Skip to main content
Log in

Anthracnose leaf spot pathogens, Colletotrichum fructicola and Colletotrichum cigarro, associated with Eucalyptus seed produced in South Africa

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

The cost of Eucalyptus seed and adoption of strict phytosanitary regulations in seed trade makes it imperative to monitor the quality and ensure supply of pathogen-free seeds for both forestry regeneration and research. Based on seed health tests, two species in the Colletotrichum gloeosporioides species complex were found to be naturally associated with seeds of Eucalyptus dunnii, E. nitens and E. macarthurii produced in South Africa. Multiloci phylogenetic analyses based on the concatenated sequences of the ITS regions, β-tubulin, actin, glutamine synthetase and glyceraldehyde-3-phosphate dehydrogenase genes, identified representative isolates PPRI 24,314 as C. fructicola and PPRI 24,315 as C. kahawae subsp. cigarro (C. cigarro). Subsequent biochemical tests showed that isolate PPRI 24,315 was able to utilise either ammonium tartrate or citric acid as a sole carbon source, confirming its identity as C. cigarro. Pathogenicity tests showed that both C. fructicola and C. cigarro caused anthracnose leaf spots on E. camaldulensis, E. dunnii, E. nitens and E. viminalis seedlings. Disease symptoms included irregular dark-brown leaf spots on seedlings six days after inoculation. The two fungi were exclusively re-isolated from disease spots, thereby fulfilling Koch’s postulates. Sowing Eucalyptus spp. seed artificially inoculated with either of the two pathogens showed the seed-transmissibility of C. fructicola and C. cigarro in E. camaldulensis, E. dunnii and E. nitens seedlings. To our knowledge, this is the first report of C. fructicola and C. cigarro associated with Eucalyptus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afanador-Kafuri L, González A, Gañán L, Mejía JF, Cardona N, Alvarez E (2014) Characterization of the Colletotrichum species causing anthracnose in Andean blackberry in Colombia. Plant Dis 98:1503–1513

    Article  CAS  PubMed  Google Scholar 

  • Awa OC, Samuel O, Oworu OO, Sosanya O (2012) First report of fruit anthracnose in mango caused by Colletotrichum gloeosporioides in South-western Nigeria. IJSTR 1:30–34

    Google Scholar 

  • Batista D, Silva DN, Vieira A, Cabral A, Pires AS, Loureiro A, Guerra-Guimarães L, Pereira AP, Azinheira H, Talhinhas P, Silva MDC (2017) Legitimacy and implications of reducing Colletotrichum kahawae to subspecies in plant pathology. Front Plant Sci 7:2051

    Article  PubMed  PubMed Central  Google Scholar 

  • Benyahia H, Ifi A, Smaili C, Afellah M, Lamsetef Y, Timmer LW (2003) First report of Colletotrichum gloeosporioides causing withertip on twigs and tear stain on fruit of citrus in Morocco. Plant Path 52:798–798

    Article  Google Scholar 

  • Bragança CAD, Silva LL, Haddad F, Oliveira SAS (2016) First report of Colletotrichum fructicola causing anthracnose in cassava (Manihot esculenta Crantz) in Brazil. Plant Dis 100:857

    Article  Google Scholar 

  • Brown BN, Ferreira FA (2000) Disease during propagation of eucalypts. CSIRO publishing, Australia, p 121

    Google Scholar 

  • Cabral A, Azinheira HG, Talhinhas P, Batista D, Ramos AP, Silva MD, Oliveira H, Várzea V (2020) Pathological, morphological, cytogenomic, biochemical and molecular data support the distinction between Colletotrichum cigarro comb. et stat. nov. and Colletotrichum kahawae. Plants 9:502.

  • Cai L, Hyde KD, Taylor PWJ, Weir B, Waller J, Abang MM, Zhang ZJ, Yang YL, Phoulivong S, Liu ZY (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers 39:183–204

    Google Scholar 

  • Cannon PF, Damm U, Johnston PR, Weir BS (2012) Colletotrichum: Current status and future directions. Stud Mycol 73:181–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

    Article  CAS  Google Scholar 

  • Chen Y, Qiao W, Zeng L, Shen D, Liu Z, Wang X, Tong H (2017) Characterization, pathogenicity, and phylogenetic analyses of Colletotrichum species associated with brown blight disease on Camellia sinensis in China. Plant Dis 101:1022–1028

    Article  CAS  PubMed  Google Scholar 

  • Damm U, Woudenberg JHC, Cannon PF, Crous PW (2009) Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers 39:45

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: More models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Silva DD, Ades PK, Crous PW, Taylor PWJ (2017a) Colletotrichum species associated with chili anthracnose in Australia. Plant Path 66:254–267

    Article  CAS  Google Scholar 

  • De Silva DD, Crous PW, Ades PK, Hyde KD, Taylor PW (2017b) Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biol Rev 31:155–168

    Article  Google Scholar 

  • Diao YZ, Zhang C, Liu F, Wang WZ, Cai L, Liu XL (2017) Colletotrichum species causing anthracnose disease of chili in China. Persoonia 38:20–37

