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Abstract: Echinochloa crus-galli var. crus-galli, E. crus-galli var. zelayensis, and E. glabrescens, morpho-
logically similar at the seedling stage, are the most pernicious barnyard grass species in paddy fields
worldwide. Chloroplast (cp) genomes could be conducive to their identification. In this study, we
assembled the complete cp genome sequences of Echinochloa crus-galli var. crus-galli (139,856 bp),
E. crus-galli var. zelayensis (139,874 bp), and E. glabrescens (139,874 bp), which exhibited a typical
circular tetramerous structure, large and small single-copy regions, and a pair of inverted repeats. In
Echinochloa crus-galli var. crus-galli, there were 136 simple sequence (SSRs) and 62 long (LRs) repeats,
and in the other two species, 139 SSRs and 68 LRs. Each cp genome contains 92 protein-encoding
genes. In Echinochloa crus-galli var. crus-galli and E. glabrescens, 321 and 1 single-nucleotide polymor-
phisms were detected compared to Echinochloa crus-galli var. zelayensis. IR expansion and contraction
revealed small differences between the three species. The phylogenetic tree based on cp genomes
demonstrated the phylogenetic relationship between ten barnyard grass species and other common
Gramineae plants, showing new genetic relationships of the genus Echinochloa. This study provides
valuable information on cp genomes, useful for identifying and classifying the genus Echinochloa and
studying its phylogenetic relationships and evolution.

Keywords: Echinochloa; chloroplast genome; single-nucleotide polymorphisms; repeat;
phylogenetic tree

1. Introduction

The genus Echinochloa Beauv (barnyard grass) is an annual or perennial gramineous
plant widely distributed worldwide. This genus contains approximately 50 of the most
pernicious weed species in global crops, especially in rice (Oryza sativa) fields [1–4], where
they are very successful competitors, mainly because their ecological evolution is similar to
that of rice [5,6]. The rice yield reduction caused by the wanton occurrence of barnyard
grass may be very serious, making it the most troublesome weed for rice farmers [7,8].
Echinochloa crus-galli (L.) P. Beauv, E. crus-galli var. zelayensis (Kunth) Hitchc., and E.
glabrescens Munro ex Hook. f. are the most common weeds in the middle and lower reaches
of the Yangtze River, China, one of which often forms a dominant species in paddy fields.
These three barnyard grass species are very similar in morphology at the seedling stage and
can hardly be identified unless they are in heading stage. However, there are differences in
the sensitivity to herbicides among different barnyard grass species [9,10], and the seedling
stage of barnyard grass is the key management period. Therefore, it is important to identify
the type of barnyard grass at the seedling stage.

Presently, the classification of the genus Echinochloa is mainly based on external forms
such as spikes, small ears, awn length, and seed morphology [11,12]. However, external
forms cannot distinguish many types of barnyard grass [13]. Several scholars believe
that studying chromosomes and biochemical data helps identify barnyard grass species
because the chromosome number of different barnyard grass species is not similar, and
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the number of chromosomes of some barnyard grass species is 2n = 54, while others
are 2n = 36 [14–16]. With the rapid development of molecular biology techniques, new
techniques have been applied to identify barnyard grass species. Inter-simple sequence
repeat (ISSR) has also been widely used for genetic diversity analysis and germplasm
identification [17,18]. Lu et al. performed molecular identification of 53 samples of barnyard
grass species collected from 14 provinces and regions in China using ISSR technology and
showed that the taxa of barnyard grass in rice areas have a certain genetic basis [19].
Yamaguchi et al. used the non-coding gene sequence trnt-l-f to investigate the molecular
system of barnyard grass species in East Asia and divided the nine barnyard grass species
into five groups [13]. In summary, this genus has no unified and widely recognized
classification standard. Wu et al. conducted an in-depth analysis of the genetic evolution of
barnyard grass as a weed and an orphan crop through genomics, showing its complex role
in evolution [20]. In addition, owing to different agricultural farming methods, crop growth
characteristics, geographical location, and herbicide use, barnyard grass from different
regions also have many differences in seed germination rate, flowering time, leaf area,
plant height, spikelet length, aboveground biomass, root weight, and seed quantity [21,22],
which further complicates the classification of barnyard grass.

