Skip to main content
Log in

Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Growth performance, chromium (Cr) accumulation potential and induction of antioxidative defence system and phytochelatins (PCs) were studied in hydroponically grown Brassica juncea (Indian mustard) and Vigna radiata (mungbean) at various levels of Cr treatments (0, 50, 100, 200 μM Cr). B. juncea accumulated twofolds and threefolds higher Cr in root and shoot, respectively than in V. radiata. Compared to B. juncea, V. radiata was found to be particularly sensitive to Cr as observed by the severity and development of Cr toxicity symptoms and decreased growth. Induction of PC and enzymes of antioxidant defence system were monitored as plant’s primary and secondary metal detoxifying responses, respectively. There was induction of PC and enzymes of antioxidant defence system in both the plants. PCs were induced significantly in roots and shoot of both the plants at all the levels of Cr treatments. Significantly higher activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) were observed in shoot of B. juncea than V. radiata at all the levels of Cr treatments. Induction of PCs along with antioxidant defence system in response to Cr stress suggests the cumulative role of PCs and antioxidants in conferring tolerance against accumulated Cr in B. juncea, and thereby signifies the suitability of this plant as one of the potential remediators of Cr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

Cr:

Chromium

DTNB:

5′ Dithio-bis-(2-nitrobenzoic acid)

Fw:

Fresh weight

GR:

Glutathione reductase

GSH:

Reduced glutathione

LSD:

Least significant difference

MT:

Metallothioneins

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid reactive substances

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2003) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1131–1341

    Google Scholar 

  • Anderson ME (1985) Determination of glutathione and glutathione disulfides in biological samples. Methods Enzymol 113:548–554

    Article  CAS  PubMed  Google Scholar 

  • Arvind P, Prasad MNV (2003) Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L., a free floating freshwater macrophyte. Plant Physiol Biochem 41:391–397

    Article  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase: a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Baker AJM, Mc Grath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 85–107

    Google Scholar 

  • Barcelo J, Poschenrieder C (1990) Plant-water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37

    Article  CAS  Google Scholar 

  • Barcelo J, Poschenrieder C, Gunse B (1986) Water relations of chromium (VI) treated Bush bean plants (Phaseolus vulgaris L. cv Contender) under both normal and water stress conditions. J Exp Bot 37:178–187

    Article  CAS  Google Scholar 

  • Bartlett RJ (1991) Chromium cycling in soils and water: links, gaps, and methods. Environ Health Perspect 92:17–24

    Article  CAS  PubMed  Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 2:248–254

    Article  Google Scholar 

  • Choudhary M, Jetley UK, Khan MA, Zutshi S, Fatma T (2007) Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Saf 66:204–209

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    CAS  PubMed  Google Scholar 

  • Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Cochram WG, Cox GM (1957) Experimental designs. Wiley, New York

    Google Scholar 

  • Dat J, Vandanabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Dheri GS, Brar MS, Malhi SS (2007) Comparative phytoremediation of chromium contaminated soil by fenugreek, spinach and raya. Commun Soil Sci Pl Anal 38:1655–1672

    Article  CAS  Google Scholar 

  • Diwan H, Ahmad A, Iqbal M (2008) Genotypic variation in the phytoremediation potential of Indian mustard for chromium. Environ Manag 41:734–741

    Article  Google Scholar 

  • Diwan H, Ahmad A, Iqbal M (2010) Chromium-induced modulation in the antioxidant defense system during phenological growth stages of Indian mustard. Int J Phytol 12:142–158

    Article  CAS  Google Scholar 

  • Dube BK, Tewari K, Chatterjee J, Chatterjee C (2003) Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53:1147–1153

    Article  CAS  PubMed  Google Scholar 

  • EPA US (1984) Health assessment document for chromium. Environmental Criteria and Assessment Office, EPA 600/8-83-014F. NTIS PB 85-115905. US Environmental Protection Agency, Research Triangle Park

