Skip to main content

Part of the book series: The Yeast Handbook ((YEASTHDB))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aanen DK, Eggleton P, Rouland-Lefevre C, Guldberg-Frøslev T, Rosendahl S, Boomsma JJ (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci USA Biol 99:14887–14892

    CAS  Google Scholar 

  • Abe T, Bignell DE, Higashi M (2000) Termites: evolution, sociality, symbiosis, ecology. Kluwer, Dordrecht

    Google Scholar 

  • Abranches J, Valente P, Nobrega HN, Fernandez FAS, Mendonca-Hagler LC, Hagler AN (1998) Yeast diversity and killer activity dispersed in fecal pellets from marsupials and rodents in a Brazilian tropical habitat mosaic. FEMS Microbiol Ecol 26:27–33

    CAS  Google Scholar 

  • Andlid T, Juarez RV, Gustafsson L (1995) Yeast colonizing the intestine of rainbow trout (Salmo gairdneri) and turbot (Scophtalmus maximus). Microb Ecol 30:321–334

    Article  Google Scholar 

  • Ba AS, Phillips SA (1996) Yeast biota of the red imported fire ant. Mycol Res 100:740–746

    Google Scholar 

  • Ba AS, Phillips SA, Anderson JT (2000) Yeasts in mound soil of the red imported fire ant. Mycol Res 104:969–973

    Article  Google Scholar 

  • Bandoni RJ (1998) On an undescribed species of Fibulobasidium. Can J Bot 76:1540–1543

    Google Scholar 

  • Barker JSF (1992) Genetic variation in cactophilic Drosophila for oviposition on natural yeast substrates. Evolution 46:1070–1083

    Google Scholar 

  • Barker JSF, Starmer WT (1999) Environmental effects and the genetics of oviposition site preference for natural yeast substrates in Drosophila buzzatii. Hereditas 130:145–175

    Article  PubMed  Google Scholar 

  • Barker JSF, Toll GL, East PD (1983) Heterogeneity of the yeast flora in the breeding sites of cactophilic Drosophila. Can J Microbiol 29:6–14

    Google Scholar 

  • Barker JSF, East PD, Phaff HJ, Miranda M (1984) The ecology of the yeast flora in necrotic Opuntia cacti and of associated Drosophila in Australia. Microb Ecol 10:379–399

    Article  Google Scholar 

  • Barker JSF, Starmer WT, Vacek DC (1987) Analysis of spatial and temporal variation in the community structure of yeasts associated with decaying Opuntia cactus. Microb Ecol 14:267–276

    Article  Google Scholar 

  • Barker JSF, Starmer WT, Fogleman JC (1994) Genotype-specific habitat selection for oviposition sites in the cactophilic species Drosophila buzzatii. Heredity 72:384–395

    PubMed  Google Scholar 

  • Barnett JA, Payne R, Yarrow D (2000) Yeasts: characteristics and identification, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Batra LR (1966) Ambrosia fungi — extent of specificity to ambrosia beetles. Science 153:193–195

    PubMed  CAS  Google Scholar 

  • Baumann P, Baumann L, Lai C-Y, Rouhbakhsh D, Moran NA, Clark MA (1995) Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol 49:55–94

    Article  PubMed  CAS  Google Scholar 

  • Bayon C (1980) Volatile fatty acids and methane production in relation to anaerobic carbohydrate fermentation in Oryctes nasicornis larvae (Coleoptera: Scarabaeidae). J Insect Physiol 26:819–828

    CAS  Google Scholar 

  • Bayon C, Mathelin J (1980) Carbohydrate fermentation and by-product absorption studied with labeled cellulose in Oryctes nasicornis (Coleoptera: Scarabaeidae). J Insect Physiol 26:833–840

    CAS  Google Scholar 

  • Begon M (1982) Yeasts and Drosophila. In: Ashburner M, Carson HL, Thompson J (eds) The genetics and biology of Drosophila. Academic, New York, pp 345–384

    Google Scholar 

  • Berryman AA (1989) Adaptive pathways in Scolytid-fungus associations. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions. Academic, New York, pp 145–159

    Google Scholar 

  • Blackwell M (1994) Minute mycological mysteries: the influence of arthropods on the lives of fungi. Mycologia 86:1–17

    Google Scholar 

  • Blackwell M, Jones K (1997) Taxonomic diversity and interactions of insect-associated ascomycetes. Biodivers Conserv 6:689–699

    Article  Google Scholar 

  • Blackwell M, Kimbrough JW (1976a) A developmental study of the termite-associated fungus Coreomcetopsis oedipus. Mycologia 68:551–559

    PubMed  CAS  Google Scholar 

  • Blackwell M, Kimbrough JW (1976b) Ultrastructure of the termite-associated fungus Laboulbeniopsis termitarius. Mycologia 68:541–550

    PubMed  CAS  Google Scholar 

  • Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol 36:323–343

    Article  PubMed  CAS  Google Scholar 

  • Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487

    Article  CAS  Google Scholar 

  • Bridges JR, Marler JE, McSparrin BH (1984) A quantitative study of the yeasts and bacteria associated with laboratory-reared Dendroctonus frontalis Zimm. (Coleopt., Scolytidae). Z Angew Entomol 97:261–267

    Google Scholar 

  • Brito da Cunha A, Dobzhansky T, Sokoloff A (1951) On food preferences of sympatric species of Drosophila. Evolution 5:97–101

    Google Scholar 

  • Bruins BG, Scharloo W, Thorig G (1991) The harmful effect of light on Drosophila is dietdependent. Insect Biochem 21:535–539

    CAS  Google Scholar 

  • Brysch-Herzberg M (2004) Ecology of yeasts in plant-bumblebee mutualism in Central Europe. FEMS Microbiol Ecol 50:87–100

    CAS  PubMed  Google Scholar 

  • Brysch-Herzberg M, Lachance MA (2004) Candida bombiphila sp. nov., a new asexual yeast species in the Wickerhamiella clade. Int J Syst Evol Microbiol 54:1857–1859

    PubMed  CAS  Google Scholar 

  • Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Wiley, New York

    Google Scholar 

  • Bultman TL, White JF (1988) “Pollination” of a fungus by a fly. Oecologia 75:317–319

    Article  Google Scholar 

  • Byzov BA, Thanh VN, Bab’eva IP (1993) Interrelationships between yeasts and soil diplopods. Soil Biol Biochem 25:1119–1126

    Article  Google Scholar 

  • Byzov BA, Kurakov AV, Tretyakova EB, Thanh VN, Luu NDT, Rabinovich YM (1998a) Principles of the digestion of microorganisms in the gut of soil millipedes: specificity and possible mechanisms. Appl Soil Ecol 9:145–151

    Article  Google Scholar 

  • Byzov BA, Thanh VN, Bab’eva IP, Tretyakova EB, Dyvak IA, Rabinovich YM (1998b) Killing and hydrolytic activities of the gut fluid of the millipede Pachyiulus flavipes CL Koch on yeast cells. Soil Biol Biochem 30:1137–1145

    Article  CAS  Google Scholar 

  • Carreiro SC, Pagnocca FC, Bueno OC, Bacci M, Hebling MJA, da Silva OA (1997) Yeasts associated with nests of the leaf-cutting ant Atta sexdens rubropilosa Forel, 1908. Antonie van Leeuwenhoek 71:243–248

    Article  PubMed  CAS  Google Scholar 

  • Carreiro SC, Pagnocca FC, Bacci M, Lachance MA, Bueno OC, Hebling MJA, Ruivo CCC, Rosa CA (2004) Sympodiomyces attinorum sp. nov., a yeast species associated with nests of the leaf-cutting ant Atta sexdens. Int J Syst Evol Microbiol 54:1891–1894

    PubMed  CAS  Google Scholar 

  • Carson HL (1967) The association between Drosophila carcinophila Wheeler and its host, the Land Crab Gecarcinus ruricola (L.). Am Midl Nat 78:324–343

    Google Scholar 

  • Carson HL (1974) Three flies and three islands — parallel evolution in Drosophila. Proc Natl Acad Sci USA 71:3517–3521

    PubMed  CAS  Google Scholar 

  • Carson HL, Knapp EP, Phaff HJ (1956) The yeast flora of the natural breeding sites of some species of Drosophila. Ecology 37:538–544

    Google Scholar 

  • Cassar S, Blackwell M (1996) Convergent origins of ambrosia fungi. Mycologia 88:596–601

    Google Scholar 

  • Cazemier AE, Op den Camp HJM, Hackstein JHP, Vogels GD (1997) Fibre digestion in arthropods. Comp Biochem Physiol 118A:101–110

    CAS  Google Scholar 

  • Chapela IH, Rehner SA, Schultz TR, Mueller UG (1994) Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science 266:1691–1694

    CAS  PubMed  Google Scholar 

  • Chatton E (1913) Coccidiascus legeri n.g., n. sp. levure ascosporée parasite des cellules intestinales de Drosophila funebris Fabr. C R Sea Soc Biol, Paris 75:117–120

    Google Scholar 

  • Chen D-Q, Purcell AH (1997) Occurrence and transmission of facultative endosymbionts in aphids. Curr Microbiol 34:220–225

