Skip to main content

Advertisement

Log in

Grazing and watering alter plant phenological processes in a desert steppe community

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Phenology is well recognized as one of the most sensitive indicators of environmental change. Previous studies have focused on flowering phenology with few efforts given to the phenological successes and vegetative processes. Additionally, grazing is often characterized as a driver for community evolutionary processes, while precipitation is known as the most important abiotic cue in arid regions. Given this knowledge, we installed a nested experiment in a desert steppe to explore the coupled effects of grazing and watering on plant species’ reproductive successes and phenological timing in 2012–2013. We found that grazing increased the proportion of non-flowering individuals, with a greater proportion in 2013 than that in 2012. It decreased species richness and changed the habitat preferences in both years, and watering also reduced the richness in both years. Grazing also delayed the phenological timing for some dominant species and significantly delayed the green-up timing (5.67 days) and shortened the growing season length (GSL) in both 2012 (7.74 days) and 2013 (4.71 days). The application of watering, however, delayed some dominant species’ timing—including the browning timing of five dominate species ranging from 9.57 days in 2013 to 1.93 days in 2012—but it did not delay the species’ green-up timing. This resulted in a significantly prolonged growing season in 2013 (8.58 days). The high soil water and optimal soil temperature in the spring of 2013 contributed to an earlier green-up time (6.1 days) than in 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc Natl Acad Sci USA 106:7063–7066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aldridge G, Inouye DW, Forrest JRK, Barr WA, Miller-Rushing AJ (2011) Emergence of a mid-season period of low floral resources in a montane meadow ecosystem associated with climate change. J Ecol 99:905–913

    Article  Google Scholar 

  • Baptist F, Choler P (2008) A simulation of the importance of length of growing season and canopy functional properties on the seasonal gross primary production of temperate alpine meadows. Ann Bot 101:549–559

    Article  PubMed Central  PubMed  Google Scholar 

  • Botta A, Viovy N, Ciais P, Friedlingstein P, Monfray P (2000) A global prognostic scheme of leaf onset using satellite data. Glob Chang Biol 6:709–725

    Article  Google Scholar 

  • CaraDonna PJ, Iler AM, Inouye DW (2014) Shifts in flowering phenology reshape a subalpine plant community. Proc Natl Acad Sci USA 111:4916–4921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Churkina G, Schimel D, Braswell BH, Xiao XM (2005) Spatial analysis of growing season length control over net ecosystem exchange. Glob Chang Biol 11:1777–1787

    Article  Google Scholar 

  • Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006) Diverse responses of phenology to global changes in a grassland ecosystem. Proc Natl Acad Sci USA 103:13740–13744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crimmins TM, Crimmins MA, Bertelsen CD (2010) Complex responses to climate drivers in onset of spring flowering across a semi-arid elevation gradient. J Ecol 98:1042–1051

    Article  Google Scholar 

  • Delph LF, Johannsson MH, Stephenson AG (1997) How environmental factors affect pollen performance: ecological and evolutionary perspectives. Ecology 78:1632–1639

    Article  Google Scholar 

  • Donohue K (2005) Niche construction through phenological plasticity: life history dynamics and ecological consequences. New Phytol 166:83–92

    Article  PubMed  Google Scholar 

  • Dorji T, Totland O, Moe SR, Hopping KA, Pan J, Klein JA (2013) Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob Chang Biol 19:459–472

    Article  PubMed  Google Scholar 

  • Dunne JA, Harte J, Taylor KJ (2003) Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecol Monogr 73:69–86

    Article  Google Scholar 

  • Edenhofer O, Seyboth K (2013) Intergovernmental panel on climate change (IPCC). In: Shogren JF (ed) Encyclopedia of energy, natural resource, and environmental economics. Elsevier, Waltham, pp 48–56

    Chapter  Google Scholar 

  • Engelbrecht BMJ, Kursar TA, Tyree MT (2005) Drought effects on seedling survival in a tropical moist forest. Trees-Struct Func 19:312–321

