Skip to main content
Log in

Vicilin Genes of Vigna luteola: Structure, Organization, Expression, and Variation

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Two different but related sequences that encode Vigna luteola 7S vicilins were isolated and characterized. The sequences differ by two nucleotide substitutions, each of which results in an amino acid replacement. This low level of divergence suggests that a recent gene duplication has occurred. Both variants are expressed in cDNA populations; therefore, neither gene is a pseudogene. Both copies were present in all individuals (72) analyzed using real-time PCR and TaqMan probes. Segregation was not observed. The two sequences are not independent alleles. Vicilin genomic sequences of 11 specimens from six geographic locations were determined. No polymorphic sites were identified in either of the two gene copies. This lack of polymorphism suggests that either a population bottleneck or selection has occurred. The genetic structure, expression patterns, and protein composition of the V. luteola vicilins were compared to those of other legume vicilins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  PubMed  CAS  Google Scholar 

  • Akaike H (1974) A new look at statistical model identification. IEEE Trans Autom Control AC 19:716–723

    Article  Google Scholar 

  • Aviv H, Leder P (1972) Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci USA 134:743

    Google Scholar 

  • Bendtsen JD, Nielsen H, Heijne GV, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (1997) Nuclear DNA amounts in angiosperms: 583 new estimates. Ann Bot (Lond) 80:169–196

    Article  CAS  Google Scholar 

  • Bernardo AE, Gracia RN, Adachi M, Angeles JG, Kaga A, Ishimoto M, Utsumi S, Tecson-Mendoza EM (2004) 8S globulin of mungbean [Vigna radiata (L.) Wilczek]: cloning and characterization of its cDNA isoforms, expression in Escherichia coli, purification and crystallization of the major recombinant 8S isoform. J Agric Food Chem 52:2552–2560

    Article  PubMed  CAS  Google Scholar 

  • Borroto K, Dure LS III (1987) The globulin seed storage proteins of flowering plants are derived from two ancestral genes. Plant Mol Biol 8:113–131

    Article  CAS  Google Scholar 

  • Bown D, Ellis THN, Gatehouse JA (1988) The sequence of a gene encoding convicilin from pea (Pisum-Sativum-L.) shows that convicilin differs from vicilin by an insertion near the N-terminus. Biochem J 251:717–726

    PubMed  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  PubMed  CAS  Google Scholar 

  • Chlan CA, Pyle JB, Legocki AB, Dure LS III (1986) Developmental biochemistry of cottonseed embryogenesis and germination, 18: cDNA and amino acid sequences of members of the storage protein families. Plant Mol Biol 7:475–489

    Article  CAS  Google Scholar 

  • Chlan CA, Borroto K, Kamalay JA, Dure LS III (1987) Developmental biochemistry of cottonseed embryogenesis and germination, 19: sequences and genomic organization of the α globulin (vicilin) genes of cottonseed. Plant Mol Biol 9:533–546

    Article  CAS  Google Scholar 

  • Chrispeels MJ, Higgins TJV, Spencer D (1982) Assembly of storage protein oligomers in the endoplasmic reticulum, and processing of the polypeptides in the protein bodies of developing pea cotyledons. J Cell Biol 93:306–313

    Article  PubMed  CAS  Google Scholar 

  • Do CB, Gross SS, Batzoglou S (2006) CONTRAlign: discriminative training for protein sequence alignment. In: Apostolico A, Guerra C, Istrail S, Pevzner P, Waterman M (eds) Research in computational molecular biology. Springer, Heidelberg, pp. 160–174

  • Doyle JJ, Schuler MA, Godette WD, Zenger V, Beachy RN, Slightom JL (1986) The glycosylated seed storage proteins of Glycine max and Phaseolus vulgaris: structural homologies of genes and proteins. J Biol Chem 261:9228–9238

    PubMed  CAS  Google Scholar 

  • Doyle JJ, Chappill JA, Bailey DC, Kajita T (2000) Towards a comprehensive phylogeny of legumes: evidence from rbcL sequences and non-molecular data. In: Herendeen PS, Bruneau A (eds) Advances in legume systematics. Royal Botanic Gardens, Kew

    Google Scholar 

  • Dure LS III, Pyle JB, Chlan CA, Baker JC, Galau GA (1983) Developmental biochemistry of cottonseed embryogenesis and germination, 17: developmental expression of genes for the principal storage proteins. Plant Mol Biol 2:199–206

    Article  CAS  Google Scholar 

  • Fukuda T, Prak K, Fujioka M, Maruyama N, Utsumi S (2007) Physicochemical properties of native adzuki bean (Vigna angularis) 7S globulin and the molecular cloning of its cDNA isoforms. J Agric Food Chem 55:3667–3674

    Article  PubMed  CAS  Google Scholar 

  • Galau GA, Legocki AB, Greenway SC, Dure LS III (1981) Cotton messenger RNA sequences exist in both polyadenylated and nonpolyadenylated forms. J Biol Chem 256:2551–2560

