Skip to main content

Advertisement

Log in

Determination of bioactive compounds and antioxidant activity of Orthosiphon thymiflorus (Roth) Sleesen stem extracts

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The present study reports the qualitative and quantitative phytochemical profiling of Orthosiphon thymiflorus stem extracts. The Soxhlet apparatus extracted dried stem samples with petroleum ether, chloroform, ethyl acetate, and methanol. Preliminary phytochemical screening revealed the presence of triterpenoids, steroids, reducing sugar, sugar, alkaloids, phenolic compounds, catechins, flavonoids, saponins, and tannins. The highest total phenolic content was 2.18 μg/ml in methanol extract, and the highest total flavonoid content was 1.47 μg/ml in chloroform extract of O. thymiflorus. The FTIR spectra revealed the presence of major functional groups such as phenols, alkanes, amines, alkenes, carboxylic acid & derivatives, arenes, aldehyde, and ketones. The GC–MS study of the stem of O. thymiflorus extracted using various solvents revealed the presence of several bioactive chemicals. Twenty-five compounds were identified in the petroleum ether extract, 18 compounds were identified in the chloroform extract, 28 compounds were found in the ethyl acetate extract, and 11 compounds were found in methanol extract. The crude extracts were further subjected to DPPH scavenging activity of O. thymiflorus, which showed promising results. The present study focusing on profiling of phytochemicals of O. thymiflorus will be useful in the synthesis and preparation of new drugs of pharmaceutical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Karousou R, Kokkini S (2003) The genus Origanum (Labiatae) in Crete: distribution and essential oils. Bocconea 16(2):717–721

    Google Scholar 

  2. Carović-StanKo K, PeteK M, Grdiša M, Pintar J, Bedeković DALIBOR, Satovic Z (2016) Medicinal plants of the family Lamiaceae as functional foods–a review. Czech Journal of food sciences 34(5):377–390

    Article  Google Scholar 

  3. Özkan M (2008) Glandular and eglandular hairs of Salvia recognita Fisch & Mey (Lamiaceae) in Turkey. Bangladesh Journal of Botany 37(1):93–95

    Article  Google Scholar 

  4. Keng CL, Siong LP (2006) Morphological similarities and differences between the two varieties of cat’s whiskers (Orthosiphon stamineus Benth) grown in Malaysia. International Journal of Botany 2(1):219–222

    Google Scholar 

  5. Sadashiva CT, Sharanappa P, Naidoo Y, Sulaimon CT, Balach I (2013) Chemical composition of essential oil from Orthosiphon diffuses Benth. Journal of Medicinal Plants Research 7(4):170–172

    Google Scholar 

  6. Sundarammal S, Thirugnanasampandan R, Selvi MT (2012) Chemical composition analysis and antioxidant activity evaluation of essential oil from Orthosiphon thymiflorus (Roth) Sleesen. Asian Pac J Trop Biomed 2(1):S112–S115

    Article  Google Scholar 

  7. Sini KR, Haribabu Y, Sajith MS, Surya SK (2012) In-vitro Cytotoxic activity of Orthosiphon thymiflorus (Roth) sleensen leaf extract against dalton lymphoma ascites cell line. J Chem Pharm Res 4(1):917–921

    Google Scholar 

  8. Warrier PK (1993). Indian medicinal plants: a compendium of 500 species (Vol. 5). Orient Blackswan

  9. Kavimani S, Ilango R, Thangadurai JG, Jaykar B, Majumdar UK, Gupta M (1997) Diuretic activity of aqueous extract of Orthosiphon thymiflorus in rats. Indian J Pharm Sci 59(2):96

    Google Scholar 

  10. Kavimani S, Ilango R, Gurubatham J, Jayakar B, Majumdar UK, Gupta M (1997) Acetylcholine antagonistic action of aqueous extract of Orthosiphon thymiflorus. Indian J Pharm Sci 59(5):271

    Google Scholar 

  11. Gutteridge JM, Halliwell B (1993) Invited review free radicals in disease processes: a compilation of cause and consequence. Free Radical Res Commun 19(3):141–158

    Article  Google Scholar 

  12. Halliwell B. (1995). How to characterize an antioxidant: an update. In Biochemical Society Symposium (Vol. 61, pp. 73–101).

