Skip to main content

Brassica Juncea L.: A Potential Crop for Phytoremediation of Various Heavy Metals

  • Chapter
  • First Online:
Heavy Metal Toxicity: Environmental Concerns, Remediation and Opportunities
  • 234 Accesses

Abstract

Brassica juncea L. (Indian mustard) is an economically important oilseed crop of Brassicaceae family. Diverse plant species of Brassicaceae family are identified as hyperaccumulators of different heavy metals with various applications in phytoremediation. Polluted soil and water negatively impact the quality of food and nutrients of human and animal biota, which are mainly polluted by untreated effluent discharges from industries, which are broadly classified into metallic and nonmetallic pollutant-bearing effluents. Among all types of pollutants, heavy metals are one of the most toxic pollutants adversely affecting the environment. Several conventional physicochemical methods are used to clean up the heavy metal-contaminated environment, but most of them have a high cost of running along with poor efficiency. Brassica juncea L. has been widely investigated and applied for the phytoremediation of different toxic heavy metals such as arsenic (As), copper (Cu), nickel (Ni), cadmium (Cd), mercury (Hg), and lead (Pb). Phytoremediation is a sustainable, cost-effective, and environmentally friendly technology that offers clear advantages over traditional methods for site cleanup and detoxication. This green technology is applied to remediate the polluted soils without altering the properties of soil. Brassica juncea L. has the capacity to extract, sequester, and detoxify the heavy metals present in the different terrestrial environments. Phytoremediation by Indian mustard is widely investigated through different mechanisms, viz., phytoextraction, phytostabilization, etc., and the relationship of Brassica juncea L. plants with different microorganisms for the management of heavy metal-induced stress and desired growth. The current chapter provides comprehensive information on the heavy metal accumulation and antioxidative defense potential of Brassica juncea L. (Indian mustard) in different phytoremediation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaspour A, Arocena JM, Kalbasi M (2012) Uptake of phosphorus and lead by Brassica juncea and Medicago sativa from chloropyromorphite. Int J Phytoremediation 14(6):531–542

    Article  CAS  PubMed  Google Scholar 

  • Ahmad Z, Khan SM, Page S (2021) Politics of the natural vegetation to balance the hazardous level of elements in marble polluted ecosystem through phytoremediation and physiological responses. J Hazard Mater 414:125451

    Article  CAS  PubMed  Google Scholar 

  • Alam MN, Bristi NJ, Rafifiquzzaman M (2013) Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J 21(2):143–152

    Article  PubMed  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Abbas Z, Rizwan M, Zaheer IE, YavaÅŸ Ä°, Ãœnay A, Kalderis D (2020) Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustainability 12(5)

    Google Scholar 

  • Ali I, Khan MJ, Shah A, Deeba F, Hussain H, Yazdan F, Khan MD (2022) Screening of various brassica species for phytoremediation of heavy metals-contaminated soil of Lakki Marwat. Pakistan Environ Sci Pollut Res 29(25):37765–37776

    Article  CAS  Google Scholar 

  • Anjum NA, Umar S, Iqbal M (2014) Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants—implications for phytoremediation. Environ Sci Pollut Res 21(17):10286–10293

    Article  CAS  Google Scholar 

  • Anjum NA, Gill SS, Ahmad I, Pacheco M, Duarte AC, Umar S, Khan NA, Pereira ME (2012) The plant family Brassicaceae: an introduction. 1–33. In: Hasanuzzaman M (ed) The plant family Brassicaceae. Springer, Singapore

    Chapter  Google Scholar 

  • Ansari MKA, Ahmad A, Umar S, Zia MH, Iqbal M, Owens G (2015) Genotypic variation in phytoremediation potential of Indian mustard exposed to nickel stress: a hydroponic study. Int J Phytoremediation 17(2):135–144

    Article  CAS  PubMed  Google Scholar 

  • Ariyakanon N, Winaipanich B (2006) Phytoremediation of copper contaminated soil by Brassica juncea (L.) Czern and Bidens alba (L.) DC. var radiata J Sci Res Chula Univ 31(1):49–56

    CAS  Google Scholar 

  • Ashraf S, Siddiqa A, Shahida S, Qaisar S (2019) Titanium-based nanocomposite materials for arsenic removal from water: a review. Heliyon 5:e01577

