Skip to main content

Syncytia in Utricularia: Origin and Structure

  • Chapter
  • First Online:
Syncytia: Origin, Structure, and Functions

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 71))

  • 400 Accesses

Abstract

In animals and plants, multinucleate cells (syncytia and coenocytes) are essential in ontogeny and reproduction. Fuso-morphogenesis is the formation of multinucleated syncytia by cell–cell fusion, but coenocytes are formed as a result of mitosis without cytokinesis. However, in plants, coenocytes are more widespread than true syncytia. Except for articulated laticifers, most plant syncytia have a trophic function. Here, we summarize the results of histological, histochemical, and ultrastructural analyses of syncytia in the Utricularia species from the Lentibulariaceae family. Utricularia syncytia, known only from a few species, are heterokaryotic because the syncytium possesses nuclei from two different sources: cells of maternal sporophytic nutritive tissue (placenta) and endosperm haustorium. Thus, syncytium contains both maternal and paternal genetic material. In species from section Utricularia, syncytia are highly active structures (with hypertrophied nuclei, cell wall ingrowths, and extensive cytoskeleton) that exist only during embryo development. They serve as an example of evolutionary unique trophic structures in the plant kingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anger EM, Weber M (2006) Pollen-wall formation in Arum alpinum. Ann Bot (Lond) 97:239–244

    Article  Google Scholar 

  • Arekal GD, Nagendran CR (1975) Is there a Podostemum type of embryo sac in the genus Farmeria? Caryologia 28:229–235

    Article  Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2004a) Eukaryotic cells and their cell bodies: cell theory revised. Ann Bot Lond 94:9–32

    Article  Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2004b) Cell bodies in a cage. Nature 428:371

    Article  PubMed  Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2006) Cell-cell channels and their implications for cell theory. In: Baluška F, Volkmann D, Barlow PW (eds) Cell-cell channels. Landes Bioscience-Springer, Berlin, pp 1–18

    Chapter  Google Scholar 

  • Bárta J, Stone JD, Pech J, Sirová D, Adamec L, Campbell MA, Štorchová H (2015) The transcriptome of Utricularia vulgaris, a rootless plant with minimalist genome, reveals extreme alternative splicing and only moderate sequence similarity with Utricularia gibba. BMC Plant Biol 15:78. https://doi.org/10.1186/s12870-015-0467-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RC, Lemmon BE (2001) The cytoskeleton and spatial control of cytokinesis in the plant life cycle. Protoplasma 215:35–49

    Article  CAS  PubMed  Google Scholar 

  • Chaigne A, Brunet T (2022) Incomplete abscission and cytoplasmic bridges in the evolution of eukaryotic multicellularity. Curr Biol 32:385–R397

    Article  Google Scholar 

  • Esau K (1965) Plant anatomy. Wiley, London

    Google Scholar 

  • Farooq M (1964) Studies in the Lentibulariaceae I. The embryology of Utricularia stellaris L. var. inflexa Clarke. Part II. Microsporangium, male gametophyte, fertilization, endosperm, embryo, and seed. Proc Natl Inst Sci India 30:280–299

    Google Scholar 

  • Farooq M (1965) Studies in the Lentibulariaceae III. The embryology of Utricularia uliginosa Vahl. Phytomorphology 15:123–131

    Google Scholar 

  • Farooq M, Siddiqui SA (1964) The embryology of Utricularia stellaris Linn. f. Sci Cult 30:394–395

    Google Scholar 

  • Greenbaum MP, Iwamori T, Buchold GM, Matzuk MM (2011) Germ cell intercellular bridges. Cold Spring Harb Perspect Biol 3:a005850

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunning BES, Pate JS (1974) Transfer cells. In: Robards AW (ed) Dynamic aspects of plant ultrastructure. McGraw-Hill, London, pp 441–476

    Google Scholar 

  • Hagel JM, Yeung EC, Facchini PJ (2008) Got milk? The secret life of laticifers. Trends Plant Sci 13(12):631–639