    Article  Google Scholar 

  • Euskirchen ES, McGuire AD, Kicklighter DW, Zhuang Q, Clein JS, Dargaville RJ, Dye DG, Kimball JS, McDonald KC, Melillo JM, Romanovsky VE, Smith NV (2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob Chang Biol 12:731–750

    Article  Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    Article  CAS  PubMed  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Forrest J, Miller-Rushing AJ (2010) Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos Trans R Soc B-Biol Sci 365:3101–3112

    Article  Google Scholar 

  • Forrest JRK, Thomson JD (2011) An examination of synchrony between insect emergence and flowering in Rocky Mountain meadows. Ecol Monogr 81:469–491

    Article  Google Scholar 

  • Forrest J, Inouye DW, Thomson JD (2010) Flowering phenology in subalpine meadows: does climate variation influence community co-flowering patterns? Ecology 91:431–440

    Article  PubMed  Google Scholar 

  • Ghazanfar SA (1997) The phenology of desert plants: a 3-year study in a gravel desert wadi in northern Oman. J Arid Environ 35:407–417

    Article  Google Scholar 

  • Gordo O, Jose Sanz J (2009) Long-term temporal changes of plant phenology in the Western Mediterranean. Glob Chang Biol 15:1930–1948

    Article  Google Scholar 

  • Gunarathne R, Perera GAD (2014) Climatic factors responsible for triggering phenological events in Manilkara hexandra (Roxb.) Dubard., a canopy tree in tropical semi-deciduous forest of Sri Lanka. Trop Ecol 55:63–73

    Google Scholar 

  • Hao L, Sun G, Liu Y, Gao Z, He J, Shi T, Wu B (2014) Effects of precipitation on grassland ecosystem restoration under grazing exclusion in Inner Mongolia, China. Landsc Ecol 1–17

  • Hegland SJ, Nielsen A, Lazaro A, Bjerknes A-L, Totland O (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195

    Article  PubMed  Google Scholar 

  • Hendrix SD (1988) Herbivory and its impact on plant reproduction. Plant Reprod Ecol 246–263

  • Hirsch AI, Little WS, Houghton RA, Scott NA, White JD (2004) The net carbon flux due to deforestation and forest re-growth in the Brazilian Amazon: analysis using a process-based model. Glob Chang Biol 10:908–924

    Article  Google Scholar 

  • Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362

    Article  PubMed  Google Scholar 

  • John R, Chen J, Lu N, Wilske B (2009) Land cover/land use change in semi-arid Inner Mongolia: 1992–2004. Environ Res Lett 4:045010

    Article  Google Scholar 

  • Johnson MTJ, Stinchcombe JR (2007) An emerging synthesis between community ecology and evolutionary biology. Trends Ecol Evol 22:250–257

    Article  PubMed  Google Scholar 

  • Lehtilä K, Strauss SY (1999) Effects of foliar herbivory on male and female reproductive traits of wild radish, Raphanus raphanistrum. Ecology 80:116–124

    Article  Google Scholar 

  • Llorens L, Penuelas J (2005) Experimental evidence of future drier and warmer conditions affecting flowering of two co-occurring Mediterranean shrubs. Int J Plant Sci 166:235–245

    Article  Google Scholar 

  • Medina-Roldan E, Paz-Ferreiro J, Bardgett RD (2012) Grazing-induced effects on soil properties modify plant competitive interactions in semi-natural mountain grasslands. Oecologia 170:159–169

    Article  PubMed  Google Scholar 

  • Menzel A (2002) Phenology: its importance to the global change community—an editorial comment. Clim Chang 54:379–385

    Article  Google Scholar 

  • Miller-Rushing AJ, Inouye DW (2009) Variation in the impact of climate change on flowering phenology and abundance: an examination of two pairs of closely related wildflower species. Am J Bot 96:1821–1829

    Article  PubMed  Google Scholar 

  • Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 89:332–341

    Article  PubMed  Google Scholar 

  • Miller-Rushing AJ, Inouye DW, Primack RB (2008) How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency. J Ecol 96:1289–1296

    Article  Google Scholar 

  • Miller-Rushing AJ, Hoye TT, Inouye DW, Post E (2010) The effects of phenological mismatches on demography. Philos Trans R Soc B-Biol Sci 365:3177–3186

