Skip to main content

Bioaccessibility Testing for Metals at Mine Sites

  • Chapter
  • First Online:
Environmental Indicators in Metal Mining

Abstract

Knowledge of bioaccessible metals in soils is relevant to the rehabilitation of mine sites and remediation of mined land . Soils of metal mine sites are commonly enriched in metals and metalloids due to mine waste dumping, atmospheric fallout from smelter emissions as well as dust deposition and erosion of particles originating from ore stockpiles , tailings storage facilities, waste rock dumps and exposed mine workings. Upon mine closure, the establishment of an effective and sustainable vegetation community represents an integral part of mine site rehabilitation. Only a vegetated and uncontaminated landscape will lead to site stability, effectiveness of dry covers, minimization of deleterious offsite effects and return of the mined land to a condition that allows a particular post-mining land use. Moreover, plants may represent pathways of metals and metalloids from contaminated substrates into local foodchains . Consequently, a solid understanding of the current and future bioaccessibility of metals and metalloids is of key relevance for assessing mined land for rehabilitation purposes. This paper presents a review of the literature concerning tests that are used to assess and predict the bioaccessibility of metals in contaminated and mining environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Abed SR, Hageman PL, Jegadeesan G, Madhavan N, Allen D (2006) Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste. Sci Total Environ 364:14–23

    Article  Google Scholar 

  • Al-Hwaiti M, Tardio J, Reynolds H, Bhargava S (2014) Selectivity assessments of a sequential extraction procedure for potential trace metals’ mobility and bioavailability in phosphate rocks from Jordan phosphate mines. Soil Sed Contam 23:417–436

    Article  Google Scholar 

  • Antosiewicz D, Escudĕ-Duran C, Wierzbowska E, Skłodowska A (2008) Indigenous plant species with the potential for the phytoremediation of arsenic and metals contaminated soil. Water Air Soil Pollut 193:197–210

    Article  Google Scholar 

  • Bacon JR, Davidson CM (2008) Is there a future for sequential chemical extraction? Analyst 133:25–46

    Article  Google Scholar 

  • Baize D, Bellanger L, Tomassone R (2009) Relationships between concentrations of trace metals in wheat grains and soil. Agron Sustain Dev 29:297–312

    Article  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy-metals. J Plant Nutr 3:643–654

    Article  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL, Mullai A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293:79–89

    Article  Google Scholar 

  • Black A, McLaren RG, Reichman SM, Speir TW, Condron LM (2011) Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts. Environ Pollut 159:1523–1535

    Article  Google Scholar 

  • Brewin LE, Mehra A, Lynch PT, Farago ME (2003) Mechanisms of copper tolerance by Armeria maritima in Dolfrwynog Bog, North Wales—initial studies. Environ Geochem Health 25:147–156

    Article  Google Scholar 

  • Caraballo MA, Rotting TS, Nieto JM, Ayora C (2009) Sequential extraction and DXRD applicability to poorly crystalline Fe- and Al-phase characterization from an acid mine water passive remediation system. Am Mineral 94:1029–1038

    Article  Google Scholar 

  • Cave M, Wragg J, Palumbo B, Klinck BA (2003) Measurement of the bioaccessibility of arsenic in UK soils. Environment Agency Technical report P5-062/TR02. Almondsbury, Bristol, UK

    Google Scholar 

  • Cave MR, Milodowski AE, Friel EN (2004) Evaluation of a method for identification of host physico-chemical phases for trace metals and measurement of their solid-phase partitioning in soil samples by nitric acid extraction and chemometric mixture resolution. Geochem Explor Environ Anal 4:71–86

    Article  Google Scholar 

  • Dinelli E, Tateo F (2001) Factors controlling heavy-metal dispersion in mining areas: the case of Vigonzano (northern Italy), a Fe-Cu sulfide deposit associated with ophiolitic rocks. Environ Geol 40:1138–1150

    Article  Google Scholar 

  • Dold B (2003) Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J Geochem Explor 80:55–68

    Article  Google Scholar 

  • Fanfani L, Zuddas P, Chessa A (1997) Heavy metals speciation analysis as a tool for studying mine tailings weathering. J Geochem Explor 58:241–248

    Article  Google Scholar 

  • Gaines T, Parker M, Gascho G (1984) Automated determination of chlorides in soil and plant tissue by sodium nitrate extraction. Agron J 76:371–374

    Article  Google Scholar 

  • Garcia-Salgado S, Garcia-Casillas D, Quijano-Nieto MA, Bonilla-Simon MM (2012) Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water Air Soil Pollut 223:559–572

    Article  Google Scholar 

  • Gleyzes C, Tellier S, Sabrier R, Astruc M (2001) Arsenic characterisation in industrial soils by chemical extractions. Environ Technol 22:27–38

    Article  Google Scholar 

  • Gonzaga MIS, Ma LQ, Pacheco EP, dos Santos WM (2012) Predicting arsenic bioavailability to hyperaccumulator Pteris Vittata in arsenic-contaminated soils. Int J Phytorem 14:939–949