    Article  CAS  PubMed  Google Scholar 

  • Ibarra-Laclette E, Lyons E, Hernández-Guzmán G, Pérez-Torres CA, Carretero-Paulet L, Chang TH, Lan T, Welch AJ, Juárez MJ, Simpson J, Fernández-Cortés A, Arteaga-Vázquez M, Góngora-Castillo E, Acevedo-Hernández G, Schuster SC, Himmelbauer H, Minoche AE, Xu S, Lynch M, Oropeza-Aburto A, Cervantes-Pérez SA, de Jesús Ortega-Estrada M, Cervantes-Luevano JI, Michael TP, Mockler T, Bryant D, Herrera-Estrella A, Albert VA, Herrera-Estrella L (2013) Architecture and evolution of a minute plant genome. Nature 498(7452):94–98. https://doi.org/10.1038/nature12132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jäger-Zürn I (1997) Embryological and floral studies in Weddellina squamulosa Tul. (Podostemaceae, Tristichoideae). Aquat Bot 57:151–182

    Article  Google Scholar 

  • Jankun A, Płachno B (2000) Embryology of Utricularia vulgaris L. Acta Biol Cracov Bot 42(1):23. Abstracts of the XXIV Conference on Embryology Plants, Animals, Humans May 24–26, 2000, Podlesice, Poland

    Google Scholar 

  • Jobson RW, Baleeiro PC, Guisande C (2017) Systematics and evolution of Lentibulariaceae: III. Utricularia. In: Ellison A, Adamec L (eds) Carnivorous plants: physiology, ecology, and evolution (Oxford, 2017; online edn, Oxford Academic, 15 Feb. 2018). https://doi.org/10.1093/oso/9780198779841.003.0008. Accessed 20 Nov 2022

  • Kausik SB, Raju MVS (1955) A contribution to the floral morphology and embryology of Utricularia reticulata. Proc Indian Acad Sci 41:155–166

    Article  Google Scholar 

  • Kausik SD (1938) Pollen development and seed formation in Utricularia caerulea. Beih Bot Zbl 58A:365–378

    Google Scholar 

  • Khan R (1954) A contribution to the embryology of Utricularia flexuosa Vahl. Phytomorphology 4:80–117

    Google Scholar 

  • Khan R (1992) Lentibulariaceae. In: Johri BM, Ambegaokar KB, Srivastava PS (eds) Comparative embryology of angiosperms. Springer Verlag, Berlin, pp 755–762

    Google Scholar 

  • Kloc M, Bilinski S, Dougherty MT, Brey EM, Etkin LD (2004) Formation, architecture and polarity of female germline cyst in Xenopus. Dev Biol 266(1):43–61

    Article  CAS  PubMed  Google Scholar 

  • Kozieradzka-Kiszkurno M, Płachno BJ, Bohdanowicz J (2012) New data about the suspensor of succulent angiosperms: ultrastructure and cytochemical study of the embryo-suspensor of Sempervivum arachnoideum L. and Jovibarba sobolifera (Sims) Opiz. Protoplasma 249:613–624

    Article  CAS  PubMed  Google Scholar 

  • Lang FX (1901) Untersuchungen über Morphologie, Anatomie und Samenentwicklung von Polypompholyx und Byblis gigantea. Flora 88:149–206

    Google Scholar 

  • Merl EH (1915) Beiträge zur Kenntnis der Utricularien und Genlisen. Flora 108:127–200

    Google Scholar 

  • Merz M (1897) Untersuchungen über die Samenentwicklung der Utricularien. Flora 84:69–87

    Google Scholar 

  • Miranda VFO, Silva SR, Reut MS, Dolsan H, Stolarczyk P, Rutishauser R, Płachno BJ (2021) A historical perspective of bladderworts (Utricularia): traps, carnivory and body architecture. Plants 10(12):2656. https://doi.org/10.3390/plants10122656

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukkada AJ (1962) Some observations on the embryology of Dicraeea stylosa Wight. In: Plant embryology—a symposium. CSIR, New Delhi, pp 139–145

    Google Scholar 

  • Müller KF, Borsch T (2005) Phylogenetics of Utricularia (Lentibulariaceae) and molecular evolution of the trnK intron in a lineage with high substitutional rates. Plant Syst Evol 250:39–67

    Article  Google Scholar 

  • Murguía-Sánchez G, Alejandro Novelo R, Thomas Philbrick C, Márquez Guzmán GJ (2002) Embryo sac development in Vanroyenella plumosa, Podostemaceae. Aquat Bot 73:201–210

