Skip to main content

Economic and Academic Importance of Radish

  • Chapter
  • First Online:
The Radish Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Radish is important as a root vegetable, a leafy vegetable, a fruit vegetable, an oil crop, and also as a cover plant. The economic importance and characteristics of radish differ between the East and the West of the world. In the East, there are radish cultivars having large roots with various shapes called “Asian big radish” and those grown for production of immature pods or oil seeds, whereas radish is a small vegetable grown within one month in the West. Asian big radish is expected to eventually become popular in the West. Radish belongs to the genus Raphanus, but is similar to the Brassica species except for the shape of pods and seeds. Despite their similarities, the order of genes in chromosomes is quite different between Raphanus and Brassica. Radish genome sequences have been published from three groups using similar cultivars, and therefore, collaboration for combining sequence data is considered to be effective for determination of more reliable genome sequences. Some radish lines have high salt tolerance and disease resistance different from Brassica crops. Radish also has a characteristic glucosinolate composition. Since radish can be crossed with Brassica species, it is also important as a genetic resource for Brassica crop breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahuja KL, Singh H, Raheja RK, Labana KS (1987) The oil content and fatty acid composition of various genotypes of cauliflower, turnip and radish. Plant Foods Hum Nutr 37:33–40

    Article  CAS  Google Scholar 

  • Akaba M, Kaneko Y, Hatakeyama K, Ishida M, Bang SW, Matsuzawa Y (2009) Identification and evaluation of clubroot resistance of radish chromosome using a Brassica napus–Raphanus sativus monosomic addition line. Breed Sci 59:203–206

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important species. Plant Mol Biol Rep 9:208–218

    Google Scholar 

  • Barillari J, Cervellati R, Paolini M, Tatibouet A, Rollin P, Iori R (2005) Isolation of 4-methylthio-3-butenyl glucosinolate from Raphanus sativus sprouts (kaiware daikon) and its redox properties. J Agric Food Chem 53:9890–9896

    Google Scholar 

  • Bennetzen J, Freeling M (1997) The unified grass genome: synergy in synteny. Genome Res 7:301–306

    Article  CAS  PubMed  Google Scholar 

  • Cho MA, Min SR, Ko SM, Liu JR, Choi PS (2008) Agrobacterium-mediated genetic transformation of radish (Raphanus sativus L.). Plant Biotechnol 25:205–208

    Article  CAS  Google Scholar 

  • Gomez-Campo C (1980) Morphology and morpho-taxonomy of the tribe Brassiceae. In: Tsunoda S et al (eds) Brassca crops and wild allies. Japan Scientific Societies Press, Tokyo, pp 3–31

    Google Scholar 

  • Harberd DJ, McArthur ED (1980) Meiotic analysis of some species and genus hybrids in the Brassiceae. In: Tsunoda S et al (eds) Brassca crops and wild allies. Japan Scientific Societies Press, Tokyo, pp 65–87

    Google Scholar 

  • Hashida T, Nakatsuji R, Budahn H, Schrader O, Peterka H, Fujimura T, Kubo N, Hirai M (2013) Construction of a chromosome-assigned, sequence-tagged linkage map for the radish, Raphanus sativus L. and QTL analysis of morphological traits. Breed Sci 63:218–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inaba R, Nishio T (2002) Phylogenetic analysis of Brassiceae based on the nucleotide sequences of the S-locus related gene, SLR1. Theor Appl Genet 105:1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Ishida M, Kakizaki T, Morimitsu Y, Ohara T, Hatakeyama K, Yoshiaki H, Kohori J, Nishio T (2015) Novel glucosinolate composition lacking 4-methylthio-3-butenyl glucosinolate in Japanese white radish (Raphanus sativus L.). Thoer Appl Genet 128:2037–2046

    Article  CAS  Google Scholar 

  • Jeong Y-M, Kim N, Ahn B, Oh M, Chung W-H, Chung H, Jeong S, Lim K-B, Hwang Y-J, Kim G-B, Baek S, Choi S-B, Hyung D-J, Lee S-W, Sohn S-H, Kwon S-J, Jin M, Seol Y-J, Chae W, Choi K, Park B-S, Yu H-J, Mun J-H (2016) Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes. Theor Appl Genet 129:1357–1372

    Article  CAS  PubMed  Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235

    Google Scholar 

  • Kakizaki T, Kitashiba H, Zou Z, Li F, Fukino N, Ohara T, Nishio T, Ishida M (2017) A 2-oxoglutarate-dependent dioxygenase mediates the biosynthesis of glucoraphasatin in radish. Plant Physiol 173:1583–1593

