.

LEGAL REQUIREMENTS

Provincial legislation

In addition to national legislation, some of South Africa's nine provinces have their own provincial biodiversity legislation, as nature conservation is a concurrent function of national and provincial government in terms of the Constitution (Act 108 of 1996).

Gauteng Conservation Plan

Gauteng Department of Agriculture and Rural Development initiated a conservation plan which is called, Gauteng Conservation Plan (Gauteng C-Plan v3.3). This Gauteng C-Plan v3.3 delineates on a map, commonly known as a Critical Biodiversity Areas (CBA), biodiversity priority areas called Critical Biodiversity Areas, Ecological Support Areas and Protected Areas. The map is designed to be used at approximately 1:50 000 scale as the integrated biodiversity input into land use planning and decision making. It is highly recommended that this Gauteng C-Plan be a primary biodiversity consideration in Environmental Impact Assessments (GDARD 2014).

Critical Biodiversity Areas (CBAs) are terrestrial and aquatic areas of the landscape that need to be maintained in a natural or near-natural state in order to ensure the continued existence and functioning of species and ecosystems and the delivery of ecosystem services. In other words, if these areas are not maintained in a natural or near-natural state then biodiversity targets cannot be met. Maintaining an area in a natural state can include a variety of biodiversity compatible land uses and resource uses.

Ecological Support Areas (ESAs) are terrestrial and aquatic areas that are not essential for meeting biodiversity representation targets (thresholds), but which nevertheless play an important role in supporting the ecological functioning of critical biodiversity areas and/or in delivering ecosystem services that support socio-economic development, such as water provision, flood mitigation or carbon sequestration. The degree or extent of restriction on land use and resource use in these areas may be lower than that recommended for CBAs.

Sensitivity Analysis

In terms of Gauteng Conservation Plan, only small portion of the proposed project falls within Important Area and Ecological Support Area (see Fig 5). These areas are associated with wetland and drainage lines. The developer has incorporated the drainage lines and wetland area in their preliminary Site Development Plan (Fig. 6). The remaining majority of the portions have been severely transformed by historical and current farming activities and residential properties.

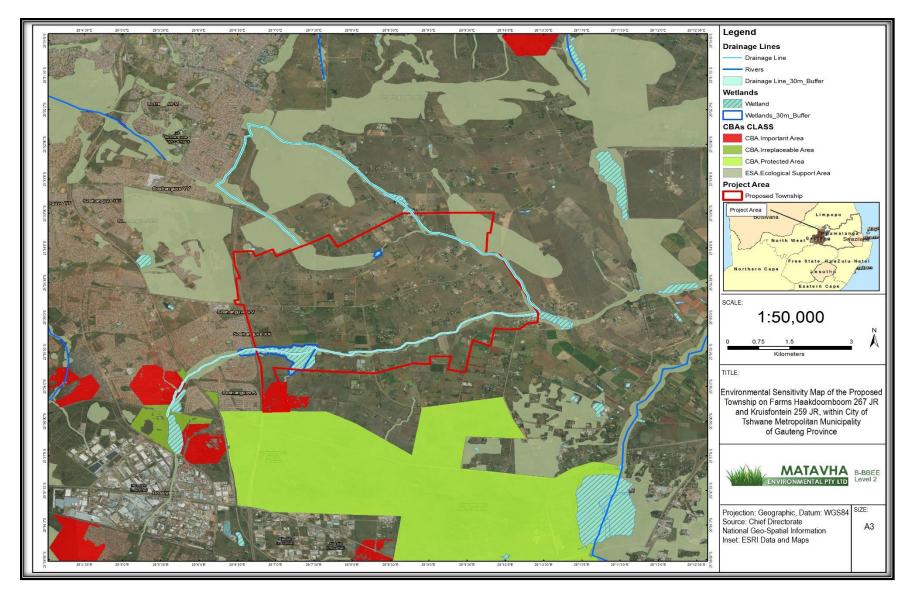


Figure 5: Gauteng Conservation Plan of the study site.

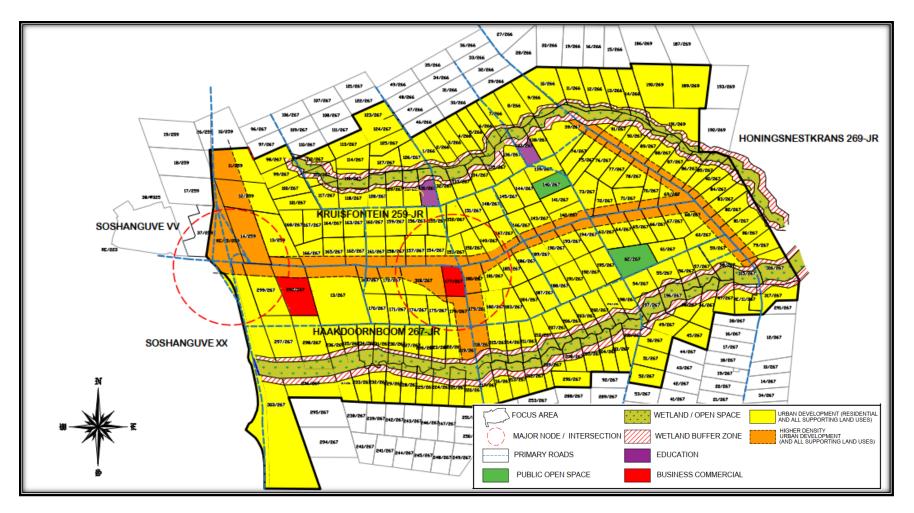


Figure 6: Side Development Plan of the study site.

