Skip to main content

Advertisement

Log in

Natural products and the balancing act of autophagy-dependent/independent ferroptosis in cancer therapy

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The control of biological cell death is essential for the body’s appropriate growth. The resistance of cells to the apoptotic process presents a new difficulty in the treatment of cancer. To combat cancer cells, researchers are working to find new apoptotic pathways and components to activate. One of the processes of regulated cell death (RCD) is referred to as ferroptosis marked by a decline in the activity of lipid glutathione peroxidase 4 (GPX4) after the buildup of reactive oxygen species (ROS). Since lipid peroxidation is a crucial component of ferroptosis and is required for its start, numerous medicines have been studied, particularly for the treatment of cancer. In this context, autophagy is an additional form of RCD that can govern ferroptosis through shared signaling pathways/factors involved in both mechanisms. In this review, we will explore the molecular mechanisms underlying ferroptosis and its association with autophagy, to gain fresh insights into their interplay in cancer advancement, and the potential of natural products for its treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

GPX4:

Glutathione peroxidase 4

ROS:

Reactive oxygen species

RCD:

Regulated cell death

γ-GCS:

γ-Glutamylcysteine synthetase

TFR1:

Transferrin receptor 1

DMT1:

Divalent metal transporter 1

IREB2:

Iron response element binding protein 2

CDKN1A:

Cyclin-dependent kinase inhibitor

ALOX15:

Arachidonate 15-lipoxygenase

DPP4:

Dipeptidyl peptidase 4

NRF2:

Nuclear factor erythroid 2 related factors 2

Keap:

Kelch-like ECH-associated protein 1

References

  • Anderson C, Reynolds C (2002) Synergistic cytotoxicity of buthionine sulfoximine (BSO) and intensive melphalan (L-PAM) for neuroblastoma cell lines established at relapse after myeloablative therapy. Bone Marrow Transplant 30(3):135–140

    CAS  PubMed  Google Scholar 

  • Asati V, Mahapatra DK, Bharti SK (2016) PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives. Eur J Med Chem 109:314–341

    CAS  PubMed  Google Scholar 

  • Babaei M, Alizadeh-Fanalou S, Nourian A, Yarahmadi S, Farahmandian N, Nabi-Afjadi M . . . Bahreini E (2021) Evaluation of testicular glycogen storage, FGF21 and LDH expression and physiological parameters of sperm in hyperglycemic rats treated with hydroalcoholic extract of Securigera Securidaca seeds, and glibenclamide. Reprod Biol Endocrinol 19(1):1–15

  • Babich H, Gottesman RT, Liebling EJ, Schuck AG (2008) Theaflavin-3-gallate and theaflavin-3′-gallate, polyphenols in black tea with prooxidant properties. Basic Clin Pharmacol Toxicol 103(1):66–74

    CAS  PubMed  Google Scholar 

  • Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL (2009) Glutathione dysregulation and the etiology and progression of human diseases

  • Bauckman K, Haller E, Flores I, Nanjundan M (2013) Iron modulates cell survival in a Ras-and MAPK-dependent manner in ovarian cells. Cell Death Dis 4(4):e592–e592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH. . . Zoncu R (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575(7784): 688–692

  • Cao JY, Dixon SJ (2016) Mechanisms of ferroptosis. Cell Mol Life Sci 73(11):2195–2209. https://doi.org/10.1007/s00018-016-2194-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Mi Y, Zhang X, Ma Q, Song Y, Zhang L. . . Li H (2019) Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J Exp Clin Cancer Res 38(1):1–16

  • Chen X, Yu C, Kang R, Tang D (2020a) Iron metabolism in ferroptosis. Front Cell Dev Biol 8:590226

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Li N, Wang H, Wang N, Peng H, Wang J . . . Zhang Y (2020b) Amentoflavone suppresses cell proliferation and induces cell death through triggering autophagy-dependent ferroptosis in human glioma. Life Sci 247:117425

  • Chen Z, Hong G, Liu Z, Yang D, Kankala RK, Wu W (2020c) Synergistic antitumor efficacy of doxorubicin and gambogic acid-encapsulated albumin nanocomposites. Colloids Surf B 196:111286

    CAS  Google Scholar 

  • Chen X, Kang R, Kroemer G, Tang D (2021) Targeting ferroptosis in pancreatic cancer: a double-edged sword. Trends Cancer 7(10):891–901