  13. Squadrito GL, Pryor WA (1998) Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radical Biol Med 25(4–5):392–403

    Article  Google Scholar 

  14. Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD (2004) Free radicals and antioxidants in human health: current status and future prospects. Japi 52(794804):4

    Google Scholar 

  15. Buyukokuroglu ME, Gulcin I, Oktay M, Kufrevioglu OI (2001) In vitro antioxidant properties of dantrolene sodium. Pharmacol Res 44:491–595

    Article  Google Scholar 

  16. Gülçin İ, Oktay M, Küfrevioğlu Öİ, Aslan A (2002) Determination of antioxidant activity of lichen Cetraria islandica (L) Ach. J Ethnopharmacol 79(3):325–329

    Article  Google Scholar 

  17. Ito N, Fukushima S, Haqlwara A, Shibata M, Ogiso T (1983) Carcinogenicity of butylated hydroxyanisole in F344 rats. J Natl Cancer Inst 70(2):343–352

    Google Scholar 

  18. Rice-Evans CA, Sampson J, Bramley PM, Holloway DE (1997) Why do we expect carotenoids to be antioxidants in vivo? Free Radical Res 26(4):381–398

    Article  Google Scholar 

  19. Tiwari AK (2001). Imbalance in antioxidant defence and human diseases: multiple approach of natural antioxidants therapy. Current science, 1179–1187

  20. Arulkumar A, Rosemary T, Paramasivam S, Rajendran RB (2018) Phytochemical composition, in vitro antioxidant, antibacterial potential and GC-MS analysis of red seaweeds (Gracilaria corticata and Gracilaria edulis) from Palk Bay. India Biocatal Agric Biotechnol 15:63–71

    Article  Google Scholar 

  21. Brinda P, Sasikala P, Purushothaman KK (1981) Pharmacognostic studies on Merugan kizhangu. Bull Med Eth Bot Res 3(1):84–96

    Google Scholar 

  22. Al-Suede FSR, Khadeer Ahamed MB, Abdul Majid AS, Baharetha HM, Hassan LE, Kadir MOA, ... & Abdul Majid A. (2014). Optimization of cat’s whiskers tea (Orthosiphon stamineus) using supercritical carbon dioxide and selective chemotherapeutic potential against prostate cancer cells. Evidence-Based Complementary and Alternative Medicine, 2014.

  23. Hassan LEA, Ahamed MBK, Majid ASA, Baharetha HM, Muslim NS, Nassar ZD, Abdul MS (2014) Correlation of antiangiogenic, antioxidant and cytotoxic activities of some Sudanese medicinal plants with phenolic and flavonoid contents. BMC Complement Altern Med 14(1):1–14

    Article  Google Scholar 

  24. Shirwaikar A, Prabhu KS, Punitha ISR (2006) In vitro antioxidant studies of Sphaeranthus indicus (Linn). NISCPR 44(12):993–996

    Google Scholar 

  25. Uma maheswari S, Murali M (2013) FTIR spectroscopic study of fungal degradation of poly (ethylene terephthalate) and polystyrene foam. Chem Eng 64:19159–19164

    Google Scholar 

  26. Adzet T, Camarasa J, Laguna JC (1987) Hepatoprotective activity of polyphenolic compounds from Cynara scolymus against CCl4 toxicity in isolated rat hepatocytes. J Nat Prod 50(4):612–617

    Article  Google Scholar 

  27. Lu Y, Foo LY (2002) Polyphenolics of Salvia — a review. Phytochemistry 59(2):117–140

    Article  Google Scholar 

  28. Ulubelen A, Tuzlaci E (1990) Flavonoids and triterpenoids from Salvia euphratica and S longipedicellata. Fitoterapia 61(2):185

    Google Scholar 

  29. Devi SEEMA, Thoppil JE (2016) Cytotoxic studies and phytochemical analysis of Orthosiphon thymiflorus (Roth) Sleesen. Int J Pharm Pharm Sci 8(2):249–255

    Google Scholar 

  30. Pinto SC, Leitão GG, Castellar A, D’Elia DS, Lage CL, Henriques AB, Leitão SG (2013) Chemical composition of the volatile fractions from wild and in vitro plants of Anemia tomentosa var anthriscifolia (Pteridophyta). Journal of Essential Oil Research 25(3):198–202