    Article  Google Scholar 

  • Nagl W (1992) The polytenic endosperm haustorium of Rhinanthus minor (Scrophulariaceae): functional ultrastructure. Can J Bot 70:1997–2004

    Article  Google Scholar 

  • Nguyen H, Brown RC, Lemmon BE (2002) Cytoskeletal organization of the micropylar endosperm in Coronopus didymus L. (Brassicaceae). Protoplasma 219:210–220

    Article  CAS  PubMed  Google Scholar 

  • Offler CE, Patrick JW (2020) Transfer cells: what regulates the development of their intricate wall labyrinths? New Phytol 228:427–444

    Article  CAS  PubMed  Google Scholar 

  • Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2003) Transfer cells: cells specialized for a special purpose. Annu Rev Plant Biol 54:431–454

    Article  CAS  PubMed  Google Scholar 

  • Pacini E, Juniper BE (1983) The ultrastructure of the formation and development of the amoeboid tapetum in Arum italicum Miller. Protoplasma 117:116–129

    Article  Google Scholar 

  • Pepling ME, De Cuevas M, Sprading AC (1999) Germline cysts: a conserved phase of germ cell development? Trends Cell Biol 9:257–262. https://doi.org/10.1016/S0962-8924(99)01594-9

    Article  CAS  PubMed  Google Scholar 

  • Płachno BJ (2011) Female germ unit in Genlisea and Utricularia, with remarks about the evolution of the extraovular female gametophyte in members of Lentibulariaceae. Protoplasma 248:391–404. https://doi.org/10.1007/s00709-010-0185-x

    Article  PubMed  Google Scholar 

  • Płachno BJ, Świątek P (2008) Cytoarchitecture of Utricularia nutritive tissue. Protoplasma 234:25–32. https://doi.org/10.1007/s00709-008-0020-9

    Article  PubMed  Google Scholar 

  • Płachno BJ, Świątek P (2011) Syncytia in plants: cell fusion in endosperm-placental syncytium formation in Utricularia (Lentibulariaceae). Protoplasma 248(2):425–435. https://doi.org/10.1007/s00709-010-0173-1

    Article  PubMed  Google Scholar 

  • Płachno BJ, Świątek P, Kozieradzka-Kiszkurno M (2011) The F-actin cytoskeleton in syncytia from non-clonal progenitor cells. Protoplasma 248:623–629

    Article  PubMed  Google Scholar 

  • Płachno BJ, Świątek P, Sas-Nowosielska H, Kozieradzka-Kiszkurno M (2013) Organisation of the endosperm and endosperm-placenta syncytia in bladderworts (Utricularia, Lentibulariaceae) with emphasis on the microtubule arrangement. Protoplasma 250(4):863–873. https://doi.org/10.1007/s00709-012-0468-5

    Article  PubMed  Google Scholar 

  • Płachno BJ, Świątek P, Jobson RW, Małota K, Brutkowski W (2017) Serial block face SEM visualization of unusual plant nuclear tubular extensions in a carnivorous plant (Utricularia, Lentibulariaceae). Ann Bot 120(5):673–680. https://doi.org/10.1093/aob/mcx042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Płachno BJ, Kapusta M, Świątek P, Banaś K, Miranda VFO, Bogucka-Kocka A (2021) Spatio-temporal distribution of cell wall components in the placentas, ovules and female gametophytes of Utricularia during pollination. Int J Mol Sci 22(11):5622. https://doi.org/10.3390/ijms22115622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Płachno BJ, Kapusta M, Stolarczyk P, Bogucka-Kocka A (2022) Spatiotemporal distribution of homogalacturonans and hemicelluloses in the placentas, ovules and female gametophytes of Utricularia nelumbifolia during pollination. Cells 11(3):475. https://doi.org/10.3390/cells11030475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poppinga S, Daber LE, Westermeier AS et al (2017) Biomechanical analysis of prey capture in the carnivorous Southern bladderwort (Utricularia australis). Sci Rep 7:1776. https://doi.org/10.1038/s41598-017-01954-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reut M, Świątek P, Miranda VFO, Płachno BJ (2021) Living between land and water – structural and functional adaptations in bladderworts. Plant Soil 464:237–255. https://doi.org/10.1007/s11104-021-04929-6

