Skip to main content

Global Distribution and Ecology of Hyperaccumulator Plants

  • Chapter
  • First Online:
Agromining: Farming for Metals

Part of the book series: Mineral Resource Reviews ((MIRERE))

Abstract

A large body of analytical data is available on the inorganic composition of many thousands of plant species, for which typical concentration ranges have been tabulated for major, minor, and trace elements. These elements include those that have been shown essential for plant growth, as well as others that lack this status, at least universally. Metalliferous soils, having abnormally high concentrations of some of the elements that are generally present only at minor (e.g. 200–2000 μg g−1) or trace (e.g. 0.1–200 μg g−1) levels, have attracted increasing attention during the last 50 years. The effects vary widely, depending on the species, the relevant elements, and soil characteristics that collectively influence the availability of metals to plants. Some of these soils are toxic to all or most higher plants. Others have hosted the development of specialized plant communities consisting of a restricted and locally characteristic range of metal-tolerant species. These typically show a slightly elevated concentration of the elements with which the soil is enriched, but in places a species may exhibit extreme accumulation of one or more of these elements, to a concentration level that can be hundreds or even thousands of times greater than that usually found in plants on the most common soils. These plants, now widely referred to as hyperaccumulators, are a remarkable resource for many types of fundamental scientific investigation (plant systematics, ecophysiology, biochemistry, genetics and molecular biology) and for applications such as phytoremediation and agromining. Systematic analysis of herbarium specimens by X-ray Fluorescence, combined with auxiliary collection data, can provide insights into phylogenetic patterns of hyperaccumulation, and has the potential to complement and add insights to biogeographical and phylogenetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggett J, Aspell AC (1980) Arsenic from geothermal sources in the Waikato catchment. NZ J Sci 23:77–82

    Google Scholar 

  • Al-Shehbaz IA (2014) A synopsis of the genus Noccaea (Coluteocarpeae, Brassicaceae). Harv Papers Bot 19:25–51

    Article  Google Scholar 

  • Anderson C, Brooks R, Chiarucci A, LaCoste C, Leblanc M, Robinson B, Simcock R, Stewart R (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67:407–415

    Article  CAS  Google Scholar 

  • Antonovics J, Bradshaw AD, Turner AG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85

    Article  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106:93–111

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Whiting SN (2002) In search of the Holy Grail—a further step in understanding metal hyperaccumulation? New Phytol 155:1–4

    Article  Google Scholar 

  • Baker AJM, Proctor J, van Balgooy MMJ, Reeves RD (1992) Hyperaccumulation of nickel by the ultramafic flora of Palawan, Republic of the Philippines. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils, Intercept Ltd. Andover, UK, pp 291–304

    Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press Inc, Boca Raton, FL, USA, pp 85–107

    Google Scholar 

  • Baker AJM, Ernst WHO, van der Ent A, Malaisse F, Ginocchio R (2010) Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. In: Batty LC, Hallberg KB (eds) Ecology of industrial pollution. Cambridge University Press, UK, pp 7–40

    Chapter  Google Scholar 

  • Bani A, Echevarria G, Sulce S, Morel JL (2015a) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediation 17:117–127

    Article  CAS  Google Scholar 

  • Bani A, Echevarria G, Zhang X, Benizri A, Laubie E, Morel JL, Simonnot M-O (2015b) The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Aust J Bot 63:72–77

    Article  CAS  Google Scholar 

  • Bañuelos GS, Mayland HF (2000) Absorption and distribution of selenium in animals consuming canola grown for selenium phytoremediation. Ecotoxicol Environ Safety 46:322–328

    Article  CAS  Google Scholar 

  • Bañuelos GS, Lin Z-Q, Yin X (2014) Selenium in the environment and human health. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Batianoff GN, Reeves RD, Specht RL (1990) Stackhousia tryonii Bailey: a nickel-accumulating serpentinite-endemic species of central Queensland. Aust J Bot 38:121–130

    Article  CAS  Google Scholar 

  • Beeson KC, Lazar VA, Boyce SG (1955) Some plant accumulators of the micronutrient elements. Ecology 36:155–156

    Article  CAS  Google Scholar 

  • Berazaín Iturralde R (1981) Sobre el endemismo de la florula serpentinicola de Lomas de Galindo, Canasi, Habana. Rev Jard Bot Nacional (Cuba) 2:29–59