Chloroplasts (cps), organelles in photosynthetic plants or algae, contain genetic mate-
rial, and their genomes are highly conserved because of haploidy, uniparental inheritance,
and no recombination, providing abundant evolutionary information [23–26]. In addition,
the cp genome is small and easy to obtain completely compared to the nuclear genome;
therefore, its research is worthy in species identification, population genetics, and phy-
logeny [27]. Due to these common characteristics, identifying and analyzing ribosomal
tissues in chloroplast systems has become an important method for solving plant phylogeny
and evaluating biodiversity [28–30]. The cp genome has a typical quadripartite structure,
large single-copy (LSC) and small single-copy (SSC) regions separated by the region of
inverted repeats (IRs), which are a pair of sequences with opposite orientations, named
IRa and IRb [31–35]. Sequences between the IRa and IRb regions can generate triggered
flip-flop recombination, stabilizing single-copy regions [36]. Studies have shown that plant
cp genomes are particularly helpful in characterizing the phylogeny and history of most
plant lineages in reticular evolution (hybridization) and polyploidy [37–39]. With the de-
velopment of chloroplast genome sequencing technology and an in-depth understanding
of chloroplast genomes by researchers, the genetic relationships of many plant species
have been clarified, such as the genera Camellia, Taxodium, and Pterocarpus [27,36,40]. To
date, information regarding the phylogenetic relationship and evolutionary direction of the
genus Echinochloa based on chloroplasts has been limited.

In this study, the cp genomes of E. crus-galli var. zelayensis and E. glabrescens were
sequenced for the first time. This is also the first complete analysis and comparison of the
cp genomes of three common Echinochloa weeds, E. crus-galli var. crus-galli, E. crus-galli var.
zelayensis, and E. glabrescens, collected in paddy fields, which provides a convenient method
for the identification of these three morphologically consistent plants and is also beneficial
in identifying the choice of herbicides for individual weeds. Simultaneously, this study
also conducted a systematic development analysis of the cp genome of many Echinochloa
species in the NCBI database, which provides a theoretical basis for the regeneration of
diversity and resource utilization of the genus Echinochloa.

2. Results
2.1. Differences in the Phenotype of Seeds

In this study, the awn length and dry weight per 1000 grains of the seeds of E. crus-galli
var. crus-galli, E. crus-galli var. zelayensis, and E. glabrescens were determined (Figure 1). The
awn length of the E. crus-galli var. crus-galli, E. crus-galli var. zelayensis, and E. glabrescens
were 1.63, 0.00, and 0.00 cm, respectively (Table 1). The dry weight per 1000 seeds of
E. crus-galli var. crus-galli, E. crus-galli var. zelayensis, and E. glabrescens were 2.806, 2.139,
and 3.006 g, respectively (Table 1). The awn length of E. crus-galli var. crus-galli was
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significantly longer than those of the other two species (p < 0.05). In addition, the dry
weight per 1000 seeds of E. glabrescens was significantly higher than those of the other two
species (p < 0.05).
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Figure 1. Morphology of three barnyard grass species. (a). Comparison of morphology of shoots.
(b). Differences in the morphology of seeds.

Table 1. Differences in seeds of three Chinchaga spp.

Echinochloa spp. Length of Awn (cm) Dry Weight Per 1000 Seeds (g)

E. crusgalli var. crusgalli 1.63 ± 0.05 a 2.806 ± 0.011 b
E. crusgalli var. zelayensis 0.00 ± 0.00 b 2.139 ± 0.016 c

E. glabrescens 0.00 ± 0.00 b 3.006 ± 0.032 a
“a–c” are the significance levels at different lengths of awn or dry weight per 1000 seeds of each barnyard
grass species.

2.2. Differences in Sensitivity to New Herbicides

The sensitivity of three barnyard grass species to the new herbicides, florpyrauxifen-
benzyl and tripyrasulfone, was tested. Three gradient doses of the same herbicide led to a
gradient trend for each barnyard grass (Figure 2a). Florpyrauxifen-benzyl, at 36 g a.i./ha,
inhibited more than 90% of the fresh weight of two E. crus-galli var. crus-galli populations,
80–90% of the fresh weight of two E. glabrescens populations, and less than 80% of the
fresh weight of two E. crus-galli var. zelayensis populations. Tripyrasulfone, at 270 g a.i./ha,
inhibited more than 90% of the fresh weight of two E. crus-galli var. crus-galli populations,
70–80% of the fresh weight of two E. glabrescens populations, and less than 40% of the fresh
weight of two E. crus-galli var. zelayensis populations. The decrease in the fresh weight
of E. crus-galli var. zelayensis caused by the highest and second highest doses of the two
herbicides was significantly lower than that of the other four populations of E. crus-galli
var. crus-galli and E. glabrescens (p < 0.05) (Figure 2b).
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Figure 2. Differences in sensitivity to florpyrauxifen-benzyl and tripyrasulfone among E. crus-galli var.
crus-galli, E. crus-galli var. zelayensis, and E. glabrescens. “F” means florpyrauxifen-benzyl treatment
and the doses from left to right are 0, 9, 18, and 36 g a.i. ha−1. “T” means tripyrasulfone treatment and
the doses from left to right are 0, 67.5, 135, and 270 g a.i. ha−1. “Ecc” means E. crus-galli var. crus-galli.
“Ecz” means E. crus-galli var. zelayensis. “Eg” means E. glabrescens. ”-1” means biotype 1. ”-2” means
biotype 2. ANOVA significance groupings were shown as a–j. (a) Differences in morphology after
florpyrauxifen-benzyl and tripyrasulfone treatment. (b) Fresh weights of plants from each biotype at
the end of equivalent treatment periods plotted as a percentage of the respective control.