Red Data Analysis and Floral Assessment

South African National Biodiversity Institute (SANBI) RedList website was used to determine the conservation status of the species. This is done in order to conserve sensitive species and their immediate environment. The status is determined in Table 2 below.

p- protect	ted Species	
M- Medici	inal species	
EX	Extinct	A taxon is Extinct when there is no reasonable doubt that the last individual has died. Taxa should be listed as extinct only once exhaustive surveys throughout the historic range have failed to record an individual.
EW	Extinct in the Wild	A taxon is Extinct in the Wild when it is known to survive only in cultivation or as a naturalized population (or populations) well outside the past range.
CR PE	Critically Endangered (Possibly Extinct	Critically Endangered (Possibly Extinct) taxa are those that are, on the balance of evidence, likely to be extinct, but for which there is a small chance that they may be extant. Hence, they should not be listed as Extinct until adequate surveys have failed to record the taxon.
CR	Critically Endangered	A taxon is Critically Endangered when the best available evidence indicates that it meets any of the five IUCN criteria for Critically Endangered and is therefore facing an extremely high risk of extinction in the wild.
EN	Endangered	A taxon is Endangered when the best available evidence indicates that it meets any of the five IUCN criteria for Endangered and is therefore facing a very high risk of extinction in the wild.
VU	Vulnerable	A taxon is Vulnerable when the best available evidence indicates that it meets any of the five IUCN criteria for Vulnerable and is therefore facing a high risk of extinction in the wild.
NT	Near Threatened	A taxon is Near Threatened when available evidence indicates that it nearly meets any of the five IUCN criteria for Vulnerable and is therefore likely to qualify for a threatened category in the near future.
CRITICAL	LYRARE	A taxon is Critically Rare when it is known to occur only at a single site but is not exposed to any direct or plausible potential threat and does not qualify for a category of threat according to the five IUCN criteria.

Table 2: Red Data Status definitions (SANBI, 2010).

RARE		A taxon is Rare when it meets any of the four South African criteria for rarity but is not exposed to any direct or plausible potential threat and does not qualify for a category of threat according to the five IUCN criteria.
DECLINING		A taxon is Declining when it does not meet any of the five IUCN criteria and does not qualify for the categories Critically Endangered, Endangered, Vulnerable or Near Threatened, but there are threatening processes causing a continuing decline in the population.
DDD	Data Deficient— Insufficient Information	A taxon is DDD when there is inadequate information to make an assessment of its risk of extinction, but the taxon is well defined. Data Deficient is not a category of threat. However, listing of taxa in this category indicates that more information is required, and that future research could show that a threatened classification is appropriate.
LC	Least Concern	A taxon is Least Concern when it has been evaluated against the five IUCN criteria and does not qualify for the categories Critically Endangered, Endangered, Vulnerable or Near Threatened, and it is not rare, and the population is not declining.

Ecological function

Ecological function relates to the degree of ecological connectivity between systems within a landscape matrix. Therefore, systems with a high degree of landscape connectivity amongst one another are perceived to be more sensitive and will be those contributing to ecosystem service (for example wetlands) or overall preservation of biodiversity. Conservation importance relates to species diversity, endemism (unique species or unique processes) and the high occurrence of threatened and protected species or ecosystems protected by legislation.

Sensitivity scale

- High ecological function: Sensitive ecosystems with either low inherent resistance or resilience towards disturbance factors or highly dynamic systems considered to be stable and important for the maintenance of ecosystems integrity for example pristine grasslands, pristine wetlands and pristine ridges.
- **Medium ecological function**: Relatively important ecosystems at gradients of intermediate disturbances. An area may be considered of medium ecological function if it is directly adjacent to sensitive/pristine ecosystem.
- Low ecological function: Degraded and highly disturbed systems with little or no ecological function.
- No Go Areas: Areas that have irreplaceable biodiversity or important ecosystem function values which may be lost permanently if these ecosystems are transformed, with a high potential of also affecting adjacent and/or downstream ecosystems negatively

Conservation status of the vegetation

- *High conservation importance*: Ecosystems with high species richness which usually provide suitable habitat for several threatened species. Usually termed 'no-go' areas and unsuitable for development and should be conserved.
- Medium conservation importance: Ecosystems with intermediate levels of species diversity without any threatened species. Low-density development may be accommodated, provided the current species diversity is conserved.

• Low conservation importance: Areas with little or no conservation potential and usually species poor (most species are usually exotic).

Cognizance was taken of the following environmental attributes and general information:

- Regional and local vegetation
- Current status of habitats
- Red Data habitat suitability, and
- Digital photographs

Phytosociological data accumulated include the following:

- Plant species and growth forms
- Dominant plant species
- Cover abundance values, and
- Samples or digital images of unidentified plant species

The system ecological function is Low to Medium function.

RESULTS

Biological diversity everywhere is at great risk as a direct result of an ever-expanding human population and its associated needs for energy, water, food and minerals. Landscape transformation that is needed to accommodate these activities inevitably leads to habitat loss and habitat fragmentation, resulting in the mosaical appearance of undisturbed habitat within a matrix of transformed areas. These remaining areas of natural habitat are frequently too small to support the biodiversity that previously occupied the area and the region loses its ecological integrity (Kamffer 2004).

The habitats within the proposed project sites have been disturbed and as a result they are categorized under **Low-Medium Sensitivity** and **Ecological Function**. Below are tables containing species recorded on site during the survey.

Plants

Majority of the natural vegetation has been removed for agricultural activities. The riparian areas are invaded by woody species such as the *Vachellias*.

Species	Common Name	Growth Form	IUCN Conservation Status
Senegalia burkei	Black Monkey Thorn	Tree	LC
Combretum molle	Velvet Bushwillow	Tree	LC
Rhus lancea	Karree	Tree	LC
Dombeya rotundifolia	Common Wild Pear	Tree	LC
Peltophorum africanum	Weeping Wattle	Tree	LC
Vachellia sieberiana	Paperbark Thorn	Tree	LC
Vachellia karroo	Sweet Thorn	Tree	LC
Vangueria infausta	Wild Medlar	Tree	
Ziziphus mucronata	Buffalo Thorn	Tree	LC
Asparagus laricinus	Bergkatbos	Shrub	LC
Aloe greatheadii var davyana	Spotted Aloe	Succulent	LC
Setaria sphacelata	Common Bristle Grass	Grass	LC
Hyparrhenia hirta	Common Thatching Grass	Grass	LC
Aristida congesta	Tassel Three-awn	Grass	LC
Sporobolus pectinatus	Kammetjiesgras	Grass	LC

Table 3: Plant species observed at the study area.