    Google Scholar 

  • Bert V, Bonnin I, Saumitou-Laprade P, De Laguérie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57

    Article  CAS  Google Scholar 

  • Bidwell SD, Woodrow IE, Batianoff GN, Sommer-Knudsen J (2002) Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Funct Plant Biol 29:899–905

    Article  CAS  Google Scholar 

  • Blissett AH (1966) Copper tolerant plants from the Ukaparinga copper mine, Williamstown. Quart Geol Notes Geol Surv S Australia 18:1–3

    Google Scholar 

  • Boyd RS (2014) Ecology and evolution of metal-hyperaccumulating plants. In: Rajakaruna N, Boyd RS, Harris TB (eds) Plant ecology and evolution in harsh environments. Novinka, New York, USA, pp 227–241

    Google Scholar 

  • Brooks RR (1977) Copper and cobalt uptake by Haumaniastrum species. Plant Soil 48:541–544

    Article  CAS  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Portland, Oregon, USA

    Google Scholar 

  • Brooks RR (1998) Geobotany and hyperaccumulators. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, UK, pp 55–94

    Chapter  Google Scholar 

  • Brooks RR, Malaisse F (1985) The heavy metal-tolerant flora of Southcentral Africa. Balkema, Rotterdam. The Netherlands

    Google Scholar 

  • Brooks RR, Radford CC (1978) Nickel accumulation by European species of the genus Alyssum. Proc Roy Soc Lond B 200:217–222

    Article  CAS  Google Scholar 

  • Brooks RR, Robinson BH (1998) The potential use of hyperaccumulators and other plants for phytomining. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, UK, pp 327–356

    Chapter  Google Scholar 

  • Brooks RR, Wither ED (1977) Nickel accumulation by Rinorea bengalensis (Wall.) O.K. J Geochem Explor 7:295–300

    Article  CAS  Google Scholar 

  • Brooks RR, Yang XH (1984) Elemental levels and relationships in the endemic serpentine flora of the Great Dyke, Zimbabwe, and their significance as controlling factors for the flora. Taxon 33:392–399

    Article  Google Scholar 

  • Brooks RR, Lee J, Jaffré T (1974) Some New Zealand and New Caledonian plant accumulators of nickel. J Ecol 62:493–499

    Article  CAS  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffré T (1977a) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  • Brooks RR, Wither ED, Zepernick B (1977b) Cobalt and nickel in Rinorea species. Plant Soil 47:707–712

    Article  CAS  Google Scholar 

  • Brooks RR, McCleave JA, Schofield EK (1977c) Cobalt and nickel uptake by the Nyssaceae. Taxon 26:197–201

    Article  Google Scholar 

  • Brooks RR, Morrison RS, Reeves RD, Malaisse F (1978) Copper and cobalt in African species of Aeolanthus Mart. (Plectranthinae, Labiatae). Plant Soil 50:503–507

    Article  CAS  Google Scholar 

  • Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y (1979) Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae). Proc Roy Soc Lond B 203:387–403

    Article  CAS  Google Scholar 

  • Brooks RR, Reeves RD, Morrison RS, Malaisse F (1980) Hyperaccumulation of copper and cobalt—a review. Bull Soc roy Bot Belg 113:166–172

    CAS  Google Scholar 

  • Brooks RR, Naidu SD, Malaisse F, Lee J (1987) The elemental content of metallophytes from the copper/cobalt deposits of central Africa. Bull Soc roy Bot Belg 119:179–191

    Google Scholar 

  • Brooks RR, Dunn CE, Hall GEM (1995) Biological systems in mineral exploration and processing. Ellis Horwood, Hemel Hempstead, UK

    Google Scholar 

  • Byers HG, Miller JT, Williams KT, Lakin HW (1938) Selenium occurrence in certain soils in the United States, with a discussion of related topics. III. US Dept Agriculture Tech Bull 601:1–74

    Google Scholar 

  • Campbell LR, Stone CO, Shamsedin NM, Kolterman DA, Pollard AJ (2013) Facultative hyperaccumulation of nickel in Psychotria grandis (Rubiaceae). Carib Nat 1:1–8

    Google Scholar 

  • Cappa JJ, Pilon-Smits EAH (2014) Evolutionary aspects of elemental hyperaccumulation. Planta 239:267–275

    Article  CAS  Google Scholar 

  • Chardot V, Massoura S, Echevarria G, Reeves RD, Morel JL (2005) Phytoextraction potential of the nickel hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea. Int J Phytoremediation 7:323–335