    Article  PubMed  PubMed Central  Google Scholar 

  • Awan B, Sabeen M, Shaheen S, Mahmood Q, Ebadi, Toughani M (2020) Phytoremediation of zinc contaminated water by marigold (Tagetes Minuta L). Cent Asian J Environ Sci Technol Innov 1(3):150–158

    Google Scholar 

  • Bao-Shan L, Shao-Qi D, Chun-Hui L, Li-Jun F, Shu-Chun Q, Min Y (2004) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J For Res 15(2):138–140

    Article  Google Scholar 

  • Bassegio C, Campagnolo MA, Schwantes D, Gonçalves Junior AC, Manfrin J, Schiller ADP, Bassegio D (2020a) Growth and accumulation of Pb by roots and shoots of Brassica juncea L. Int J Phytoremediation 22(2):134–139

    Article  CAS  PubMed  Google Scholar 

  • Bassegio C, Santos RF, Bassegio D, de Souza SNM (2020b) Genotypic variation in growth and lead accumulation among Brassica juncea accessions. Int J Phytoremediation 22(12):1249–1258

    Article  CAS  PubMed  Google Scholar 

  • Bauddh K, Singh RP (2012) Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. Int J Phytoremediation 14(8):772–785

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37(2):241–250

    Article  CAS  Google Scholar 

  • Bluskov S, Arocena JM, Omotoso OO, Young JP (2005) Uptake, distribution, and speciation of chromium in Brassica juncea. Int J Phytoremediation 7(2):153–165

    Article  CAS  PubMed  Google Scholar 

  • Bouquet D, Braud A, Lebeau T (2017) Brassica juncea tested on urban soils moderately contaminated by lead: origin of contamination and effect of chelates. Int J Phytoremediation 19(5):425–430

    Article  CAS  PubMed  Google Scholar 

  • Bortoloti GA, Baron D (2022) Phytoremediation of toxic heavy metals by brassica plants: a biochemical and physiological approach. Environ Adv 8:100204

    Article  CAS  Google Scholar 

  • Brynhildsen L, Rosswall T (1997) Effects of metals on the microbial mineralization of organic acids. Water Air Soil Pollut 94:45–57

    Article  CAS  Google Scholar 

  • Cahoon RE, Lutke WK, Cameron JC, Chen S, Lee SG, Rivard RS, Jez JM (2015) Adaptive engineering of phytochelatin-based heavy metal tolerance. J Biol Chem 290(28):17321–17330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao L, Jiang M, Zeng Z, Du A, Tan H, Liu Y (2008) Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. Var. foliosa bailey) in cd, Ni contaminated soils. Chemosphere 71(9):1769–1773

    Article  CAS  PubMed  Google Scholar 

  • Chaiane B, Marcelo AC, Daniel S, Affonso CGJ, Jéssica M, Andreia DPS, Doglas B (2020) Growth and accumulation of Pb by roots and shoots of Brassica juncea L. Int J Phytoremediation 22(2):134–139

    Article  Google Scholar 

  • Chatuverdi R, Favas P, Pratas J, Varun M, Paul MS (2019) EDTA-assisted metal uptake in Raphanus sativus L. and Brassica oleracea L: assessment of toxicity and food safety. Bull Environ Contam Toxicol 103(3):490–495

    Article  Google Scholar 

  • Chen L, Long C, Wang D, Yang J (2020) Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators. Chemosphere 242:125112

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Chen L, Ma Y, Huang Y (2009) Can phosphate compounds be used to reduce the plant uptake of Pb and resist the Pb stress in Pb-contaminated soils? J Environ Sci 21(3):360–365

    Article  CAS  Google Scholar 

  • Clemente R, Walker DJ, Bernal MP (2005) Uptake of heavy metals and as by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): the effect of soil amendments. Environ Pollut 138(1):46–58

    Article  CAS  PubMed  Google Scholar 

  • Cristaldi A, Conti GO, Jho EH, Zuccarello P, Grasso A, Copat C, Ferrante M (2017) Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ Technol Innov 8:309–326

    Article  Google Scholar 

  • Derakhshan NZ, Jung MC, Kim KH (2018) Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ Geochem Health 40(3):927–953