    PubMed  CAS  Google Scholar 

  • Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133:664–682

    Article  PubMed  CAS  Google Scholar 

  • Grunstein M, Hogness DS (1975) Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA 72:3961–3965

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Harada JJ, Barker SJ, Goldberg RB (1989) Soybean β-conglycinin genes are clustered in several DNA regions and are regulated by transcriptional and posttranscriptional processes. Plant Cell 1:415–425

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Garcia RN, Adachi M, Maruyama Y, Tecson-Mendoza EM, Mikami B, Utsumi S (2006) Structure of 8S alpha globulin, the major seed storage protein of mung bean. Acta Cryst Sect D62:824–832

    CAS  Google Scholar 

  • Karlin S, Altschul SF (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci USA 87:2264–2268

    Article  PubMed  CAS  Google Scholar 

  • Ko TP, Ng JD, McPherson A (1993) The three-dimensional structure of canavalin from jack bean (Canavalia ensiformis). Plant Physiol 101:729–744

    Article  PubMed  CAS  Google Scholar 

  • Ko TP, Day J, McPherson A (2000) The refined structure of canavalin from jack bean in two crystal forms at 2.1 and 2.0 Å resolution. Acta Cryst Sect D 56:411–420

    Article  CAS  Google Scholar 

  • Lawrence MC, Suzuki E, Varghese JN, Davis PC, Vandonkelaar A, Tulloch PA, Colman PM (1990) The 3-dimensional structure of the seed storage protein phaseolin at 3 Å resolution. EMBO J 9:9–15

    PubMed  CAS  Google Scholar 

  • Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262:208–214

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MC, Lzard T, Beuchat M, Blagrove RJ, Colman PM (1994) Structure of phaseolin at 2.2 Å resolution: implications for a common vicilin/legumin structure and the genetic engineering of seed storage proteins. J Mol Biol 238:748–776

    Article  PubMed  CAS  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  PubMed  CAS  Google Scholar 

  • Li H, Luo J, Hemphill JK, Juang J-T, Gould J (2001) A rapid and high-yielding DNA miniprep for cotton (Gossypium spp.). Plant Mol Biol Rep 19:1–5

    Google Scholar 

  • Maniatis T, Fritsch E, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Marcus JP, Green JL, Gouter KC, Manners JM (1999) A family of antimicrobial peptides is produces by processing of a 7S globulin protein in Macadamia integrifolia kernals. Plant J 19:699–710

    Article  PubMed  CAS  Google Scholar 

  • Ng JD, Ko TP, McPherson A (1993) Cloning, expression, and crystallization of jack bean (Canavalia ensiformis) canavalin. Plant Physiol 101:713–728

    Article  PubMed  CAS  Google Scholar 

  • Osborne TB (1924) The vegetable proteins, 2nd edn. Longmans Green and Co., London

    Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127

    Article  CAS  Google Scholar 

  • Pernollet J-C, Mossé J (1983) Structure and location of legume and cereal seed storage proteins. Academic Press, New York, NY

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Press, New York, NY

    Google Scholar 

  • Sappl PG, Heazlewood JL, Millar AH (2004) Untangling multigene families in plants by integrating proteomics into functional genomics. Phytochemistry 65:1517–1530

    Article  PubMed  CAS  Google Scholar 

  • Schuler GD, Altschul SF, Lipman DJ (1991) A workbench for multiple alignment construction and analysis. Struct Funct Genet 9:180–190

    Article  CAS  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    Article  PubMed  CAS  Google Scholar 

  • Slightom JL, Sun SM, Hall TC (1983) Complete nucleotide sequence of a French bean storage protein gene: phaseolin. Proc Natl Acad Sci USA 80:1897–1901

    Article  PubMed  CAS  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  PubMed  CAS  Google Scholar 

  • Talbot DR, Adang MJ, Slightom JL, Hall TC (1984) Size and organization of a multigene family encoding phaseolin, the major seed storage protein of Phaseolus vulgaris L. Mol Gen Genet 198:42–49

    Article  CAS  Google Scholar 

  • Viques OM, Konan KN, Dodo HW (2003) Structure and organization of the genomic clone of a major peanut allergen gene, Ara h 1. Mol Immunol 40:565–571

    Article  Google Scholar 

  • Yamauchi D, Nakamura K, Asahi T, Minamikawa T (1988) cDNAs for canavalin and concanavalin A from Canavalia gladiata seeds: nucleotide sequence of cDNA for canavalin and RNA blot analysis of canavalin and concanavalin A mRNAs in developing seeds. Eur J Biochem 170:515–520

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Angela Geraci and Mr. Vijay Chigarapati for critical reading of this manuscript. We thank Dr. Joel Stake and Dr. Brian Mahon for assistance in collection of field samples. This study was supported by a State of Louisiana Board of Regents Support Fund Research and Development Grant LEQSF (2002-04)-RD-A-32.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caryl Chlan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Z., Neigel, J. & Chlan, C. Vicilin Genes of Vigna luteola: Structure, Organization, Expression, and Variation. Biochem Genet 50, 372–388 (2012). https://doi.org/10.1007/s10528-011-9481-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-011-9481-1

Keywords

Navigation