    Article  PubMed  CAS  Google Scholar 

  • Chen D-Q, Montllor CB, Purcell AH (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomol Exp Appl 95:315–323

    Google Scholar 

  • Chippindale AK, Leroi AM, Kim SB, Rose MR (1993) Phenotypic plasticity and selection in Drosophila life history evolution. 1. Nutrition and the cost of reproduction. J Evol Biol 6:171–193

    Article  Google Scholar 

  • Chippindale AK, Leroi AM, Saing H, Borash DJ, Rose MR (1997) Phenotypic plasticity and selection in Drosophila life history evolution. 2. Diet, mates and the cost of reproduction. J Evolution Biol 10:269–293

    Article  Google Scholar 

  • Cochran DG (1985) Nitrogen excretion in cockroaches. Annu Rev Entomol 30:29–49

    Article  CAS  Google Scholar 

  • Cooper DM (1960) Food preferences of larval and adult Drosophila. Evolution 14:41–55

    Google Scholar 

  • Craven SE, Dix MW, Michaels GE (1970) Attine fungus gardens contain yeasts. Science 169:184–186

    PubMed  CAS  Google Scholar 

  • Cruden DL, Markovetz AJ (1987) Microbial ecology of the cockroach gut. Annu Rev Microbiol 41:617–643

    Article  PubMed  CAS  Google Scholar 

  • Currie CR (2001) A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol 55:357–380

    Article  PubMed  CAS  Google Scholar 

  • Currie CR, Mueller UG, Malloch D (1999) The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci USA 96:7998–8002

    Article  PubMed  CAS  Google Scholar 

  • De Beer ZW, Harrington TC, Vismer HF, Wingfield BD, Wingfield MJ (2003) Phylogeny of the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 95:434–441

    Google Scholar 

  • De Hoog GS (1998a) Ascoidea Brefeld and Lindau. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 136–140

    Google Scholar 

  • De Hoog GS (1998b) Endomyces Reess. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 194–196

    Google Scholar 

  • De Hoog GS, Kurtzman CP (1998) Cephaloascus Hanawa. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 143–114

    Google Scholar 

  • De Hoog GS, Smith MT (1998) Blastobotrys von Klopotek. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 443–448

    Google Scholar 

  • De Hoog GS, Smith MT, Guého E (1998) Dipodascus de Lagerheim. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 181–193

    Google Scholar 

  • Deak T, Beuchat LR (1993) Yeasts associated with fruit juice concentrates. J Food Prot 56:777–782

    Google Scholar 

  • Do Carmo-Sousa L (1969) Distribution of yeasts in nature. In: Rose AH, Harrison JS (eds) The yeasts. Academic, London, pp 79–105

    Google Scholar 

  • Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37

    Article  PubMed  CAS  Google Scholar 

  • Dowd PF (1989) In situ production of hydrolytic detoxifying enzymes by symbiotic yeasts in the cigarette beetle (Coleoptera: Anobiidae). J Econ Entomol 82:396–400

    CAS  Google Scholar 

  • Ebbert MA, Marlowe JL, Burkholder JJ (2003) Protozoan and intracellular fungal gut endosymbionts in Drosophila: prevalence and fitness effects of single and dual infections. J Invertebr Pathol 83:37–45

    PubMed  Google Scholar 

  • Egert M, Wagner B, Lemke T, Brune A, Friedrich MW (2003) Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69:6659–6668

    PubMed  CAS  Google Scholar 

  • Eisikowitch D, Kevan PG, Lachance M-A (1990a) The nectar-inhabiting yeasts and their effect on pollen germination in the common milkweed, Asclepias syriaca. Israel J Bot 39:217–225

    Google Scholar 

  • Eisikowitch D, Lachance M-A, Kevan PG, Willis S, Collins-Thompson DL (1990b) The effect of the natural assemblage of microorganisms and selected strains of the yeast Metschnikowia reukaufii in controlling the germination of pollen of the common milkweed Asclepias syriaca. Can J Bot 68:1163–1165

    Google Scholar 

  • Eriksson K-E, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Etges WJ, Klassen CS (1989) Influences of atmospheric ethanol on adult Drosophila mojavensis: altered metabolic rates and increases in fitness among populations. Physiol Zool 62:170–193

    CAS  Google Scholar 

  • Farrell BD (1998) “Inordinate fondness” explained: Why are there so many beetles? Science 281:555–559

    Article  PubMed  CAS  Google Scholar 

  • Farrell BD, Sequeria AS, O’Meara BC, Normark BB, Chung JH, Jordal BH (2001) The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011–2027

    PubMed  CAS  Google Scholar 

  • Fellows DP, Heed WB (1972) Factors affecting host plant selection in desert-adapted cactiphilic Drosophila. Ecology 53:850–858

    Google Scholar 

  • Ferrari J, Darby AC, Daniell TJ, Godfray HCJ, Douglas AE (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol Entomol 29:60–65

    Article  Google Scholar 

  • Fogleman JC (1982) The role of volatiles in the ecology of cactophilic Drosophila. In: Barker JSF, Starmer WT (eds) Ecological genetics and evolution: the cactus-yeast-Drosophila model system. Academic, Sydney, pp 191–208

    Google Scholar 

  • Fogleman JC, Foster JL (1989) Microbial colonization of injured cactus tissue (Stenocereus gummosus) and its relationship to the ecology of cactophilic Drosophila mojavensis. Appl Environ Microbiol 55:100–105

    PubMed  CAS  Google Scholar 

  • Fogleman JC, Starmer WT, Heed WB (1981) Larval selectivity for yeast species by Drosophila mojavensis in natural substrates. Proc Natl Acad Sci USA 78:4435–4439

    PubMed  CAS  Google Scholar 

  • Fogleman JC, Starmer WT, Heed WB (1982) Comparisons of yeast florae from natural substrates and larval guts of southwestern Drosophila. Oecologia 52:187–191

    Article  Google Scholar 

  • Francke-Grosmann H (1967) Endosymbiosis in wood-inhabiting insects. In: Henry SM (ed) Symbiosis, vol II. Associations of invertebrates, birds, ruminants and other biota. Academic, New York, pp 141–205

    Google Scholar 

  • Fukatsu T, Ishikawa H (1992) A novel eukaryotic extracellular symbiont in an aphid, Astegopteryx styraci (Homoptera, Aphidae, Hormaphidinae). J Insect Physiol 38:76–113

    Google Scholar 

  • Fukatsu T, Aoki T, Kurosu U, Ishikawa H (1994) Phylogeny of Cerataphidini aphids revealed by their symbiotic microorganisms and basic structure of their galls: implications for hostsymbiont coevolution and evolution of sterile soldier castes. Zool Sci 11:613–623

    Google Scholar 

  • Fukuda H, Hijii N (1997) Reproductive strategy of a woodwasp with no fungal symbionts, Xeris spectrum (Hymenoptera: Siricidae). Oecologia 112:551–556

    Article  Google Scholar 

  • Gams W, von Arx JA (1980) Validation of Symbiotaphrina (imperfect yeasts). Persoonia 10:542–543

    Google Scholar 

  • Ganter PF (1988) The vectoring of cactophilic yeasts by Drosophila. Oecologia 75:400–404

    Article  Google Scholar 

  • Ganter PF, Starmer WT (1992) Killer factor as a mechanism of interference competition in yeasts associated with cacti. Ecology 73:54–67

    Google Scholar 

  • Ganter PF, Starmer WT, Lachance M-A, Phaff HJ (1986) Yeast communities from host plants and associated Drosophila in southern Arizona: new isolations and analysis of the relative importance of hosts and vectors on community composition. Oecologia 70:386–392

    Article  Google Scholar 

  • Ganter PF, Peris F, Starmer WT (1989) Adult life span of cactophilic Drosophila: interactions among volatiles and yeasts. Am Midl Nat 121:331–340

    Google Scholar 

  • Ganter PF, Cardinali G, Giammaria M, Quarles B (2004) Correlations among measures of phenotypic and genetic variation within an oligotrophic asexual yeast, Candida sonorensis, collected from Opuntia. FEMS Yeast Res 4:527–540

    PubMed  CAS  Google Scholar 

  • Gibson CM, Hunter MS (2003) Confirming the role of yeast symbionts in green lacewings, Chrysoperla spp (Neuroptera: Chrysopidae). J Insect Sci 3 (workshop abstract)

    Google Scholar 

  • Gilbert DG (1980) Dispersal of yeasts and bacteria by Drosophila in a temperate forest. Oecologia 46:135–137

    Google Scholar 

  • Gilliam M (1973) Are yeasts present in adult worker honey bees as a consequence of stress? Ann Entomol Soc Am 66:1176

    Google Scholar 

  • Gilliam M (1997) Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol Lett 155:1–10

    Article  CAS  Google Scholar 

  • Gilliam M, Prest DB (1977) The mycoflora of selected organs of queen honey bees, Apis mellifera. J Invertebr Pathol 29:235–237

    Google Scholar 

  • Gilliam M, Prest DB (1987) Microbiology of the feces of the larval honey bee, Apis mellifera. J Invertebr Pathol 49:70–75

    Google Scholar 

  • Gilliam M, Wickerham LJ, Morton HL, Martins RD (1974) Yeasts isolated from honey bees, Apis mellifera, fed 2,4-D and antibiotics. J Invertebr Pathol 24:349–356

