Skip to main content
Log in

Equisetum (Equisetaceae) species or hybrids? ISSR fingerprinting profiles help improve diagnoses based on morphology and anatomy

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The applicability of “inter-simple sequence repeats” (ISSR)-PCR as a molecular character complex for differentiation of Equisetum taxa is described with a special focus on the detection of hybrids. All Central European Equisetum species and the four most frequent hybrids are considered: E. arvense, E. fluviatile, E. telmateia, E. palustre, E. sylvaticum, E. pratense, E. × litorale, E. ramosissimum, E. hyemale, E. variegatum, E. × moorei, E. × trachyodon and E. × meridionale. The ISSR banding patterns are highly typical for each species. The positions of the clusters of hybrid taxa prove their hybrid origin and enable identification of the parental species. Genetic similarities of populations suggest that in some species vegetative reproduction predominates (e.g. E. arvense), whereas for others (e.g. E. telmateia) sexual reproduction seems to be more frequent. In addition to the molecular analyses, the characteristics of stem cross sections of the four hybrids and their parental species are shown and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bennert HW, Böcker R (1991) Zur Verbreitung von Equisetum subgen. Hippochaete (Equisetaceae, Pteridophyta) in Berlin. Verh Bot Ver Berlin Brandenburg 124:13–29

    Google Scholar 

  • Bennert W, Lubienski M, Körner S, Steinberg M (2005) Triploidy in Equisetum subgenus Hippochaete (Equisetaceae, Pteridophyta). Ann Bot 95:807–815

    Article  PubMed  Google Scholar 

  • Bir SS (1960) Chromosome numbers of some Equisetum species from the Netherlands. Acta Bot Neerl 9:224–234

    Google Scholar 

  • Borg P (1967) Studies on Equisetum hybrids in Fennoscandia. Ann Bot Fenn 4:35–50

    Google Scholar 

  • Borg I, Groenen P (2005) Modern multidimensional scaling: theory and applications, 2nd edn. Springer, New York

    Google Scholar 

  • Brune T (2001) Vergleichende Untersuchungen zur Mikromorphologie und chemischen Zusammensetzung der Cuticularwachse von Equisetum-Arten. Diploma Thesis, University of Hohenheim, Germany

  • Brune T (2004) Equisetum subgenus Hippochaete-Hybriden in Baden-Württemberg-Verbreitung und Häufigkeit. Jh Ges Naturkde Württemberg 160:123–159

    Google Scholar 

  • Brune T (2008) Anatomische und molekulargenetische Untersuchungen an Schachtelhalmen (Equisetum). Jh Ges Naturkde Württemberg 163:47–80

    Google Scholar 

  • Camacho FJ, Liston A (2001) Population structure and genetic diversity of Botrychium pumicola (Ophioglossaceae) based on inter-simple sequence repeats (ISSR). Amer J Bot 88:1065–1070

    Article  CAS  Google Scholar 

  • Dayanandan P, Kaufmann PB (1973) Stomata in Equisetum. Canad J Bot 51:1555–1564

    Article  Google Scholar 

  • Des Marais DL, Smith AR, Britton DM, Pryer KM (2003) Phylogenetic relationships and evolution of extant horsetails, Equisetum, based on chloroplast DNA sequence data (rbcL and trnL-F). Int J Pl Sci 164:737–751

    Article  CAS  Google Scholar 

  • Dines TD, Bonner IR (2002) A new hybrid horsetail, Equisetum arvense × E. telmateia (E × robertsii) in Britain. Watsonia 24:145–157

    Google Scholar 

  • Dong Y-H, Chen J-M, Gituru R.W, Wang Q-F (2007) Gene flow in populations of the endangered aquatic fern Ceratopteris pteridoides in China as revealed by ISSR markers. Aquat Bot 87:69–74

    Article  CAS  Google Scholar 

  • Dostál J (1984) Sphenopsida. In: Hegi G (ed) Flora von Mitteleuropa Bd. 1, Pteridophyta, Teil 1. Parey, Berlin, Hamburg, pp 54–79