    Google Scholar 

  • Karpechenko GD (1924) Hybrids of Raphanus sativus L. x Brassica oleracea L. J Genet 14:375–396

    Google Scholar 

  • Kamei A, Tsuro M, Kubo N, Hayashi T, Wang N, Fujimura T, Hirai M (2010) QTL mapping of clubroot resistance in radish (Raphanus sativus L.). Theor Appl Genet 120:1021–1027

    Article  PubMed  Google Scholar 

  • Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou Z, Hasegawa Y, Tonosaki K, Shirasawa S, Fukushima A, Yokoi S, Takahata Y, Kakizaki T, Ishida M, Okamoto S, Sakamoto K, Shirasawa K, Tabata S, Nishio T (2014) Draft sequences of the radish (Raphanus sativus L.) genome. DNA Res 21:481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J (2003) Genetic characterization of a pentatricopeptide repeat protein gene, orf587, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J 34:407–415

    Article  CAS  PubMed  Google Scholar 

  • Lelivelt CLC, Lang W, Dolstra O (1993) Intergeneric crosses for the transfer of resistance to the beet cyst nematode from Raphanus sativus to Brassica napus. Euphytica 58:111–120

    Article  Google Scholar 

  • Li F, Hasegawa Y, Saito M, Shirasawa S, Fukushima A, Ito T, Fujii H, Kishitani S, Kitashiba H, Nishio T (2011) Extensive chromosome homoeology among Brassiceae species were revealed by comparative genetic mapping with high-density EST-based SNP markers in radish (Raphanus sativus L.). DNA Res 18:401–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SH, Cho HJ, Lee SJ, Cho YH, Kim BD (2002) Identification and classification of S haplotypes in Raphanus sativus by PCR-RFLP of the S locus glycoprotein (SLG) gene and the S locus receptor kinase (SRK) gene. Theor Appl Genet 104:1253–1262

    Article  CAS  PubMed  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    Article  CAS  PubMed  Google Scholar 

  • Mitsui Y, Shimomura M, Komatsu K, Namiki N, Shibata-Hatta M, Imai M, Katayose Y, Mukai Y, Kanamori H, Kurita K, Kagami T, Wakatsuki A, Ohyanagi H, Ikawa H, Minaka N, Nakagawa K, Shiwa Y, Sasaki T (2015) The radish genome and comprehensive gene expression profile of tuberous root formation and development. Sci Rep 5:10835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima U (1980) Genome analysis in Brasica and allied genera. In: Tsunoda S et al (eds) Brassca crops and wild allies. Japan Scientific Societies Press, Tokyo, pp 89–106

    Google Scholar 

  • Mun J-H, Chung H, Chung W-H, Oh M, Jeong Y-M, Kim N, Ahn BO, Park B-S, Park S, Lim K-B, Hwang Y-J, Yu H-J (2015) Construction of a reference genetic map of Raphanus sativus based on genotyping by whole-genome resequencing. Theor Appl Genet 128:259–272

    Article  CAS  PubMed  Google Scholar 

  • Nasu S, Kitashiba H, Nishio T (2012) “Na-no-hana Project” for recovery from the Tsunami disaster by producing salinity-tolerant oilseed rape lines: Selection of salinity-tolerant lines of Brassica crops. J Integr Field Sci 9:33–37

    Google Scholar 

  • Niikura S, Matsuura S (1998) Identification of self-incompatibility alleles (S) by PCR-RFLP in radish (Raphanus sativus L.). Euphytica 102:379–384

    Article  CAS  Google Scholar 

  • Niikura S, Matsuura S (2000) Genetic analysis of the reaction level of self-incompatibility to a 4% CO2 gas treatment in the radish (Raphanus sativus L.). Theor Appl Genet 101:1189–1193

    Article  CAS  Google Scholar 

  • Nishio T, Kusaba M, Watanabe M, Hinata K (1996) Registration of S alleles in Brassica campestris L by the restriction fragment sizes of SLGs. Theor Appl Genet 92:388–394

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Sato Y, Sakamoto K, Nishio T (2004) Distribution of similar self-incompatibility (S) haplotypes in different genera, Raphanus and Brassica. Sex Plant Reprod 17:33–39

    Article  CAS  Google Scholar 

  • Ozeki Y (2010) Study on the relationship between the anthocyanin molecular species and color phenotype of roots in the inbred lines of red radish (Raphanus sativus L.). Japan Food Chem Res Found Res Rep 16:33–39 (in Japanese with English summary)