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  • Foyer CH, Deascouveries P, Kunert KJ (1994a) Protection against oxygen radicals: important defense mechanisms studied in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994b) Photooxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Freeman JI, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thalpsi nickel hyperaccumulator. Plant Cell 16:2176–2191

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    Article  CAS  PubMed  Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Grill E, Thumann J, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy metal binding peptides of plants are synthesised from glutathione by a specific gamma glutamylcysteine dipeptide transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  CAS  PubMed  Google Scholar 

  • Gupta YP (1983) Nutritive value of food legumes. In: Arora SK (ed) Chemistry and biochemistry of legumes. Edward Arnold, London, pp 287–328

    Google Scholar 

  • Hajiboland R (2005) An evaluation of the efficiency of cultural plants to remove heavy metals from growing medium. Plant Soil Environ 51:156–164

    CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem Phys Lipids 44:327–340

    Article  CAS  Google Scholar 

  • Harmens H, DenHartog PR, ten Bookum WM, Verkleij JAC (1993) Increased zinc tolerance in Silene vulgaris (Moench) Garcke is not due to increased production of phytochelatins. Plant Physiol 103:1305–1309

    CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts In: Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Israr M, Sahi SV, Jain J (2006) Cadmium accumulation and antioxidative responses in the Sesbania drumondii callus. Arch Environ Contam Toxicol 50:121–127

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Liu D, Hou W (2000) Hyperaccumulation of lead by roots, hypocotyls and shoots of Brassica juncea. Biol Plant 43:603–606

    Article  CAS  Google Scholar 

  • Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defense system for arsenic detoxification in Indian mustard. Ecotoxicol Environ Saf 72:626–634

    Article  CAS  PubMed  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction—the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  Google Scholar 

  • Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Regondi S, Grassi F, Agradi E (2006) Zea mays L. protein changes in response to potassium dichromate treatments. Chemosphere 62:1234–1244

    Article  CAS  PubMed  Google Scholar 

  • Lawn RJ, Ahn CS (1985) Mung bean (Vigna radiata (L.) Wilczek/Vigna mungo (L.) Hepper. In: Summerfield RJ, Roberts EH (eds) Grain legume crops. Collins, London, pp 584–623

    Google Scholar 

  • Lu X, Kruatrachue M, Pokethitiyook P, Homyok K (2004) Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. Sci Asia 30:93–103

    Article  CAS  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Ogawa K, Kanematsu S, Asada K (1997) Generation of superoxide anion and localization of Cu-Zn superoxide dismutase in the vascular tissue of spinach hypocotyls and their association with lignification. Plant Cell Physiol 38:1118–1126

    CAS  PubMed  Google Scholar 

  • Panwar BS, Ahmed KS, Mittal SB (2002) Phytoremediation of nickel contaminated soils by Brassica species. Environ Dev Sustainability 4:1–6

    Article  Google Scholar 

  • Pawlisz AV, Kent RA, Schneider UA, Jefferson C (1997) Canadian water quality guidelines for chromium. Environ Toxicol Water Qual 12:123–183

    Article  CAS  Google Scholar 

  • Qureshi MI, Israr M, Abdin MZ, Iqbal M (2005) Responses of Artemisia annua L. to lead and salt induced oxidative stress. Environ Exp Bot 53:185–193

    Article  CAS  Google Scholar 

  • Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122

    Article  CAS  PubMed  Google Scholar 

  • Rao MV (1992) Cellular detoxification mechanisms to determine age dependent injury in tropical plant exposed to SO2. J Plant Physiol 140:733–740

    CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants. Cell Biochem Biophys 31:19–48

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inze D, Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32:329–342

    Article  CAS  PubMed  Google Scholar 

  • Rout GR, Samantaray S, Das P (2001) Differential lead tolerance of rice and black gram genotypes in hydroponic culture. Rost Výroba (Praha) 47:541–548

    CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    CAS  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I (1996) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Google Scholar 

  • Samantary S (2002) Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium. Chemosphere 47:1065–1072