    Article  Google Scholar 

  31. Crumplin GC, Smith JT (1975) Nalidixic acid: an antibacterial paradox. Antimicrob Agents Chemother 8(3):251–261

    Article  Google Scholar 

  32. Saeb K, Gholamrezaee S (2012) Variation of essential oil composition of Melissa officinalis L leaves during different stages of plant growth. Asian Pacific Journal of Tropical Biomedicine 2(2):S547–S549

    Article  Google Scholar 

  33. Burčová Z, Kreps F, Greifová M, Jablonský M, Ház A, Schmidt Š, Šurina I (2018) Antibacterial and antifungal activity of phytosterols and methyl dehydroabietate of Norway spruce bark extracts. J Biotechnol 282:18–24

    Article  Google Scholar 

  34. Díaz-Ruiz G, Hernández-Vázquez L, Luna H, Wacher-Rodarte MDC, Navarro-Ocaña A (2012) Growth inhibition of Streptococcus from the oral cavity by α-amyrin esters. Molecules 17(11):12603–12611

    Article  Google Scholar 

  35. Devi S, Srinivas P, Thoppil JE (2021) Evaluation of genoprotection against malathion induced toxicity by Orthosiphon thymiflorus Sleesen. J Ayurveda Integr Med 12(2):320–329

    Article  Google Scholar 

  36. Uraku AJ (2015) Leaves by gas chromatography-mass spectrometry (GC-MS) method. Res J Phytochem 9(4):175–187

    Article  Google Scholar 

  37. Uddin SJ, Grice D, Tiralongo E (2012) Evaluation of cytotoxic activity of patriscabratine, tetracosane and various flavonoids isolated from the Bangladeshi medicinal plant Acrostichum aureum. Pharm Biol 50(10):1276–1280

    Article  Google Scholar 

  38. Thirunavukkarasu K, Rajkumar P, Selvaraj S, Kumaresan S (2016) GC-MS analysis of Gymnema sylvestre leaves methanolic extract for antidiabetic and anticancer drug identification. J Chem Pharm Sci 9(2):1011–1013

    Google Scholar 

  39. Shunmugapriya K, Vennila P, Thirukkumar S, Ilamaran M (2017) Identification of bioactive components in Moringa oleifera fruit by GC-MS. J Pharmacogn Phytochem 6(3):748–751

    Google Scholar 

  40. Kawuri R, Darmayasa IBG (2019). Bioactive compound of Streptomyces capoamus as biocontrol of bacterial wilt disease on banana plant. In IOP Conference Series: Earth and Environmental Science (Vol. 347, No. 1, p. 012054). IOP Publishing.

  41. Moustafa MF, Alamri SA, Taha TH, Alrumman SA (2013). In vitro antifungal activity of Argemone ochroleuca sweet latex against some pathogenic fungi. African Journal of Biotechnology, 12(10).

  42. Abubacker MN, Devi PK (2014) In vitro antifungal potentials of bioactive compound oleic acid, 3-(octadecyloxy) propyl ester isolated from Lepidagathis cristata Willd. (Acanthaceae) inflorescence. Asian Pac J Trop Med 7:S190–S193

    Article  Google Scholar 

  43. Adnyana IK, Setiawan F, Insanu M (2013) From ethnopharmacology to clinical study of Orthosiphon stamineus Benth. Int J Pharm Pharm Sci 5(3):66–73

    Google Scholar 

  44. Soni V, Raizada P, Singh P, Cuong HN, Rangabhashiyam S, Saini A, Saini RV, Van Le Q, Nadda AK, Le TT, Nguyen VH (2021) Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: a review. Environ Res 202:111622. https://doi.org/10.1016/j.envres.2021.111622

    Article  Google Scholar 

  45. Truong DH, Nguyen DH, Ta NT, Bui AV, Do TH, Nguyen HC (2019) Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J Food Qual. https://doi.org/10.1155/2019/8178294

    Article  Google Scholar 

  46. Jahromi SG (2019) Extraction techniques of phenolic compounds from plants. Plant physiological aspects of phenolic compounds 1–8.