    Article  Google Scholar 

  • Dhanwal P, Kumar A, Dudeja S, Chhokar V, Beniwal V (2017) Recent advances in phytoremediation technology. 227-241. In: Kumar R, Sharma A, Ahluwalia S (eds) Advances in environmental biotechnology. Springer, Singapore

    Google Scholar 

  • Diarra I, Kotra KK, Prasad S (2021) Assessment of biodegradable chelating agents in the phytoextraction of heavy metals from multi–metal contaminated soil. Chemosphere 273:128483

    Article  CAS  PubMed  Google Scholar 

  • Diwan H, Ahmad A, Iqbal M (2008) Genotypic variation in the phytoremediation potential of Indian mustard for chromium. Environ Manag 41(5):734–741

    Article  Google Scholar 

  • Du J, Guo Z, Li R, Ali A, Guo D, Lahori AH, Wang P, Liu X, Wang X, Zhang Z (2020) Screening of Chinese mustard (Brassica juncea L.) cultivars for the phytoremediation of cd and Zn based on the plant physiological mechanisms. Environ Pollut 261:114213

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi G, Sharma MP (2014) Potential and limitation of straight vegetable oils as engine fuel–an Indian perspective. Renew Sust Energ Rev 33:316–322

    Article  CAS  Google Scholar 

  • Eapen S, Suseelan KN, Tivarekar S, Kotwal SA, Mitra R (2003) Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ Res 91(2):127–133

    Article  CAS  PubMed  Google Scholar 

  • Ekta P, Modi NR (2018) A review of phytoremediation. J Pharmacogn Phytochem 7(4):1485–1489

    CAS  Google Scholar 

  • Farahani M, Naderi R, Mazhari M (2015) Phytoremediation of cd contaminated soils by ornamental cabbage (Brassica oleracea) species. J Biodivers Environ Sci 7(2):150–155

    Google Scholar 

  • Favela-González KM, Hernández-Almanza AY, De la Fuente-Salcido NM (2020) The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: a review. J Food Biochem 44(10):e13414

    Article  Google Scholar 

  • Garcia S, Kosnar M, Mercl Z, Aranda F, Tlustos P (2018) A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbialassisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicol Environ Saf 147:165–174

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gonzaga MI, de Jesus Santos JC, Ganassali Junior LF, Fontes PT, Araujo JD, Gonzaga TA (2022) Copper uptake, physiological response, and phytoremediation potential of Brassica juncea under biochar application. Int J Phytoremediation 24(5):474–482

    Article  CAS  PubMed  Google Scholar 

  • Goswami S, Das S (2015) A study on cadmium phytoremediation potential of Indian mustard, Brassica juncea. Int J Phytoremediation 17(6):583–588

    Article  CAS  PubMed  Google Scholar 

  • Guerra Sierra BE, Muñoz Guerrero J, Sokolski S (2021) Phytoremediation of heavy metals in tropical soils an overview. Sustainability 13(5):2574

    Article  Google Scholar 

  • Guo D, Ali A, Ren C, Du J, Li R, Lahori AH, Xiao R, Zhang Z, Zhang Z (2019) EDTA and organic acids assisted phytoextraction of cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea Coss.) and evaluation of its bioindicators. Ecotoxicol Environ Safe 167:396–403

    Article  CAS  Google Scholar 

  • Guo H, Jiang J, Gao J, Zhang J, Zeng L, Cai M, Zhang J (2020) Evaluation of cadmium hyperaccumulation and tolerance potential of Myriophyllum aquaticum. Ecotoxicol Environ Safe 195:110502

    Article  CAS  Google Scholar 

  • Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74(9):1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:111

    Article  Google Scholar 

  • Harbaum B, Hubbermann EM, Zhu Z, Schwarz K (2008) Impact of fermentation on phenolic compounds in leaves of pak choi (Brassica campestris L. ssp. chinensis var. communis) and Chinese leaf mustard (Brassica juncea Coss). J Agric Food Chem 56(1):148–157

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHM, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Nahar K, Fujita M (2020) Selenium toxicity in plants and environment: biogeochemistry and remediation possibilities. Plan Theory 9(12):1711