Themeda triandra	Red Grass	Grass	LC

Invasive alien plants are known to threaten three main components of the landscape: agricultural potential of the land, biodiversity value of the land, and water quality and quantity. Alien invasive plants impact water resources negatively by reducing surface water flow. Several studies have investigated the impact of these plants on water resources (see Blignaut et al. 2007). These studies concurred that invasive alien plants including forest plantations have a significant negative impact on stream flow. Le Maitre et al. (2016) reported that species such as *Acacia mearnsii* account for more than 30% of the total flow reductions, followed by pines (18.9%) and eucalyptus (15.0%). Eucalyptus also pose an increased fire risk.

Species	Common Name	Growth Form	Category (NEMBA)
Melia azedarach	Seringa	Tree	(Declared Category 1b) Category 3 in urban areas
Lantana camara	Lantana	Shrub	(Declared Category 1b)
Pinus patula	Patula Pine	Tree	(Declared Category 2)
Jacaranda mimosifolia	Jacaranda	Tree	(Declared Category 1b)
Eucalyptus camaldulenis	Red Gum	Tree	(Declared Category 1b)
Cereus jamacaru	Queen of the night	Succulent	(Declared Category 1)
Agave sisalana	Sisal Hemp	Succulent	(Declared Category 2)
Opuntia ficus indica	Sweet Prickly Pear	Succulent	(Declared Category 1)
Ricinus communis	Castor Oil Plant	Low Shrub	(Declared Category 2)
Argemone mexicana	Mexican Poppies	Herb	(Declared Category 1b)
Datura ferox	Large Thorn Apple	Herb	(Declared Category 1b)

Table 4: Weeds and invasive plant species observed at the study area.

Birds

Birds are regarded as one of the most useful bioindicators, and they have been used extensively as models to determine ecosystem function (see review Koskimies 1989;

Potts et al. 2014; Bregman et al. 2016). Birds observed during the survey were mainly generalists that are not sensitive to habitat transformation.

Species	Common Name	IUCN Conservation Status
Bostrychia hagedash	Hadeda Ibis	LC
Threskiornis aethiopicus	African Sacred Ibis	LC
Corvus albus	Pied Crow	LC
Elanus caeruleus	Black-shouldered Kite	LC
Riparia cincta	Banded Martin	LC
Lagonosticta rubricata	African Firefinch	LC
Saxicola torquatus	African Stonechat	LC
Sigelus silens	Fiscal Flycatcher	LC
Uraeginthus angolensis	Blue Waxbill	LC
Vanellus armatus	Blacksmith Lapwing	LC
Cisticola fulvicapilla	Neddicky	LC
Lanius collaris	Common Fiscal	LC
Spilopelia senegalensis	Laughing Dove	LC
Corythaixoides concolor	Grey Go-away Bird	LC
Ploceus velatus	Southern Masked Weaver	LC
Vanellus coronatus	Crowned Lapwing	LC
Streptopelia capicola	Cape Turtle Dove	LC
Passer domesticus	House Sparrow	LC
Passer melanurus	Cape Sparrow	LC

Table 5: List of bird species observed at the study area

Mammals

Local mammalian communities in Africa present the highest species richness in the world, only paralleled by some communities in the Oriental biogeographic region. Differences in mammalian species richness are especially outstanding when compared with South American communities, despite their similar latitudinal position and regional species richness. Recent study has shown that these differences are not only related to contemporary determinants but also to biogeographic-historic factors, which acted on the composition of the regional pool of species. One of the main differences in composition between the two regions relates to the high diversification of large mammals in Africa, which greatly contributes to the high values of local community richness in this region (Nieto et al. 2005). South Africa contains the majority of southern Africa's endemic mammals and hence is an important area for mammal conservation (Gelderblom & Bronner 1995). Very few mammal species were observed during the survey. This low diversity could be due to the presence of humans and clearance of vegetation. Table 6: List of mammal species observed at the study area

Species	Common Name	IUCN Conservation Status
Hystrix africaeausralis	Cape Porcupine	LC
Galerella sanguinea	Slender Mongoose	LC
Lepus saxatilis	Scrub Hare	LC
Rhabdomys pumilio	Four Striped Grass Mouse	LC

Reptiles

Herpetofauna are specialized in habitat requirements, are sensitive to habitat modification and face global extinction crises. While herpetofauna are important components of ecosystems they are little studied especially in human-modified landscapes. Herpetofauna do occur in human modified landscapes, so encouraging appropriate matrix land uses could contribute to their conservation.

Table 7: List of reptile species observed at the study area

Species	Common Name	IUCN Conservation Status
Lamprophis capensis	Brown House Snake	LC
Bitis arietans arietans	Puff Adder	LC
Psammophylax tritaeniatus	Striped Skaapsteker	LC

The main impacts

- Local loss of plant species
- Loss of micro habitat
- Loss of foraging grounds
- Further introduction of alien species

Impact Assessment methodology

To assess the significance of the identified impacts, the following characteristics of each potential impact will be identified:

- The severity (the disturbance of the impact);
- The extent (the spatial extent of the impact);
- The duration (the length of period);
- The probability (the likelihood of the impact occurring); and
- The significance (a synthesis of the above).

The impact rating process is designed to provide a numerical rating of the various environmental impacts identified for various project activities. The significance rating process follows the established impact/risk assessment formula:

Significance = Consequence x Probability

Where Consequence = Severity + Extent + Duration

And Probability = Likelihood of an impact occurring

The matrix first calculates the rating out of 75 and then converts this into a percentage out of 100. The percentage is the figure quoted in the matrix. The weight assigned to the various parameters for positive and negative impacts in the formula is presented in Table 8 below.

Rating	Severity	Extent	Duration	Probability
5	Very significant impact/total destruction of a highly valued species, habitat or ecosystem or extremely positive impact over baseline environmental condition.	National/ International	Permanent/ Irreversible (more than 50 years)	Certain/ Normally happens in cases of this nature (80-100% chance of happening)
4	Serious impairment of ecosystem function or very positive impact over baseline environmental condition.	Provincial/ Regional	Long Term (25 to 49 years or Beyond closure)	Will more than likely Happen (60-79% chance)
3	Moderate negative alteration of ecosystem functioning or moderately positive impact over baseline environmental condition.	Regional (substantially beyond site boundary)	Medium Term (5-24 years)	Could happen and has happened here or elsewhere (40- 59% chance)
2	Minor effects not affecting ecosystem functioning or Slightly positive impact over baseline environmental condition.	Local (beyond site boundary and affects neighbours)	Medium- Short Term (1-4 years)	Has not happened yet, but could happen (20-39% chance)

 Table 8: Impact Assessment Parameters.