    CAS  PubMed  Google Scholar 

  • Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA (2022a) Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther 7(1):121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Wang C, Liu Z, He X, Tang W, He L . . . Li T (2022b) Ferroptosis and its multifaceted role in cancer: mechanisms and therapeutic approach. Antioxidants 11(8):1504

  • Costa I, Barbosa DJ, Benfeito S, Silva V, Chavarria D, Borges F . . . Silva R (2023) Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol Ther 108373

  • Desideri E, Filomeni G, Ciriolo MR (2012) Glutathione participates in the modulation of starvation-induced autophagy in carcinoma cells. Autophagy 8(12):1769–1781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding F, Zhang S, Gao S, Shang J, Li Y, Cui N, Zhao Q (2018) MiR-137 functions as a tumor suppressor in pancreatic cancer by targeting MRGBP. J Cell Biochem 119(6):4799–4807

    CAS  PubMed  Google Scholar 

  • Dixon SJ (2017) Ferroptosis: bug or feature? Immunol Rev 277(1):150–157

    CAS  PubMed  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE . . . Yang WS (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5): 1060–1072

  • Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M . . . Slusher BS (2014) Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3: e02523

  • Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I . . . Walch A (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13(1):91–98

  • Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I . . . Scheel CH (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575(7784): 693–698

  • Dondorp A, Nosten F, Stepniewska K, Day N, White N (2005) Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet (London, England) 366(9487):717–725

    PubMed  Google Scholar 

  • Efferth T (2017) From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Paper presented at the Seminars in cancer biology

  • Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR (2015) Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2(5):517

    PubMed  PubMed Central  Google Scholar 

  • Fahmideh H, Shapourian H, Moltafeti R, Tavakol C, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M (2022) The role of natural products as inhibitors of JAK/STAT signaling pathways in glioblastoma treatment. Oxid Med Cell Longev 2022

  • Faramarzian M, Bahramikia S, Nabi-Afjadi M (2022) Evaluation of the anti-amyloidogenic and fibril-destabilizing effects of Salvia officinalis flower extract against hen’s egg white lysozyme: an in vitro study. Iran J Sci Technol Trans A: Sci 46(5):1349–1358

    Google Scholar 

  • Feng Z, Zhang H, Levine AJ, Jin S (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci 102(23):8204–8209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi L, Bravo-San Pedro J, Vitale I, Aaronson S, Abrams J, Adam D . . . Annicchiarico-Petruzzelli M (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22(1): 58

  • Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P . . . Andrews DW (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3): 486–541

  • Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59(2):298–308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X (2016) Ferroptosis is an autophagic cell death process. Cell Res 26:1021. https://doi.org/10.1038/cr.2016.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaschler MM, Andia AA, Liu H, Csuka JM, Hurlocker B, Vaiana CA . . . Reznik E (2018) FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14(5): 507–515

  • Ge C, Zhang S, Mu H, Zheng S, Tan Z, Huang X . . . Feng D (2022) Emerging mechanisms and disease implications of ferroptosis: potential applications of natural products. Front Cell Dev Biol 9: 3730

  • Ghosh AP, Klocke BJ, Ballestas ME, Roth KA (2012) CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress. PLoS ONE 7(6):e39586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Samanta A, Prasad P, Sinha D (2021) Therapeutic implications of long non-coding RNA in the regulation of lung cancer. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects, Springer, pp 1–23

  • Gnanapradeepan K, Basu S, Barnoud T, Budina-Kolomets A, Kung C-P, Murphy ME (2018) The p53 tumor suppressor in the control of metabolism and ferroptosis. Front Endocrinol 9:124

    Google Scholar 

  • Gomaa AR, Peng D, Chen Z, Soutto M, Zaika A, El-Rifai W (2019) Su1063–Mir-4715–3P modulates AURKA and induces ferroptosis in upper gastrointestinal cancers. Gastroenterology 156(6):S-499

    Google Scholar 

  • Guirguis A, Slape CI, Failla LM, Saw J, Tremblay C, Powell DR . . . Curtis DJ (2016) PUMA promotes apoptosis of hematopoietic progenitors driving leukemic progression in a mouse model of myelodysplasia. Cell Death Differ 23(6): 1049

  • Guo L, Zhang Q, Liu Y (2022) The role of microRNAs in ferroptosis. Front Mol Biosci 9:1126