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li Y-M, Brewer EP, Chen K-Y, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang A, Baker AJM (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch C 60c:190–198

    Google Scholar 

  • Cole MM (1973) Geobotanical and biogeochemical investigations in the sclerophyllous woodland and scrub associations of the eastern goldfields area of Western Australia, with particular reference to the role of Hybanthus floribundus (Lindl.) F. Muell. as nickel indicator and accumulator plant. J Appl Ecol 10:269–320

    Article  Google Scholar 

  • Cluzel D, Maurizot P, Collot J, Sevin B (2012) An outline of the geology of New Caledonia; from Permian-Mesozoic Southeast Gondwanaland active margin to Cenozoic obduction and supergene evolution. Episodes 35:72–86

    Article  Google Scholar 

  • Deng D-M, Deng J-C, Li J-T, Zhang J, Hu M, Lin Z, Liao B (2008) Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils. J Integr Plant Biol 50:691–698

    Article  CAS  Google Scholar 

  • Deng H, Li MS, Chen YX, Luo YP, Yu FM (2010) A new discovered manganese hyperaccumulator—Polygonum pubescens Blume. Fresenius Environ Bull 19:94–99

    CAS  Google Scholar 

  • Do C, Abubakari F, Brown G, Casey LW, Burtet-Sarramegna V, Gei V, Erskine PD, van der Ent A (2020) A preliminary survey of hyperaccumulation in the Papua New Guinean flora from herbarium XRF scanning. Chemoecology 30:1–13

    Article  CAS  Google Scholar 

  • Doksopulo EP (1961) Nickel in rocks, soils, water and plants adjacent to the talc deposits of the Chorchanskaya group. Izdat Tbilisk Univ, Tbilisi

    Google Scholar 

  • Duvigneaud P (1959) Plantes cobaltophytes dans le Haut Katanga. Bull Soc Roy Bot Belg 91:111–134

    Google Scholar 

  • Dykeman WR, De Sousa AS (1966) Natural mechanisms of copper tolerance in a copper swamp. Can J Bot 44:871–878

    Article  Google Scholar 

  • Ernst WHO (1966) Ökologisch-soziologische Untersuchungen an Schwermetall-pflanzengesellschaften Südfrankreichs und des östlichen Harzvorlandes. Flora (Jena) B156:301–318

    Google Scholar 

  • Ernst WHO (1968) Das Violetum calaminariae westfalicum, eine Schwermetall-pflanzengesellschaften Südfrankreichs und des östlichen Harzvorlandes. Mitteil Floristisch Arbeit 13:263–268

    Google Scholar 

  • Escarré J, Lefèbvre C, Gruber W, Leblanc M, Lepart J, Rivière Y, Delay B (2000) Zinc and cadmium accumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437

    Article  Google Scholar 

  • Faucon M-P, Shutcha MN, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36

    Article  CAS  Google Scholar 

  • Fernando DR, Woodrow IE, Jaffré T, Dumontet V, Marshall AT, Baker AJM (2008) Foliar manganese accumulation by Maytenus fournieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis. New Phytol 177:178–185

    Article  CAS  Google Scholar 

  • Fernando DR, Guymer G, Reeves RD, Woodrow IE, Baker AJM, Batianoff GN (2009) Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy. Ann Bot 103:931–939

    Article  CAS  Google Scholar 

  • Fernando ES, Quimado MO, Trinidad LC, Doronila AL (2013) The potential use of indigenous nickel hyperaccumulators for small-scale mining in The Philippines. J Degraded Mining Lands Manage 1:21–26

    Google Scholar 

  • Gei V, Erskine PD, Echevarria G, Isnard S, Fogliani B, Jaffré T, van der Ent A (2020) A systematic assessment of the occurrence of trace element hyperaccumulation in the flora of New Caledonia. Bot J Linn Soc 194(1):1–22

    Google Scholar 

  • Howes A (1991) Investigations into nickel hyperaccumulation by the plant Berkheya coddii. MSc thesis, University of Natal, Pietermaritzburg, South Africa

    Google Scholar 

  • Ibanez T, Birnbaum P, Gâteblé G, Hequet V, Isnard S, Munzinger J, Pillon Y, Pouteau R, Vandrot H, Jaffré T (2018) Twenty years after Jaffré et al (1998) is the system of protected areas now adequate in New Caledonia? Biodivers Conserv 28:245–254