    PubMed  CAS  Google Scholar 

  • Gilliam M, Morton HL, Prest DB, Martin RD, Wickerham LJ (1977) The mycoflora of adult worker honeybees, Apis mellifera: effects of 2,4,5-T and caging of bee colonies. J Invertebr Pathol 30:50–54

    PubMed  CAS  Google Scholar 

  • Golubev WI, Bab’eva IP (1972) Debaryomyces formicarius sp. n. and Debaryomyces cantarellii associated with ants of the group Formica rufa L. J. Gen Appl Microbiol 18:249–254

    Google Scholar 

  • Gomes LH, Echeverrigaray S, Conti JH, Lourenco MVM, Duarte KMR (2003) Presence of the yeast Candida tropicalis in figs infected by the fruit fly Zaprionus indianus (Dip.: Drosophilidae). Braz J Microbiol 34:5–7

    Google Scholar 

  • Gosselin L, Jobidon R, Bernier L (1996) Assessment of genetic variation within Chondrostereum purpureum from Quebec by random amplified polymorphic DNA analysis. Mycol Res 100:151–158

    CAS  Google Scholar 

  • Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34:1–26

    Article  Google Scholar 

  • Grant V, Grant KA (1971) Dynamics of clonal microspecies in cholla cactus. Evolution 25:144–155

    Google Scholar 

  • Grant V, Grant K (1980) Clonal microspecies of hybrid origin in the Opuntia lindheimeri group. Bot Gaz 14:101–106

    Google Scholar 

  • Green AM, Mueller UG, Adams RMM (2002) Extensive exchange of fungal cultivars between sympatric species of fungus-growing ants. Mol Ecol 11:191–195

    Article  PubMed  CAS  Google Scholar 

  • Gregg TG, McCrate A, Reveal G, Hall S, Rypstra AL (1990) Insectivory and social digestion in Drosophila. Biochem Genet 28:197–207

    Article  PubMed  CAS  Google Scholar 

  • Gross J, Müller C, Vilcinskas A, Hilker M (1998) Antimicrobial activity of exocrine glandular secretions, hemolymph, and larval regurgitate of the mustard leaf beetle Phaedon cochleariae. J Invertebr Pathol 72:296–303

    PubMed  Google Scholar 

  • Hagen KS, Tassan RL (1972) Exploring nutritional roles of extracellular symbiotes on the reproduction of honeydews feeding adult chrysopids and tephritids. In: Rodriguez JG (ed) Insect and mite nutrition. North-Holland, Amsterdam, pp 323–351

    Google Scholar 

  • Hajsig M (1958) Torulopsis apicola nov. sp., new isolates from bees. Antonie van Leeuwewnhoek 24:18–22

    CAS  Google Scholar 

  • Hausner G, Reid J, Klassen GR (2000) On the phylogeny of members of Ceratocystis s.s. and Ophiostoma that possess different anamorphic state with emphasis on the anamorph genus Leptographium, based on partial DNA sequences. Can J Bot 78:903–916

    CAS  Google Scholar 

  • Haydak MH (1958) Pollen-pollen substitutes-beebread. Am Bee J 98:145–146

    Google Scholar 

  • Heed WB (1968) Ecology of Hawaiian Drosophilidae. University of Texas Publications 6818:387–419

    Google Scholar 

  • Heed WB, Starmer WT, Miranda M, Miller MW, Phaff HJ (1976) An analysis of the yeast flora associated with cactiphilic Drosophila and their host plants in the Sonoran Desert and its relation to temperate and tropical associations. Ecology 57:151–160

    Google Scholar 

  • Hendee EC (1935) The association of termites, Kalotermes minor, Reticulitermes hesperus, and Zootermopsis angusticollis, with fungi. Univ Calif Berkeley Publ Zool 39:111–134

    Google Scholar 

  • Henninger W, Windisch S (1976) Kluyveromyces blattae sp. n., eine neue vielsporige Hefe aus Blatta orientalis. Arch Microbiol 109:153–156

    Article  PubMed  CAS  Google Scholar 

  • Hong SG, Chun J, Oh HW, Bae KS (2001) Metschnikowia koreensis sp. nov., a novel yeast species isolated from flowers in Korea. Int J Syst Evol Micro 51:1927–1931

    CAS  Google Scholar 

  • Hong SG, Bae KS, Herzberg M, Titze A, Lachance M-A (2003) Candida kunwiensis sp. nov., a yeast associated with flowers and bumblebees. Int J Syst Evol Micro 53:367–372

    CAS  Google Scholar 

  • Hongoh Y, Ishikawa H (1997) Uric acid as a nitrogen resource for the brown planthopper, Nilaparvata lugens: studies with synthetic diets and aposymbiotic insects. Zool Sci 14:581–586

    CAS  Google Scholar 

  • Hongoh Y, Ishikawa H (2000) Evolutionary studies on uricases of fungal endosymbionts of aphids and planthoppers. J Mol Evol 51:265–277

    PubMed  CAS  Google Scholar 

  • Hongoh Y, Sasaki T, Ishikawa H (2000) Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding a uricase from the yeast-like symbiont of the brown planthopper, Nilaparvata lugens. Insect Biochem Mol 30:173–182

    CAS  Google Scholar 

  • Houk EJ, Griffiths GW (1980) Intracellular symbiotes of the Homoptera. Annu Rev Entomol 25:161–187

    Article  CAS  Google Scholar 

  • Howard DJ, Bush GL, Breznak JA (1985) The evolutionary significance of bacteria associated with Rhagoletis. Evolution 39:405:417

    Google Scholar 

  • Hunt DWA, Borden JH (1990) Conversion of verbenols to verbenone by yeasts isolated from Dendroctonus ponderosae (Coleoptera: Scolytidae). J Chem Ecol 16:1385–1397

    CAS  Google Scholar 

  • Inglis GD, Sigler L, Goettel MS (1993) Aerobic microorganisms associated with alfalfa leafcutter bees (Megachile rotundata). Microbial Ecol 26:125–143

    Article  Google Scholar 

  • Jefferson MC, Aguirre M (1980) Methanol tolerances and the effects of methanol on longevity and oviposition behaviour in Drosophila pachea. Physiol Entomol 5:265–269

    CAS  Google Scholar 

  • Jones K, Dowd PF, Blackwell M (1999) Polyphyletic origins of yeast-like endocytobionts from Anobiid and Cerambycid beetles. Mycol Res 103:542–546

    Google Scholar 

  • Jordal BH, Normark BB, Farrell BD (2000) Evolutionary radiation of an inbreeding haplodiploid beetle lineage (Curculionidae, Scolytinae). Biol J Linn Soc 71:483–499

    Article  Google Scholar 

  • Jordal BH, Beaver RA, Kirkendall LR (2001) Breaking taboos in the tropics: incest promotes colonization by wood-boring beetles. Global Ecol Biogeogr 10:345–357

    Article  Google Scholar 

  • Jordal BH, Beaver RA, Normark BB, Farrell BD (2002) Extraordinary sex ratios and the evolution of male neoteny in sib-mating Ozopemon beetles. Biol J Linn Soc 75:353–360

    Article  Google Scholar 

  • Kemp PF, Aller JY (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47:161–177

    CAS  PubMed  Google Scholar 

  • Kerrigan J, Rogers JD (2003) Microfungi associated with the wood-boring beetles Saperda calcarata (poplar borer) and Cryptorhynchus lapathi (poplar and willow borer). Mycotaxon 86:1–18

    Google Scholar 

  • Kerrigan J, Smith MT, Rogers JD, Poot GA (2001) Ascobotryozyma americana gen. nov. et sp. nov. and its anamorph Botryozyma americana, an unusual yeast from the surface of nematodes. Antonie van Leeuwenhoek 79:7–16

    Article  PubMed  CAS  Google Scholar 

  • Kerrigan J, Smith MT, Rogers JD, Poot GA (2004) Botryozyma mucatilis sp. nov., an anamorphic ascomycetous yeast associated with nematodes in poplar slime flux. FEMS Yeast Res 4:849–856

    PubMed  CAS  Google Scholar 

  • Kirejtshuk AG (2003) Subcortical space as an environment for palaeoendemic and young groups of beetles, using mostly examples from sap-beetles (Nitidulidae, Coleoptera). Proceedings of the second pan-European conference on Saproxylic Beetles. People’s Trust for Endangered Species, pp 49–55

    Google Scholar 

  • Kirschner R, Bauer R, Oberwinkler F (1999) Atractocolax, a new Heterobasidiomycetous genus based on a species vectored by conifericolous bark beetles. Mycologia 91:538–543

    Google Scholar 

  • Kirschner R, Sampaio JP, Gadanho M, Weia M, Oberwinkler F (2001) Cuniculitrema polymorpha (Tremellales, gen. nov. and sp. nov.), a Heterobasidiomycete vectored by bark beetles, which is the teleomorph of Sterigmatosporidium polymorphuma. Antonie van Leeuwenhoek 80:149–161

    Article  PubMed  CAS  Google Scholar 

  • Koyama K (1985) Nutritional physiology of the brown rice planthopper, Nilaparvata lugens Stal (Hemiptera: Delphacidae). II. Essential amino acids for nymphal development. Appl Entomol Zool 20:424–430