    CAS  Google Scholar 

  • Hoang SA, Lamb D, Seshadri B, Sarkar B, Choppala G, Kirkham MB, Bolan NS (2021) Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon-contaminated soils. J Hazard Mater 401:123282

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Gong X, Liu Y, Zeng G, Lai C, Bashir H, Zhou L, Wang D, Xu P, Cheng M (2017) Effects of calcium at toxic concentrations of cadmium in plants. Planta 245(5):863–873

    Article  CAS  PubMed  Google Scholar 

  • Hur SJ, Lee SY, Kim YC, Choi I, Kim GB (2014) Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem 160:346–356

    Article  CAS  PubMed  Google Scholar 

  • Iqbal N, Masood A, Nazar R, Syeed S, Khan NA (2010) Photosynthesis, growth and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in cadmium tolerance. Agric Sci China 9(4):519–527

    Article  CAS  Google Scholar 

  • Jiang J, Wang Y, Zhu B, Fang T, Fang Y, Wang Y (2015) Digital gene expression analysis of gene expression differences within brassica diploids and allopolyploids. BMC Plant Biol 15:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Dai S, Wang B, Xie Z, Li J, Wang L, Li S, Tan Y, Tian B, Shu Q (2021) Gold nanoparticles synthesized using melatonin suppress cadmium uptake and alleviate its toxicity in rice. Environ Sci Nano 8:1042–1056

    Article  CAS  Google Scholar 

  • Johnson A, Gunawardana B, Singhal N (2009) Amendments for enhancing copper uptake by Brassica juncea and Lolium perenne from solution. Int J Phytoremediation 11(3):215–234

    Article  CAS  Google Scholar 

  • Kafle A, Timilsina A, Gautam A, Adhikari K, Bhattarai A, Aryal N (2022) Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents. Environ Adv 8:100203

    Article  CAS  Google Scholar 

  • Kanwar MK, Poonam, Bhardwaj R (2015) Arsenic induced modulation of antioxidative defense system and brassinosteroids in Brassica juncea L. Ecotoxicol Environ Saf 115:119–125

    Article  CAS  PubMed  Google Scholar 

  • Khator K, Saxena I, Shekhawat GS (2021) Nitric oxide induced cd tolerance and phytoremediation potential of B. juncea by the modulation of antioxidant defense system and ROS detoxification. Biometals 34(1):15–32

    Article  CAS  PubMed  Google Scholar 

  • Kidwai MK, Dhull SB (2021) Heavy metal induced stress and metabolic responses in fenugreek (Trigonella foenum-graceum L.) Plants. In: Naeem M, Aftab T, Khan MMA (eds) Fenugreek, Biology and applications. Springer, Singapore, pp 327–354

    Chapter  Google Scholar 

  • Kidwai MK, Malik A, Dhull SB, Rose PK, Garg VK (2022) Bioremediation potential of Trichoderma species for metal(loid)s. In: Malik A, Kidwai MK, Garg VK (eds) Bioremediation of toxic metal(loid)s. CRC Press, pp 137–152

    Chapter  Google Scholar 

  • Ko BG, Anderson CW, Bolan NS, Huh KY, Vogeler I (2008) Potential for the phytoremediation of arsenic-contaminated mine tailings in Fiji. Soil Res 46(7):493–501

    Article  CAS  Google Scholar 

  • Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P (2018) Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environ Sci Pollut Res 25:15159–15173

    Article  CAS  Google Scholar 

  • Koptsik GN (2014) Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review. Eurasian Soil Sci 47(9):923–939

    Article  CAS  Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72(4):678–683

    Article  CAS  PubMed  Google Scholar 

  • Kumar Y, Gupta K, Kumar N, Reece A, Singh LM, Rezania S, Ahmad KS (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng 120:274–298

    Article  Google Scholar 

  • Laghlimi M, Baghdad B, El Hadi H, Bouabdli A (2015) Phytoremediation mechanisms of heavy metal contaminated soils: a review. Open J Ecol 5(08):375

    Article  Google Scholar 

  • Lai HY, Chen SW, Chen ZS (2008) Pot experiment to study the uptake of cd and Pb by three Indian mustards (Brassica juncea) grown in artificially contaminated soils. Int J Phytoremediation 10(2):91–105