    Google Scholar 

  • Isnard S, L’Huillier L, Rigault F, Jaffré T (2016) How did the ultramafic soils shape the flora of the New Caledonian hotspot? Plant Soil 403:53–76

    Article  CAS  Google Scholar 

  • Jaffré T (1977) Accumulation du manganèse par les espèces associées aux terrains ultrabasiques de Nouvelle Calédonie. Compt Rend Acad Sci Paris Sér D 284:1573–1575

    Google Scholar 

  • Jaffré T (1979) Accumulation du manganèse par les Proteacées de Nouvelle Calédonie. Compt Rend Acad Sci Paris Sér D 289:425–428

    Google Scholar 

  • Jaffré T (1980) Etude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie. Trav et Documents de l’ORSTOM 124, Paris, France

    Google Scholar 

  • Jaffré T, Schmid M (1974) Accumulation du nickel par une Rubiacée de Nouvelle Calédonie, Psychotria douarrei (G. Beauvisage) Däniker. Compt Rend Acad Sci Paris Sér D 278:1727–1730

    Google Scholar 

  • Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    Article  Google Scholar 

  • Jaffré T, Brooks RR, Trow JM (1979a) Hyperaccumulation of nickel by Geissois species. Plant Soil 51:157–162

    Article  Google Scholar 

  • Jaffré T, Kersten WJ, Brooks RR, Reeves RD (1979b) Nickel uptake by the Flacourtiaceae of New Caledonia. Proc Roy Soc Lond B205:385–394

    Google Scholar 

  • Jaffré T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4(279):1–7

    Google Scholar 

  • Kersten WJ, Brooks RR, Reeves RD, Jaffré T (1979) Nickel uptake by New Caledonian species of Phyllanthus. Taxon 28:529–534

    Google Scholar 

  • Koch M, Mummenhoff K (2001) Thlaspi s.str. (Brassicaceae) versus Thlaspi s.l. morphological and anatomical characters in the light of ITS and nrDNA sequence data. Plant Syst Evol 227:209–225

    Article  CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Ann Rev Plant Biol 61:517–534

    Article  CAS  Google Scholar 

  • Kruckeberg AR (1954) The ecology of serpentine soils. III. Plant species in relation to serpentine soils. Ecology 35:267–274

    Google Scholar 

  • Kubota J, Lazar VA, Beeson KC (1960) The study of cobalt status of soils in Arkansas and Louisiana using the black gum as the indicator plant. Soil Sci Soc Amer Proc 24:527–528

    Article  CAS  Google Scholar 

  • LaCoste C, Robinson BH, Brooks RR, Anderson CWN, Chiarucci A, Leblanc M (1999) The phytoremediation potential of thallium-contaminated soils using Iberis and Biscutella species. Int J Phytoremediation 1:327–338

    Article  CAS  Google Scholar 

  • Lambers H, Hayes PE, Laliberte E, Oliveira RS, Turner BL (2015) Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci 20:83–90

    Article  CAS  Google Scholar 

  • Lange B, van der Ent A, Baker AJM, Echevarria G, Mahy G, Malaisse F, Meerts P, Pourret O, Verbruggen N, Faucon MP (2017) Copper and cobalt hyperaccumulation in plants: a critical assessment of the current status of knowledge. New Phytol 213(2):537–551

    Google Scholar 

  • Leblanc M, Petit D, Deram A, Robinson BH, Brooks RR (1999) The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Econ Geol 94:109–113

    Article  CAS  Google Scholar 

  • Lancaster RJ, Coup MR, Hughes JW (1971) Toxicity of arsenic present in lakeweed. NZ Vet J 19:141–145

    CAS  Google Scholar 

  • Lee J, Reeves RD, Brooks RR, Jaffré T (1977) Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants. Phytochem 16:1503–1505

    Article  CAS  Google Scholar 

  • Li Y-M, Chaney RL, Brewer E, Roseberg R, Angle JS, Baker AJM, Reeves RD, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  CAS  Google Scholar 

  • Liddle JR (1982) Arsenic and other elements of geothermal origin in the Taupo volcanic zone. PhD thesis, Massey University, New Zealand

    Google Scholar 

  • Liu W, Shu W, Lan C (2004) Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin Sci Bull 49:29–32