  47. Munteanu IG, Apetrei C (2021) Analytical methods used in determining antioxidant activity: a review. Int. J. Mol. Sci 22(7):3380. https://www.mdpi.com/1422–0067/22/7/3380#

  48. Lee YS, Kang MH, Cho SY, Jeong CS (2007) Effects of constituents of Amomum xanthioides on gastritis in rats and on growth of gastric cancer cells. Arch Pharmacal Res 30(4):436–443

    Article  Google Scholar 

  49. Lee DS (2000) Dibutyl phthalate, an α-glucosidase inhibitor from Streptomyces melanosporofaciens. J Biosci Bioeng 89(3):271–273

    Article  Google Scholar 

  50. El-Naggar MYM (1997). Dibutyl phthalate and the antitumour agent F5A1, two metabolites produced by Streptomyces nasri submutant H35. Biomedical Letters, 125–131.

  51. Asong JA, Amoo SO, McGaw LJ, Nkadimeng SM, Aremu AO, Otang-Mbeng W (2019) Antimicrobial activity, antioxidant potential, cytotoxicity and phytochemical profiling of four plants locally used against skin diseases. Plants 8(9):350

    Article  Google Scholar 

  52. Gade S, Rajamanikyam,M, Vadlapudi V, Nukala KM, Aluvala R, Giddigari C, ... & Upadhyayula SM (2017). Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochimica et Biophysica Acta (BBA)-General Subjects, 1861(3), 541–550.

  53. Yu FR, Lian XZ, Guo HY, McGuire PM, Li RD, Wang R, Yu FH (2005) Isolation and characterization of methyl esters and derivatives from Euphorbia kansui (Euphorbiaceae) and their inhibitory effects on the human SGC-7901 cells. J Pharm Pharm Sci 8(3):528–535

    Google Scholar 

  54. Geethalakshmi R, Sarada DVL (2013) Evaluation of antimicrobial and antioxidant activity of essential oil of Trianthema decandra L. J Pharm Res 6(1):101–106

    Google Scholar 

  55. Mokbel AA, Obad IM, Ibrahim IKA (2009) The role of antagonistic metabolites in controlling root-knot nematode, Meloidogyne arenaria on tomato. Alex J Agric Res 54(1):199–205

    Google Scholar 

  56. Kwak AM, Lee IK, Lee SY, Yun BS, Kang HW (2016) Oxalic acid from Lentinula edodes culture filtrate: antimicrobial activity on phytopathogenic bacteria and qualitative and quantitative analyses. Mycobiology 44(4):338–342

    Article  Google Scholar 

  57. Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71(5):553–555

    Article  Google Scholar 

  58. Barretto D, Vootla S (2018) Gc-Ms analysis of bioactive compounds and antimicrobial activity of Cryptococcus rajasthanensis Ky627764 Isolated From Bombyx mori gut microflora. Int J Adv Res 6(3):525–538

    Article  Google Scholar 

  59. Choi SJ., Kim JK, Kim HK, Harris K, Kim CJ, Park GG, ... & Shin DH (2013). 2, 4-Di-tert-butylphenol from sweet potato protects against oxidative stress in PC12 cells and in mice. Journal of medicinal food, 16(11), 977-983

  60. Aissaoui N, Mahjoubi M, Nas F, Mghirbi O, Arab M, Souissi Y, ... & Klouche-Khelil N (2019). Antibacterial potential of 2, 4-di-tert-butylphenol and calixarene-based prodrugs from thermophilic Bacillus licheniformis isolated in Algerian hot spring. Geomicrobiology Journal, 36(1), 53-62

  61. LATA, K. (2015). Gas chromatography-mass spectrometry analysis of bioactive constituents from the marine Streptomyces. Asian Journal of Pharmaceutical and Clinical Research, 244–246.