    Article  CAS  Google Scholar 

  • Lee SY, Choi JH, Choi YS, Han DJ, Kim HY, Shim SY, Chung HK, Kim CJ (2010) The antioxidative properties of mustard leaf (Brassica juncea) kimchi extracts on refrigerated raw ground pork meat against lipid oxidation. Meat Sci 84(3):498–504

    Article  CAS  PubMed  Google Scholar 

  • Li JT, Gurajala HK, Wu LH, van der Ent A, Qiu RL, Baker AJM, Tang YT, Yang XE, Shu WS (2018) Hyperaccumulator plants from China: a synthesis of the current state of knowledge. Environ Sci Technol 52:11980–11994

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhu N, Liang X, Bai X, Zheng L, Zhao J, Li YF, Zhang Z, Gao Y (2020) Silica nanoparticles alleviate mercury toxicity via immobilization and inactivation of hg(ii) in soybean (Glycine max). Environ Sci Nano 7:1807–1817

    Article  CAS  Google Scholar 

  • Lian J, Zhao L, Wu J, Xiong H, Bao Y, Zeb A, Tang J, Liu W (2019) Foliar spray of TiO2 nanoparticles prevails over root application in reducing cd accumulation and mitigating cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere 239:124794

    Article  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90(2):831–837

    Article  Google Scholar 

  • Monei NL, Puthiya Veetil SK, Gao J, Hitch M (2021) Selective removal of selenium by phytoremediation from post/mining coal wastes: practicality and implications. Int J Min Reclam Environ 35(1):69–77

    Article  CAS  Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Nahar K, Borhannuddin Bhuyan MHM, Fujita M (2018) Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol Environ Saf 147:990–1001

    Article  CAS  PubMed  Google Scholar 

  • Manori S, Shah V, Soni V, Dutta K, Daverey A (2021) Phytoremediation of cadmium-contaminated soil by Bidens pilosa L.: impact of pine needle biochar amendment. Environ Sci Pollut Res 28(42):58872–58884

    Article  CAS  Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut 132(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Meyers DE, Auchterlonie GJ, Webb RI, Wood B (2008) Uptake and localisation of lead in the root system of Brassica juncea. Environ Pollut 153(2):323–332

    Article  CAS  PubMed  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164(5):601–610

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AA, Castagna A, Ranieri A, di Toppi LS (2012) Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol Biochem 57:15–22

    Article  CAS  PubMed  Google Scholar 

  • Moosavi SG, Seghatoleslami MJ (2013) Phytoremediation: a review. Adv Agri Biol 1(1):5–11

    Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2008) Phytofiltration of mercury-contaminated water: volatilisation and plant-accumulation aspects. Environ Exp Bot 62:78–85

    Article  CAS  Google Scholar 

  • Mourato MP, Moreira IN, Leitão I, Pinto FR, Sales JR, Martins LL (2015) Effect of heavy metals in plants of the genus brassica. Int J Mol Sci 16:17975–17998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustafa HM, Hayder G (2021) Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: a review article. Ain Shams Eng J 12(1):355–365

    Article  Google Scholar 

  • Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Al-Duaij OK (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16(4):1339–1359

    Article  CAS  Google Scholar 

  • Nanjundan J, Aravind J, Radhamani J, Singh KH, Kumar A, Thakur AK, Singh D (2022) Development of Indian mustard [Brassica juncea (L.) Czern.] core collection based on agro-morphological traits. Genet Resour Crop Evol 69(1):145–162

    Article  Google Scholar 

  • Napoli M, Cecchi S, Grassi C, Baldi A, Zanchi CA, Orlandini S (2018) Phytoextraction of copper from a contaminated soil using arable and vegetable crops. Chemosphere 219:122–129

    Article  PubMed  Google Scholar 

  • Natasha S, Niazi M, Khalid NK, Murtaza S, Bibi I, Rashid MI (2018) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 234:915–934

    Article  CAS  PubMed  Google Scholar 

  • Nazir MM, Ulhassan Z, Zeeshan M, Ali S, Gill MB (2020) Toxic metals/metalloids accumulation, tolerance, and homeostasis in brassica oilseed species. 379–408. In: Hasanuzzaman M (ed) The plant family Brassicaceae. Springer, Singapore

    Google Scholar 

  • Nedjimi B (2021) Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Appl Sci 3(3):1–19