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20

    Article  CAS  Google Scholar 

  • Losfeld G, L’Huillier L, Fogliani B, McCoy S, Grison C, Jaffré T (2015) Leaf-age and soil-plant relationships: key factors for reporting trace-elements hyperaccumulation by plants and design applications. Environ Sci Pollut Res 22:5620–5632

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  Google Scholar 

  • Malaisse F, Grégoire J, Brooks RR, Morrison RS, Reeves RD (1978) Aeolanthus biformifolius: a hyperaccumulator of copper from Zaïre. Science 199:887–888

    Article  CAS  Google Scholar 

  • Malaisse F, Grégoire J, Brooks RR, Morrison RS, Reeves RD (1979) Copper and cobalt in vegetation of Fungurume, Shaba Province, Zaïre. Oikos 33:472–478

    Article  CAS  Google Scholar 

  • Malaisse F, Brooks RR, Baker AJM (1994) Diversity of vegetation communities in relation to soil heavy metal content at the Shinkolobwe copper/cobalt/uranium mineralization, Upper Shaba, Zaïre. Belg J Bot 127:3–16

    Google Scholar 

  • McAlister RL, Kolterman DA, Pollard AJ (2015) Nickel hyperaccumulation in populations of Psychotria grandis (Rubiaceae) from serpentine and non-serpentine soils of Puerto Rico. Aust J Bot 63:85–91

    Article  CAS  Google Scholar 

  • McCartha GL, Taylor CM, van der Ent A, Echevarria G, Navarrete Gutiérrez DM, Pollard AJ (2019) Phylogenetic and geographic distribution of nickel hyperaccumulation in neotropical Psychotria (Rubiaceae). Am J Bot 106(10):1377–1385

    Google Scholar 

  • Meharg A (2002) Arsenic and old plants. New Phytol 156:1–4

    Article  Google Scholar 

  • Menezes de Sequeira E (1969) Toxicity and movement of heavy metals in serpentinitic rocks (north-eastern Portugal). Agron Lusit 30:115–154

    Google Scholar 

  • Meyer FK (1973) Conspectus der “Thlaspi”-Arten Europas, Afrikas und Vorderasiens. Feddes Rep 84:449–470

    Article  Google Scholar 

  • Minguzzi C, Vergnano O (1948) Il contenuto di nichel nelle ceneri di Alyssum bertolonii Desv. Atti Soc Tosc Sci Nat Mem Ser A 55:49–77

    CAS  Google Scholar 

  • Mizuno T, Asahina R, Hosono A, Tanaka A, Senoo K, Obata H (2008) Age-dependent manganese hyperaccumulation in Chengiopanax sciadophylloides (Araliaceae). J Plant Nutr 31:1811–1819

    Article  CAS  Google Scholar 

  • Morrey DR, Balkwill K, Balkwill M-J (1989) Studies on serpentine flora: preliminary analyses of soils and vegetation associated with serpentine rock formations in the southeastern Transvaal. S Afr J Bot 55:171–177

    Article  Google Scholar 

  • Morrey DR, Balkwill K, Balkwill M-J, Williamson S (1992) A review of some studies of the serpentine flora of southern Africa. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils, Intercept Ltd. Andover, UK, pp 147–157

    Google Scholar 

  • Nicks LJ, Chambers MF (1995) Farming for metals. Mining Environ Manage 3:15–18

    Google Scholar 

  • Nicks LJ, Chambers MF (1998) A pioneering study of the potential of phytomining for nickel. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, UK, pp 313–325

    Google Scholar 

  • Pelletier B (2006) Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity. In: Payri C, Richer de Forges B (eds) Forum Biodiversité des Ecosystèmes Coralliens. Vol. Doc. Sci. Tech. IRD, II 7, Nouméa, Nouvelle-Calédonie, pp 17–30

    Google Scholar 

  • Paul ALD, Gei V, Isnard S, Fogliani B, Echevarria G, Erskine PD, Jaffré T, Munzinger J, van der Ent A (2020) Nickel hyperaccumulation in New Caledonian Hybanthus (Violaceae) and occurrence of nickel-rich phloem in Hybanthus austrocaledonicus. Ann Bot 126:905–914

    Google Scholar 

  • Parker DR, Feist LJ, Varvel TW, Thomason DN, Zhang Y (2003) Selenium phytoremediation potential of Stanleya pinnata. Plant Soil 249:157–165