1	Insignificant effects on the biophysical	Site (does not	Short term (Less than	Conceivable, but
	environment or insignificantly positive impact over baseline environmental condition.	``		only in a set of very specific and extreme circumstances (0- 19% chance)

Impacts are rated prior to mitigation and again after consideration of the mitigation measure proposed for the Environmental Management Programme (EMPr). The significance of an impact is then determined and categorised into one of four categories, as indicated in Table 9.

Table 9: Significance threshold limits.

Category	Description	Colour
High	76%-100%	
Medium – High	51% - 75%	
Low-Medium	26% - 50%	
Low	0% - 25%	

IMPACT SIGNIFICANCE

Table 10: Vegetation

Parameter	Description (pre-mitigation)	Rating (pre- mitigation)	Description (post-mitigation)	Rating (post-mitigation)
Duration	Permanent	6	Permanent	5
Extent	Site	1	Site	1
Severity	Medium	2	Medium	2
Probability	Definite	3	Definite	2
Significance	Medium	60%	Low-Medium	40%

Table 11: Birds

Parameter	Description	Rating	Description	Rating
	(pre- Mitigation)	(Pre-Mitigation)	(post-mitigation)	(post mitigation)

Duration	Medium term	3	Short term	2
Extent	Site	1	Site	1
Severity	Medium	2	Low	1
Probability	Probable	2	Probable	2
Significance	Medium	55%	Low - Medium	35%

Table 12: Mammals

Parameter	Description (pre- Mitigation)	Rating (Pre- Mitigation)	Description (post-mitigation)	Rating (post mitigation)
Duration	Long term	4	Medium term	3
Extent	Site	1	Site	1
Severity	Medium	2	Low	1
Probability	Possible	1	Possible	1
Significance	Medium	55%	Low - Medium	30%

Table 13: Reptiles and Amphibians

Parameter	Description (pre- Mitigation)	Rating (Pre- Mitigation)	Description (post-mitigation)	Rating (post mitigation)
Duration	Medium term	3	Short term	2
Extent	Site	1	Site	1
Severity	Medium	2	Low	1
Probability	Probable	1	Probable	1
Significance	Medium	50%	Low-Medium	40%

Table 14: General impacts and mitigations for the entire site.

Impact Description	Impact significance before mitigations	Recommendations and mitigations	Impact(s) significance after mitigations	Score
Vegetation clearance	High	Sparsely vegetated areas should be cleared first, with densely vegetated areas being cleared last. All vegetation not required to be removed should be protected against damage.	Medium	4
Animals and birds displacement	Medium	No animal may be hunted, trapped, snared or captured for any purpose whatsoever. Speed of vehicles should be limited to allow for sufficient safety margins.	Low	2
Permanent disruption of ecological corridors and migration routes linking different ecosystems/habitat or across altitudinal gradients	Medium	Wherever possible, roads and tracks should be constructed so as to run along the contour.	Low	2
Possible introduction of alien species due to increased human related activities	Medium	 Avoid translocating stockpiles of topsoil from one place to another in order to avoid translocating soil seed banks of alien species. Any extensive cleared areas that are no longer or not required for construction activities should be re-seeded with locally sourced seed of suitable species. Bare areas can also be packed with brush removed from other parts of the site to encourage natural vegetation regeneration and limit erosion. Invasive Alien Plant eradication and control program should be developed. 	Low	2
Total	<u> </u>			10

RECOMMENDATIONS AND CONCLUSIONS

- The proposed township establishment and associated infrastructures will result in extensive vegetation clearance. There will also be an increase in human presence, which is likely to result in displacement of wildlife. Possible impacts to the receiving environment have been identified as being medium to low.
- Presence of several invasive alien species is of a major concern and requires intervention.
- Recommendations below will further help to lower the said impacts.

Recommendations:

- No construction material should be dumped on site.
- No collection of firewood, protected species or medicinal floral species must be allowed by construction personnel.
- No painting or marking of vegetation to identify locality or other information shall be allowed, as it will disfigure the natural setting. Marking shall be done by steel stakes with tags, if required.
- Avoid translocating topsoil stockpiles from one place to another or importing topsoil from other sources that may contain alien plant propagules.
- A qualified ecologist should develop an invasive alien plant eradication and control program.
- Only necessary damage must be caused: for example, unnecessary driving around in the veld should not take place.
- Disturbance of the vegetation will not result in a net loss of species within this area.
- It is imperative that the mitigation measures outlined in this report are implemented during operational phases.

REHABILITATION

The traditional definition of rehabilitation aims at returning the land in a given area to some degree of its former state after a particular process has resulted in its damage.

Rehabilitation requires that there is an attempt to imitate natural processes and reinstate natural ecological driving forces in such a way that it aids the recovery (or maintenance) of dynamic systems so that, although they are unlikely to be identical to their natural counterparts, they will be comparable in critical ways so as to function similarly (Jordan et al.1987). Rehabilitation should be based on an understanding of both the ecological starting point and on a defined goal endpoint and should accept that it is not possible to predict exactly how the wetland is likely to respond to the rehabilitation interventions.

Rehabilitation should be based on an understanding of both the ecological starting point and on a defined goal endpoint and should accept that it is not possible to predict exactly how the environment is likely to respond to the rehabilitation interventions. A rehabilitation plan should be compiled and implemented. This should be done using indigenous vegetation.

CONCLUSION

- Ecological assessment revealed that the proposed township establishment will be located on habitats that have already been modified. As a result, the proposed development does not pose any high risk to the vegetation on site.
- It is therefore the opinion of the biodiversity specialist that the proposed township establishment be favourably considered. However, it is important that the mitigations and recommendations provided by this study are adhered to.