2.3. Characteristics of Chloroplast Genomes

The cp genome library of E. crus-galli var. crus-galli, E. crus-galli var. zelayensis, and E.
glabrescens was constructed using the Illumina TruSeq Nano DNA Sample Prep Kit. After
trimming low-quality fragments from the raw data, 51,498,928, 48,018,716, and 57,983,252
clean reads with 46.36%, 45.10%, and 45.51GC% were mapped to the complete genome
of E. crus-galli var. crus-galli, E. crus-galli var. zelayensis, and E. glabrescens, respectively.
The de novo assembly using NOVOPlasty v4.2 software (https://github.com/ndierckx/
NOVOPlasty, accessed on 26 November 2021) resulted in a circular genome of 139,856,
139,874, and 139,874 bp in length (Figure 3). Raw reads were deposited in the NCBI
GenBank database (accession number: PRJNA827798). All three complete cp genomes
displayed the typical quadripartite structure of most angiosperms, including a large single-
copy (LSC) and small single-copy (SSC) region, and a pair of inverted repeats (IRa and
IRb). The lengths of the LSC and SSC regions, and IRs were 81,843, 12,517, and 22,748 bp in
E. crus-galli var. crus-galli, and 81,890, 12,514, and 22,735 bp in E. crus-galli var. zelayensis
and E. glabrescens; the intergenic region lengths were 79,775, 79,751, and 79,751 bp in
E. crus-galli var. crus-galli, E. crus-galli var. zelayensis, and E. glabrescens, respectively. The cp
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genome of all three barnyard grass genes contained 132 genes, including 84 protein-coding
genes (Table 2).
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genome, respectively.

Table 2. Summary of chloroplast genome features in three barnyard grass biotypes.

Genome Features E. crus-galli var. crus-galli E. crus-galli var. zelayensis E. glabrescens

Genome size (bp) 139,856 139,874 139,874
LSC length (bp) 81,843 81,890 81,890
SSC length (bp) 12,517 12,514 12,514
IR length (bp) 22,748 22,735 22,735

Intergenic region length (bp) 79,775 79,751 79,751
Overall GC content (%) 38.63 38.63 38.63
GC content of LSC (%) 36.47 36.46 36.46
GC content of SSC (%) 33.21 33.22 33.22
GC content of IRs (%) 44.01 44.03 44.02

Total genes 132 132 132
Number of protein-coding genes 84 84 84
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2.4. Chloroplast Genome Component

The cp genome of E. crus-galli var. crus-galli, E. crus-galli var. zelayensis, and E. glabrescens
contained 40 transfer RNA (tRNA) genes and eight ribosomal RNA (rrn) (Table 3). There
were 67 protein-coding and 27 tRNA genes located within the LSC region, 12 protein-
coding genes, 10 tRNA-coding genes, and four rRNA-coding genes located within IRb or
IRa, and 11 protein-coding and one tRNA gene located within the SSC region (Figure 3).
All 84 genes encoding proteins in the cp genome of these three barnyard grass species
were functionally annotated in this study, mainly belonging to the photosynthesis and self-
replication categories. The gene names, groups, and categories are listed in Table 4. Genes
mainly belonged to biological processes in GO (Figure 4a) and were mainly involved in
energy production and conversion, translocation, ribosomal structure and biogenesis, and
transcription pathways in KEGG (Figure 4b). A total of 136, 139, and 139 simple sequence
repeats (SSRs) were identified in E. crus-galli var. crus-galli, E. crus-galli var. zelayensis, and
E. glabrescens cp genomes. There were five SSRs on IRa or IRb, 110 SSRs on the LSC, and
16 SSRs on the SSC in E. crus-galli var. crus-galli, and five SSRs on IRa or IRb, 113 on the
LSC, and 16 on the SSC in E. crus-galli var. zelayensis or E. glabrescens. There were 62 long
repeats (LRs) in E. crus-galli var. crus-gall and 68 LRs in E. crus-galli var. zelayensis and
E. glabrescens (Table 5).
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Table 3. Non-coding RNA statistics.

Echinochloa spp. Type ncRNA Number Total Length (bp) Average Length (bp) Length/
Genome (%)

E. crus-galli var.
crus-galli

tRNA 40 2972 * 74 2.13
rrn23 2 5778 2889 4.13
rrn4.5 2 190 95 0.14
rrn16 2 2982 1491 2.13
rrn5 2 242 121 0.17

E. crus-galli var.
zelayensis

tRNA 40 2976 74 2.13
rrn23 2 5579 2789 3.99
rrn4.5 2 190 95 0.14
rrn16 2 2982 1491 2.13
rrn5 2 242 121 0.17

E. glabrescens

tRNA 40 2976 74 2.13
rrn23 2 5380 2690 3.85
rrn4.5 2 190 95 0.14
rrn16 2 2982 1491 2.13
rrn5 2 242 121 0.17

* The bold number indicates that the data are different among the three barnyard grass species.