    Article  CAS  Google Scholar 

  • Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of metals and metalloids. Plant Sci 217–218:8–17

    Article  CAS  Google Scholar 

  • Proctor J, van Balgooy MMJ, Fairweather GM, Nagy L, Reeves RD (1994) A preliminary re-investigation of a plant geographical “El Dorado.”. Trop Biodiversity 2:303–316

    Google Scholar 

  • Rascio N (1977) Metal accumulation by some plants growing on zinc-mine deposits. Oikos 29:250–253

    Article  CAS  Google Scholar 

  • Raskin I, Ensley BD (eds) (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Reeves RD (1988) Nickel and zinc accumulation by species of Thlaspi L., Cochlearia L., and other genera of the Brassicaceae. Taxon 37:309–318

    Article  Google Scholar 

  • Reeves RD (1992) Hyperaccumulation of nickel by serpentine plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils, Intercept Ltd. Andover, UK, pp 253–277

    Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    Article  CAS  Google Scholar 

  • Reeves RD (2005) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) NATO Science series: IV: Earth and Environmental Sciences, vol 68, 360 pp. Springer, Berlin (2005), pp 25–52; online as pp 1–25 in Phytoremediation of Metal-Contaminated Soils, NATO Advanced Study Institute, Třešť Castle, Czech Republic, 18–30 Aug 2002, at www.pravo.by/UNESCOChairs/eng/kefedra.asp?idf=4andidt=64

  • Reeves RD, Adıgüzel N (2004) Rare plants and nickel accumulators from Turkish serpentine soils, with special reference to Centaurea species. Turk J Bot 28:147–153

    Google Scholar 

  • Reeves RD, Adıgüzel N (2008) The nickel hyperaccumulating plants of Turkey and adjacent areas: a review with new data. Turk J Biol 32:143–153

    CAS  Google Scholar 

  • Reeves RD, Baker AJM (1984) Studies on metal uptake by plants from serpentine and non-serpentine populations of Thlaspi goesingense Halácsy (Cruciferae). New Phytol 98:191–204

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Reeves RD, Brooks RR (1983a) European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc. J Geochem Explor 18:275–283

    Article  CAS  Google Scholar 

  • Reeves RD, Brooks RR (1983b) Hyperaccumulation of lead and zinc by two metallophytes from a mining area in central Europe. Environ Pollut 31:277–287

    Article  CAS  Google Scholar 

  • Reeves RD, Liddle JR (1986) Dispersal of arsenic from geothermal sources of the central North Island. In: Baker MJ (ed) Trace Elements in the Eighties. NZ Trace Element Group, Palmerston North, NZ, pp 31–34

    Google Scholar 

  • Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2017) A global database for hyperaccumulator plants of metal and metalloid trace elements. New Phytol 218:407–411

    Google Scholar 

  • Reeves RD, Brooks RR, Press JR (1980) Nickel accumulation by species of Peltaria Jacq. (Cruciferae). Taxon 29:629–633

    Article  Google Scholar 

  • Reeves RD, Brooks RR, Macfarlane RM (1981) Nickel uptake by Californian Streptanthus and Caulanthus with particular reference to the hyperaccumulator S. polygaloides Gray (Brassicaceae). Amer J Bot 68:708–712

    Article  CAS  Google Scholar 

  • Reeves RD, Brooks RR, Dudley TR (1983a) Uptake of nickel by species of Alyssum, Bornmuellera and other genera of Old World Tribus Alysseae. Taxon 32:184–192

    Article  Google Scholar 

  • Reeves RD, Macfarlane RM, Brooks RR (1983b) Accumulation of nickel by western North American genera containing serpentine-tolerant species. Amer J Bot 70:1297–1303

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazaín R (1996) Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazaín R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83:29–38

    Article  CAS  Google Scholar 

  • Reeves RD, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behaviour of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediation 3:145–172

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Becquer T, Echevarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soils of Goiás State, Brazil. Plant Soil 293:107–119

    Article  CAS  Google Scholar 

  • Reeves RD, Laidlaw WS, Doronila A, Baker AJM, Batianoff GN (2015) Erratic hyperaccumulation of nickel, with particular reference to the Queensland serpentine endemic Pimelea leptospermoides F. Mueller. Aust J Bot 63:119–127

    Article  CAS  Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997a) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    Article  CAS  Google Scholar 

  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V (1997b) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    Article  CAS  Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    Article  CAS  Google Scholar 