REFERENCES

- Branch, B. 1998. Field guide to snakes and other reptiles of southern Africa. Struik Nature, Cape Town.
- Bredenkamp, G., Granger, J.E. & van Rooyen, N. 1996. Moist Sandy Highveld Grassland. In: Low, A.B. &Robelo, A.G. (eds) *Vegetation of South Africa, Lesotho and Swaziland*. Department of Environmental Affairs and Tourism, Pretoria.
- Kamffer, D. 2004. Community-level effects of fragmentation of the Afromontane grassland in the escarpment region of Mpumalanga, South Africa. M.Sc. Theses, University of Pretoria, Pretoria.
- Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. 2006. World Map of Köppe Geiger Climate Classification updated. *Meteorology. Z.* **15**. 259-263.
- Kotze, D.C., Marneweck, G.C., Batchelor, A.L., Lindley, D.S. & Collins, N.B., 2007, Wet EcoServices: A technique for rapidly assessing ecosystem services supplied by wetlands, WRC Report No. TT 339/09, Water Research Commission, Pretoria.
- Mucina, L., Hoare, D.B., Lötter, M.C., Du Preez, P.J., Rutherford, M.C., Scott Shaw, C.R., Bredenkamp, G.J., Powrie, L.W., Scott, L., Camp, K.G.T., Cilliers, S.S.Bezuidenhout, H., Mostert, T.H., Siebert, S.J., Winter, P.J.D., Burrows, J.E., Dobson, L., Ward, R.A., Stalmans, M., Oliver, E.G.H., Siebert, F., Schmidt, E.,Kobisi, K., Kose, L. 2006. Grassland Biome. In: Mucina, L. & Rutherford, M.C. (eds.). Vegetation map of South Africa, Lesotho and Swaziland: an illustrated guide. Strelitzia 19. South African National Biodiversity Institute, Pretoria.
- Raap, T., Pinxten, R. & Eens, M. 2015. Light pollution disrupts sleep in free-living animals. *Scientific Report*, 5.
- Ross, M. & Ross, T. 2016. Enviross_Haakdoornboomspruit_ Wet, F&F_03/16
- Sinclair, I., Hockey, P., Tarboton, W. & Ryan, R. 2011. Birds of Southern Africa. Struik Nature, Cape Town.
- Trimble, M.J. & Van Aarde. 2014. Amphibian and reptile communities and functional groups over a land-use gradient in a coastal tropical forest landscape of high richness and endemicity. Animal Conservation.

APPENDIX

Appendix A: Site photos Sisal hemp

Seringa

Gum trees on the northern portions

Lantana camara

Prickly Pear

Lucern plantation

Wetland on the Kaalplaasspruit

Queen of the night

Flock of Egyptian Goose

Large Thorn Apple

Common Wild Pear

Wild Medlar

Velvet Bushwillow

Appendix B: Sabap 2 species list

No	Common group	Common species	Genus	Species
1	Apalis	Bar-throated	Apalis	thoracica
2	Avocet	Pied	Recurvirostra	avosetta
3	Babbler	Arrow-marked	Turdoides	jardineii
4	Barbet	Acacia Pied	Tricholaema	leucomelas
5	Barbet	Black-collared	Lybius	torquatus
6	Barbet	Crested	Trachyphonus	vaillantii
7	Batis	Chinspot	Batis	molitor
8	Bee-eater	European	Merops	apiaster
9	Bee-eater	White-fronted	Merops	bullockoides
10	Bishop	Southern Red	Euplectes	orix
11	Bishop	Yellow	Euplectes	capensis
12	Bishop	Yellow-crowned	Euplectes	afer
13	Bittern	Little	Ixobrychus	minutus
14	Bokmakierie	Bokmakierie	Telophorus	zeylonus
15	Boubou	Southern	Laniarius	ferrugineus
16	Brubru	Brubru	Nilaus	afer
17	Bulbul	Dark-capped	Pycnonotus	tricolor
18	Bunting	Cinnamon-breasted	Emberiza	tahapisi
19	Bush-shrike	Grey-headed	Malaconotus	blanchoti
20	Bush-shrike	Orange-breasted	Telophorus	sulfureopectus

No	Common group	Common species	Genus	Species
21	Buzzard	Steppe	Buteo	vulpinus
22	Camaroptera	Grey-backed	Camaroptera	brevicaudata
23	Canary	Black-throated	Crithagra	atrogularis
24	Canary	Yellow	Crithagra	flaviventris
25	Canary	Yellow-fronted	Crithagra	mozambicus
26	Chat	Familiar	Cercomela	familiaris
27	Cisticola	Desert	Cisticola	aridulus
28	Cisticola	Lazy	Cisticola	aberrans
29	Cisticola	Levaillant's	Cisticola	tinniens
30	Cisticola	Rattling	Cisticola	chiniana
31	Cisticola	Zitting	Cisticola	juncidis
32	Cliff-chat	Mocking	Thamnolaea	cinnamomeiventris
33	Cliff-swallow	South African	Hirundo	spilodera
34	Coot	Red-knobbed	Fulica	cristata
35	Cormorant	Reed	Phalacrocorax	africanus
36	Cormorant	White-breasted	Phalacrocorax	carbo
37	Coucal	Burchell's	Centropus	burchellii
38	Crake	Black	Amaurornis	flavirostris
39	Crombec	Long-billed	Sylvietta	rufescens
40	Crow	Pied	Corvus	albus
41	Cuckoo	Black	Cuculus	clamosus
42	Cuckoo	Diderick	Chrysococcyx	caprius

No	Common group	Common species	Genus	Species
43	Cuckoo	Klaas's	Chrysococcyx	klaas
44	Cuckoo	Levaillant's	Clamator	levaillantii
45	Cuckoo	Red-chested	Cuculus	solitarius
46	Cuckoo-shrike	Black	Campephaga	flava
47	Darter	African	Anhinga	rufa
48	Dove	Laughing	Streptopelia	senegalensis
49	Dove	Namaqua	Oena	capensis
50	Dove	Red-eyed	Streptopelia	semitorquata
51	Dove	Rock	Columba	livia
52	Drongo	Fork-tailed	Dicrurus	adsimilis
53	Duck	African Black	Anas	sparsa
54	Duck	Fulvous	Dendrocygna	bicolor
55	Duck	Knob-billed	Sarkidiornis	melanotos
56	Duck	Mallard	Anas	platyrhynchos
57	Duck	White-backed	Thalassornis	leuconotus
58	Duck	White-faced	Dendrocygna	viduata
59	Duck	Yellow-billed	Anas	undulata
60	Eagle	Long-crested	Lophaetus	occipitalis
61	Eagle	Verreaux's	Aquila	verreauxii
62	Egret	Cattle	Bubulcus	ibis
63	Egret	Great	Egretta	alba
64	Egret	Little	Egretta	garzetta