Table 4. Genes encoded by three species of Echinochloa chloroplast genome.

Category Groups Genes

Photosynthesis

Subunits_of_photosystem_I psaA, psaB, psaC, psaI, and psaJ
Subunits_of_photosystem_II pbsN, psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI,

psbJ, psbK, psbL, psbM, psbT, and psbZ
Subunits_of_NADH_dehydrogenase ndhA, ndhB, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG,

ndhH, ndhI, ndhJ, and ndhK
Subunits_of_cytochrome_b/f_complex petA, petB, petD, petG, petL, and petN
Subunits_of_ATP_synthase atpA, atpB, atpE, atpF, atpH, and atpI
Large_subunit_of_Rubisco rbcL

Self-replication

Large_subunits_of_ribosome rpl14, rpl16, rpl2, rpl2, rpl20, rpl22, rpl23, rpl23,
rpl32, rpl33, and rpl36

Small_subunits_of_ribosome rps11, rps12, rps12, rps14, rps15, rps15, rps16, rps18,
rps19, rps19, rps2, rps3, rps4, rps7, rps7, and rps8

DNA-dependent_RNA_polymerase rpoA, rpoB, rpoC1, and rpoC2
Ribosomal_RNAs 8 rRNA
Transfer_RNAs 40 tRNAs

Other genes

Maturase matK
Protease clpP1
Envelope_membrane_protein cemA
Acetyl-CoA_carboxylase
C-type_cytochrome_synthesis_gene ccsA
Translation_initiation_factor infA
protochlorophillide_reductase_subunit

Genes of unknown function Proteins_of_unknown_function ycf2, ycf3, and ycf4

Table 5. SSRs and LRs in three barnyard grass biotypes.

Types of Repeats E. crus-galli var. crus-galli E. crus-galli var. zelayensis E. glabrescens

SSR
Region Distribution

Genome 136 139 139
Coding 43 42 42

IRa 5 5 5
IRb 5 5 5
LSC 110 113 113
SSC 16 16 16

LR
Hamming Distance

0 8 9 9
1 0 2 2
2 21 21 21
3 33 36 36
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2.5. Single-Nucleotide Polymorphism Analysis

Single-nucleotide polymorphism analysis was performed to further explore the DNA
sequence polymorphisms and differences caused by single-nucleotide variations in E. crus-galli
var. crus-galli, E. crus-galli var. zelayensis, and E. glabrescens. The results indicate that 321
SNPs were detected in E. crus-galli var. crus-galli, representing 223 in intergenic spacer
(IGS) regions, 98 in CDS regions (Supporting Table S1), and only one SNP IGS region of
the E. glabrescens cp genome, compared to E. crus-galli var. zelayensis (Table 6). One SNP
appeared in the stop codon, and 76 synonymous mutations and 21 non-synonymous muta-
tions in E. crus-galli var. crus-galli. A total of 21 non-synonymous mutations were found
in 14 coding genes, including matK, psbC, rpoC1, rpoC2, atpF, atpE, rbcL, petA, petD, rpoA,
rpl22, ndhF, ndhA, and ndhH (Supporting Table S1). The non-synonymous to synonymous
substitution (dN/dS) ratio was 0.28.

Table 6. Single-Nucleotide Polymorphism (SNP) in Echinochloa crus-galli var. crus-galli and
E. glabrescens compared to E. crus-galli var. crus-galli.

Barnyard Grass Species Start Stop Synonymous Non-Synonymous CDS Intergenic Total_SNP

E. crus-galli var. crus-galli 0 1 76 21 98 223 321
E. glabrescens 0 0 0 0 0 1 1

2.6. IR Expansion and Contraction

To further observe the potential contraction and expansion of the IR regions, the gene
variations at the IR/SSC and IR/LSC boundary regions of ten sedges were compared
(Figure 5). The rps19/rpl22, rps15/ndhF, ndhH/rps15, and rps19/psbA genes were located
on the junctions of IRb/LSC, IRb/SSC, IRa/SSC, and IRa/LSC regions in E. crus-galli var.
crus-galli, E. crus-galli var. zelayensis, and E. glabrescens. The junction genes at IRb/LSC
and IRa/LSC of E. colona, E. frumentacea, and E. oryzicola differ from those of our three
species, namely, rpl22/trnH and trnH/psbA. The length of the junction genes was consistent
in E. crus-galli var. crus-galli, E. crus-galli var. zelayensis, and E. glabrescens. The rpl22 gene
located in the LSC region was 39 bp from the IRb region in E. crus-galli var. crus-galli,
whereas the distance in E. crus-galli var. zelayensis and E. glabrescens was 46 bp long. The
gene, rps19, located in the IRa region of E. crus-galli var. crus-galli was 45 bp from the LSC
region, whereas the distance in E. crus-galli var. zelayensis and E. glabrescens was 38 bp long.
The psbA gene, located in the LSC region of E. crus-galli var. crus-galli, was 85 bp from the
IRa region, whereas the distance in E. crus-galli var. zelayensis and E. glabrescens was 92 bp
long. The length and distance from the boundaries of junction genes located in IRb/SSC
and IRa/SSC regions were consistent in eleven barnyard grass species.