    Google Scholar 

  • Duckett JG (1973) Comparative morphology of the gametophytes of the genus Equisetum, subgenus Equisetum. Bot J Linn Soc 66:1–22

    Article  Google Scholar 

  • Duckett JG (1979a) Comparative morphology of the gametophytes of Equisetum subgenus Hippochaete and the sexual behaviour of E. ramosissimum subsp. debile, (Roxb.) Hauke, E. hyemale var. affine (Engelm.)A.A, and E. laevigatum A. Br Bot J Linn Soc 79:179–203

    Article  Google Scholar 

  • Duckett JG (1979b) An experimental study of the reproductive biology and hybridization in the European and North American species of Equisetum. Bot J Linn Soc 79:205–229

    Article  Google Scholar 

  • Eschelmüller A, Hiemeyer F (1987) Der Süd-Schachtelhalm (Equisetum × meridionale) erstmals in der Bundesrepublik Deutschland festgestellt. Ber Naturwissenschaftl Ver Schwaben 91:16–19

    Google Scholar 

  • Freitas H, Brehm A (2001) Genetic diversity of the macaronesian leafy liverwort Porella canariensis inferred from RAPD markers. J Heredity 92:339–345

    Article  CAS  Google Scholar 

  • Garcke A (1972) Illustrierte Flora. Deutschland und angrenzende Gebiete. Von Weihe K (Hrg.) Parey, Berlin, Hamburg

    Google Scholar 

  • Guillon J-M (2004) Phylogeny of horsetails (Equisetum) based on the chloroplast rps4 gene and adjacent noncoding sequences. Syst Bot 29:251–259

    Article  Google Scholar 

  • Guillon J-M (2007) Molecular phylogeny of horsetails (Equisetum) including chloroplast atpB sequences. J Pl Res 120:569–574

    Article  Google Scholar 

  • Häne BG, Jäger K, Drexler HG (1993) The Pearson product-moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms. Electrophoresis 14:967–972

    Article  PubMed  Google Scholar 

  • Hassan WM, Wang SY, Ellender RD (2005) Methods to increase fidelity of repetitive extragenic palindromic PCR fingerprint-based bacterial source tracking efforts. Appl Environ Microbiol 71:512–518

    Article  PubMed  CAS  Google Scholar 

  • Hauke RL (1963) A taxonomic monograph of the genus Equisetum subgenus Hippochaete. Beih. Nova Hedwigia 8

  • Hauke RL (1965) An analysis of a variable population of Equisetum arvense and E. × litorale. Amer Fern J 55:123–135

    Article  Google Scholar 

  • Hauke RL (1978) A taxonomic monograph of Equisetum subgenus Equisetum. Nova Hedwigia 30:385–455

    Google Scholar 

  • Intelmann F (2001) Versuche zur Differenzierung von Unterpopulationen von Plasmopara halstedii, dem Falschen Mehltau der Sonnenblume, mit molekularbiologischen Techniken. Grauer, Beuren

    Google Scholar 

  • Hrouda L, Krahulec F (1982) Taxonomic and ecological analysis of the occurence of Hippochaete species and hybrids (Equisetaceae). Preslia 54:19–43

    Google Scholar 

  • Korpelainen H (1996) Relationship between life history characteristics and genetic structure in populations of Equisetum. In: Camus JM, Gibby M, Johns RJ (eds) Pteridology in perspective. Royal Botanic Gardens, Kew, p 523

    Google Scholar 

  • Korpelainen H, Kolkkala M (1996) Genetic diversity and population structure in the outcrossing populations of Equisetum arvense and E. hyemale (Equisetaceae). Amer J Bot 83:58–62

    Article  Google Scholar 

  • Korpelainen H, De Britto J, Doublet J, Pravin S (2005) Four tropical, closely related fern species belonging to the genus Adiantum L. are genetically distinct as revealed by ISSR fingerprinting. Genetica 125:283–291