    Article  CAS  PubMed  Google Scholar 

  • Sanita-di-toppi L, Fossati F, Musetti R, Mikerezi I, Favali MA (2002) Effect of hexavalent chromium on maize, tomato and cauliflower plants. J Plant Nutr 25:701–717

    Article  CAS  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    Article  CAS  PubMed  Google Scholar 

  • Schmoger ME, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    Article  CAS  PubMed  Google Scholar 

  • Shanker AK, Djanaguiraman M, Sudhagar R, Chandreshekhar CN, Pathmanabhan G (2004a) Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram [Vigna radiata (L.). Wilczek, cv CO4] roots. Plant Sci 166:1035–1043

    Article  CAS  Google Scholar 

  • Shanker AK, Djanaguiraman M, Sudhagar R, Jayaram R, Pathmanabhan G (2004b) Expression of metallothionein 3 (MT3) like protein mRNA in Sorghum cultivars under chromium (VI) stress. Curr Sci 86:901–902

    CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Shanker AK, Djanaguiraman M, Venkateswarlu B (2009) Chromium interactions in plants: current status and future strategies. Metallomics 1:375–383

    Article  Google Scholar 

  • Sharma SS, Kaul S, Metwally A, Goyal KC, Finkemeier I, Dietz KJ (2004) Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Sci 166:1287–1295

    Article  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Shukla OP, Rai UN, Singh NK, Dubey S, Baghel VS (2007) Isolation and characterization of chromate resistant bacteria from tannery effluent. J Environ Biol 28:399–403

    CAS  PubMed  Google Scholar 

  • Simonová E, Henselová M, Masarovičová E, Kohanová J (2007) Comparison of tolerance of Brassica juncea and Vigna radiata to cadmium. Biol Plant 51:488–492

    Article  Google Scholar 

  • Singh RP, Tripathi RD, Dabas S, Rizvi SMH, Ali MB, Sinha SK, Gupta DK, Mishra S, Rai UN (2003) Effect of lead on growth and nitrate assimilation of Vigna radiate (L.) Wilczek seedlings in a salt affected environment. Chemosphere 52:1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Sklar FH (1980) A preliminary comparison of the uptake of chromium-51 and zinc-65 by three species of aquatic plants from Louisiana: Spirodela punctata, Eacopa caroliniana, Elodea Canadensis. Proc La Acad Sci 43:46–51

    CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa-an angiospermic parasite. J Plant Physiol 161:665–674

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 41:2930–2936

    Article  CAS  PubMed  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Van den Broeck K, Vandecasteele C, Geuns JMC (1998) Speciation by liquid chromatography-inductively coupled plasma-mass spectrometry of arsenic in mung bean seedlings used as a bio-indicator for the arsenic contamination. Anal Chim Acta 361:101–111

    Article  Google Scholar 

  • Vatamaniuk OK, Bucher EA, Ward JT, Rea PA (2001) A new pathway for heavy metal detoxification in animals—phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 276:20817–20820

    Article  CAS  PubMed  Google Scholar 

  • Vecchia FD, Rocca NL, Moro I, De Faveri S, Andreoli C, Rascio N (2005) Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci 168:329–338

    Article  Google Scholar 

  • WHO (1988) Chromium. Environmental health criteria. World Health Organization, Geneva

    Google Scholar 

  • Witmer CM, Harris R, Shupack SI (1991) Oral bioavailability of chromium from a specific site. Environ Health Perspect 92:105–110

    Article  CAS  PubMed  Google Scholar 

  • Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidise is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32:915–925

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Mori H, Nishimura M (1995) A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol 36:1157–1162

    CAS  PubMed  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Jiang Y, He Z, Ma M (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984

    Article  CAS  PubMed  Google Scholar 

  • Zhang FQ, Wang YS, Lou ZP, Dong JD (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Altaf Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diwan, H., Khan, I., Ahmad, A. et al. Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regul 61, 97–107 (2010). https://doi.org/10.1007/s10725-010-9454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-010-9454-0

Keywords

Navigation