    Article  PubMed  Google Scholar 

  • Gan P, Nakata N, Suzuki T, Shirasu K (2017) Markers to differentiate species of anthracnose fungi identify Colletotrichum fructicola as the predominant virulent species in strawberry plants in Chiba prefecture of Japan. J Gen Plant Path 83:14–22

    Article  CAS  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarnaccia V, Groenewald JZ, Polizzi G, Crous PW (2017) High species diversity in Colletotrichum associated with citrus diseases in Europe. Persoonia 39:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerber JC, Liu B, Correll JC, Johnston PR (2003) Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility. Mycologia 95:872–895

    Article  CAS  PubMed  Google Scholar 

  • Guindon M, Gascuel O (2003) A simple and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hassan O, Jeon JY, Chang T, Shin JS, Oh NK, Lee YS (2018) Molecular and morphological characterization of Colletotrichum species in the Colletotrichum gloeosporioides complex associated with persimmon anthracnose in South Korea. Plant Dis 102:1015–1024

    Article  CAS  PubMed  Google Scholar 

  • Hyde KD, Cai L, McKenzie EHC, Yang YL, Zhang JZ, Prihastuti H (2009) Colletotrichum: A catalogue of confusion. Fungal Divers 39:1

    Google Scholar 

  • Ismail AM, Cirvilleri G, Yaseen T, Epifani F, Perrone G, Polizzi G (2015) Characterisation of Colletotrichum species causing anthracnose disease of mango in Italy. J Plant Path 97:167–171

    Google Scholar 

  • Jimu L, Kemler M, Wingfield MJ, Mwenje E, Roux J (2015) The Eucalyptus stem canker pathogen Teratosphaeria zuluensis detected in seed samples. Forestry 89:316–324

    Article  Google Scholar 

  • Li PL, Liu D, Gong GS, Chen SR, Yang XX (2016) First Report of Colletotrichum fructicola causing anthracnose on Aucuba japonica in Sichuan Province of China. Plant Dis 100:1019

    Article  Google Scholar 

  • Liu F, Damm U, Cai L, Crous PW (2013) Species of the Colletotrichum gloeosporioides complex associated with anthracnose diseases of Proteaceae. Fungal Diversity 61:89–105

    Article  Google Scholar 

  • Lubbe CM, Denman S, Cannon PF, Groenewald JZ, Lamprecht SC, Crous PW (2004) Characterisation of Colletotrichum species associated with Proteaceae. Mycologia 96:1268–1279

    Article  PubMed  Google Scholar 

  • Lynch JM, Slater JH, Bennett JA, Harper SHT (1981) Cellulose activities of some aerobic micro-organisms isolated from soil. J Gen Microbiol 127:231–236

    CAS  Google Scholar 

  • Manamgoda DS, Udayanga D, Cai L, Chukeatirote E, Hyde KD (2013) Endophytic Colletotrichum from tropical grasses with a new species C. endophytica. Fungal Diversity 61:107–115

    Article  Google Scholar 

  • Martínez-Culebras PV, Barrio E, García MD, Querol A (2000) Identification of Colletotrichum species responsible for anthracnose of strawberry based on the internal transcribed spacers of the ribosomal region. FEM Microbiol Lett 189:97–101

    Article  Google Scholar 

  • Moreira RR, Peres NA, May De Mio LL (2019) Colletotrichum acutatum and C. gloeosporioides species complexes associated with apple in Brazil. Plant Dis 103:268–275

    Article  CAS  PubMed  Google Scholar 

  • Mosca S, Nicosia MGLD, Cacciola SO, Schena L (2014) Molecular analysis of Colletotrichum species in the carposphere and phyllosphere of olive. PLoS ONE 9:12

    Google Scholar 

  • Nodet P, Chalopin M, Crété X, Baroncelli R, Le Floch G (2019) First Report of Colletotrichum fructicola causing apple bitter rot in Europe. Plant Dis 103:102–105

    Article  Google Scholar 

  • O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate EA, Epstein L, Alkan N, Altmüller J (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genet 44:1060

    Article  CAS  PubMed  Google Scholar 

  • O'Donnell K and Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evo l7:103–116.

  • Peres NA, MacKenzie SJ, Peever TL, Timmer LW (2008) Post-bloom fruit drop of citrus and key lime anthracnose are caused by distinct phylogenetic lineages of Colletotrichum acutatum. Phytopathology 98:345–352

    Article  CAS  PubMed  Google Scholar 

  • Perrone G, Magistà D and Ismail AM (2016) First report of Colletotrichum kahawae subsp. cigarro on Mandarin in Italy. J Plant Path 98:3.