  62. Roy RN, Laskar S, Sen SK (2006) Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 3212. Microbiol Res 161(2):121–126

    Article  Google Scholar 

  63. Qian PY, Dobretsov S, Dahms HU, Pawlik J (2006) Antifouling activity and microbial diversity of two congeneric sponges Callyspongia spp. from Hong Kong and the Bahamas. Mar Ecol Prog Ser 324:151–165

    Article  Google Scholar 

  64. Kadri A, Zarai Z, Békir A, Gharsallah N, Damak M, Gdoura R (2011) Chemical composition and antioxidant activity of Marrubium vulgare L essential oil from Tunisia. African journal of biotechnology 10(19):3908–3914

    Google Scholar 

  65. Zarai Z, Kadri A, Ben Chobba I, Ben Mansour R, Bekir A, Mejdoub H, Gharsallah N (2011) The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L essential oil grown in Tunisia. Lipids Health Dis 10(1):1–8

    Article  Google Scholar 

  66. Arulkumar A, Paramasivam S, Miranda JM (2018) Combined effect of icing medium and red alga Gracilaria verrucosa on shelf life extension of Indian Mackerel (Rastrelliger kanagurta). Food Bioprocess Technol 11(10):1911–1922

    Article  Google Scholar 

  67. Balachandar R, Navaneethan R, Biruntha M, Kumar KKA, Govarthanan M, Karmegam N (2022) Antibacterial activity of silver nanoparticles phytosynthesized from Glochidion candolleanum leaves. Mater Lett 311:131572

    Article  Google Scholar 

  68. Huang CB, Ebersole JL (2010) A novel bioactivity of omega-3 polyunsaturated fatty acids and their ester derivatives. Mol Oral Microbiol 25(1):75–80

    Article  Google Scholar 

  69. Bashir A, Ibrar K, Shumaila B, Sadiq A (2012) Chemical composition and antifungal, phytotoxic, brine shrimp cytotoxicity, insecticidal and antibacterial activities of the essential oils of Acacia modesta. J Med Plants Res 6(31):4653–4659

    Google Scholar 

  70. Vinay K (2011) Antibacterial activity of crude extracts of Spirulina platensis and its structural elucidation of bioactive compound. J Med Plants Res 5(32):7043–7048

    Google Scholar 

  71. Zamakshshari NH, Ahmed IA, Didik NAM, Nasharuddin MNA, Hashim NM, Abdullah R. (2022). Chemical profile and antimicrobial activity of essential oil and methanol extract from peels of four Durio zibethinus L. varieties. Biomass Conversion and Biorefinery, 1–9

  72. Seo SM, Kim J, Kim E, Park HM, Kim YJ, Park IK (2010) Structure− activity relationship of aliphatic compounds for nematicidal activity against pine wood nematode (Bursaphelenchus xylophilus). J Agric Food Chem 58(3):1823–1827

    Article  Google Scholar 

  73. Tapfuma KI, Nchabeleng EK, Adebo OA, Hussan R, Williams RD, Ravuluvulu AB, ... & Mavumengwana V (2020) Antibacterial activity and gas chromatography mass spectrometry (GC–MS)-based metabolite profiles of Celtis africana and its endophytic extracts. Industrial Crops and Products, 157, 112933

  74. Song MX, Deng XQ, Wei ZY, Zheng CJ, Wu Y, An CS, Piao HR (2015) Synthesis and antibacterial evaluation of (S, Z)-4-methyl-2-(4-oxo-5-((5-substituted phenylfuran-2-yl) methylene)-2-thioxothiazolidin-3-yl) pentanoic acids. Iranian J Pharm Res: IJPR 14(1):89

    Google Scholar 

  75. Donia M, Hamann MT (2003) Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis 3(6):338–348

    Article  Google Scholar 

  76. Kumari N, Pandey S, Menghani E (2021). Evaluation of actinomycetes isolated antimicrobial metabolites as potent inhibitor of multidrug resistant organisms

  77. Tyagi S, Singh RK, Tiwari SP (2021) Anti-enterococcal and anti-oxidative potential of a thermophilic cyanobacterium, Leptolyngbya sp HNBGU 003. Saudi J Biol Sci 28(7):4022–4028

    Article  Google Scholar 

  78. Vinuchakkaravarthy T, Kumaravel KP, Ravichandran S, Velmurugan D (2011) Active compound from the leaves of Vitex negundo L shows anti-inflammatory activity with evidence of inhibition for secretory phospholipase A2 through molecular docking. Bioinformation 7(4):199