    Google Scholar 

  • Guo Z, Wang S, Hao H, Deng X, Fu J, Guo Y . . . Han S (2023) Targeting ferroptosis in cancer by natural products: an updated review. Am J Chin Med 51(03): 547–574

  • Hassannia B, Vandenabeele P, Berghe TV (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35(6):830–849

    CAS  PubMed  Google Scholar 

  • Hatami E, Nagesh PK, Jaggi M, Chauhan SC, Yallapu MM (2020) Gambogic acid potentiates gemcitabine induced anticancer activity in non-small cell lung cancer. Eur J Pharmacol 888:173486

    CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Tian W, Chen H, Deng Y (2016) MicroRNA-101 sensitizes hepatocellular carcinoma cells to doxorubicin-induced apoptosis via targeting Mcl-1. Mol Med Rep 13(2):1923–1929

    CAS  PubMed  Google Scholar 

  • Homet Moreno B, Ribas A (2015) Anti-programmed cell death protein-1/ligand-1 therapy in different cancers. Br J Cancer 112(9):1421–1427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong SH, Lee D-H, Lee Y-S, Jo MJ, Jeong YA, Kwon WT . . . Lee YJ (2017) Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression. Oncotarget 8(70): 115164

  • Huang J, Wang J, He H, Huang Z, Wu S, Chen C . . . Cong L (2021) Close interactions between lncRNAs, lipid metabolism and ferroptosis in cancer. Int J Biol Sci 17(15): 4493

  • Jiang L, Kon N, Li T, Wang S-J, Su T, Hibshoosh H . . . Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520(7545): 57

  • Jin M, Shi C, Li T, Wu Y, Hu C, Huang G (2020) Solasonine promotes ferroptosis of hepatoma carcinoma cells via glutathione peroxidase 4-induced destruction of the glutathione redox system. Biomed Pharmacother 129:110282

    CAS  PubMed  Google Scholar 

  • Kakularam KR, Karst F, Polamarasetty A, Ivanov I, Heydeck D, Kuhn H (2022) Paralog-and ortholog-specificity of inhibitors of human and mouse lipoxygenase-isoforms. Biomed Pharmacother 145:112434

    CAS  PubMed  Google Scholar 

  • Kang R, Tang D (2017) Autophagy and ferroptosis—what is the connection? Curr Pathobiol Rep 5:153–159

    PubMed  PubMed Central  Google Scholar 

  • Kang R, Kroemer G, Tang D (2019) The tumor suppressor protein p53 and the ferroptosis network. Free Radical Biol Med 133:162–168

    CAS  Google Scholar 

  • Kannan R, Kumar K, Sahal D, Kukreti S, Chauhan VS (2005) Reaction of artemisinin with haemoglobin: implications for antimalarial activity. Biochem J 385(2):409–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapralov AA, Yang Q, Dar HH, Tyurina YY, Anthonymuthu TS, Kim R . . . Shrivastava IH (2020) Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol 16(3): 278–290

  • Karimian A, Mir SM, Parsian H, Refieyan S, Mirza-Aghazadeh-Attari M, Yousefi B, Majidinia M (2019) Crosstalk between Phosphoinositide 3-kinase/Akt signaling pathway with DNA damage response and oxidative stress in cancer. J Cell Biochem 120(6):10248–10272. https://doi.org/10.1002/jcb.28309

    Article  CAS  PubMed  Google Scholar 

  • Kasukabe T, Honma Y, Okabe-Kado J, Higuchi Y, Kato N, Kumakura S (2016) Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells. Oncol Rep 36(2):968–976

    CAS  PubMed  Google Scholar 

  • Khomari F, Nabi-Afjadi M, Yarahmadi S, Eskandari H, Bahreini E (2021) Effects of cell proteostasis network on the survival of SARS-CoV-2. Biol Proc Online 23(1):1–10

    Google Scholar 

  • Kuo W-T, Yu S-Y, Li S-C, Lam H-C, Chang H-T, Chen W-S . . . Wu T (2016) MicroRNA-324 in human cancer: miR-324–5p and miR-324–3p have distinct biological functions in human cancer. Anticancer Res 36(10):5189–5196

  • Kurz T, Brunk UT (2009) Autophagy of HSP70 and chelation of lysosomal iron in a non-redox-active form. Autophagy 5(1):93–95

    CAS  PubMed  Google Scholar 

  • Lachaier E, Louandre C, Godin C, Saidak Z, Baert M, Diouf M . . . Galmiche A (2014) Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res 34(11):6417–6422