    CAS  Google Scholar 

  • Kurtzman CP (1987) Two new sepcies of Pichia from arboreal habitats. Mycologia 79:410–417

    Google Scholar 

  • Kurtzman CP (1990) Candida shehatae — genetic diversity and phylogenetic relationships with other xylose-fermenting yeasts. Can J Microbiol 44:965–973

    Google Scholar 

  • Kurtzman CP (1994) Molecular taxonomy of the yeasts. Yeast 10:1727–1740

    PubMed  CAS  Google Scholar 

  • Kurtzman CP (1998a) Issatchenkia Kudryavtsev emend. Kurtzman, Smiley and Johnson. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 221–226

    Google Scholar 

  • Kurtzman CP (1998b) Pichia E.C. Hansen emend. Kurtzman. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 273–352

    Google Scholar 

  • Kurtzman CP (1998c) Torulaspora Lindner. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 404–408

    Google Scholar 

  • Kurtzman CP (1998d) Williopsis Zender. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 413–419

    Google Scholar 

  • Kurtzman CP (2000a) Four new yeasts in the Pichia anomala clade. Int J Syst Evol Micro 50:395–404

    Google Scholar 

  • Kurtzman CP (2000b) Three new ascomycetous yeasts from insect-associated arboreal habitats. Can J Microbiol 46:50–58

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman CP (2001a) Four new Candida species from geographically diverse locations. Antonie van Leeuwenhoek 79:353–361

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman CP (2001b) Six new anamorphic ascomycetous yeasts near Candida tanzawaensis. FEMS Yeast Res 1:177–185

    PubMed  CAS  Google Scholar 

  • Kurtzman CP (2005) Description of Komagataella phaffii sp. nov. and the transfer of Pichia pseudopastoris to the methylotrophic yeast genus Komagataella. Int J Syst Evol Micro 55:973–976

    CAS  Google Scholar 

  • Kurtzman CP, Dien BS (1998) Candida arabinofermentans, a new L-arabinose fermenting yeast. Antonie van Leeuwenhoek 74:237–243

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J Clin MIcrobiol 35:1216–1223

    PubMed  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998a) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73:331–371

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998b) Three new insect-associated species of the yeast genus Candida. Can J Microbiol 44:965–973

    Article  PubMed  CAS  Google Scholar 

  • Lachance M-A (1998) Kluyveromyces van der Walt emend. van der Walt. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 227–247

    Google Scholar 

  • Lachance M-A, Bowles JM (2002) Metschnikowia arizonensis and Metschnikowia dekortorum, two new large-spored yeast species associated with floricolous beetles. FEMS Yeast Res 2:81–86

    PubMed  CAS  Google Scholar 

  • Lachance MA, Pang WM (1997) Predacious yeasts. Yeast 13:225–232

    Article  PubMed  CAS  Google Scholar 

  • Lachance M-A, Starmer WT, Phaff HJ (1990) Metschnikowia hawaiiensis sp. nov., a heterothallic haploid yeast from Hawaiian morning glory and associated drosophilids. Int J Syst Bact 40:415–420

    Article  CAS  Google Scholar 

  • Lachance M-A, Gilbert DG, Starmer WT (1995) Yeast communities associated with Drosophila species and related flies in an eastern oak-pine forest: a comparison with western communities. J Ind Microbiol 14:484–494

    Article  PubMed  CAS  Google Scholar 

  • Lachance M-A, Rosa CA, Starmer WT, Bowles JM (1998a) Candida ipomoeae, a new yeast species related to large-spored Metschnikowia species. Can J Microbiol 44:718–722

    PubMed  CAS  Google Scholar 

  • Lachance M-A, Rosa CA, Starmer WT, Schlag-Edler B, Barker JSF, Bowles JM (1998b) Metschnikowia continentalis var. borealis, Metschnikowia continentalis var. continentalis, and Metschnikowia hibisci, new heterothallic haploid yeasts from ephemeral flowers and associated insects. Can J Microbiol 44:279–288

    CAS  Google Scholar 

  • Lachance M-A, Rosa CA, Starmer WT, Schlag-Edler B, Barker JSF, Bowles JM (1998c) Wickerhamiella australiensis, Wickerhamiella cacticola, Wickerhamiella occidentalis, Candida drosophilae and Candida lipophila, five new related yeast species from flowers and associated insects. Int J Syst Bact 48:1431–1443

    Article  Google Scholar 

  • Lachance M-A, Bowles JM, Starmer WT, Barker JSF (1999) Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast species from Australian Hibiscus flowers. Can J Microbiol 45:172–177

    Article  PubMed  CAS  Google Scholar 

  • Lachance M-A, Bowles JM, Mueller C, Starmer WT (2000) On the biogeography of yeasts in the Wickerhamiella clade and description of Wickerhamiella lipophila sp. nov., the teleomorph of Candida lipophila. Can J Microbiol 46:1–4

    Google Scholar 

  • Lachance M-A, Bowles JM, Chavarria Diaz MM, Janzen DH (2001a) Candida cleridarum, Candida tilneyi and Candida powellii, three new yeast species isolated from insects associated with flowers. Int J Syst Evol Micro 51:1201–1207

    CAS  Google Scholar 

  • Lachance M-A, Bowles JM, Kwon S, Marinoni G, Starmer WT, Janzen DH (2001b) Metschnikowia lochheadii and Metschnikowia drosophilae, two new yeast species isolated from insects associated with flowers. Can J Microbiol 47:103–109

    Article  PubMed  CAS  Google Scholar 

  • Lachance M-A, Kaden JE, Phaff HJ, Starmer WT (2001c) Phylogenetic structure of the Sporopachydermia cereana species complex. Int J Syst Evol Micro 51:237–247

    CAS  Google Scholar 

  • Lachance M-A, Bowles JM, Starmer WT (2003) Metschnikowia santaceciliae, Candida hawaiiana, and Candida kipukae, three new yeast species associated with insects of tropical morning glory. FEMS Yeast Res 3:97–103

    PubMed  CAS  Google Scholar 

  • Lachance M-A, Starmer WT, Rosa CA, Bowles JM, Barker JS, Janzen DH (2001d) Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res 1–8

    Google Scholar 

  • Lachance M-A, Ewing CP, Bowels JM, and Starmer WT (2005) Metschnikowia hamakuensis sp. nov., Metschnikowia kamakouana sp. nov. and Metschnikowia manuinuiana sp. nov., three endemic yeasts from Hawaiian nitidulid beetles. Int J Syst Evol Microbiol 55:1369–1377

    PubMed  CAS  Google Scholar 

  • Latham BP (1998) Yeast community persistence in a spatially structured environment. Microbial Ecol 36:60–65

    Article  Google Scholar 

  • Lawrence JF (1989) Mycophagy in the Coleoptera: feeding strategies and morphological adaptations. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions. Academic, New York, pp 2–23

    Google Scholar 

  • Lawrence JF, Milner RJ (1996) Associations between arthropods and fungi. In: Orchard AE (ed) Fungi of Australia, vol 1B. Introduction — fungi in the environment. Australian Biological Resources Study, Canberra, pp 137–202

    Google Scholar 

  • Lee YH, Hou RF (1987) Physiological role of a yeast-like symbiote in reproduction and embryonic development of the brown planthopper, Nilaparvata lugens Stal. J Insect Physiol 33:851–860

    Google Scholar 

  • Lemke T, Stingl U, Egert M, Friedrich MW, Brune A (2003) Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69:6650–6658

    Article  PubMed  CAS  Google Scholar 

  • Leroi AM, Kim SB, Rose MR (1994) The evolution of phenotypic life-history trade-offs: an experimental study using Drosophila melanogaster. Am Nat 144:661–676

    Article  Google Scholar 

  • Leufvén A, Nehls L (1984) Interconversion of verbenols and verbenone by identified yeast isolated from the spruce bark beetle, Ips typographus. J Chem Ecol 10:1349–1361

    Google Scholar 

  • Leufvén A, Nehls L (1986) Quantification of different yeasts associated with the bark beetle, Ips typographus, during its attack on a spruce fir. Microb Ecol 12:237–243

    Google Scholar 

  • Lichtwardt RW, White MM, Cafaro MJ, Misra JK (1999) Fungi associated with passalid beetles and their mites. Mycologia 91:694–702

    Google Scholar 

  • Lichtwardt RW, Cafaro MJ, White MM (2001) The Trichomycetes: fungal associates of arthropods, rev edn. http://www.nhm.ku.edu/%7Efungi/Monograph/Text/Mono.htm

    Google Scholar 

  • Lim YW, Alamouti SM, Kim J-J, Lee S, Breuil C (2004) Multigene phylogenies of Ophiostoma clavigerum and closely related species from bark beetle-attacked Pinus in North America. FEMS Microbiol Lett 237:89–96

    Article  PubMed  CAS  Google Scholar 

  • Lipson DA, Schadt CW, Schmidt SK (2002) Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microb Ecol 43:307–314

    Article  PubMed  CAS  Google Scholar 

  • Lushbaugh WB, Rowton ED, McGhee RB (1976) Redescription of Coccidiascus-Legeri Chatton, 1913 (Nematosporaceae — Hemiascomycetidae), an intracellular parasitic yeastlike fungus from intestinal epithelium of Drosophila melanogaster. J Invertebr Pathol 28:93–107