    Article  Google Scholar 

  • Niazi NK, Bibi I, Fatimah A, Shahid M, Javed MT, Wang H, Ok YS, Bashir S, Murtaza B, Saqib ZA, Shakoor MB (2017) Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: morphological and physiological response. Int J Phytoremediation 19(7):670–678

    Article  CAS  PubMed  Google Scholar 

  • Oguntade OA, Olagbenro TS, Odusanya OA, Olagunju SO, Adewusi KM, Adegoke AT (2019) Assessment of composted kitchen waste and poultry manure amendments on growth, yield and heavy metal uptake by jute mallow Corchorus olitorius Linn. Int J Recycl Org Waste Agric 8:187–195

    Article  Google Scholar 

  • Ojuederie OB, Amoo AE, Owonubi SJ, Ayangbenro AS (2022) Nanoparticles-assisted phytoremediation: advances and applications. In: Vimal Pandey V (ed) Assisted phytoremediation. Elsevier, pp 155–178

    Chapter  Google Scholar 

  • Ontañon OM, González PS, Ambrosio LF, Paisio CE, Agostini E (2014) Rhizoremediation of phenol and chromium by the synergistic combination of a native bacterial strain and Brassica napus hairy roots. Int Biodeterior Biodegradation 88:192–198

    Article  Google Scholar 

  • Ozyigit II, Can H, Dogan I (2020) Phytoremediation using genetically engineered plants to remove metals: a review. Environ Chem Lett 19:669–698

    Article  Google Scholar 

  • Parmar S, Singh V (2015) Phytoremediation approaches for heavy metal pollution: a review. J Plant Sci Res 2:1–8

    Google Scholar 

  • Pérez-Esteban J, Escolástico C, Moliner A, Masaguer A, Ruiz-Fernández J (2014) Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments. Plant Soil 377:97–109

    Article  Google Scholar 

  • Picchi C, Giorgetti L, Morelli E, Landi M, Rosellini I, Grifoni M, Barbafieri M (2021) Cannabis sativa L. and Brassica juncea L. grown on arsenic-contaminated industrial soil: potentiality and limitation for phytoremediation. Environ Sci Pollut Res 29:15983–15998

    Article  Google Scholar 

  • Rahman M, Jakariya M, Haq IMA (2018) Prospect of phytoaccumulation of arsenic by Brassica juncea (L.) in Bangladesh. Int J Phytoremediation 20(10):1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Rai PK, Kim KH, Lee SS, Lee JH (2020) Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Sci Total Environ 705:135858

    Article  CAS  PubMed  Google Scholar 

  • Raiola A, Errico A, Petruk G, Monti DM, Barone A, Rigano MM (2017) Bioactive compounds in Brassicaceae vegetables with a role in the prevention of chronic diseases. Molecules 23(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  • Raj D, Kumar A, Maiti SK (2020) Brassica juncea (L.) Czern (Indian mustard): a putative plant species to facilitate the phytoremediation of mercury contaminated soils. Int J Phytoremediation 22(7):733–744

    Article  CAS  PubMed  Google Scholar 

  • Rajewska I, Talarek M, Bajguz A (2016) Brassinosteroids and response of plants to heavy metals action. Front Plant Sci 7:629

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathika R, Srinivasan P, Alkahtani J, Al-Humai LA, Alwahibi MS, Mythili R, Selvankumar T (2021) Influence of biochar and EDTA on enhanced phytoremediation of lead contaminated soil by Brassica juncea. Chemosphere 271:129513

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Habib M, Kakavand SN, Zahid Z, Zahra N, Sharif R, Hasanuzzama M (2020) Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms. Biology 9(7):177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose PK, Dhull SB, Kidwai MK (2022a) Utilization of lignocellulosic biomass as substrate for the cultivation of wild mushroom. In: Dhull SB, Bains A, Chawla P, Sadh PK (eds) Wild mushrooms: characteristics, nutrition, and processing. CRC Press

    Google Scholar 

  • Rose PK, Kidwai MK, Dhull SB (2022b) Food industry waste: potential pollutants and their bioremediation strategies. In: Dhull SB, Singh A, Kumar P (eds) Food processing waste and utilization. CRC Press, pp 343–359