  • Lane D, Merlot A, Huang M-H, Bae D-H, Jansson P, Sahni S. . . Richardson D (2015) Cellular iron uptake, trafficking and metabolism: key molecules and mechanisms and their roles in disease. Biochim Biophys Acta (BBA)-Mol Cell Res 1853(5):1130–1144

  • Li J, Xuan Z, Liu C (2013) Long non-coding RNAs and complex human diseases. Int J Mol Sci 14(9):18790–18808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Sun Q, Li Y, Yang Y, Yang Y, Chang T . . . Zheng L (2015) Overexpression of SIRT1 induced by resveratrol and inhibitor of miR-204 suppresses activation and proliferation of microglia. J Mol Neurosci 56:858–867

  • Li L, Kang L, Zhao W, Feng Y, Liu W, Wang T . . . Liang Y (2017) miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect. Cancer Lett 400:89–98

  • Li J, Cao F, Yin H-L, Huang Z-J, Lin Z-T, Mao N . . . Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11(2):88

  • Li R-L, Fan C-H, Gong S-Y, Kang S (2021) circRNA1615 inhibits ferroptosis via modulation of autophagy by the miRNA152–3p/LRP6 axis in cardiomyocytes of myocardial infarction

  • Lin R, Zhang Z, Chen L, Zhou Y, Zou P, Feng C . . . Liang G (2016) Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett 381(1):165–175

  • Lin H-Y, Ho H-W, Chang Y-H, Wei C-J, Chu P-Y (2021) The evolving role of ferroptosis in breast cancer: translational implications present and future. Cancers 13(18):4576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Q, Shi Y, Liu Z, Mehrpour M, Hamaï A, Gong C (2022) Non-coding RNAs as new autophagy regulators in cancer progression. Biochim Biophys Acta (BBA)-Mol Basis Dis 1868(1):166293

    CAS  Google Scholar 

  • Liu Q, Wang K (2019) The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell Biol Int 43(11):1245–1256

    CAS  PubMed  Google Scholar 

  • Liu J, Zhang C, Wang J, Hu W, Feng Z (2020) The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int J Mol Sci 21(21):8387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B (2018) The role of ferroptosis in cancer development and treatment response. Front Pharmacol 8:992

    PubMed  PubMed Central  Google Scholar 

  • Luo M, Wu L, Zhang K, Wang H, Zhang T, Gutierrez L . . . Gao T (2018) miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ 25(8):1457

  • Lv H-H, Zhen C-X, Liu J-Y, Shang P (2020) PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells. Acta Pharmacol Sin 41(8):1119–1132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macías-Rodríguez RU, Inzaugarat ME, Ruiz-Margáin A, Nelson LJ, Trautwein C, Cubero FJ (2020) Reclassifying hepatic cell death during liver damage: ferroptosis—a novel form of non-apoptotic cell death? Int J Mol Sci 21(5):1651

    PubMed  PubMed Central  Google Scholar 

  • Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22(2):181–185

    CAS  PubMed  Google Scholar 

  • Malfa GA, Tomasello B, Acquaviva R, Genovese C, La Mantia A, Cammarata FP. . . Di Giacomo C (2019) Betula etnensis Raf. (Betulaceae) extract induced HO-1 expression and ferroptosis cell death in human colon cancer cells. Int J Mol Sci 20(11):2723

  • Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y . . . Lai W (2018) A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res 78(13):3484–3496

  • Mao L, Zhao T, Song Y, Lin L, Fan X, Cui B . . . Zhang J (2020) The emerging role of ferroptosis in non-cancer liver diseases: hype or increasing hope? Cell Death Dis 11(7):518

  • Mbaveng AT, Fotso GW, Ngnintedo D, Kuete V, Ngadjui BT, Keumedjio F . . . Efferth T (2018) Cytotoxicity of epunctanone and four other phytochemicals isolated from the medicinal plants Garcinia epunctata and Ptycholobium contortum towards multi-factorial drug resistant cancer cells. Phytomedicine 48:112–119

  • Mbaveng AT, Damen F, Simo Mpetga JD, Awouafack MD, Tane P, Kuete V, Efferth T (2019) Cytotoxicity of crude extract and isolated constituents of the Dichrostachys cinerea bark towards multifactorial drug-resistant cancer cells. Evid-Based Complement Alternat Med 2019:1–11