No	Common group	Common species	Genus	Species
65	Egret	Yellow-billed	Egretta	intermedia
66	Eremomela	Burnt-necked	Eremomela	usticollis
67	Eremomela	Yellow-bellied	Eremomela	icteropygialis
68	Falcon	Amur	Falco	amurensis
69	Falcon	Lanner	Falco	biarmicus
70	Finch	Cut-throat	Amadina	fasciata
71	Finch	Red-headed	Amadina	erythrocephala
72	Finch	Scaly-feathered	Sporopipes	squamifrons
73	Firefinch	Jameson's	Lagonosticta	rhodopareia
74	Firefinch	Red-billed	Lagonosticta	senegala
75	Fiscal	Common (Southern)	Lanius	collaris
76	Fish-eagle	African	Haliaeetus	vocifer
77	Flycatcher	Fiscal	Sigelus	silens
78	Flycatcher	Marico	Bradornis	mariquensis
79	Flycatcher	Southern Black	Melaenornis	pammelaina
80	Flycatcher	Spotted	Muscicapa	striata
81	Francolin	Coqui	Peliperdix	coqui
82	Francolin	Crested	Dendroperdix	sephaena
83	Go-away-bird	Grey	Corythaixoides	concolor
84	Goose	Domestic	Anser	anser
85	Goose	Egyptian	Alopochen	aegyptiacus
86	Goose	Spur-winged	Plectropterus	gambensis

No	Common group	Common species	Genus	Species
87	Goshawk	Gabar	Melierax	gabar
88	Grebe	Great Crested	Podiceps	cristatus
89	Grebe	Little	Tachybaptus	ruficollis
90	Green-pigeon	African	Treron	calvus
91	Guineafowl	Helmeted	Numida	meleagris
92	Gull	Grey-headed	Larus	cirrocephalus
93	Hamerkop	Hamerkop	Scopus	umbretta
94	Harrier-Hawk	African	Polyboroides	typus
95	Hawk	African Cuckoo	Aviceda	cuculoides
96	Heron	Black	Egretta	ardesiaca
97	Heron	Black-headed	Ardea	melanocephala
98	Heron	Goliath	Ardea	goliath
99	Heron	Green-backed	Butorides	striata
100	Heron	Grey	Ardea	cinerea
101	Heron	Purple	Ardea	purpurea
102	Heron	Squacco	Ardeola	ralloides
103	Honeybird	Brown-backed	Prodotiscus	regulus
104	Honeyguide	Greater	Indicator	indicator
105	Honeyguide	Lesser	Indicator	minor
106	Ноорое	African	Upupa	africana
107	Hornbill	African Grey	Tockus	nasutus
108	Hornbill	Southern Yellow-billed	Tockus	leucomelas

No	Common group	Common species	Genus	Species
109	House-martin	Common	Delichon	urbicum
110	Ibis	African Sacred	Threskiornis	aethiopicus
111	Ibis	Glossy	Plegadis	falcinellus
112	Ibis	Hadeda	Bostrychia	hagedash
113	Indigobird	Village	Vidua	chalybeata
114	Jacana	African	Actophilornis	africanus
115	Kingfisher	Brown-hooded	Halcyon	albiventris
116	Kingfisher	Giant	Megaceryle	maximus
117	Kingfisher	Malachite	Alcedo	cristata
118	Kingfisher	Pied	Ceryle	rudis
119	Kingfisher	Woodland	Halcyon	senegalensis
120	Kite	Black-shouldered	Elanus	caeruleus
121	Kite	Yellow-billed	Milvus	aegyptius
122	Korhaan	Northern Black	Afrotis	afraoides
123	Lapwing	African Wattled	Vanellus	senegallus
124	Lapwing	Blacksmith	Vanellus	armatus
125	Lapwing	Crowned	Vanellus	coronatus
126	Lark	Eastern Clapper	Mirafra	fasciolata
127	Lark	Rufous-naped	Mirafra	africana
128	Lark	Sabota	Calendulauda	sabota
129	Longclaw	Саре	Macronyx	capensis
130	Mannikin	Bronze	Spermestes	cucullatus

No	Common group	Common species	Genus	Species
131	Martin	Banded	Riparia	cincta
132	Martin	Brown-throated	Riparia	paludicola
133	Martin	Rock	Hirundo	fuligula
134	Masked-weaver	Lesser	Ploceus	intermedius
135	Masked-weaver	Southern	Ploceus	velatus
136	Moorhen	Common	Gallinula	chloropus
137	Mousebird	Red-faced	Urocolius	indicus
138	Mousebird	Speckled	Colius	striatus
139	Myna	Common	Acridotheres	tristis
140	Neddicky	Neddicky	Cisticola	fulvicapilla
141	Night-Heron	Black-crowned	Nycticorax	nycticorax
142	Nightjar	Fiery-necked	Caprimulgus	pectoralis
143	Oriole	Black-headed	Oriolus	larvatus
144	Ostrich	Common	Struthio	camelus
145	Owl	Barn	Tyto	alba
146	Owlet	Pearl-spotted	Glaucidium	perlatum
147	Palm-swift	African	Cypsiurus	parvus
148	Paradise-flycatcher	African	Terpsiphone	viridis
149	Paradise-whydah	Long-tailed	Vidua	paradisaea
150	Parakeet	Rose-ringed	Psittacula	krameri
151	Peacock	Common	Pavo	cristatus
152	Petronia	Yellow-throated	Petronia	superciliaris