    Article  PubMed  CAS  Google Scholar 

  • Krahulec F, Hrouda L, Kovářová M (1996) Production of gametophytes by Hippochaete (Equisetaceae) hybrids. Preslia 67:213–218

    Google Scholar 

  • Kümmerle JB (1931) Equiseten-Bastarde als verkannte Artformen. Mag Bot Lap 30:146–160

    Google Scholar 

  • Lau CPY, Ramsden L, Saunders RMK (2005) Hybrid origin of “Bauhinia blakeana” (Leguminosae: caesalpinioideae), inferred using morphological, reproductive and molecular data. Amer J Bot 92:525–533

    Article  Google Scholar 

  • Lubienski M, Bennert HW (2006) Equisetum × alsaticum (Equisetaceae, Pteridophyta) in Mitteleuropa. Carolinea 64:107–118

    Google Scholar 

  • Luerssen C (1889) Die Farnpflanzen. In: Grunow A, Fischer A, Hauck F, Limpricht G, Luerssen C, Migula W, Rehm H, Richter P, Winte G (eds) Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, Kummer, Leipzig, pp 622–781

    Google Scholar 

  • Machon N, Guillon J-M, Dobigny G, Le Cadre S, Moret J (2001) Genetic variation in the horsetail Equisetum variegatum Schleich, an endangered species in the Parisian region. Biodivers Conserv 10:1543–1554

    Article  Google Scholar 

  • Manton I (1950) Problems of cytology and evolution in the Pteridophyta. University Press, Cambridge

    Google Scholar 

  • Milde J (1867) Monographia Equisetorum. Verhandl. d. Kaiserl. Leopoldino-Carolinischen deutsch. Akad d Naturforscher 32:1–605

    Google Scholar 

  • Obermayer R, Leitch IJ, Hanson L, Bennett MD (2002) Nuclear DNA C-values in 30 species double the familial representation in Pteridophytes. Ann Bot 90:209–217

    Article  PubMed  CAS  Google Scholar 

  • Paeger J, Heckmann U, Bennert HW (1989) Erste populationsökologische Studien mit Hilfe der Isoenzymelektrophorese bei einheimischen Farnpflanzen (Pteridophyta). Verh Ges Ökologie 18:711–717

    Google Scholar 

  • Page CN (1972) An assessment of inter-specific relationships in Equisetum subgenus Equisetum. New Phytol 71:355–369

    Article  Google Scholar 

  • Page CN (1982) The ferns of Britain and Ireland, 1st edn. University Press, Cambridge

    Google Scholar 

  • Page CN (1997) The ferns of Britain and Ireland, 2nd edn. University Press, Cambridge

    Google Scholar 

  • Pharmawati M, Yan G, Finnegan PM (2005) Molecular variation and fingerprinting of Leucadendron cultivars (Proteaceae) by ISSR markers. Ann Bot 95:1163–1170

    Article  PubMed  CAS  Google Scholar 

  • Philippi G (1990) Equisetaceae. In: Sebald O, Seybold S, Philippi G (eds) Die Farn- und Blütenpflanzen Baden-Württembergs Bd.1. Ulmer, Stuttgart, pp 78–98

    Google Scholar 

  • Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Amer J Bot 91:1582–1598

    Article  CAS  Google Scholar 

  • Ran Y, Murray BG, Hammett KRW (2001) Evaluating genetic relationships between and within Clivia species using RAPDs. Sci Hortic 90:167–179

    Article  CAS  Google Scholar 

  • Rasmussen E (1992) Clustering algorithms. In: Frakes WB, Baeza-Yates R (eds) Information retrieval: data structures and algorithms. Prentice-Hall

  • Rothmaler W (1990) Exkursionsflora von Deutschland Bd. 4. Kritischer Band. In: Schubert R, Vent W (eds) 8. Aufl. Volk und Wissen, Berlin

    Google Scholar 

  • Saleh NAM, Majak W, Towers GHN (1972) Flavonoids of Equisetum species. Phytochemistry 11:1095–1099