  • Phoulivong S, Cai L, Chen H, McKenzie EH, Abdelsalam K, Chukeatirote E, Hyde KD (2010) Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Diversity 44:33–43

    Article  Google Scholar 

  • Prihastuti H, Cai L, Chen H, McKenzie EHC, Hyde KD (2009) Characterization of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Diversity 39:89–109

    Google Scholar 

  • Ranathunge NP, Mongkolporn O, Ford R, Taylor PWJ (2012) Colletotrichum truncatum Pathosystem on Capsicum spp.: Infection, colonization and defence mechanisms. Aust Plant Path 41:463–473

    Article  Google Scholar 

  • Rodrigues AL, Pinho DB, Lisboa DO, Nascimento RJ, Pereira OL, Alfenas AC, Furtado GQ (2014) Colletotrichum theobromicola causes defoliation, stem girdling and death of mini-cuttings of Eucalyptus in Brazil. Trop Plant Path 39:326–330

    Article  Google Scholar 

  • Rojas EI, Rehner SA, Samuels GJ, Van Bael SA, Herre EA, Cannon P, Chen R, Pang J, Wang R, Zhang Y, Peng YQ (2010) Colletotrichum gloeosporioides sl associated with Theobroma cacao and other plants in Panama: Multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia 102:1318–1338

    Article  PubMed  Google Scholar 

  • Rojas P, Pardo-De la Hoz CJ, Calderón C, Vargas N, Cabrera LA, Restrepo S and Jiménez P (2018) First Report of Colletotrichum kahawae subsp. cigarro causing anthracnose disease on tree tomato in Cundinamarca, Colombia. Plant Dis 102:2031.

  • Sharma G, Shenoy BD (2014) Colletotrichum fructicola and C. siamense are involved in chilli anthracnose in India. Phytopathol Plant Prot 47:1179–1194

    Article  Google Scholar 

  • Sharma JK, Mohanan C, Maria Florence EJ (1984) Nursery diseases of Eucalyptus in Kerala. Eur J Forest Path 14:77–89

    Article  Google Scholar 

  • Shi NN, Du YX, Chen FR, Ruan HC, Yang XJ (2017) First report of leaf spot caused by Colletotrichum fructicola on Japanese Fatsia (Fatsia japonica) in Fujian province in China. Plant Dis 101:1552–1552

    Article  Google Scholar 

  • Shi NN, Du YX, Ruan HC, Yang XJ, Dai YL, Gan L, Chen FR (2018) First report of Colletotrichum fructicola causing anthracnose on Camellia sinensis in Guangdong province. China Plant Dis 102:241

    Article  Google Scholar 

  • Shivanna MB (2005) Fungal diseases in forest nurseries in Shimoga district, Karnataka, India. In: Diseases and insects in forest nurseries. Proceedings of the 5th Meeting of IUFRO Working Party 7:6–8.

  • Silva DN, Talhinhas P, Várzea V, Cai L, Paulo OS and Batista D (2012) Application of the Apn2/MAT locus to improve the systematics of the Colletotrichum gloeosporioides complex: An example from coffee (Coffea spp.) hosts. Mycologia 104, 396-409.

  • Smith H, Wingfield MJ, Coutinho TA (1998) Eucalyptus die-back in South Africa associated with Colletotrichum gloeosporioides. Safr J Botany 64:226–227

    Google Scholar 

  • Stephenson SA, Green JR, Manners JM, Maclean DJ (1997) Cloning and characterisation of glutamine synthetase from Colletotrichum gloeosporioides and demonstration of elevated expression during pathogenesis on Stylosanthes guianensis. Curr Genet 31:447–454

    Article  CAS  PubMed  Google Scholar 

  • Sutton BC (1992) Colletotrichum: Biology, Pathology and Control. CAB International, Wallingford, U.K.

  • Templeton MD, Rikkerink EH, Solon SL, Crowhurst RN (1992) Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata. Gene 122:225–230

    Article  CAS  PubMed  Google Scholar 

  • Than PP, Jeewon R, Hyde KD, Pongsupasamit S, Mongkolporn O, Taylor PWJ (2008) Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand. Plant Path 57:562–572

    Article  Google Scholar 

  • Viljoen A, Wingfield MJ, Crous PW (1992) Fungal pathogens in Pinus and Eucalyptus seedling nurseries in South Africa: A review. Safr Forestry J161:45–51

    Google Scholar 

  • Waller JM, Bridge PD, Black R, Hakiza G (1993) Characterisation of the coffee berry disease pathogen. Colletotrichum Kahawae Sp Nov Mycol Res 97:989–994

    Article  Google Scholar 

  • Weir BS, Johnston PR, Damm U (2012) The Colletotrichum Gloeosporioides Species Complex Studmycol 73:115–180

    CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis AM, Gelfand DH, Snisky JJ, White JW (eds) PCR protocols: A guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

Download references

Acknowledgements

This work was supported and funded by the South African Forestry Company Limited (SAFCOL) and the University of Pretoria’s Postgraduate Research Support Bursary. Thanks are also due to forestry seed companies for supplying Eucalyptus seed for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Mangwende.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangwende, E., Truter, M., Aveling, T.A.S. et al. Anthracnose leaf spot pathogens, Colletotrichum fructicola and Colletotrichum cigarro, associated with Eucalyptus seed produced in South Africa. Australasian Plant Pathol. 50, 533–543 (2021). https://doi.org/10.1007/s13313-021-00807-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-021-00807-y

Keywords

Navigation