    Google Scholar 

  • Meng Z, Wu J, Liu X, Zhou W, Ni M, Liu S . . . Zhang J (2020) Identification of potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma via integrated bioinformatics analysis. J Int Med Res 48(7):0300060520910019

  • Miess H, Dankworth B, Gouw AM, Rosenfeldt M, Schmitz W, Jiang M . . . Felsher DW (2018) The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene 37(40):5435–5450

  • Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873

    CAS  PubMed  Google Scholar 

  • Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, Li B (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 12(1):1–16

    Google Scholar 

  • Nie Q, Hu Y, Yu X, Li X, Fang X (2022) Induction and application of ferroptosis in cancer therapy. Cancer Cell Int 22(1):12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H (2005) TRB3, a novel ER stress-inducible gene, is induced via ATF4–CHOP pathway and is involved in cell death. EMBO J 24(6):1243–1255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ooko E, Saeed ME, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K . . . Efferth T (2015) Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine 22(11):1045–1054

  • Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L . . . Han B (2022) Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 7(1):286

  • Perez CA, Wei Y, Guo M (2009) Iron-binding and anti-Fenton properties of baicalein and baicalin. J Inorg Biochem 103(3):326–332

    CAS  PubMed  Google Scholar 

  • Pitman KE, Alluri SR, Kristian A, Aarnes E-K, Lyng H, Riss PJ, Malinen E (2019) Influx rate of 18 F-fluoroaminosuberic acid reflects cystine/glutamate antiporter expression in tumour xenografts. Eur J Nucl Med Mol Imaging 1–9

  • Priya S, Nigam A, Bajpai P, Kumar S (2014) Diethyl maleate inhibits MCA+ TPA transformed cell growth via modulation of GSH, MAPK, and cancer pathways. Chem Biol Interact 219:37–47

    CAS  PubMed  Google Scholar 

  • Rahmani M, Davis EM, Crabtree TR, Habibi JR, Nguyen TK, Dent P, Grant S (2007) The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol 27(15):5499–5513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Recknagel RO, Glende EA, Britton RS (2020) Free radical damage and lipid peroxidation Hepatotoxicology. CRC Press, pp 401–436

  • Riegman M, Sagie L, Galed C, Levin T, Steinberg N, Dixon SJ . . . Zaritsky A (2020) Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat Cell Biol 22(9):1042–1048

  • Santagostino SF, Assenmacher C-A, Tarrant JC, Adedeji AO, Radaelli E (2021) Mechanisms of regulated cell death: current perspectives. Vet Pathol 58(4):596–623

    CAS  PubMed  Google Scholar 

  • Santana-Codina N, Mancias J (2018) The role of NCOA4-mediated ferritinophagy in health and disease. Pharmaceuticals 11(4):114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sauzay C, Louandre C, Bodeau S, Anglade F, Godin C, Saidak Z . . . Galmiche A (2018) Protein biosynthesis, a target of sorafenib, interferes with the unfolded protein response (UPR) and ferroptosis in hepatocellular carcinoma cells. Oncotarget 9(9):8400–8414. https://doi.org/10.18632/oncotarget.23843

  • Sepand MR, Bigdelou B, Maghsoudi AS, Sanadgol N, Ho JQ, Chauhan P . . . Hajipour MJ (2023) Ferroptosis: environmental causes, biological redox signaling responses, cancer and other health consequences. Coord Chem Rev 480:215024

  • Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P (2001) Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol Biomark Prev 10(5):501–508

    CAS  Google Scholar 

  • Shiau J-P, Chuang Y-T, Yen C-Y, Chang F-R, Yang K-H, Hou M-F . . . Chang H-W (2023) Modulation of AKT pathway-targeting miRNAs for cancer cell treatment with natural products. Int J Mol Sci 24(4):3688

  • Shimada K (2015) Global survey of cell death mechanisms reveals metabolic regulation of GPX4-dependent ferroptosis

  • Song Z, Xiang X, Li J, Deng J, Fang Z, Zhang L, Xiong J (2020) Ruscogenin induces ferroptosis in pancreatic cancer cells. Oncol Rep 43(2):516–524

    CAS  PubMed  Google Scholar 

  • Stepanić V, Kučerová-Chlupáčová M (2023) Review and chemoinformatic analysis of ferroptosis modulators with a focus on natural plant products. Molecules 28(2):475

    PubMed  PubMed Central  Google Scholar 

  • Stockwell BR (2018) Ferroptosis: death by lipid peroxidation. Free Radic Biol Med 120:S7