    Google Scholar 

  • Mankowski ME, Morrell JJ (2004) Yeasts associated with the infrabuccal pocket and colonies of the carpenter ant Camponotus vicinus. Mycologia 96:226–231

    Google Scholar 

  • Marinoni G, Lachance M-A (2004) Speciation in the large-spored Metschnikowia clade and establishment of a new species, Metschnikowia borealis comb. nov. FEMS Yeast Res 4:587–596

    PubMed  CAS  Google Scholar 

  • Markow TA, Anwar S, Pfeiler E (2000) Stable isotope rations of carbon and nitrogen in natural populations of Drosophila species and their hosts. Funct Ecol 14:261–266

    Article  Google Scholar 

  • Martin MM, Martin JS (1978) Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: the role of acquired digestive enzymes. Science 199:1453–1455

    CAS  PubMed  Google Scholar 

  • Meyer SA, Payne RW, Yarrow D (1998) Candida Berkhout. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 454–573

    Google Scholar 

  • Middelhoven WJ, Fonseca A, Carreiro SC, Pagnocca FC, Bueno OC (2003) Cryptococcus haglerorum, sp. nov., an anamorphic basidiomycetous yeast isolated from nests of the leafcutting ant Atta sexdens. Antonie van Leeuwenhoek 83:167–174

    PubMed  CAS  Google Scholar 

  • Middelhoven WJ, Scorzetti G, Fell JW (2004) Systematics of the anamorphic basidiomycetous yeast genus Trichosporon Behrend with the description of five novel species: Trichosporon vadense, T. smithiae, T. dehoogii, T. scarabaeorum and T. gamsii. Int J Syst Evol Micro 54:975–986

    CAS  Google Scholar 

  • Montrocher R (1967) Quelques nouvelles especes et varietes du genre Candida (levures asporogenes). Rev Mycol 32:69–92

    Google Scholar 

  • Morais PB, Rosa CA, Hagler AN, Mendonca-Hagler LC (1994) Yeast communities of the cactus Pilosocereus arrabidae as resources for larval and adult stages of Drosophila serido. Antonie van Leeuwenhoek 66:313–317

    Article  PubMed  CAS  Google Scholar 

  • Morais PB, Martins MB, Klaczko LB, Mendonca-Hagler LC, Hagler NA (1995a) Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila spp. Appl Environ Microbiol 61:4251–4257

    PubMed  CAS  Google Scholar 

  • Morais PB, Rosa CA, Hagler AN, Mendonca-Hagler LC (1995b) Yeast communities as descriptors of habitat use by the Drosophila fasciola subgroup (repleta group) in Atlantic rain forests. Oecologia 104:45–51

    Article  Google Scholar 

  • Morais PB, Lachance M-A, and Rosa CA (2005) Saturnispora hagleri sp. nov., a yeast species isolated from Drosophila flies in Atlantic rainforest in Brazil. Int J Syst Evol Micro 55:1725–1727

    CAS  Google Scholar 

  • Morales-Ramos JA, Rojas MG, Sittertz-Bhatkar H, Saldana G (2000) Symbiotic relationship between Hypothenemus hampei (Coleoptera: Scolytidae) and Fusarium solani (Moniliales: Tuberculariaceae). Ann Entomol Soc Am 93:541–547

    Google Scholar 

  • Mueller UG, Gerardo N (2002) Fungus-farming insects: multiple origins and diverse evolutionary histories. Proc Natl Acad Sci USA 99:15247–15249

    Article  PubMed  CAS  Google Scholar 

  • Mueller UG, Rehner SA, Schultz TR (1998) The evolution of agriculture in ants. Science 281:2034–2038

    Article  PubMed  CAS  Google Scholar 

  • Munson M, Baumann P, Clark MA, Bauman L, Moran NA, Voegtlin DJ, Campbell BC (1991) Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol 173:6321–6324

    PubMed  CAS  Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Horikoshi K (2003) Rhodotorula benthica sp. nov. and Rhodotorula calyptogenae sp. nov., novel yeast species from animals collected from the deepsea floor, and Rhodotorula lysiniphila sp. nov., which is related phylogenetically. Int J Syst Evol Micro 53:897–903

    CAS  Google Scholar 

  • Nakabachi A, Ishikawa H, Kudoa T (2003) Extraordinary proliferation of microorganisms in aposymbiotic pea aphids, Acyrthosiphon pisum. J Invertebr Pathol 82:152–161

    PubMed  Google Scholar 

  • Nakase T, Suzuki M, Phaff HJ, Kurtzman CP (1998) Debaryomyces Lodder and Kreger-van Rij nom. cons. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 157–174

    Google Scholar 

  • Nasir H, Noda H. (2003) Yeast-like symbiotes as a sterol source in Anobiid beetles (Coleoptera, Anobiidae): possible metabolic pathways from fungal sterols to 7-Dehydrocholesterol. Arch Insect Biochem 52:175–182

    Article  CAS  Google Scholar 

  • Naumov GI, Naumova ES, Kondrativea VI, Bulat SA, Mironenko NV, Mendonça-Hagler LC, Hagler AN (1997) Genetic and molecular delineation of three sibling species in the Hansenula polymorpha complex. Syst Appl Microbiol 20:50–56

    Google Scholar 

  • Nelson JA, Wubah DA, Whitmer ME, Johnson EA, Stewart DJ (1999) Wood-eating catfishes of the genus Panaque: gut microflora and cellulolytic enzyme activities. J Fish Biol 54:1069–1082

    CAS  Google Scholar 

  • Noda H, Kawahara N (1995) Electrophoretic karyotype of intracellular yeast-like symbiotes in rice planthoppers and Anobiid beetles. J Invertebr Pathol 65:118–124

    PubMed  CAS  Google Scholar 

  • Noda H, Kodama K (1996) Phylogenetic position of yeastlike endosymbionts of Anobiid beetles. Appl Environ Microbiol 62:162–167

    PubMed  CAS  Google Scholar 

  • Noda H, Koizumi Y (2003) Sterol biosynthesis by symbiotes: cytochrome P450 sterol C-22 desaturase genes from yeastlike symbiotes of rice planthoppers and Anobiid beetles. Insect Biochem Molec 33:649–658

    CAS  Google Scholar 

  • Noda H, Nakashima N, Koizumt M (1995) Phylogenetic position of yeast-like symbiotes of rice planthoppers based on partial 18s rDNA sequences. Insect Biochem Mol 25:639–644

    CAS  Google Scholar 

  • Noda H, Wada K, Saito T (1979) Sterols in Laodelphax striatellus with special reference to the intracellular yeast-like symbiotes as a sterol source. J Insect Physiol 25:443–447

    Article  CAS  Google Scholar 

  • Norry FM, Vilardi JC (1996) Size-related sexual selection and yeast diet in Drosophila buzzatii (Diptera: Drosophilidae). J Insect Behav 9:329–338

    Article  Google Scholar 

  • Nout MJR, Bartelt RJ (1998) Attraction of a flying nitidulid (Carpophilus humeralis) to volatiles produced by yeasts grown on sweet corn and a corn-based medium. J Chem Ecol 24:1217–1239

    Article  CAS  Google Scholar 

  • Oakeshott JG, May TW, Gibson JB, Willcocks DA (1982) Resource partitioning in five domestic Drosophila species and its relation to ethanol metabolism. Aust J Zool 30:547–556

    Article  Google Scholar 

  • Oakeshott JG, Vacek DC, Anderson PR (1989) Effects of microbial floras on the distributions of five domestic Drosophila species across fruit resources. Oecologia 78:533–541

    Article  Google Scholar 

  • Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biot 61:1–9

    CAS  Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803–1807

    PubMed  CAS  Google Scholar 

  • Pain J, Maugenet J (1966) Recherches biochimiques et physiologiques sur le pollen emmagasineè par les abeilles. Ann Abeille 9:209–236

    Google Scholar 

  • Paine TD, Raffa KF, Harrington TC (1997) Interactions among Scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206

    Article  PubMed  CAS  Google Scholar 

  • Pant NC, Fraenkel G (1954) Studies on the symbiotic yeasts of two insect species Lasioderma serricorne F. and Stegobium paniceum L. Biol Bull 107:420–432

    Google Scholar 

  • Pant NC, Gupta P, Nayar JK (1960) Physiology of intracellular symbiote of Stegobium paniceum L. with special reference to amino acid requirements of the host. Experienta 16:311–312

    CAS  Google Scholar 

  • Parsons PA (1980) Acetic acid vapour as a resource: threshold differences among three Drosophila species. Experimentia 36:1363

    CAS  Google Scholar 

  • Parsons PA (1989) Acetaldehyde utilization in Drosophila: an example of hormesis. Biol J Linn Soc 37:183–189

    Article  Google Scholar 

  • Partridge L, Hoffmann A, Jones J (1987) Male size and mating success in Drosophila melanogaster and Drosophila pseudoobscura under field conditions. Anim Behav 35:555–562

    Google Scholar 

  • Peng Y-S, Nasr ME, Marston JM, Fang Y (1984) Digestion of Torula yeast, Candida utilis, by the adult honeybee, Apis mellifera. Ann Entomol Soc Am 77:627–632