    Chapter  Google Scholar 

  • Salido AL, Hasty KL, Lim JM, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytoremediation 5(2):89–103

    Article  CAS  PubMed  Google Scholar 

  • Saraswat S, Rai JPN (2009) Phytoextraction potential of six plant species grown in multimetal contaminated soil. Chem Ecol 25(1):1–11

    Article  CAS  Google Scholar 

  • Shah V, Daverey A (2020) Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environ Technol Innov 18:100774

    Article  Google Scholar 

  • Shahandeh H, Hossner LR (2000) Enhancement of Cr (lll) phytoaccumulation. Int J Phytoremediation 2(3):269–286

    Article  CAS  Google Scholar 

  • Shakeel A, Khan AA, Ahmad G (2019) The potential of thermal power plant fly ash to promote the growth of Indian mustard (Brassica juncea) in agricultural soils. SN Appl Sci 1(4):1–5

    Article  CAS  Google Scholar 

  • Shanmugaraj BM, Chandra HM, Srinivasan B, Ramalingam S (2013) Cadmium induced physio-biochemical and molecular response in Brassica juncea. Int J Phytoremediation 15(3):206–218

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Bhardwaj R, Arora N, Arora HK (2007) Effect of 28-homobrassinolide on growth, zinc metal uptake and antioxidative enzyme activities in Brassica juncea L. seedlings. Braz J Plant Physiol 19:203–210

    Article  CAS  Google Scholar 

  • Sharma P, Tripathi S, Chandra R (2020) Phytoremediation potential of heavy metal accumulator plants for waste management in the pulp and paper industry. Heliyon 6(7):e04559

    Article  PubMed  PubMed Central  Google Scholar 

  • Shivran A, Patel BJ, Gora M (2019) Effect of irrigation schedule and bioregulators on yield attributes and yield of mustard (B. juncea (L.) Czern & Coss) crop. Intl J Chem Studies 7:1874–1877

    CAS  Google Scholar 

  • Song B, Xu P, Chen M, Tang W, Zeng G, Gong J, Zhang P, Ye S (2019) Using nanomaterials to facilitate the phytoremediation of contaminated soil. Crit Rev Environ Sci Technol 49:791–824

    Article  Google Scholar 

  • Souri Z, Karimi N, Sarmadi M, Rostami E (2017) Salicylic acid nanoparticles (SANPs) improve growth and phytoremediation efficiency of Isatis cappadocica Desv., under as stress. IET Nanobiotechnol 11:650–655

    Article  PubMed Central  Google Scholar 

  • Srivastava S, Shukla A, Rajput VD, Kumar K, Minkina T, Mandzhieva S, Suprasanna P (2021) Arsenic remediation through sustainable phytoremediation approaches. Fortschr Mineral 11(9):936

    CAS  Google Scholar 

  • Srivastava S, Verma PC, Chaudhry V, Singh N, Abhilash PC, Kumar KV, Singh N (2013) Influence of inoculation of arsenic-resistant staphylococcus on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Sterckeman T, Gossiaux L, Guimont S, Sirguey C (2019) How could phytoextraction reduce cd content in soils under annual crops? Simulations in the French context. Sci Total Environ 654:751–762

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Han FX, Chen J, Sridhar BM, Monts DL (2008) Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). Int J Phytoremediation 10(6):547–560

    Article  PubMed  Google Scholar 

  • Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci 9:1476

    Article  PubMed  PubMed Central  Google Scholar 

  • Taghizadeh M, Solgi M, Karimi M, Sanati MH, Khoshbin S (2018) Heavy metals effects on Brassica oleracea and elements accumulation by salicylic acid. Arch Hyg Sci 7(1):1–11

    Article  CAS  Google Scholar 

  • Tangahu BV, Sheikh ASR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 939161:1

    Article  Google Scholar 

  • Thakur S, Choudhary S, Majeed A, Singh A, Bhardwaj P (2020) Insights into the molecular mechanism of arsenic phytoremediation. J Plant Growth Regul 39(2):532–543

    Article  CAS  Google Scholar 

  • Thiyam U, Stöckmann H, Zum Felde T, Schwarz K (2006) Antioxidative effect of the main sinapic acid derivatives from rapeseed and mustard oil by-products. Eur J Lipid Sci Technol 108(3):239–248