    Article  CAS  Google Scholar 

  • Samuel R (1999) Identification of hybrids between Quercus petraea and Q. robur (Fagaceae): esults obtained with RAPD markers confirm allozym studies based on the Got-2 locus. Pl Syst Evol 217:137–146

    Article  Google Scholar 

  • Schaffner JH (1921) North American species of Equisetum north of Mexico. Amer Fern J 11:65–75

    Article  Google Scholar 

  • Schaffner JH (1925) Main lines of evolution in Equisetum. Amer Fern J 15:8–12, 35–39

    Google Scholar 

  • Schneller J, Holderegger R, Gugerli F, Eichenberger K, Lutz E (1998) Patterns of genetic variation detected by RAPDs suggest a single origin with subsequent mutations and long-distance dispersal in the apomictic fern Dryopteris remota (Dryopteridaceae). Amer J Bot 85:1038–1042

    Article  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. W. H. Freeman & Co, San Francisco

    Google Scholar 

  • Soltis DE (1986) Genetic evidence for diploidy in Equisetum. Amer J Bot 73:908–913

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Noyes RD (1988) An electrophoretic investigation of intragametophytic selfing in Equisetum arvense. Amer J Bot 75:231–237

    Article  Google Scholar 

  • Thomson JA (2000) Morphological and genomic diversity in the genus Pteridium (Dennstaedtiaceae). Ann Bot 85:77–99

    Article  CAS  Google Scholar 

  • Thomson JA, Chikuni AC, Mcmaster CS (2005) The taxonomic status and relationships of bracken ferns (Pteridium: Dennstaedtiaceae) from sub-Saharan Africa. Bot J Linn Soc 148:311–321

    Article  Google Scholar 

  • Treutlein J, Vorster P, Wink M (2005) Molecular relationships in Encephalartos (Zamiaceae, Cycadales) based on nucleotide sequences of nuclear ITS 1&2, rbcL, and genomic ISSR fingerprinting. Pl Biol 7:79–90

    Article  CAS  Google Scholar 

  • Triest L (2001) Hybridization in staminate and pistillate Salix alba and S. fragilis (Salicaceae): morphology versus RAPDs. Pl Syst Evol 226:143–154

    Article  Google Scholar 

  • Vanderpoorten A, Hedenäs L, Jacquemart A-L (2003) Differentiation in DNA fingerprinting and morphology among species of the pleurocarpous moss genus, Rhytidiadelphus (Hylocomiaceae). Taxon 52:229–236

    Article  Google Scholar 

  • Veit M, Beckert C, Höhne C, Bauer K, Geiger H (1995a) Interspecific and intraspecific variation of phenolics in the genus Equisetum subgenus Equisetum. Phytochemistry 38:881–891

    Article  CAS  Google Scholar 

  • Veit M, Bauer K, Beckert C, Kast B, Geiger H, Czygan F-C (1995b) Phenolic characters of British hybrid taxa in Equisetum subgenus Equisetum. Biochem Syst Ecol 23:79–87

    Article  CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Kenneth JL, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Wolfe AD, Xiang Q-Y, Kephart SR (1998) Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands. Molec Ecol 7:1107–1125

    Article  CAS  Google Scholar 

  • Xiao L, Gong X, Tian B, Zheng S, Hao G, Ge X (2005) Comparison of the genetic diversity in two species of cycads. Austral J Bot 53:219–223

    Article  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to R. Böcker, B. Schäfer and A. Schmid-Lebuhn for providing plant material and information on sampling sites. We thank E. Kandeler for support with additional analysis opportunities. For technical assistance and various help we thank M. Heklau, T. Jossberger, and R. Zipper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Brune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brune, T., Thiv, M. & Haas, K. Equisetum (Equisetaceae) species or hybrids? ISSR fingerprinting profiles help improve diagnoses based on morphology and anatomy. Plant Syst Evol 274, 67–81 (2008). https://doi.org/10.1007/s00606-008-0028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-008-0028-9

Keywords

Navigation