    Google Scholar 

  • Stockwell BR, Angeli JPF, Bayir H, Bush AI, Conrad M, Dixon SJ . . . Kagan VE (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285

  • Su L-J, Zhang J-H, Gomez H, Murugan R, Hong X, Xu D . . . Peng Z-Y (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019:1–13

  • Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H . . . Shang P (2020) Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett 483:127–136

  • Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63(1):173–184. https://doi.org/10.1002/hep.28251

    Article  CAS  PubMed  Google Scholar 

  • Tang Q, Bai L, Zou Z, Meng P, Xia Y, Cheng S . . . Qin X (2018) Ferroptosis is newly characterized form of neuronal cell death in response to arsenite exposure. Neurotoxicology 67:27–36

  • Tang S, Wang Y, Ma T, Lu S, Huang K, Li Q, Zhong J (2020) MiR-30d inhibits cardiomyocytes autophagy promoting ferroptosis after myocardial infarction. Panminerva Med

  • Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol 445:77–88. https://doi.org/10.1007/978-1-59745-157-4_4

    Article  CAS  PubMed  Google Scholar 

  • Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD, Dixon SJ (2018a) p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep 22(3):569–575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tehrani SS, Karimian A, Parsian H, Majidinia M, Yousefi B (2018) Multiple functions of long non-coding RNAs in oxidative stress, DNA damage response and cancer progression. J Cell Biochem 119(1):223–236. https://doi.org/10.1002/jcb.26217

    Article  CAS  PubMed  Google Scholar 

  • Tomita K, Nagasawa T, Kuwahara Y, Torii S, Igarashi K, Roudkenar MH . . . Sato T (2021) MiR-7–5p is involved in ferroptosis signaling and radioresistance thru the generation of ROS in radioresistant HeLa and SAS cell lines. Int J Mol Sci 22(15):8300

  • Torii S, Shintoku R, Kubota C, Yaegashi M, Torii R, Sasaki M . . . Takeuchi T (2016) An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem J 473(6):769–777

  • Velkova I, Pasino M, Khalid Z, Menichini P, Martorana E, Izzotti A, Pulliero A (2023) Modulation of ferroptosis by microRNAs in human cancer. J Pers Med 13(5):719

    PubMed  PubMed Central  Google Scholar 

  • Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22(53):8628–8633. https://doi.org/10.1038/sj.onc.1207232

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Li J, Du Y, Xu Y, Wang Y, Zhang Z . . . Cao B (2017) The Class I PI3K inhibitor S14161 induces autophagy in malignant blood cells by modulating the Beclin 1/Vps34 complex. J Pharmacol Sci 134(4):197–202

  • Wang K, Zhang Z, Wang M, Cao X, Qi J, Wang D . . . Zhu H (2019a) Role of GRP78 inhibiting artesunate-induced ferroptosis in KRAS mutant pancreatic cancer cells. Drug Des Dev Ther 13:2135–2144

  • Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu N . . . Zhang B (2019b) Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ. https://doi.org/10.1038/s41418-019-0304-y

  • Wang D, Tang L, Zhang Y, Ge G, Jiang X, Mo Y . . . Zuo S (2022) Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis 13(6):544

  • Wong YK, Xu C, Kalesh KA, He Y, Lin Q, Wong WF . . . Wang J (2017) Artemisinin as an anticancer drug: recent advances in target profiling and mechanisms of action. Med Res Rev 37(6):1492–1517

  • Wu S, Zhu C, Tang D, Dou QP, Shen J, Chen X (2021) The role of ferroptosis in lung cancer. Biomark Res 9(1):1–14

    CAS  Google Scholar 

  • Wu Z, Zhong M, Liu Y, Xiong Y, Gao Z, Ma J . . . Hong X (2022) Application of natural products for inducing ferroptosis in tumor cells. Biotechnol Appl Biochem 69(1):190–197

  • Xiao F-J, Zhang D, Wu Y, Jia Q-H, Zhang L, Li Y-X . . . Wang L-S (2019) miRNA-17–92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis. Biochem Biophys Res Commun

  • Xie B, Guo Y (2021) Molecular mechanism of cell ferroptosis and research progress in regulation of ferroptosis by noncoding RNAs in tumor cells. Cell Death Discov 7(1):101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X . . . Tang D (2016a) Ferroptosis: process and function. Cell Death Differ 23(3):369

  • Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X . . . Tang D (2016b) Ferroptosis: process and function. Cell Death Differ 23(3):369–379

  • Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J . . . Billiar TR (2017) The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 20(7):1692–1704

  • Xie Y, Zhou X, Li J, Yao X-C, Liu W-L, Kang F-H . . . Tan G-S (2021) Identification of a new natural biflavonoids against breast cancer cells induced ferroptosis via the mitochondrial pathway. Bioorg Chem 109:104744

  • Xie Y, Zhou X, Li J, Yao X-C, Liu W-L, Xu P-S, Tan G-S (2022) Cytotoxic effects of the biflavonoids isolated from Selaginella trichoclada on MCF-7 cells and its potential mechanism. Bioorg Med Chem Lett 56:128486

    CAS  PubMed  Google Scholar 

  • Xiong F, Liu K, Zhang F, Sha K, Wang X, Guo X, Huang N (2016) MiR-204 inhibits the proliferation and invasion of renal cell carcinoma by inhibiting RAB22A expression. Oncol Rep 35(5):3000–3008

    CAS  PubMed  Google Scholar 

  • Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W, Wang J (2019) Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med 23(8):4900–4912

    PubMed  PubMed Central  Google Scholar 

  • Xu G, Wang H, Li X, Huang R, Luo L (2021) Recent progress on targeting ferroptosis for cancer therapy. Biochem Pharmacol 190:114584

    CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Kasukabe T, Kumakura S (2018) Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. Int J Oncol 52(3):1011–1022

    CAS  PubMed  Google Scholar 

  • Yan H-F, Zou T, Tuo Q-Z, Xu S, Li H, Belaidi AA, Lei P (2021) Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 6(1):49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15(3):234–245. https://doi.org/10.1016/j.chembiol.2008.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26(3):165–176. https://doi.org/10.1016/j.tcb.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  • Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS . . . Clish CB (2014a) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1):317–331

  • Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS . . . Stockwell BR (2014b) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1):317–331. https://doi.org/10.1016/j.cell.2013.12.010

  • Yoshida K, Miki Y (2010) The cell death machinery governed by the p53 tumor suppressor in response to DNA damage. Cancer Sci 101(4):831–835

    CAS  PubMed  Google Scholar 

  • Yu H, Guo P, Xie X, Wang Y, Chen G (2017) Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med 21(4):648–657

    CAS  PubMed  Google Scholar 

  • Yu R, Zhou Y, Shi S, Wang X, Huang S, Ren Y (2022) Icariside II induces ferroptosis in renal cell carcinoma cells by regulating the miR-324-3p/GPX4 axis. Phytomedicine 102:154182

    CAS  PubMed  Google Scholar 

  • Zalpoor H, Bakhtiyari M, Liaghat M, Nabi-Afjadi M, Ganjalikhani-Hakemi M (2022a) Quercetin potential effects against SARS-CoV-2 infection and COVID-19-associated cancer progression by inhibiting mTOR and hypoxia-inducible factor-1α (HIF-1α). Phytother Res

  • Zalpoor H, Bakhtiyari M, Shapourian H, Rostampour P, Tavakol C, Nabi-Afjadi M (2022b) Hesperetin as an anti-SARS-CoV-2 agent can inhibit COVID-19-associated cancer progression by suppressing intracellular signaling pathways. Inflammopharmacology 30(5):1533–1539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zalpoor H, Nabi-Afjadi M, Forghaniesfidvajani R, Tavakol C, Farahighasreaboonasr F, Pakizeh F . . . Seif F (2022c) Quercetin as a JAK–STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases. Cell Mol Biol Lett 27(1):60

  • Zalpoor H, Liaghat M, Bakhtiyari M, Shapourian H, Akbari A, Shahveh S, Tarhriz V (2023) Kaempferol’s potential effects against SARS-CoV-2 and COVID-19-associated cancer progression and chemo-resistance. Phytother Res: PTR 37(5):1731–1739

    CAS  PubMed  Google Scholar 

  • Zhang K, Wu L, Zhang P, Luo M, Du J, Gao T . . . Yang Y (2018) miR-9 regulates ferroptosis by targeting glutamic-oxaloacetic transaminase GOT1 in melanoma. Mol Carcinogen 57(11):1566–1576

  • Zhang Y, Hou YM, Gao F, Xiao JW, Li CC, Tang Y (2019) LncRNA GAS5 regulates myocardial infarction by targeting the miR-525-5p/CALM2 axis. J Cell Biochem 120(11):18678–18688