2.7. Phylogenetic Analysis

Phylogenetic trees were generated using maximum likelihood (ML) and Bayesian
inference (BI) analysis methods based on 21 complete cp genomes showing the same
topology (Figure 6). Echinochloa spp. were clustered into a single clade. E. crus-galli var.
zelayensis and E. glabrescens have the most recent common ancestor (MRCA) (BS = 99 for
ML), which has an MRCA with E. oryzicola (BS = 100 for ML). The closest relative to the
above three Echinochloa spp. is E. stagnina (BS = 100 for ML). The species close to the
above four Echinochloa spp. is E. crus-galli var. crus-galli sequenced in the present study
(BS = 98 for ML). Although E. crus-galli var. crus-galli and E. esculenta were found to be
closely related, the BS value was only 80 for ML. Among all the different plant species
we collected, the closest relationship with the genus Echinochloa was the genus Setaria
(BS = 100 for ML), the second most closely related to Zea mays (BS = 100 for ML), and the
third most closely related to the genus Oryza (BS = 100 for ML). Alopecurus spp., Beckmannia
syzigachne, and Brachypodium distachyum were all on another branch of the phylogenetic tree.
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3. Discussion

Studies have distinguished the species of barnyard grass weeds mainly according
to their morphology after budding [11]. The awn length is significantly different in the
seeds of different barnyard grass species. Although Ruiz-Santailla et al. found that the awn
length of barnyard grass is related to the growth environment [12], the differences in awn
length between some barnyard grass species are still very prominent. In the present study,
the morphological differences in seeds were the main basis for identifying several barnyard
grass species (Figure 1b). The seeds of E. crus-galli var. crus-galli awns are 1–2 cm long
at the top, and E. glabrescens seeds are convex on both sides, bright leather, and heavier,
which are important distinguishing features for the two barnyard grass species. However,
the seeds of E. crus-galli var. zelayensis had no prominent identification characteristics.
More importantly, it is difficult to identify barnyard grass at the seedling stage (Figure 1a),
which is the key period for herbicide selection. Therefore, it is important to determine the
differences among barnyard grass species using chloroplast genome sequencing.

Barnyard grass is one of the most troublesome weeds in paddy fields [3,4,7,8]. The
genus has many species that are difficult to distinguish, and their genetic relationships are
complex; however, related research is still not systematic. Previous studies have reported
differences in the sensitivity of different barnyard grasses to one herbicide [9,10]. The
herbicide sensitivity test in this study demonstrated the importance of identifying barnyard
grass species. Barnyard grass has evolved resistance to many post-emergence herbicides
in China [3,4,41–43]. Therefore, in this study, two new herbicides, florpyrauxifen-benzyl
and tripyrasulfone, that have not been widely used in paddy fields in China but have
the potential to control barnyard grass were selected to test the difference in tolerance to
herbicides. E. crus-galli var. crus-galli and E. glabrescens were susceptible to two herbicides;
therefore, tripyrasulfone, owing to its lower cost, can be selected for the management of
these species. Meanwhile, the control effect of florpyrauxifen-benzyl on E. crus-galli var.
zelayensis is significantly better than that of tripyrasulfone (<40%), so florpyrauxifen-benzyl
should be selected in this case despite its higher price. Therefore, accurately identifying
barnyard grass species is key to selecting suitable herbicides.
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Since the complete chloroplast (cp) genome sequence of tobacco was first reported [44],
many plant cp genome sequences have been determined [36,40,45,46]. Although the cp
genomes of many barnyard grass species have been sequenced [47], those of E. crus-galli
var. zelayensis and E. glabrescens have not yet been reported. In this study, the cp genome
of E. crus-galli var. crus-galli, E. crus-galli var. zelayensis, and E. glabrescens were sequenced,
which showed that the genomes of the three species were similar in size (Figure 3). The
reported cp genomes of barnyard grass species are between 139,592 and 139,891 bp in
size [47], indicating that the differentiation of cp genome size in the genus is not prominent.
The cp genome of barnyard grass is relatively small compared with that of many terrestrial
plants [27,40,45,46]. The typical tetrad structure of the chloroplast genome is conserved in
plants [31–33], and, generally, there is little difference in the length of each tetrad of the
same genus [27,40,46]. A tetrameric structure exists in the cp genomes of all three barnyard
grass species sequenced in our study, and the length difference of each region was only
within 3–47 bp. From the GC content perspective, the differences among the three barnyard
grass species are only within 0.02% (Table 2). The parameters were consistent in E. crus-galli
var. zelayensis and E. glabrescens, preliminarily implying that they have a relatively close
genetic relationship.