    Google Scholar 

  • Péter G, Tornai-Lehoczki J, Deák T (1997) Candida novakii, sp. nov. a new anamorphic yeast species of ascomycetous affinity. Antonie van Leeuwenhoek 71:375–378

    PubMed  Google Scholar 

  • Péter G, Tornai-Lehoczki J, Fülöp L, Dlauchy D (2003) Six new methanol assimilating yeast species from wood material. Antonie van Leeuwenhoek 84:147–159

    PubMed  Google Scholar 

  • Phaff HJ, Miller MW (1998) Cyniclomyces van der Walt and D. B. Scott. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 154–156

    Google Scholar 

  • Phaff HJ, Starmer WT (1987) Yeasts associated with plants, insects and soil. In: Rose AH, Harrison JS (eds) The yeasts. Academic, New York, pp 123–180

    Google Scholar 

  • Phaff HJ, Miller MW, Mrak EM (1978) The life of yeasts, 2 edn. Harvard University Press, Cambridge

    Google Scholar 

  • Phaff HJ, Starmer WT, Tredick-Kline J (1988) Pichia kluyveri sensu lato. A proposal for two new varieties and a new anamorph. Stud Mycol 30:403–414

    Google Scholar 

  • Pignal M-C (1970) A new species of yeast isolated from decaying insect-invaded wood. Antonie van Leeuwenhoek 36:525–529

    Article  PubMed  CAS  Google Scholar 

  • Pimenta RS, Alves PDD, Correa A, Lachance M-A, Prasad GS, Rajaram, Sinha BRRP, and Rosa CA (2005) Geotrichum silvicola sp. nov., a novel asexual arthroconidial yeast species related to the genus Galactomyces. Int J Syst Evol Micro 55:497–501

    CAS  Google Scholar 

  • Pimentel MRC, Antonini Y, Martins RP, Lachance M-A, and Rosa CA (2005) Candida riodocensis and Candida cellae, two new yeast species from the Starmerella clade associated with solitary bees in the Atlantic rain forest of Brazil. FEMS Yeast Res 5:875–879

    PubMed  CAS  Google Scholar 

  • Potrikus CJ, Breznak JA (1977) Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Appl Environ Microbiol 33:392–399

    PubMed  CAS  Google Scholar 

  • Potrikus CJ, Breznak JA (1980) Uric acid in wood-eating termites. Insect Biochem 10:19–27

    CAS  Google Scholar 

  • Prillinger H, Messner R, Koenig H, Bauer R, Lopandic K, Molnar O, Dangel P, Weigang F, Kirisits T, Nakase T, Sigler L (1996) Yeasts associated with termites: a phenotypic and genotypic characterization and use of coevolution for dating evolutionary radiations in Asco-and Basidiomyctes. Syst Appl Microbiol 19:265–283

    CAS  Google Scholar 

  • Qiu X, Wu L, Huang H, McDonel PE, Palumbo AV, Tiedje JM, Zhou J (2001) Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol 67:880–887

    Article  PubMed  CAS  Google Scholar 

  • Ramierez C (1988) Emendation of yeasts isolated from decayed wood in the evergreen rainy Valdivian Forest of southern Chile. Mycopathologia 103:95–101

    Google Scholar 

  • Ramierez C, González A (1984a) Candida santjacobensis and Candida ancudensis, two new species of yeast isolated from decayed wood in the evergreen rainy Valdivian forest in southern Chile. Mycopathologia 88:105–109

    Google Scholar 

  • Ramierez C, González A (1984b) Five new filamentous, glucose fermenting Candida isolated from decayed wood in the evergreen rainy Valdivian forest in southern Chile. Mycopathologia 88:83–92

    Google Scholar 

  • Ramierez C, González A (1984c) Four new species of Apiotrichum isolated from decayed wood in the evergreen rainy Valdivian forest in southern Chile. Mycopathologia 88:71–78

    Google Scholar 

  • Ramierez C, González A (1984d) Three new filamentous, fermenting Candida isolated from decayed wood in the evergreen rainy Valdivian forest in southern Chile. Mycopathologia 88:93–98

    Google Scholar 

  • Ramierez C, González A (1984e) Three new, non-fermenting, and nitrate-negative Candida species isolated from decayed wood in the evergreen rainy Valdivian forest in southern Chile. Mycopathologia 87:175–180

    Google Scholar 

  • Ramierez C, González A (1984f) Two new amycelial Candida isolated from decayed wood in the evergreen rainy Valdivian forest in southern Chile. Mycopathologia 88:99–103

    Google Scholar 

  • Ramierez C, González A (1984g) Two new filamentous, non fermenting Candida and a new Schizoblastosporon isolated from decayed wood in the evergreen rainy Valdivian forest in southern Chile. Mycopathologia 88:165–171

    Google Scholar 

  • Ramierez C, González A (1984h) Two new species and one variety of nitrate-utilizing mycelial Candida isolated from decayed wood in the evergreen rainy Valdivian forest in southern Chile. Mycopathologia 88:55–60

    Google Scholar 

  • Renker C, Blanke V, Borstler B, Heinrichs J, Buscot F (2004) Diversity of Cryptococcus and Dioszegia yeasts (Basidiomycota) inhabiting arbuscular mycorrhizal roots or spores. FEMS Yeast Res 4:597–603

    PubMed  CAS  Google Scholar 

  • Rollins F, Jones K, Krokene P, Solheim H, Blackwell M (2001) Phylogeny of asexual fungi associated with bark and ambrosia beetles. Mycologia 93:991–996

    CAS  Google Scholar 

  • Rosa CA, Lachance M-A (1998) The yeast genus Starmerella gen nov. and Starmerella bombicola sp. nov., the teleomorph of Candida bombicola (Spencer, Gorin, and Tullock) Meyer and Yarrow. Int J Syst Bact 48:1413–1417

    Article  Google Scholar 

  • Rosa CA, Lachance M-A, Starmer WT, Barker JSF, M. BJ, Schlag-Edler B (1999a) Kodamaea nitidulidarum, Candida restingae and Kodamaea anthophila, three new related yeast species from ephemeral flowers. Int J Syst Bact 49:309–318

    Article  Google Scholar 

  • Rosa CA, Morais PB, Hagler AN, Mendonca-Hagler LC, Monteiro RF (1994) Yeast communities of the cactus Pilosocereus arrabidae and associated insects in the sandy coastal plains of southeastern Brazil. Antonie van Leeuwenhoek 65:55–62

    Article  PubMed  CAS  Google Scholar 

  • Rosa CA, Morais PB, Santos SR, Neto PRP, Mendonça-Hagler LC, Hagler AN (1995) Yeast communities associated with different plant resources in sandy coastal plains of southeastern Brazil. Mycol Res 99:1047–1054

    Article  Google Scholar 

  • Rosa CA, Viana EM, Martins RP, Antonini Y, Lachance MA (1999b) Candida batistae, a new yeast species associated with solitary digger nesting bees in Brazil. Mycologia 91:428–433

    Google Scholar 

  • Rossi W, Blackwell M (1986) New species of Laboulbenia from termite hosts in Africa. Mycologia 78:142–145

    Google Scholar 

  • Rouland-Lefevre C, Bignell DE (2002) Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer, Dordrecht, pp 733–756

    Google Scholar 

  • Ruivo CCC, Lachance M-A, Bacci M, Carreiro SC, Rosa CA, and Pagnocca FC (2004) Candida leandrae sp. nov., an asexual ascomycetous yeast species isolated from tropical plants. Int J Syst Evol Micro 54:2405–2408

    Google Scholar 

  • Sang JH (1978) The nutritional requirements of Drosophila. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila. Academic, New York, pp 159–192

    Google Scholar 

  • Santos M, Ruiz A, Barbadilla A, Quesada-DÍaz JE, Hasson E, Fontdevila A (1988) The evolutionary history of Drosophila buzzatii. XIV. Larger flies mate more often in nature. Heredity 61:255–262

    Google Scholar 

  • Santos M, Ruiz A, Quesada-DÍaz JE, Barbadilla A, Fontdevila A (1992) The evolutionary history of Drosophila buzzatii. XX. Positive phenotypic covariance between field adult fitness components and body size. J Evol Biol 5:403–422

    Article  Google Scholar 

  • Sasaki T, Ishikawa H (1995) Production of essential amino acids from glutamate by mycetocyte symbionts of the pea aphid, Acyrthosiphon pisum. J Insect Physiol 47:41–46

    Google Scholar 

  • Sasaki T, Kawamura M, Ishikawa H (1996) Nitrogen recycling in the brown planthopper, Nilapavata lugens: involvement of yeast-like endosymbionts in uric acid metabolism. J Insect Physiol 42:125–129

    Article  CAS  Google Scholar 

  • Schäfer A, Konrad R, Kuhnigk T, Kaempfer P, Hertel H, Koenig H (1996) Hemicellulosedegrading bacteria and yeasts from the termite gut. J Appl Bact 80:471–478

    Google Scholar 

  • Schwemmler W (1974) Endosymbionts: factors of eggs pattern formation. J Insect Physiol 20:1467–1474