  • Rosenfeld I, Beath OA (1964) Selenium—geobotany, biochemistry, toxicity and nutrition. Academic Press, New York, USA

    Google Scholar 

  • Sachs J (1865) In: Hofmeister W (ed) Handbuch der Experimental-Physiologie der Pflanzen. Handbuch der Physiologischen Botanik Vol IV. Engelmann, Leipzig, Germany pp 153–154

    Google Scholar 

  • Schwartz C, Sirguey C, Peronny S, Reeves RD, Bourgaud F, Morel JL (2006) Testing of outstanding individuals of Thlaspi caerulescens for cadmium phytoextraction. Int J Phytoremediation 8:339–357

    Article  CAS  Google Scholar 

  • Swenson U, Munzinger J (2010) Revision of Pycnandra subgenus Achradotypus (Sapotaceae), with five new species from New Caledonia. Aust Syst Bot 23:185–216

    Article  Google Scholar 

  • Swenson U, Munzinger J (2016) Five new species and a systematic synopsis of Pycnandra (Sapotaceae), the largest endemic genus in New Caledonia. Aust Syst Bot 29:1–40

    Article  Google Scholar 

  • Severne BC, Brooks RR (1972) A nickel accumulating plant from Western Australia. Planta 103:91–94

    Article  CAS  Google Scholar 

  • Stebbins GL (1942) The genetic approach to rare and endemic species. Madroño 6:241–272

    Google Scholar 

  • Strawn KE (2013) Unearthing the habitat of a hyperaccumulator: case study of the invasive plant yellowtuft (Alyssum; Brassicaceae) in southwest Oregon, USA. Manage Biol Invasions 4:249–259

    Article  Google Scholar 

  • van der Ent A, Reeves RD (2015) Foliar metal accumulation in plants from copper-rich ultramafic outcrops: case studies from Malaysia and Brazil. Plant Soil 389:401–418

    Article  CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  CAS  Google Scholar 

  • van der Ent A, Erskine P, Sunmail S (2015) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecol 25:243–259

    Article  CAS  Google Scholar 

  • van der Ent A, Ocenar A, Tisserand R, Sugau JB, Erskine PD, Echevarria G (2019) Herbarium X-ray Fluorescence Screening for nickel, cobalt and manganese hyperaccumulation in the flora of Sabah (Malaysia, Borneo Island). J Geochem Explor 202:49–58

    Google Scholar 

  • Vittoottiviseth P, Francesconi K, Sridokchan W (2002) The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ Pollut 118:453–461

    Article  Google Scholar 

  • Wahlert GA, Marcussen T, Paula-Souza J, Ming F, Ballard HE Jr (2014) A phylogeny of the Violaceae (Malpighiales) inferred from plastid DNA sequences: implications for generic diversity and intrafamilial classification. Systematic Bot 39:239–252

    Article  Google Scholar 

  • Warren HV, Delavault RE, Barakso J (1964) The role of arsenic as a pathfinder in biogeochemical prospecting. Econ Geol 59:1381–1389

    Article  CAS  Google Scholar 

  • Wild H (1970) The vegetation of nickel-bearing soils. Kirkia 7 (suppl):1–62

    Google Scholar 

  • Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffré T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophytes and their potential for restoration and site remediation. Restor Ecol 12:106–116

    Article  Google Scholar 

  • Wither ED, Brooks RR (1977) Hyperaccumulation of nickel by some plants of South-East Asia. J Geochem Explor 8:579–583

    Article  CAS  Google Scholar 

  • Wulff A, Hollingsworth PM, Ahrends A, Jaffré T, Veillon JM, L’Huillier L, Fogliani B (2013) Conservation priorities in a biodiversity hotspot; analysis of narrow endemic plant species in New Caledonia. PLoS ONE 8(9):e73371

    Article  CAS  Google Scholar 

  • Xue SG, Chen YX, Reeves RD, Baker AJM, Lin Q, Fernando DR (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ Pollut 131:393–399

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Reeves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reeves, R.D., van der Ent, A., Echevarria, G., Isnard, S., Baker, A.J.M. (2021). Global Distribution and Ecology of Hyperaccumulator Plants. In: van der Ent, A., Baker, A.J., Echevarria, G., Simonnot, MO., Morel, J.L. (eds) Agromining: Farming for Metals. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-58904-2_7

Download citation

Publish with us

Policies and ethics