    Google Scholar 

  • Papi A, Orlandi M, Bartolini G, Barillari J, Iori R, Paolini M, Ferroni F, Fumo MG, Pedulli GF, Velgimigli L (2008) Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (kaiware daikon) sprouts. J Agric Food Chem 56:875–883

    Article  CAS  PubMed  Google Scholar 

  • Park B-J, Liu Z, Kanno A, Kameya T (2005) Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. napus. Plant Cell Rep 24:494–500

    Article  CAS  PubMed  Google Scholar 

  • Park NI, Xu H, Li X, Jang IH, Park S, Ahn GH, Lim YP, Kim SJ, Park SU (2011) Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish (Raphanus sativus). J Agric Food Chem 59:6034–6039

    Article  CAS  PubMed  Google Scholar 

  • Peters SA, Bargsten JW, Szinay D, van de Belt J, Visser RGF, Bai Y, de Jong H (2012) Structural homology in the Solanaceae: analysis of genomic regions in support of synteny studies in tomato, potato and pepper. Plant J 71:602–614

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Kusaba M, Nishio T (1998) Polymorphism of the S-locus glycoprotein gene (SLG) and the S-locus related gene (SLR1) in Raphanus sativus L. and self-incompatible ornamental plants in the Brassicaceae. Mol Gen Genet 258:397–403

    Article  CAS  PubMed  Google Scholar 

  • Shen D, Shu H, Huang M, Zheng Y, Li X, Fei Z (2013) RadishBase: a database for genomics and genetics of radish. Plant Cell Physiol 54(1–6):e3

    Article  CAS  PubMed  Google Scholar 

  • Shirasawa K, Oyama M, Hirakawa H, Sato S, Tabata S, Fujioka T, Kimizuka-Takagi C, Sasamoto S, Watanabe A, Kato M, Kishida Y, Kohara M, Takahashi C, Tsuruoka H, Wada T, Sakai T, Isobe S (2011) An EST-SSR linkage map of Raphanus sativus and comparative genomics of the Brassicaceae. DNA Res 18:221–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shishu KIP (2009) Inhibition of cooked food-induced mutagenesis by dietary constituents: comparison of two natural isothiocyanates. Food Chem 112:977–981

    Article  CAS  Google Scholar 

  • Takahata Y, Komatsu H, Kaizuma N (1996) Microspore culture of radish (Raphanus sativus L.): influence of genotype and culture conditions on embryogenesis. Plant Cell Rep 16:163–166

    CAS  PubMed  Google Scholar 

  • Terasawa Y (1932) Tetraploid Bastarde von Brassica chinensis L. x Raphanus sativus L. Jpn J Genet 7:183–185 (In Japanese)

    Google Scholar 

  • Tonosaki K, Michiba K, Bang SW, Kitashiba H, Kaneko Y, Nishio T (2013) Genetic analysis of hybrid seed formation ability of Brassica rapa in intergeneric crossings with Raphanus sativus. Theor Appl Genet 126:837–846 

    Google Scholar 

  • Tsuro M, Suwabe K, Kubo N, Matsumoto S, Hirai M (2008) Mapping of QTLs controlling root shape and red pigmentation in radish, Raphanus sativus L. Breed Sci 58:55–61

    Article  CAS  Google Scholar 

  • Warwick SI, Black LD (1997) Phylogenetic implications of chloroplast DNA restriction site variation in subtribes Raphaninae and Cakilinae (Brassicaceae, tribe Brassiceae). Can J Bot 75:960–973

    Article  Google Scholar 

  • Warwick SI, Hall JC (2009) Phylogeny of Brassica and wild relatives. In: Gupta SK (ed) Biology and breeding of crucifers. CRC Press, London, pp 19–36

    Google Scholar 

  • Warwick SI, Sauder CA (2005) Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Can J Bot 83:467–483

    Article  CAS  Google Scholar 

  • Weil RR, Kremen A (2007) Thinking across and beyond disciplines to make cover crops pay. J Sci Food Agric 87:551–557

    Article  CAS  Google Scholar 

  • Yamagishi H, Terachi T (1996) Molecular and biological studies on male-sterile cytoplasm in the Cruciferae III. Distributtion of Ogura-type cytoplasm among Japanese wild radishes and Asian radish cultivars. Theor Appl Genet 93:325–332

    Article  CAS  PubMed  Google Scholar 

  • Zou Z, Ishida M, Li F, Kakizaki T, Suzuki S, Kitashiba H, Nishio T (2013) QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L. PLoS ONE 8:e53541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Nishio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nishio, T. (2017). Economic and Academic Importance of Radish. In: Nishio, T., Kitashiba, H. (eds) The Radish Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-59253-4_1

Download citation

Publish with us

Policies and ethics