No	Common group	Common species	Genus	Species
153	Pigeon	Speckled	Columba	guinea
154	Pipit	African	Anthus	cinnamomeus
155	Pipit	Nicholson's	Anthus	nicholsoni
156	Plover	Three-banded	Charadrius	tricollaris
157	Pochard	Southern	Netta	erythrophthalma
158	Prinia	Black-chested	Prinia	flavicans
159	Prinia	Tawny-flanked	Prinia	subflava
160	Puffback	Black-backed	Dryoscopus	cubla
161	Pytilia	Green-winged	Pytilia	melba
162	Quailfinch	African	Ortygospiza	atricollis
163	Quelea	Red-billed	Quelea	quelea
164	Rail	African	Rallus	caerulescens
165	Reed-warbler	African	Acrocephalus	baeticatus
166	Reed-warbler	Great	Acrocephalus	arundinaceus
167	Robin-chat	Саре	Cossypha	caffra
168	Robin-chat	White-throated	Cossypha	humeralis
169	Roller	Lilac-breasted	Coracias	caudatus
170	Ruff	Ruff	Philomachus	pugnax
171	Rush-warbler	Little	Bradypterus	baboecala
172	Sandpiper	Common	Actitis	hypoleucos
173	Sandpiper	Wood	Tringa	glareola
174	Scops-owl	Southern White-faced	Ptilopsis	granti

No	Common group	Common species	Genus	Species
175	Scrub-robin	Kalahari	Cercotrichas	paena
176	Scrub-robin	White-browed	Cercotrichas	leucophrys
177	Seedeater	Streaky-headed	Crithagra	gularis
178	Shelduck	South African	Tadorna	cana
179	Shoveler	Саре	Anas	smithii
180	Shrike	Crimson-breasted	Laniarius	atrococcineus
181	Shrike	Lesser Grey	Lanius	minor
182	Shrike	Magpie	Urolestes	melanoleucus
183	Shrike	Red-backed	Lanius	collurio
184	Shrike	Southern White-crowned	Eurocephalus	anguitimens
185	Snake-eagle	Black-chested	Circaetus	pectoralis
186	Snipe	African	Gallinago	nigripennis
187	Sparrow	Саре	Passer	melanurus
188	Sparrow	Great	Passer	motitensis
189	Sparrow	House	Passer	domesticus
190	Sparrow	Southern Grey-headed	Passer	diffusus
191	Sparrow-weaver	White-browed	Plocepasser	mahali
192	Sparrowhawk	Little	Accipiter	minullus
193	Sparrowhawk	Ovambo	Accipiter	ovampensis
194	Spoonbill	African	Platalea	alba
195	Spurfowl	Natal	Pternistis	natalensis
196	Spurfowl	Swainson's	Pternistis	swainsonii

No	Common group	Common species	Genus	Species
197	Starling	Cape Glossy	Lamprotornis	nitens
198	Starling	Pied	Spreo	bicolor
199	Starling	Red-winged	Onychognathus	morio
200	Starling	Wattled	Creatophora	cinerea
201	Stilt	Black-winged	Himantopus	himantopus
202	Stint	Little	Calidris	minuta
203	Stonechat	African	Saxicola	torquatus
204	Stork	Abdim's	Ciconia	abdimii
205	Stork	White	Ciconia	ciconia
206	Stork	Yellow-billed	Mycteria	ibis
207	Sunbird	Amethyst	Chalcomitra	amethystina
208	Sunbird	Marico	Cinnyris	mariquensis
209	Sunbird	White-bellied	Cinnyris	talatala
210	Swallow	Barn	Hirundo	rustica
211	Swallow	Greater Striped	Hirundo	cucullata
212	Swallow	Lesser Striped	Hirundo	abyssinica
213	Swallow	Pearl-breasted	Hirundo	dimidiata
214	Swallow	Red-breasted	Hirundo	semirufa
215	Swallow	White-throated	Hirundo	albigularis
216	Swamp-warbler	Lesser	Acrocephalus	gracilirostris
217	Swamphen	African Purple	Porphyrio	madagascariensis
218	Swift	African Black	Apus	barbatus

No	Common group	Common species	Genus	Species
219	Swift	Little	Apus	affinis
220	Swift	White-rumped	Apus	caffer
221	Tchagra	Black-crowned	Tchagra	senegalus
222	Tchagra	Brown-crowned	Tchagra	australis
223	Teal	Hottentot	Anas	hottentota
224	Teal	Red-billed	Anas	erythrorhyncha
225	Tern	Whiskered	Chlidonias	hybrida
226	Tern	White-winged	Chlidonias	leucopterus
227	Thick-knee	Spotted	Burhinus	capensis
228	Thrush	Groundscraper	Psophocichla	litsipsirupa
229	Thrush	Karoo	Turdus	smithi
230	Thrush	Kurrichane	Turdus	libonyanus
231	Tinkerbird	Yellow-fronted	Pogoniulus	chrysoconus
232	Tit	Southern Black	Parus	niger
233	Tit-babbler	Chestnut-vented	Parisoma	subcaeruleum
234	Turtle-dove	Саре	Streptopelia	capicola
235	Vulture	Саре	Gyps	coprotheres
236	Wagtail	Саре	Motacilla	capensis
237	Warbler	Marsh	Acrocephalus	palustris
238	Warbler	Willow	Phylloscopus	trochilus
239	Waxbill	Blue	Uraeginthus	angolensis
240	Waxbill	Common	Estrilda	astrild

No	Common group	Common species	Genus	Species
241	Waxbill	Orange-breasted	Amandava	subflava
242	Waxbill	Violet-eared	Granatina	granatina
243	Weaver	Саре	Ploceus	capensis
244	Weaver	Thick-billed	Amblyospiza	albifrons
245	Weaver	Village	Ploceus	cucullatus
246	Wheatear	Mountain	Oenanthe	monticola
247	White-eye	Саре	Zosterops	virens
248	Whydah	Pin-tailed	Vidua	macroura
249	Whydah	Shaft-tailed	Vidua	regia
250	Widowbird	Red-collared	Euplectes	ardens
251	Widowbird	White-winged	Euplectes	albonotatus
252	Wood-hoopoe	Green	Phoeniculus	purpureus
253	Woodpecker	Bennett's	Campethera	bennettii
254	Woodpecker	Cardinal	Dendropicos	fuscescens
255	Woodpecker	Golden-tailed	Campethera	abingoni
256	Wren-warbler	Barred	Calamonastes	fasciolatus
257	Wryneck	Red-throated	Jynx	ruficollis

Appendix C: Mammal list (based on known historical distribution data). Enviross CC, 2016.