    Article  Google Scholar 

  • Moulin S, Kergoat L, Viovy N, Dedieu G (1997) Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. J Clim 10:1154–1170

    Article  Google Scholar 

  • Obrist D, Verburg PSJ, Young MH, Coleman JS, Schorran DE, Arnone JA (2003) Quantifying the effects of phenology on ecosystem evapotranspiration in planted grassland mesocosms using EcoCELL technology. Agric For Meteorol 118:173–183

    Article  Google Scholar 

  • Olff H, Ritchie ME (1998) Effects of herbivores on grassland plant diversity. Trends Ecol Evol 13:261–265

    Article  CAS  PubMed  Google Scholar 

  • Penuelas J, Filella I (2001) Phenology—responses to a warming world. Science 294:793–795

    Article  CAS  PubMed  Google Scholar 

  • Penuelas J, Filella I, Zhang XY, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161:837–846

    Article  Google Scholar 

  • Petraglia A, Tomaselli M, Mondoni A, Brancaleoni L, Carbognani M (2014) Effects of nitrogen and phosphorus supply on growth and flowering phenology of the snowbed forb Gnaphalium supinum L. Flora—Morphol Distrib Func Ecol Plants 209:271–278

    Article  Google Scholar 

  • Piao S, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007) Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob Biogeochem Cycles 21: GB3018

  • Poveda K, Steffan-Dewenter I, Scheu S, Tscharntke T (2003) Effects of below- and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia 135:601–605

    Article  PubMed  Google Scholar 

  • Price MV, Waser NM (1998) Effects of experimental warming on plant reproductive phenology in a subalpine meadow. Ecology 79:1261–1271

    Article  Google Scholar 

  • Prieto P, Peñuelas J, Ogaya R, Estiarte M (2008) Precipitation-dependent flowering of Globularia alypum and Erica multiflora in Mediterranean shrubland under experimental drought and warming, and its inter-annual variability. Ann Bot 102:275–285

    Article  PubMed Central  PubMed  Google Scholar 

  • Primack RB, Miller-Rushing AJ (2011) Broadening the study of phenology and climate change. New Phytol 191:307–309

    Article  PubMed  Google Scholar 

  • Quesada M, Bollman K, Stephenson AG (1995) Leaf damage decreases pollen production and hinders pollen performance in Cucurbita texana. Ecology 76:437–443

    Article  Google Scholar 

  • Randerson JT, Field CB, Fung IY, Tans PP (1999) Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys Res Lett 26:2765–2768

    Article  CAS  Google Scholar 

  • Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O’Keefe J (2009) Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol 29:321–331

    Article  CAS  PubMed  Google Scholar 

  • Root TL, MacMynowski DP, Mastrandrea MD, Schneider SH (2005) Human-modified temperatures induce species changes: joint attribution. Proc Natl Acad Sci USA 102:7465–7469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenzweig C (2007) Assessment of observed changes and responses in natural and managed systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220

    Article  PubMed  Google Scholar 

  • Shao C, Chen J, Li L (2013) Grazing alters the biophysical regulation of carbon fluxes in a desert steppe. Environ Res Lett 8:025012

    Article  Google Scholar 

  • Shen M, Tang Y, Chen J, Zhu X, Zheng Y (2011) Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric For Meteorol 151:1711–1722

    Article  Google Scholar 

  • Sherry RA, Zhou X, Gu S, Arnone JA, Schimel DS, Verburg PS, Wallace LL, Luo Y (2007) Divergence of reproductive phenology under climate warming. Proc Natl Acad Sci USA 104:198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi T, Liu Y, Zhang L, Hao L, Gao Z (2014) Burning in agricultural landscapes: an emerging natural and human issue in China. Landsc Ecol 29:1785–1798

    Article  Google Scholar 

  • Silveira AP, Martins FR, Araujo FS (2013) Do vegetative and reproductive phenophases of deciduous tropical species respond similarly to rainfall pulses? J For Res 24:643–651

    Article  CAS  Google Scholar 

  • Suzuki R, Nomaki T, Yasunari T (2003) West-east contrast of phenology and climate in northern Asia revealed using a remotely sensed vegetation index. Int J Biometeorol 47:126–138