    Article  Google Scholar 

  • Gonzaga MIS, Santos JAG, Ma LQ (2006) Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Environ Pollut 143:254–260

    Article  Google Scholar 

  • González-Corrochano B, Esbrí JM, Alonso-Azcárate J, Martínez-Coronado A, Jurado V, Higueras P et al (2014) Environmental geochemistry of a highly polluted area: the La Union Pb–Zn mine (Castilla-La Mancha region, Spain). J Geochem Explor 144:345–354

    Article  Google Scholar 

  • Gray C, McLaren R, Roberts A, Condron L (1999) Solubility, sorption and desorption of native and added cadmium in relation to properties of soils in New Zealand. Eur J Soil Sci 50:127–137

    Article  Google Scholar 

  • Häni H, Gupta S (1986) Chemical methods for the biological characterization of metal in sludge and soil. In: L’Hermite P (ed) Processing and use of organic sludge and liquid agricultural wastes. Springer, Netherlands, pp 157–167

    Chapter  Google Scholar 

  • Houba VJG, Lexmond TM, Novozamsky I, van der Lee JJ (1996) State of the art and future developments in soil analysis for bioavailability assessment. Sci Total Environ 178:21–28

    Article  Google Scholar 

  • ISO (1995) Soil quality. Extraction of trace elements soluble in Aqua Regia, ISO 11466

    Google Scholar 

  • Kaakinen J, Kuokkanen T, Kujala K, Välimäki I, Jokinen H (2012) The use of a five-stage sequential leaching procedure for risk assessment of heavy metals in waste rock utilized in railway ballast. Soil Sed Contam 21:322–334

    Article  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Heidelberg

    Book  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  Google Scholar 

  • Lacal J, da Silva MP, Garcı́a R, Sevilla MT, Procopio JR, Hernandez L (2003) Study of fractionation and potential mobility of metal in sludge from pyrite mining and affected river sediments: changes in mobility over time and use of artificial ageing as a tool in environmental impact assessment. Environ Pollut 124: 291–305

    Google Scholar 

  • Leleyter L, Rousseau C, Biree L, Baraud F (2012) Comparison of EDTA, HCl and sequential extraction procedures for selected metals (Cu, Mn, Pb, Zn) in soils, riverine and marine sediments. J Geochem Explor 116–117:51–59

    Article  Google Scholar 

  • Lindsay W, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  Google Scholar 

  • Lottermoser BG, Ashley PM, Munksgaard NC (2008) Biogeochemistry of Pb-Zn gossans, northwest Queensland, Australia: implications for mineral exploration and mine site rehabilitation. Appl Geochem 23:723–742

    Article  Google Scholar 

  • Lottermoser BG, Glass HJ, Page CN (2011a) Sustainable natural remediation of abandoned tailings by metal-excluding heather (Calluna vulgaris) and gorse (Ulex europaeus), Carnon Valley, Cornwall, UK. Ecol Eng 37:1249–1253

    Article  Google Scholar 

  • Lottermoser BG, Schnug E, Haneklaus S (2011b) Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils. Sci Total Environ 409:3512–3519

    Article  Google Scholar 

  • Lu A, Zhang S, Shan X-Q, Wang S, Wang Z (2003) Application of microwave extraction for the evaluation of bioavailability of rare earth elements in soils. Chemosphere 53:1067–1075

    Article  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  Google Scholar 

  • Mallarino AP (1995) Comparison of Mehlich-3, Olsen, and Bray-P1 procedures for phosphorus in calcareous soils. In: Proceedings of the 25th North Central extension-industry soil fertility conference, St. Louis, Missouri, pp 96–101

    Google Scholar 

  • Marguí E, Queralt I, Carvalho M, Hidalgo M (2007) Assessment of metal availability to vegetation (Betula pendula) in Pb-Zn ore concentrate residues with different features. Environ Pollut 145:179–184

    Article  Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Comm Soil Sci Plant Anal 15:1409–1416

    Article  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Bio/Technol 7:47–59

    Article  Google Scholar 

  • Menzies NW, Donn MJ, Kopittke PM (2007) Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ Pollut 145:121–130

    Article  Google Scholar 

  • Neumann D, Zurnieden U, Lichtenberger O, Leopold I (1995) How does Armeria maritima tolerate high heavy metal concentrations. J Plant Physiol 146:704–717

    Article  Google Scholar 

  • Olko A, Abratowska A, Zylkowska J, Wierzbicka M, Tukiendorf A (2008) Armeria maritima from a calamine heap–initial studies on physiologic-metabolic adaptations to metal-enriched soil. Ecotoxicol Environ Saf 69:209–218

    Article  Google Scholar 

  • Pérez-López R, Álvarez-Valero AM, Nieto JM, Sáez R, Matos JX (2008) Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt). Appl Geochem 23:3452–3463