    CAS  PubMed  Google Scholar 

  • Zhang L, Tong Z, Sun Z, Zhu G, Shen E, Huang Y (2020a) MiR-25–3p targets PTEN to regulate the migration, invasion, and apoptosis of esophageal cancer cells via the PI3K/AKT pathway. Biosci Rep 40(10)

  • Zhang L, Tong Z, Sun Z, Zhu G, Shen E, Huang Y (2020b) MiR-25-3p targets PTEN to regulate the migration, invasion, and apoptosis of esophageal cancer cells via the PI3K/AKT pathway. Biosci Rep 40(10):BSR20201901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Pan T, Xiang Y, Zhang M, Xie H, Liang Z . . . Huang X (2022) Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioact Mater 13:23–36

  • Zhao C, Yu D, He Z, Bao L, Feng L, Chen L . . . Wang T (2021a) Endoplasmic reticulum stress-mediated autophagy activation is involved in cadmium-induced ferroptosis of renal tubular epithelial cells. Free Radic Biol Med 175:236–248

  • Zhao T, Guo X, Sun Y (2021b) Iron accumulation and lipid peroxidation in the aging retina: implication of ferroptosis in age-related macular degeneration. Aging Dis 12(2):529

    PubMed  PubMed Central  Google Scholar 

  • Zhao L, Zhou X, Xie F, Zhang L, Yan H, Huang J . . . Zhang L (2022) Ferroptosis in cancer and cancer immunotherapy. Cancer Commun 42(2):88–116

  • Zhou J, Chan L, Zhou S (2012) Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem 19(21):3523–3531

    CAS  PubMed  Google Scholar 

  • Zhou T, Qin G, Yang L, Xiang D, Li S (2019a) LncRNA XIST regulates myocardial infarction by targeting miR-130a-3p. J Cell Physiol 234(6):8659–8667

    CAS  PubMed  Google Scholar 

  • Zhou Y, Shen Y, Chen C, Sui X, Yang J, Wang L, Zhou J (2019b) The crosstalk between autophagy and ferroptosis: what can we learn to target drug resistance in cancer? Cancer Biol Med 16(4):630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (2020) Ferroptosis is a type of autophagy-dependent cell death. Paper presented at the Seminars in cancer biology

  • Zhu S, Zhang Q, Sun X, Zeh HJ III, Lotze MT, Kang R, Tang D (2017) HSPA5 regulates ferroptotic cell death in cancer cells. Can Res 77(8):2064–2077

    CAS  Google Scholar 

  • Zhu H-Y, Huang Z-X, Chen G-Q, Sheng F, Zheng Y-S (2019) Typhaneoside prevents acute myeloid leukemia (AML) through suppressing proliferation and inducing ferroptosis associated with autophagy. Biochem Biophys Res Commun 516(4):1265–1271

    CAS  PubMed  Google Scholar 

  • Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W . . . Schreiber SL (2020) Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 16(3): 302–309

  • Zou J, Wang L, Tang H, Liu X, Peng F, Peng C (2021) Ferroptosis in non-small cell lung cancer: progression and therapeutic potential on it. Int J Mol Sci 22(24):13335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zukor H, Song W, Liberman A, Mui J, Vali H, Fillebeen C . . . Schipper HM (2009) HO‐1‐mediated macroautophagy: a mechanism for unregulated iron deposition in aging and degenerating neural tissues. J Neurochem 109(3): 776–791

  • Zuo S, Yu J, Pan H, Lu L (2020) Novel insights on targeting ferroptosis in cancer therapy. Biomark Res 8(1):1–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The core of the study came from MN-A and BY. SHR-A, PF, SSHN, AK, AFN, AFZ, MSZ, RB, SRT, AK, and MN-A wrote the manuscript. Final editing was done by MN-A, and BY supervised the manuscript. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding authors

Correspondence to Mohsen Nabi-Afjadi or Bahman Yousefi.

Ethics declarations

Ethics approval and consent to participate

There is no involvement of human or animal in this study.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimipour Anaraki, S., Farzami, P., Hosseini Nasab, S.S. et al. Natural products and the balancing act of autophagy-dependent/independent ferroptosis in cancer therapy. Naunyn-Schmiedeberg's Arch Pharmacol 397, 2531–2549 (2024). https://doi.org/10.1007/s00210-023-02782-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02782-1

Keywords

Navigation