    Article  CAS  Google Scholar 

  • Reut MS, Płachno BJ (2023) Development, diversity and dynamics of plant architecture in Utricularia subgenus Polypompholyx –towards understanding evolutionary processes in the Lentibulariaceae. Bot Rev 89:201–236. https://doi.org/10.1007/s12229-022-09283-5

    Article  Google Scholar 

  • Rudall PJ, Bateman RM (2019) Coenocytic growth phases in land plant development: a paleo-evo-devo perspective. Int J Plant Sci 180(6):607–622

    Article  Google Scholar 

  • Rutishauser R (2016) Evolution of unusual morphologies in Lentibulariaceae (bladderworts and allies) and Podostemaceae (river-weeds): a pictorial report at the interface of developmental biology and morphological diversification. Ann Bot 117:811–832. https://doi.org/10.1093/aob/mcv172

    Article  PubMed  Google Scholar 

  • Shemer G, Podbilewicz B (2000) Fusomorphogenesis: cell fusion in organ formation. Dev Dyn 218:30–51

    Article  CAS  PubMed  Google Scholar 

  • Shemer G, Podbilewicz B (2003) The story of cell fusion: big lessons from little worms. Bioessays 25(7):672–682

    Article  PubMed  Google Scholar 

  • Siddiqui SA (1978) Studies in the Lentibulariaceae 9. Pollination, fertilisation, endosperm, embryo and seed in U. dichotoma Labill. Bot Jahrb Syst 100:237–245

    Google Scholar 

  • Sobczak M, Golinowski W (2009) Structure of cyst nematode feeding sites. In: Berg RH, Taylor CG (eds) Cell biology of plant nematode parasitism. Plant Cell Monographs 15

    Google Scholar 

  • Sobczak M, Matuszkiewicz M (2023) Syncytium induced by plant parasitic nematodes. Chapter 22

    Google Scholar 

  • Swamy BGL, Ganapathy PM (1957) A new type of endosperm haustorium in Nothapodytes foetida. Phytomorphology 7:331–336

    Google Scholar 

  • Świątek P, Urbisz AZ (2019) Architecture and life history of female germ-line cysts in clitellate annelids. In: Results and problems in cell differentiation, pp 515–551. https://doi.org/10.1007/978-3-030-23459-1_21

  • Świerczyńska J, Kozieradzka-Kiszkurno M, Bohdanowicz J (2013a) Rhinanthus serotinus (Schönheit) Oborny (Scrophulariaceae): immunohistochemical and ultrastructural studies of endosperm chalazal haustorium development. Protoplasma 250:1369–1380. https://doi.org/10.1007/s00709-013-0520-0

    Article  CAS  PubMed  Google Scholar 

  • Świerczyńska J, Kozieradzka-Kiszkurno M, Bohdanowicz J (2013b) Developmental and cytochemical studies of the endosperm chalazal haustorium of Rhinanthus serotinus (Scrophulariaceae). Acta Biol Crac Ser Bot 55(1):99–106

    Google Scholar 

  • Taylor P (1989) The genus Utricularia—a taxonomic monograph; Kew Bulletin Additional Series XIV; Royal Botanic Gardens, Kew: London, UK

    Google Scholar 

  • Tiwari SC, Gunning BES (1986) Colchicine inhibits plasmodium formation and disrupts pathways of sporopollenin secretion in the anther tapetum of Tradescantia virginiana L. Protoplasma 133:115–128

    Article  CAS  Google Scholar 

  • Wylie R, Yocom AE (1923) The endosperm of Utricularia. U Iowa Stud Nat Hist 10:3–18

    Google Scholar 

Download references

Acknowledgments

The chapter is dedicated to the 90th anniversary of Department of Plant Cytology and Embryology (Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków). We would like to cordially thank Professor Małgorzata Kloc for invitation to “Syncytia: Origin, Structure, and Functions” volume. This research was partially supported financially by the Ministry of Science and Higher Education of Poland as part of the statutory activities of the Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków (N18/DBS/000002), and the Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk (531-D030-D847-22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz J. Płachno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Płachno, B.J., Kapusta, M., Świątek, P. (2024). Syncytia in Utricularia: Origin and Structure. In: Kloc, M., Uosef, A. (eds) Syncytia: Origin, Structure, and Functions. Results and Problems in Cell Differentiation, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-031-37936-9_8

Download citation

Publish with us

Policies and ethics