    Article  Google Scholar 

  • Prüeß A (1997) Action values for mobile (NH4NO3-extractable) trace elements in soils based on the German national standard DIN 19730. Les Colloques de l’INRA 415–423

    Google Scholar 

  • Pueyo M, López-Sánchez JF, Rauret G (2004) Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Anal Chimica Acta 504:217–226

    Article  Google Scholar 

  • Pueyo M, Rauret G, Lück D, Yli-Halla M, Muntau H, Quevauviller P, Lopez-Sanchez JF (2001) Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimised three-step sequential extraction procedure. J Environ Monit 3:243–250

    Article  Google Scholar 

  • Quevauviller P (1998) Operationally defined extraction procedures for soil and sediment analysis I. Standardization. Trends Anal Chem 17:289–298

    Article  Google Scholar 

  • Quevauviller P, Rauret G, Rubio R, López-Sánchez JF, Ure A, Bacon J, Muntau H (1997) Certified reference materials for the quality control of EDTA-and acetic acid-extractable contents of trace elements in sewage sludge amended soils (CRMs 483 and 484). Fresenius’ J Anal Chem 357:611–618

    Article  Google Scholar 

  • Quispe D, Pérez-López R, Acero P, Ayora C, Nieto JM, Tucoulou R (2013) Formation of a hardpan in the co-disposal of fly ash and sulfide mine tailings and its influence on the generation of acid mine drainage. Chem Geol 355:45–55

    Article  Google Scholar 

  • Rao C, Sahuquillo A, Sanchez JL (2008) A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water Air Soil Pollut 189:291–333

    Article  Google Scholar 

  • Rauret G, Lopez-Sanchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller P (1999) Improvement of the BCR® three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61

    Article  Google Scholar 

  • Ribeta I, Ptacek CJ, Blowes DW, Jambor JL (1995) The potential for metal release by reductive dissolution of weathered mine tailings. J Contam Hydrol 17:239–273

    Article  Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    Article  Google Scholar 

  • Sahuquillo A, Lopez-Sanchez JF, Rubio R, Rauret G, Thomas RP, Davidson CM, Ure AM (1999) Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR® three-stage sequential extraction procedure. Anal Chim Acta 382:317–327

    Article  Google Scholar 

  • Sahuquillo A, Rigol A, Rauret G (2003) Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends Anal Chem 22:152–159

    Article  Google Scholar 

  • Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906

    Article  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22:1007–1019

    Article  Google Scholar 

  • Snape I, Scouller RC, Stark SC, Stark J, Riddle MJ, Gore DB (2004) Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments. Chemosphere 57:491–504

    Article  Google Scholar 

  • Sracek O, Mihaljevič M, Kříbek B, Majer V, Filip J, Vaněk A, Mapani B (2014a) Geochemistry and mineralogy of vanadium in mine tailings at Berg Aukas, northeastern Namibia. J Afr Earth Sci 96:180–189

    Article  Google Scholar 

  • Sracek O, Mihaljevič M, Kříbek B, Majer V, Filip J, Vaněk A, Mapani B (2014b) Geochemistry of mine tailings and behavior of arsenic at Kombat, northeastern Namibia. Environ Monit Assess 186:4891–4903

    Article  Google Scholar 

  • Tang SR, Wilke BM, Brooks RR (2001) Heavy-metal uptake by metal-tolerant Elsholtzia haichowensis and Commelina communis from China. Commun Soil Sci Plant Anal 32:895–905

    Article  Google Scholar 

  • Terry N, Banuelos G (2010) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace-metals. Anal Chem 51:844–851

    Article  Google Scholar 

  • Tu S, Ma L, Luongo T (2004) Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant Soil 258:9–19

    Article  Google Scholar 

  • Ure A (1996) Single extraction schemes for soil analysis and related applications. Sci Total Environ 178:3–10

    Article  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  Google Scholar 

  • Xie Q-E, Yan X-L, Liao X-Y, Li X (2009) The arsenic hyperaccumulator fern Pteris vittata L. Environ Sci Technol 43:8488–8495

    Article  Google Scholar 

  • Xu DC, Zhou P, Zhan J, Gao Y, Dou C, Sun Q (2013) Assessment of trace metal bioavailability in garden soils and health risks via consumption of vegetables in the vicinity of Tongling mining area, China. Ecotoxicol Environ Saf 90:103–111

    Article  Google Scholar 

  • Zhao H, Xia B, Qin J, Zhang J (2012) Hydrogeochemical and mineralogical characteristics related to heavy metal attenuation in a stream polluted by acid mine drainage: a case study in Dabaoshan Mine, China. J Environ Sci China 24:979–989

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor M. van Veen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Veen, E.M., Lottermoser, B. (2017). Bioaccessibility Testing for Metals at Mine Sites. In: Lottermoser, B. (eds) Environmental Indicators in Metal Mining. Springer, Cham. https://doi.org/10.1007/978-3-319-42731-7_20

Download citation

Publish with us

Policies and ethics