    Article  CAS  Google Scholar 

  • Tong YP, Kneer R, Zhu YG (2004) Vacuolar compartmentalization: a second–generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:8–9

    Article  Google Scholar 

  • US Environmental Protection Agency (2000) National Risk Management Research Laboratory (US). Introduction to phytoremediation. National Risk Management Research Laboratory, Office of Research and Development

    Google Scholar 

  • Vítková M, Puschenreiter M, Komárek M (2018) Effect of nano zero-valent iron application on as, cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Chemosphere 200:217–226

    Article  PubMed  Google Scholar 

  • Wanasundara JPD, Mcintosh TC, Perera SP, Withana-Gamage TS, Mitra P (2016) Canola/rapeseed protein-functionality and nutrition. OCL 23(4):D407

    Article  Google Scholar 

  • Wang C, Yue L, Cheng B, Chen F, Zhao X, Wang Z, Xing B (2022) Mechanisms of growth-promotion and se-enrichment in Brassica chinensis L. by selenium nanomaterials: beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environ Sci Nano 9:302–312

    Article  CAS  Google Scholar 

  • Wu LH, Lou YM, Xing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102:307–318

    Article  CAS  Google Scholar 

  • Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Khan SA (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng 120:274–298

    Article  Google Scholar 

  • Yahaghi Z, Shirvani M, Nourbakhsh F, De La Pena TC, Pueyo JJ, Talebi M (2018) Isolation and characterization of Pb-solubilizing bacteria and their effects on Pb uptake by Brassica juncea: implications for microbe-assisted phytoremediation. J Microbiology Biotechnol 28(7):1156–1167

    Article  CAS  Google Scholar 

  • Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Che S, Pental Ju Y, Yao P, Li X, Xie K, Zhang J, Wang J, Liu F, Ma W, Shopan J, Zheng H, Mackenzie SA, Zhang M (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homolog gene expression influencing selection. Nat Genet 48:1225–1232

    Article  CAS  PubMed  Google Scholar 

  • Yaashikaa PR, Senthil Kumar P, Varjani S, Saravanan A (2020) Rhizoremediation of cu (II) ions from contaminated soil using plant growth promoting bacteria: an outlook on pyrolysis conditions on plant residues for methylene orange dye biosorption. Bioengineered 11(1):175–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahoor M, Irshad M, Rahman H, Qasim M, Afridi SG, Qadir M, Hussain A (2017) Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Ecotoxicol Environ Saf 142:139–149

    Article  CAS  PubMed  Google Scholar 

  • Zeremski T, Randelović D, Jakovljević K, Marjanović JA, Milić S (2021) Brassica species in Phytoextractions: real potentials and challenges. Plan Theory 10:2340

    CAS  Google Scholar 

  • Zeremski-Å korić T, Sekulić P, Maksimović I, Å eremeÅ¡ić S, Ninkov J, Milić S, Vasin J (2010) Chelate-assisted phytoextraction: effect of EDTA and EDDS on copper uptake by Brassica napus L. J Serbian Chem Soc 75:1279–1289

    Article  Google Scholar 

  • Zhang X, Li M, Yang H, Li CZ (2018) Physiological responses of Suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals. J Environ Manag 223:132–139

    Article  CAS  Google Scholar 

  • Zhu Y, Pilon Smits EAH, Tarun A, Weber SU, Juanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing glutamyl cysteine synthetase. Plant Physiol 121:1169–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64(6):991–997

    Article  CAS  PubMed  Google Scholar 

  • Zunaidi AA, Lim LH, Metali F (2021) Transfer of heavy metals from soils to curly mustard (Brassica juncea (L.) Czern.) grown in an agricultural farm in Brunei Darussalam. Heliyon 7(9):e07945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, P., Rose, P.K., Kidwai, M.K., Meenakshi (2023). Brassica Juncea L.: A Potential Crop for Phytoremediation of Various Heavy Metals. In: Singh, R.P., Singh, P., Srivastava, A. (eds) Heavy Metal Toxicity: Environmental Concerns, Remediation and Opportunities. Springer, Singapore. https://doi.org/10.1007/978-981-99-0397-9_14

Download citation

Publish with us

Policies and ethics