The chloroplast genome is highly conserved in plants of the same genus [24–26]. The
number of coding, tRNA, and rrn genes in the cp genomes of E. crus-galli var. crus-galli,
E. crus-galli var. zelayensis, and E. glabrescens were completely consistent. Furthermore, their
distribution in the four tetramerous structures was also consistent (Figure 3). Simultane-
ously, the annotated coding genes also maintained a high degree of consistency among
the three barnyard grass species (Table 4). These results confirm the conservation of the
cp genome among the three barnyard grass species. SSRs, also known as microsatellites,
are widely distributed in plant cp genomes and are composed of one–six-nucleotide repeat
units [48,49]. These repetitive structures exhibit diversity among cp genomes in the popula-
tion and promote molecular recombination [50]. SSRs are an important molecular genetic
marker now widely used in population genetics and plant genotyping [51–54]. This study
showed three more SSRs in the cp genome of E. crus-galli var. zelayensis and E. glabrescens
than in E. crus-galli var. crus-galli, and one less in the coding region (Table 5). Differential
SSRs can be used as a specific molecular marker for this species. LRs usually occupy a large
proportion of the genome, which is also a special and repeated DNA sequence [55]. Repeat
fragments have an important molecular significance in the study of plant evolution [56].
The number and distribution of LRs in the cp genome of E. crus-galli var. zelayensis and
E. glabrescens were consistent, three times higher than that of E. crus-galli var. crus-galli
(Table 5). The repeats identified in this study are of great significance for the species identifi-
cation, genetic diversity, and population structure of the genus Echinochloa. The cp genomes
of E. crus-galli var. zelayensis and E. glabrescens were more similar. Concurrently, there were
limited differences between the two barnyard grass species and E. crus-galli var. crus-galli.

Recently, SNPs have become a key tool and measurement indicator in evolution and
classification research because many samples can be screened by cheap high-throughput
technology [57]. They can display the exact nature and location of allele variation, which is
widely used as a direct marker [58]. Researchers have successfully distinguished white,
black, and red spruces using SNPs as molecular markers [58]. In the present study, com-
pared with the cp genome of E. crus-galli var. zelayensis, 97 SNPs were detected in the
E. crus-galli var. crus-gall and the number of non-synonymous SNPs is lower than that of
synonymous SNPs, indicating no strong diversification between the two barnyard grass
species [59]. These SNPs can be used as important differential nucleotide databases to
distinguish barnyard grass species. Simultaneously, this study showed a close genetic rela-
tionship between E. crus-galli var. zelayensis and E. glabrescens because only one mutation
was detected in the cp genome between them. SNPs usually occur more frequently in vari-
able and less conserved genes [58], which was also confirmed by our study. McDonald et al.
proposed that repeat-induced recurrence repair is the mechanism underlying SNP in-
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duction [60]. The mechanism of Echinochloa differentiation and SNP production requires
further research.

The expansion and contraction of the chloroplast genome mainly occur at the junction
of IR/SC [61], a very common biological phenomenon in plants [24]. Although highly
conserved, IR expansion and contraction are important driving forces of genome evolution
because they are directly related to variations in cp genome size and rearrangement [62–65].
This phenomenon has been repeatedly observed in many plants [27,36,40]. This study
showed that, compared with E. crus-galli var. zelayensis, E. glabrescens has no expansion
or contraction of the IR, whereas E. crus-galli var. crus-galli showed minimal change.
Furthermore, there was no difference among the three barnyard grass species in the adjacent
genes of junctions, genes across regions, and the length of these genes. Differences in
E. crus-galli var. crus-galli were mainly caused by the distance between the boundary
gene and the boundary, but this change was only 7 bp (Figure 5). Our IR expansion and
contraction results fully demonstrate the high conservatism of barnyard grass. Genes, gene
length, and distance from the boundary at the junction of IRs and SSCs were completely
consistent between the 10 barnyard grass species (Figure 5). The main difference was the
boundary gene between IRs and LSC regions, which is trnH in E. colona, E. frumentacea,
and E. oryzicola, but rps19 in other barnyard grass species (Figure 5), inconsistent with the
genetic relationship among barnyard grass species previously reported [13–16,19,66]. Our
results provide a novel idea for studying the genetic relationships of the genus Echinochloa,
and the differentiation mechanism needs to be further explored.