    Article  PubMed  CAS  Google Scholar 

  • Scott DB, van der Walt JP (1970a) Hansenula sydowiorum sp. n. Antonie van Leeuwenhoek 36:45–48

    PubMed  CAS  Google Scholar 

  • Scott DB, van der Walt JP (1970b) Three new yeasts from South African insect sources. Antonie van Leeuwenhoek 36:389–396

    PubMed  CAS  Google Scholar 

  • Scott DB, van der Walt JP (1971a) Hansenula dryadoides sp. n., a new species from South African insect sources. Antonie van Leeuwenhoek G 37:171–175

    CAS  Google Scholar 

  • Scott DB, van der Walt JP (1971b) Pichia cicatricosa sp. n., a new auxiliary ambrosia fungus. Antonie van Leeuwenhoek 37:177–183

    PubMed  CAS  Google Scholar 

  • Scrivener AM, Watanabe H, Noda H (1997) Diet and carbohydrate digestion in the yellow-spotted longicorn beetle Psacothea hilaris. J Insect Physiol 43:1039–1052

    Article  PubMed  CAS  Google Scholar 

  • Shen SK, Dowd PF (1991) Detoxification spectrum of the cigarette beetle symbiont Symbiotaphrina kochii in culture. Entomol Exp Appl 60:51–59

    Article  CAS  Google Scholar 

  • Simmons FH, Bradley TJ (1997) An analysis of resource allocation in response to dietary yeast in Drosophila melanogaster. J Insect Physiol 43:779–788

    Article  PubMed  CAS  Google Scholar 

  • Sivinski J, Marshall S, Petersson E (1999) Kleptoparasitism and phoresy in the Diptera. Fla Entomol 82:179–197

    Google Scholar 

  • Six DL (2003) A comparison of mycangial and phoretic fungi of individual mountain pine beetles. Can J Forest Res 33:1331–1334

    Google Scholar 

  • Sláviková E, Kocková-Kratochvilová A (1980) The yeasts of the genus Debaryomyces transferred by insects on the lowlands of Záhorie. Ceská Mykologie 34:21–28

    Google Scholar 

  • Slaytor M (1992) Cellulose digestion in termites and cockroaches: do symbionts play a role? Comp Biochem Physiol 103B:775–784

    CAS  Google Scholar 

  • Slippers B, Wingfield BD, Coutinho A, Wingfield MJ (2002) DNA sequence and RFLP data reflect geographical spread and relationships of Amylostereum areolatum and its insect vectors. Mol Ecol 11:1845–1854

    Article  PubMed  CAS  Google Scholar 

  • Smith MT (1998a) Ambrosiozyma van der Walt. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 129–133

    Google Scholar 

  • Smith MT (1998b) Zygozyma van der Walt and von Arx. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 433–436

    Google Scholar 

  • Smith MT, de Hoog GS (1998) Stephanoascus M. Th. Smith, van der Walt and E. Johannsen. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 400–403

    Google Scholar 

  • Spatafora JW, Blackwell M (1994) The polyphyletic origins of ophiostomatoid fungi. Mycol Res 98:1–9

    Google Scholar 

  • Speksnijder AGCL, Kowalchuk GA, de Jong S, Kline E, Stephen JR, Laanbroek HJ (2001) Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences. Appl Environ Microbiol 67:469–472

    Article  PubMed  CAS  Google Scholar 

  • Spencer JFT, Gorin PAJ, Tulloch AP (1970) Torulopsis bombicola sp. n. Antonie van Leeuwenhoek 36:129–133

    PubMed  CAS  Google Scholar 

  • Starmer WT (1981a) An analysis of the fundamental and realized niche of cactophilic yeasts. In: Wicklow DT, Carroll GC (eds) The fungal community: its organization and role in the ecosystem. Dekker, New York, pp 129–156

    Google Scholar 

  • Starmer WT (1981b) A comparison of Drosophila habitats according to the physiological attributes of the associated yeast communities. Evolution 35:38–52

    CAS  Google Scholar 

  • Starmer WT (1982a) Analysis of the community structure of yeasts associated with the decaying stems of cactus. I. Stenocereus gummosus. Microbial Ecol 8:71–81

    Article  Google Scholar 

  • Starmer WT (1982b) Associations and interactions among yeasts, Drosophila, and their habitats. In: Barker JSF, Starmer WT (eds), Ecological genetics and evolution: the cactus-yeast-Drosophila model system. Academic, New York, pp 159–174

    Google Scholar 

  • Starmer WT, Aberdeen V (1990) The nutritional importance of pure and mixed cultures of yeasts in the development of Drosophila mulleri larvae in Opuntia tissues and its relationship to host plant shifts. In: Barker JSF, Starmer WT, MacIntyre RJ (eds) Ecological and evolutionary genetics of Drosophila. Plenum, New York, pp 145–160

    Google Scholar 

  • Starmer WT, Barker JSF, Phaff HJ, Fogleman JC (1986) Adaptations of Drosophila and yeasts: their interactions with the volatile 2-propanol in the cactus-microorganism-Drosophila model system. Aust J Biol Sci 39:67–77

    Google Scholar 

  • Starmer WT, Fogleman JC (1986) Coadaptation of Drosophila and yeasts in their natural habitat. J Chem Ecol 12:1035–1053

    Article  Google Scholar 

  • Starmer WT, Heed WB, Rockwood-Sluss ES (1977) Extension of longevity in Drosophila mojavensis by environmental ethanol: differences between subraces. Proc Natl Acad Sci USA 74:387–391

    PubMed  CAS  Google Scholar 

  • Starmer WT, Lachance MA, Phaff HJ, Heed WB (1990) The biogeography of yeasts associated with decaying cactus tissue in North America, the Caribbean, and Northern Venezuela. In: Hecht MK, Wallace B, MacIntyre RJ (eds) Evolutionary biology. Plenum, New York, pp 253–296

    Google Scholar 

  • Starmer WT, Peris F, Fontdevila A (1988) The transmission of yeasts by Drosophila buzzatii during courtship and mating. Anim Behav 36:1691–1695

    Google Scholar 

  • Starmer WT, Phaff HJ, Bowles JM, Lachance M-A (1987) Yeasts vectored by insects feeding on decaying saguaro cactus. Southwest Nat 33:362–363

    Google Scholar 

  • Starmer WT, Schmedicke RA, Lachance M-A (2003) The origin of the cactus-yeast community. FEMS Yeast Res 3:441–448

    PubMed  CAS  Google Scholar 

  • Steele RH (1986a) Courtship feeding in Drosophila subobscura. I. The nutritional significance of courtship feeding. Anim Behav 34:1087–1098

    Google Scholar 

  • Steele RH. 1986b. Courtship feeding in Drosophila subobscura. II. Courtship feeding by males influences female mate choice. Anim Behav 34:1099–1108

    Google Scholar 

  • Stennett MD, Etges WJ (1997) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. III. Epicuticular hydrocarbon variation is determined by use of different host plants in Drosophila mojavensis and Drosophila arizonae. J Chem Ecol 23:2803–2824

    CAS  Google Scholar 

  • Stevens GC (1986) Dissection of the species-area relationship among wood-boring Insects and their host plants. Am Nat 128:35–46

    Article  Google Scholar 

  • Stratford M, Bond CJ, James SA, Roberts IN, Steels H (2002) Candida davenportii sp. nov., a potential soft-drinks spoilage yeast isolated from a wasp. Int J Syst Evol Micro 52:1369–1375

    CAS  Google Scholar 

  • Suh S-O, Blackwell M (2004a) Three new beetle-associated yeast species in the Pichia guilliermondii clade. FEMS Yeast Res 5:87–95

    PubMed  CAS  Google Scholar 

  • Suh SO, Blackwell M (2004b) The beetle gut as a habitat for new species of yeast. In: Vega FE, Blackwell M (eds) Insect fungal associations: ecology and evolution. Oxford University Press, New York

    Google Scholar 

  • Suh SO, Blackwell M (2004c) Three new beetle-associated yeast species in the Pichia guilliermondii clade. FEMS Yeast Res 5:87–95

    PubMed  CAS  Google Scholar 

  • Suh S-O, Noda H, Blackwell M (2001) Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage. Mol Biol Evol 18:995–1000

    PubMed  CAS  Google Scholar 

  • Suh S-O, Marshall CJ, McHugh JV, Blackwell M (2003) Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol 12:3137–3145

    Article  PubMed  Google Scholar 

  • Suh S-O, Gibson CM, Blackwell M (2004a) Metschnikowia chrysoperlae sp. nov., Candida picachoensis sp. nov. and Candida pimensis sp. nov., isolated from the green lacewings Chrysoperla comanche and Chrysoperla carnea (Neuroptera: Chrysopidae). Int J Syst Evol Microbiol 54:1883–1890

    PubMed  CAS  Google Scholar 

  • Suh S-O, McHugh JV, Blackwell M (2004b) Expansion of the Candida tanzawaensis yeast clade: 16 new Candida species from basidiocarp-feeding beetles. Int J Syst Evol Microbiol Papers 54:2409–2429

    CAS  Google Scholar 

  • Sullivan BT, Berisford CW (2004) Semiochemicals from fungal associates of bark beetles may mediate host location behavior in parasitoids. J Chem Ecol 30:703–717