Common species	Scientific name	IUCN Conservation Status
Impala	Aepyceros melampus	LC

Red Hartebeest	Alcelaphus buselaphus	LC
Springbok	Antidorcas marsupialis	LC
White Rhinoceros	Ceratotherium simum	LC
Black Wildebeest	Connochaetes gnou	LC
Blue Wildebeest	Connochaetes taurinus taurinus	LC
Tsessebe	Damaliscus lunatus lunatus	EN
Blesbok	Damaliscus pygargus phillipsi	LC
Plains Zebra	Equus burchellii	LC
Sable Antelope	Hippotragus niger niger	VU
Klipspringer	Oreotragus oreotragus	LC
Oribi	Ourebia ourebi	EN
Grey Rhebok	Pelea capreolus	LC
Warthog	Phacochoerus africanus	LC
Steenbok	Raphicerus campestris	LC
Reedbuck	Redunca arundinum	LC
Mountain Reedbuck	Redunca fulvorufula	LC
Common Duiker	Sylvicapra grimmia	LC
Eland	Taurotragus oryx	LC
Nyala	Tragelaphus angasii	LC
Bushbuck	Tragelaphus scriptus	LC
Kudu	Tragelaphus strepsiceros	LC
Rock Hyrax	Procavia capensis	LC
Cape Clawless Otter	Aonyx capensis	LC
Water Mongoose	Atilax paludinosus	LC
Black-backed Jackal	Canis mesomelas	LC
Caracal	Caracal caracal	LC

Yellow Mongoose	Cynictis penicillata	LC
Black-footed Cat	Felis nigripes	VU
African Wild Cat	Felis silvestris	LC
Slender Mongoose	Galerella sanguinea	LC
Small-spotted Genet	Genetta genetta	LC
Large-spotted Genet	Genetta tigrina	LC
Dwarf Mongoose	Helogale parvula	LC
Brown Hyaena	Hyaena brunnea	NT
White-tailed Mongoose	Ichneumia albicauda	LC
Striped Polecat	Ictonyx striatus	LC
Serval	Leptailurus serval	NT
Spotted-necked Otter	Lutra maculicollis	NT
African Wild Dog	Lycaon pictus	EN
Honey Badger	Mellivora capensis	NT
Banded Mongoose	Mungos mungo	LC
Leopard	Panthera pardus	LC
African Weasel	Poecilogale albinucha	DD
Aardwolf	Proteles cristatus	LC
Suricate	Suricata suricatta	LC
Cape Fox	Vulpes chama	LC
Short-eared Trident Bat	Cloeotis percivali	CE
Wahlberg's Epauletted Fruit Bat	Epomophorus wahlbergi	LC
Schreibers' Long-fingered Bat	Miniopterus schreibersii	NT
Temminck's Hairy Bat	Myotis tricolor	NT
Welwitsch's Hairy Bat	Myotis welwitschii	NT

Cape Serotine Bat	Neoromicia capensis	LC
Egyptian Slit-faced Bat	Nycteris thebaica	LC
Rusty Bat	Pipistrellus rusticus	NT
Peak-saddle Horseshoe Bat	Rhinolophus blasii	VU
Geoffroy's Horseshoe Bat	Rhinolophus clivosus	NT
Darling's Horseshoe Bat	Rhinolophus darlingi	NT
Bushveld Horseshoe Bat	Rhinolophus simulator	LC
Flat-headed Free-tail Bat	Sauromys petrophilus	LC
Yellow House Bat	Scotophilus dinganii	LC
Lesser Yellow House Bat	Scotophilus viridis	LC
Egyptian Free-tailed Bat	Tadarida aegyptiaca	LC
Mauritian Tomb Bat	Taphozous mauritianus	LC
South African Hedgehog	Atelerix frontalis	NT
Rough-haired Golden Mole	Chrysospalax villosus subsp rufopallidus	CE
Reddish-grey Musk Shrew	Crocidura cyanea	DD
Tiny Musk Shrew	Crocidura fuscomurina	DD
Lesser Red Musk Shrew	Crocidura hirta	DD
Maquassie Musk Shrew	Crocidura maquassiensis	VU
Swamp Musk Shrew	Crocidura mariquensis	DD
Lesser Grey-brown Musk Shrew	Crocidura silacea	DD
Forest Shrew	Myosorex varius	DD
Juliana's Golden Mole	Neamblysomus julianae	VU
Juliana's Golden Mole	Neamblysomus julianae (Pretoria subpopulation)	CE

Least Dwarf Shrew	Suncus infinitesimus	DD
Lesser Dwarf Shrew	Suncus varilla	DD
Scrub / Savannah Hare	Lepus saxatilis	LC
Jameson's Red Rock Rabbit	Pronolagus randensis	LC
Vervet Monkey	Cercopithecus aethiops pygerythrus	LC
Southern Lesser Galago	Galago moholi	LC
Chacma Baboon	Papio ursinus	LC
Tete Veld Rat	Aethomys ineptus	LC
Namaqua Rock Mouse	Aethomys namaquensis	LC
Common Mole-rat	Cryptomys hottentotus	LC
Water Rat	Dasymys incomtus	NT
Grey Climbing Mouse	Dendromus melanotis	LC
Chestnut Climbing Mouse	Dendromus mystacalis	LC
Woodland Dormouse	Graphiurus murinus	LC
Rock Dormouse	Graphiurus platyops	DD
Porcupine	Hystrix africaeaustralis	LC
Single-striped Mouse	Lemniscomys rosalia	DD
Multimammate Mouse	Mastomys coucha	LC
Natal Multimammate Mouse	Mastomys natalensis	LC
White-tailed Rat	Mystromys albicaudatus	EN
Angoni Vlei Rat	Otomys angoniensis	LC
Vlei Rat	Otomys irroratus	LC
Springhare	Pedetes capensis	LC
Striped Mouse	Rhabdomys pumilio	LC

Pouched Mouse	Saccostomus campestris	LC
Krebs' Fat Mouse	Steatomys krebsii	LC
Fat Mouse	Steatomys pratensis	LC
Highveld Gerbil	Tatera brantsii	LC
Bushveld Gerbil	Tatera leucogaster	DD
Tree Rat	Thallomys paedulcus	LC
Greater Cane Rat	Thryonomys swinderianus	LC
Short-snouted Elephant- shrew	Elephantulus brachyrhynchus	DD
Rock Elephant-shrew	Elephantulus myurus	LC
Aardvark	Orycteropus afer	LC