    PubMed  Google Scholar 

  • Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol 45:184–190

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Heckathorn SA, Barua D, Joshi P, Hamilton EW, LaCroix JJ (2008) Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C3, C4, and CAM species. Am J Bot 95:165–176

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Brown DG, Chen J (2013) Drivers of the dynamics in net primary productivity across ecological zones on the Mongolian Plateau. Landsc Ecol 28:725–739

    Article  Google Scholar 

  • Wang S, Wang C, Duan J, Zhu X, Xu G, Luo C, Zhang Z, Meng F, Li Y, Du M (2014) Timing and duration of phenological sequences of alpine plants along an elevation gradient on the Tibetan plateau. Agric For Meteorol 189:220–228

    Article  Google Scholar 

  • Woodcock BA, Pywell RF (2010) Effects of vegetation structure and floristic diversity on detritivore, herbivore and predatory invertebrates within calcareous grasslands. Biodivers Conserv 19:81–95

    Article  Google Scholar 

  • Wu C, Gonsamo A, Chen JM, Kurz WA, Price DT, Lafleur PM, Jassal RS, Dragoni D, Bohrer G, Gough CM, Verma SB, Suyker AE, Munger JW (2012) Interannual and spatial impacts of phenological transitions, growing season length, and spring and autumn temperatures on carbon sequestration: a North America flux data synthesis. Glob Planet Chang 92–93:179–190

    Article  Google Scholar 

  • Xia J, Wan S (2012) The effects of warming-shifted plant phenology on ecosystem carbon exchange are regulated by precipitation in a semi-arid grassland. PLoS One 7:e32088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xia J, Wan S (2013) Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe. Ann Bot 111:1207–1217

    Article  PubMed Central  PubMed  Google Scholar 

  • Xia J, Luo Y, Niu S, Ciais P, Janssens I, Chen J, Ammann C, Blanken P, Cescatti A, Bonal D, Buchmann N, Curtis P, Chen S, Dong J, Flanagan L, Frankenberg C, Georgiadis T, Gough C (2015) Joint control of terrestrial ecosystem productivity by plant phenology and physiology. Proc Natl Acad Sci USA (In press)

  • Yin XY, Goudriaan J, Lantinga EA, Vos J, Spiertz HJ (2003) A flexible sigmoid function of determinate growth. Ann Bot 91:361–371

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc Natl Acad Sci USA 107:22151–22156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan W, Zhou G, Wang Y, Han X (2007) Simulating phenological characteristics of two dominant grass species in a semi-arid steppe ecosystem. Ecol Res 22:784–791

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Guodong Han for maintaining the herbivory platform for many years. We also thank the faculty of the field station for their generous help in experiment establishment and measurements, Dr. Wenping Yuan and Guofang Liu for the experimental design and statistical analyses, and Dr. Shiping Chen for her climatic data from the EC tower. We thank Lisa Delp Taylor and Gabriela Shirkey for proofreading and polishing the language of the manuscript. This study was partially supported by the Natural Science Foundation of China (31229001, 31130008), the IceMe of the NUIST, and the “Dynamics of Coupled Natural and Human Systems (CNH)” Program of the NSF (#1313761).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linghao Li.

Additional information

Communicated by Philip Ladd.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11258_2015_462_MOESM1_ESM.eps

Supplementary material 1 (EPS 59 kb). Figure S1. Changes in the reproductive phases under the treatments of grazing (G) and watering (W) across the two studied years. Negative values (−) indicate the contracted reproductive phases and positive values (+) indicate extended reproductive phases

11258_2015_462_MOESM2_ESM.eps

Supplementary material 2 (EPS 4082 kb). Figure S2. The phenological shifts on green-up, reproductive, and browning phases of Stipa breviflora

Supplementary material 3 (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Chen, J., Xia, J. et al. Grazing and watering alter plant phenological processes in a desert steppe community. Plant Ecol 216, 599–613 (2015). https://doi.org/10.1007/s11258-015-0462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-015-0462-z

Keywords

Navigation