    Article  PubMed  CAS  Google Scholar 

  • Tanner MA, Goebel BM, Dojka MA, Pace NR (1998) Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants. Appl Environ Microbiol 64:3110–3113

    PubMed  CAS  Google Scholar 

  • Teixeira ACP, Marini MM, Nicoli JR, Antonini Y, Martins RP, Lachance M-A, Rosa CA (2003) Starmerella meliponinorum sp. nov., a novel ascomycetous yeast species associated with stingless bees. Int J Syst Evol Micro 53:339–343

    Google Scholar 

  • Thanh VN, van Dyk MS, Wingfield MJ (2002) Debaryomyces mycophilus sp. nov., a siderophore-dependent yeast isolated from woodlice. FEMS Yeast Res 2:415–427

    PubMed  CAS  Google Scholar 

  • Tholen A, Schink B, Brune A (1997) The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol Ecol 24:137–149

    CAS  Google Scholar 

  • Thompson SN (1999) Nutrition and culture of entomophagous insects. Annu Rev Entomol 44:561–492

    Article  PubMed  CAS  Google Scholar 

  • Thomsen IM, Koch J (1999) Somatic compatibility in Amylostereum areolatum and A. chailletii as a consequence of symbiosis with Siricid woodwasps. Mycol Res 103:817–823

    Article  Google Scholar 

  • Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H (2004) Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol Ecol 13:3219–3228

    Article  PubMed  CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    PubMed  CAS  Google Scholar 

  • Vacek DC, East PD, Barker JSF, Soliman MH (1985) Feeding and oviposition preferences of Drosophila buzzatii for microbial species isolated from its natural environment. Biol J Linn Soc 24:175–187

    Google Scholar 

  • Vahed K (1998) The function of nuptial feeding in insects: review of empirical studies. Biol Rev 73:43–78

    Article  Google Scholar 

  • Van Borm S, Billen J, Boomsma JJ (2002) The diversity of microorganisms associated with Acromyrmex leafcutter ants. BMC Evol Biol 2:1–11

    Google Scholar 

  • Van der Walt JP (1959) Pichia robertsii nov. spec. a new haploid homothallic yeast. Antonie van Leeuwenhoek 25:337–343

    PubMed  Google Scholar 

  • Van der Walt JP (1961) The mycetome symbiont of Lasioderma serricorne. Antonie van Leeuwenhoek 27:362–366

    PubMed  Google Scholar 

  • Van der Walt JP (1966) Pichia acaciae sp. n. Antonie van Leeuwenhoek 32:159–161

    PubMed  Google Scholar 

  • van der Walt JP (1972) The yeast genus Ambrosiozyma gen. nov. (Ascomycetes). Mycopathol Mycol Appl 46:305–316

    Article  Google Scholar 

  • Van der Walt JP (1982a) Hansenula erphorbiaphila sp. nov., a new, diploid heterothallic yeast species. Antonie van Leeuwenhoek 48:465–470

    PubMed  Google Scholar 

  • Van der Walt JP (1982b) Pichia meyerae, a new, sexually agglutinating, heterothallic diploid yeast species. Antonie van Leeuwenhoek 48:465–470

    PubMed  Google Scholar 

  • Van der Walt JP, Johannsen E, Nakase T (1973) Candida naeodendra, a new species of the Candida diddensii group. Antonie van Leeuwenhoek 39:491–495

    PubMed  Google Scholar 

  • Van der Walt JP, Nakase T (1973) Candida homilentoma, a new species from South African insect sources. Antonie van Leeuwenhoek 39:449–453

    PubMed  Google Scholar 

  • Van der Walt JP, Opperman A (1983) Pichia euphorbiae sp. nov., a new, haploid heterothallic yeast species. Antonie van Leeuwenhoek 49:51–59

    Article  PubMed  Google Scholar 

  • Van der Walt JP, Scott DB (1970) Bullera dendrophila sp. n. Antonie van Leeuwenhoek 36:383–387

    PubMed  Google Scholar 

  • Van der Walt JP, Scott DB (1971a) Pichia ambrosiae sp. n., a new auxiliary ambrosia fungus. Antonie van Leeuwenhoek 37:15020

    Google Scholar 

  • Van der Walt JP, Scott DB (1971b) Pichia xylopsoci, a new yeast from South African insect sources. Mycopathol Mycol Appl 44:321–324

    Google Scholar 

  • Vaughan-Martini A, Kurtzman CP, Meyer SA, and O’Neill EB (2005) Two new species in the Pichia guilliermondii clade: Pichia caribbica sp. nov., the ascosporic state of Candida fermentati, and Candida carpophila comb. nov. FEMS Yeast Res 5:463–469

    PubMed  CAS  Google Scholar 

  • Van der Walt JP, Scott DB (1971c) Saccharomycopsis synnaedendra, a new yeast from South African insect sources. Mycopathol Mycol Appl 44:101–106

    Google Scholar 

  • Van der Walt JP, Scott DB, van der Klift WC (1971a) Five new Torulopsis species from South African insect sources. Anton Leeuw Int J G 37:461–471

    Google Scholar 

  • Van der Walt JP, Scott DB, van der Klift WC (1971b) Four new, related Candida species from South African insect sources. Anton Leeuw Int J G 37:449–460

    Google Scholar 

  • Van der Walt JP, Scott DB, van der Klift WC (1972) Six new Candida speceis from South African insect sources. Mycopathol Mycol Appl 47:221–236

    Article  Google Scholar 

  • Van der Walt JP, Wingfield MJ, Yamada Y (1990) Zygozyma smithiae sp. n. (lipomycetaceae), a new ambrosia yeast from Southern Africa. Antonie van Leeuwenhoek 58:95–98

    Article  PubMed  Google Scholar 

  • Van der Walt JP, Yamada Y, Ferreira NP, Richards PDG (1987) New basidiomycetous yeasts from Southern Africa. II. Sterigmatomyces wingfieldii sp. n. Antonie van Leeuwenhoek 53:137–142

    PubMed  Google Scholar 

  • Van Herrewege J, David J (1978) Feeding an insect through its respiration: assimilation of alcohol vapors by Drosophila melanogaster adults. Specialia 34:163–164

    Google Scholar 

  • Varma A, Kolli BK, Paul J, Saxena S, Koenig H (1994) Lignocellulose degradation by microorganisms from termite hills and termite guts: a survey on the present state of the art. FEMS Microbiol Rev 15:9–28

    CAS  Google Scholar 

  • Vasiliauskas R, Stenlid J (1999) Vegetative compatibility groups of Amylostereum areolatum and A. chailletii from Sweden and Lithuania. Mycol Res 103:824–829

    Article  Google Scholar 

  • Vaughn-Martini A, Martini A (1998) Saccharomyces Meyen ex Reess. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 358–371

    Google Scholar 

  • Vega FE, Blackburn MB, Kurtzman CP, Dowd PF (2003) Identification of a coffee berry borer-associated yeast: does it break down caffeine? Entomol Exp Appl 107:19–24

    Article  Google Scholar 

  • Vishniac HS, Johnson TR (1990) Development of yeast flora in the adult green June beetle (Cotinis nitidia, Scarabaeidae). Mycologia 82:471–479

    Google Scholar 

  • Wetzel JM, Fujita OM, Nakanishi K, Naya Y, Noda H, Sugiura M (1992) Diversity in steriodogenesis of symbiotic microorganisms from planthoppers. J Chem Ecol 18:2083–2094

    Article  CAS  Google Scholar 

  • Wenzel M, Schoenig I, Berchtold M, Kaempfer P, Koenig H (2002) Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol 92:32–40

    Article  PubMed  CAS  Google Scholar 

  • Whitney HS, Harris SH (1970) Maxillary mycangium in the mountain pine beetle. Science 167:54–55

    PubMed  CAS  Google Scholar 

  • Wilkinson TL, Ishikawa H (2001) On the functional significance of symbiotic microorganisms in the Homoptera: a comparative study of Acyrthosiphon pisum and Nilaparvata lugens. Physiol Entomol 26:86–93

    Google Scholar 

  • Winterton SL (1999) Obligatory ontogenetic colour change correlated with sexual maturity in adult Chrysoperla congrua (Walker) (Neuroptera: Chrysopidae). Aust J Entomol 38:120–123

    Google Scholar 

  • Woolfolk SW, Inglis GD (2003) Microorganisms associated with field-collected Chrysoperla rufilabris (Neuroptera: Chrysopidae) adults with emphasis on yeast symbionts. Biol Control 29:155–168

    Google Scholar 

  • Zacchi L, Vaughn-Martini A (2002) Yeasts associated with insects in agricultural areas of Perugia, Italy. Ann Microbiol 52:237–244

    Google Scholar 

  • Zacchi L, Vaughn-Martini A (2003) Distribution of three yeast and yeast-like species within a population of soft scale insects (Saissetia oleae) as a function of developmental age. Ann Microbiol 53:43–46

    Google Scholar 

  • Zhang N, Suh S-O, Blackwell M (2003) Microorganisms in the gut of beetles: evidence from molecular cloning. J Invertebr Pathol 84:226–233

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ganter, P.F. (2006). Yeast and Invertebrate Associations. In: Péter, G., Rosa, C. (eds) Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30985-3_14

Download citation

Publish with us

Policies and ethics