The cp genome is essential for plant phylogeny and species identification [67–69].
CP genome data can also establish organelle-based “barcodes” for some species, which is
valuable for establishing species definition because it is then used to reveal phylogenetic
relationships [70]. The main method consists in constructing a phylogenetic tree based
on the cp genome. With the continuous development of cp genome information and
technological improvements, the genetic and evolutionary relationships of many plants
have been successfully clarified [27,46,71]. However, the genetic evolution of the genus
Echinochloa from the perspective of the cp genome has not yet been reported. In this
study, we collected all reported cp genomes of barnyard grass and some cp genomes of
representative grasses from the NCBI to conduct phylogenetic analysis. The cp genome data
of E. crus-galli var. zelayensis and E. glabrescens were measured and published for the first
time (accession number: PRJNA827798). According to the results of genetic relationships,
the 10 species of barnyard grass in this study can be divided into four groups. The first
group comprises E. oryzicola, E. crus-galli var. zelayensis, E. glabrescens, and E. stagnina;
the second group includes E. crus-galli var. crus-galli, and E. esculenta; the third group
contains E. haploclada alone; and the fourth group consists of E. ugandensis, E. colona, and
E. frumentacea. The genus Echinochloa is closely related to the genus Setaria (Figure 6),
which is why many genes of the genus Echinochloa weeds can be matched to those of the
genus Setaria [72,73]. Although analysis of the complete cp genome may not be sufficient
to fully solve all phylogenetic relationships, it can still provide a feasible way to clarify
species relationships [68,74,75].

4. Materials and Methods
4.1. Plant Materials

Two E. crus-galli var. zelayensis populations were provided by the Herbicide Research
Laboratory of Nanjing Agricultural University, China [3]. In addition, two E. crus-galli var.
crus-galli and two E. glabrescens populations were collected from paddy fields in the Yangtze
River Delta, China, in 2020. All six populations were tested for whole-plant bioassays and
seed morphology. In addition, one population of each barnyard grass species was subjected
to chloroplast (cp) genome sequencing.
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4.2. Measurement of Awn Length and Seed Weight

Barnyard grass seeds were dried to a constant weight under the sun before the test.
Thirty seeds of each barnyard grass species were randomly selected, and the awn length
of the seeds was measured. A total of 1000 seeds of each species of barnyard grass were
randomly selected as a group for weight determination, and six groups were used as
replicates. The experimental groups were randomly arranged. The data were subjected
to ANOVA. To compare the differences in awn length and seed weight among the three
barnyard grass species, Duncan’s multiple range test (p < 0.05) was used. ANOVA was
performed using SPSS version 20 (SPSS, Chicago, IL, USA).

4.3. Whole-Plant Bioassay to Determine Sensitivity to New Herbicides

The stems and leaves of six barnyard grass populations belonging to three species
were sprayed with florpyrauxifen-benzyl (Corteva Agriscience, Wilmington, DE, USA)
or tripyrasulfone (KingAgroot, Qingdao, Shandong Province, China) when the plants
reached the 3–4-leaf stage using a 3WP-2000 walking-type spraying system (Nanjing,
China). The spraying system was equipped with a 390 mL/min flow nozzle with a pressure
of 3.0 kg/cm2 at the time of spraying. When spraying herbicides, whole plants grown in
pots were placed in the spraying system, and 30 mL of the diluted herbicide solution was
sprayed onto the plants at a forward speed of 291 mm/s through the nozzle to ensure that
the droplets of quinclorac solution that fell on the plants were small and uniform enough
and that the final doses were 9, 18, and 36 g a.i. ha−1 for florpyrauxifen-benzyl and 67.5,
135, and 270 g a.i. ha−1 for tripyrasulfone. Each experimental treatment contained four
biological replicates, and the experiment was conducted twice.

All studies were conducted using the inhibition rate (IR) of fresh weight, which is
based on the fresh weight of CK. The experimental groups were randomly arranged. The
data were subjected to ANOVA. To compare the differences in the percentage of inhibition
rate among the 18 groups, Duncan’s multiple range test (p < 0.05) was used. ANOVA was
performed using SPSS version 20 (SPSS, Chicago, IL, USA).

IR = (WCK − WT)/WCK × 100%

where WCK represents the fresh weight of the plants in the untreated group and WT
represents the fresh weight of the plants in the treatment group.

4.4. DNA Extraction and Sequencing

Fresh leaves and stems of total genomic DNA were extracted using a modified
cetyltrimethylammonium bromide (CTAB) method and applied to 500 bp paired-end
library construction using the NEBNext Ultra DNA Library Prep Kit for Illumina sequenc-
ing. Sequencing was performed on an Illumina NovaSeq 6000 platform (BIOZERON Co.,
Ltd., Shanghai, China). Raw data from three barnyard grass species were generated with
150 bp paired-end read lengths.