    Article  Google Scholar 

  79. Sokmen BB, Onar CH, Yusufoglu A, Yanardag R (2012) Antielastase, antiurease and antioxidant activities of some 3, 13-monohydroxy eicosanoic acid isomers. J Serb Chem Soc 77(10):1353–1361

    Article  Google Scholar 

  80. Mahdavi S, Hesami B, Sharafi Y (2018) Antimicrobial and antioxidant activities of Iranian sumac (Rhus coriaria L) fruit ethanolic extract. J Appl Microbiol Biochem 2(2):1–5

    Article  Google Scholar 

  81. Patil SD, Vinayak K, Anwar S (2015) Docking studies and synthesis of novel flavones screened for biological activities like anticancer and antioxidant activity. Asian J Res Chem 8(6):399

    Article  Google Scholar 

  82. Kusumah D, Wakui M, Murakami M, Xie X, Yukihito K, Maeda I (2020) Linoleic acid, α-linolenic acid, and monolinolenins as antibacterial substances in the heat-processed soybean fermented with Rhizopus oligosporus. Biosci Biotechnol Biochem 84(6):1285–1290

    Article  Google Scholar 

  83. Rajagopal G, Periyasamy M, Rameshbabu B (2014) Antimicrobial potential and bioactive constituents from aerial parts of Vitis setosa Wall. J Med Plants Res 8(11):454–460

    Article  Google Scholar 

  84. Akin-Osanaiye CB, Gabriel AF, Alebiosu RA (2011) Characterization and antimicrobial screening of ethyl oleate isolated from Phyllanthus amarus (Schum and Thonn). Ann Biol Res 2(2):298–305

    Google Scholar 

  85. Ashid M, Yogi P, Katariya D, Agarwal P, Joshi A. (2016). Pyrimidine: Medicinal and Biological Significance A

  86. Shankari C., Sharmila D, Prabhu K., Rithwik A., Rao MRK, Parijatham S, ... & Sundaram RL (2020). The gas chromatography–mass spectrometry study of one ayurvedic formulation, Devadarvyarishtam. Drug Invention Today, 13(5)

  87. Skanda S, Vijayakumar BS (2021) Antioxidant and anti-inflammatory metabolites of a soil-derived fungus Aspergillus arcoverdensis SSSIHL-01. Curr Microbiol 8(4):1317–1323. https://doi.org/10.1007/s00284-021-02401-3

    Article  Google Scholar 

  88. Balachandar R, Karmegam N, Saravanan M, Subbaiya R, Gurumoorthy P (2018) Synthesis of bioactive compounds from vermicast isolated actinomycetes species and its antimicrobial activity against human pathogenic bacteria. Microbpathog 121:155–165. https://doi.org/10.1016/j.micpath.2018.05.027

    Article  Google Scholar 

  89. Rushing B, Wooten A, Shawky M, Selim MI (2016) Comparison of LC–MS and GC–MS for the analysis of pharmaceuticals and personal care products in surface water and treated wastewaters. Current Trends in Mass Spectrometry 14(3):8–14

    Google Scholar 

  90. Babu RJ, Chatterjee A, Singh M (2004) Assessment of skin irritation and molecular responses in rat skin exposed to nonane, dodecane and tetradecane. Toxicol Lett 153(2):255–266. https://doi.org/10.1016/j.toxlet.2004.04.036

    Article  Google Scholar 

Download references

Funding

This study is financially supported by the Innovation in Science Pursuit for Inspired Research (INSPIRE), DST (Grant no. DST/INSPIRE/2021/200318), and RUSA 2.0, BDU.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to manuscript. Dr. ALP supervised the research, experimental design, and manuscript validation. RR designed and executed the work and prepared the manuscript. Dr. RR and ST helped in plant collection and identification and reviewed the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Azhagiyamanavalan Lakshmi Prabha.

Ethics declarations

Ethics approval and consent to participate

Neither ethical approval nor informed consent was required for this study.

Consent for publication

All authors gave consent for publication in this scientific journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhika, R., Rajendran, R., Thavamurugan, S. et al. Determination of bioactive compounds and antioxidant activity of Orthosiphon thymiflorus (Roth) Sleesen stem extracts. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03503-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03503-z

Keywords

Navigation