4.5. DNA Sequencing and Genome Assembly

De novo assembly with NOVOPlasty, referencing the cp genome of closely related
species, produced two optional circular contigs of the cp genome. One of them, with
higher homology cpDNA, was selected as the candidate cp genome. Several potential
chloroplast reads were extracted from the pool of Illumina reads using BLAST searches
against the cp genomes of related species E. stagnina voucher K: RCH49 chloroplast (Acces-
sion Number: MF563381) and the NOVOPlasty results. Illumina chloroplast reads were
obtained to perform cp genome de novo assembly using the SPAdes-3.13.0 package. The
NOVOPlasty assembly contig was optimized by the scaffolds from the SPAdes-3.13.0 result
and aligned with the original clean Illumina reads using the BWA, and the base correction
was performed with Pilon v1.22. Finally, the assembled sequence was reordered and ori-
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ented according to the reference cp genome to generate the final assembled chloroplast
genomic sequence.

4.6. Genome Component Analysis

Genes encoding proteins, tRNAs, and rRNAs in the chloroplast genome of E. crus-galli
var. crus-galli, E. crus-galli var. zelayensis, and E. glabrescens were predicted using the GeSeq
(https://chlorobox.mpimp-golm.mpg.de/geseq.html/, accessed on 26 November 2021).
The specific parameters were set as follows: protein search identity: 60; rRNA, tRNA, DNA
search identity: 35; 3rd party tRNA annotators: tRNAscan-SE v2.0.7. High-accuracy gene
bundles were obtained by removing the redundancy of predicted initial genes, followed
by manual correction of the head, tail, and exon/intron boundaries of the genes. Finally,
the base composition of the chloroplast genome; the gene distribution of each interval,
including the large single-copy (LSC) regiom, small single-copy (SSC) region, and inverted
repeats (IRs); and the classification of each functional gene was counted and summarized.

4.7. Gene Function Annotation and Classification Analysis

The protein sequences of chloroplast genes were compared with known protein
databases using BLASTP (evalue < 1 × 10−5). Since there may be more than one
alignment result for each sequence, to ensure its biological significance, only one
optimal alignment result was reserved as the database alignment information of
the gene. These databases included NR (http://www.ncbi.nlm.nih.gov/, accessed
on 26 November 2021), Swiss-Prot (http://www.ebi.ac.uk/uniprot, accessed on
26 November 2021), eggNOG (http://eggnogdb.embl.de/, accessed on 26 November
2021), KEGG (http://www.genome.jp/kegg/, accessed on 26 November 2021), and GO
(http://geneontology.org/, accessed on 26 November 2021). The amino acid sequences of
C. difformis and C. iria were aligned with the NR, Swiss-Prot, eggNOG, KEGG, and GO
databases to obtain functional annotation information for the coding genes.

4.8. Contraction and Expansion Analysis of Inverted Repeat (IR) Regions

In this part, in addition to the three newly sequenced cp genomes of barnyard grass,
eight other barnyard grass species and an additional 10 Gramineae plant cp genomes were
downloaded from NCBI to resolve the IR analysis. The four quadripartite structures of
each chloroplast (LSC, SSC, and two IR repeat regions) were compared, and changes in the
copy number of related genes caused by contraction and expansion of the IR or pseudo-
genes resulting in boundary regions were analyzed. Genes that crossed the boundary or
genes closest to the boundary were obtained. The function, length, and distance from the
boundaries of these genes were analyzed.

4.9. Phylogenetic Analysis

In this part, in addition to the three newly sequenced cp genomes of barnyard grass,
eight other barnyard grass species and an additional 10 Gramineae plants were downloaded
from NCBI to resolve a chloroplast phylogenetic tree. The sequences were aligned using
ClustalW (v2.0.12) with the default settings. The DNA substitution model was assessed
using the Akaike information criterion (AIC) method [76]. The phylogenetic tree was
constructed by the maximum likelihood (ML) method using PhyML v3.0 (htp://ww.atgc-
montpeller.fr/phyml/, accessed on 19 October 2022), and the bootstrap was 1000 [77,78].
Bayesian inference (BI) was also used based on the method described by Wu et al. [79],
using MrBayes v3.1.2.

5. Conclusions

The cp genomes of E. crus-galli var. zelayensis and E. glabrescens were first sequenced, re-
vealing a close relationship in our study. Although E. crus-galli var. zelayensis, E. glabrescens,
and E. crus-galli var. crus-galli were very similar in morphology at the seedling stage,
E. crus-galli var. crus-galli showed some differences in size, components, gene annotation,

https://chlorobox.mpimp-golm.mpg.de/geseq.html/
http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/uniprot
http://eggnogdb.embl.de/
http://www.genome.jp/kegg/
http://geneontology.org/
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repeats, and IR expansion and contraction of the cp genome. The SNP results further
revealed a close relationship between E. crus-galli var. zelayensis and E. glabrescens. The
detected SNPs can be used to conveniently identify the three barnyard grass species. Fur-
thermore, IR expansion and contraction and the phylogenetic tree illustrated differences
in the evolutionary directions of the genus Echinochloa, which is the molecular basis of
biodiversity. The results also provide important biological information for the identification
and evolution of the genus Echinochloa. However, the mechanisms that cause the substantial
differentiation of the genus Echinochloa and the difference of herbicide sensitivity are still
unclear and need further study.
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