Skip to main content

Phytochemicals and Biological Activities of Asplenium ceterach

  • Living reference work entry
  • First Online:
Bioactive Compounds in Bryophytes and Pteridophytes

Abstract

Asplenium ceterach L. (family Aspleniaceae) is a perennial herbaceous fern. The lower surface of its fronds is covered with scales, which over time mature to a rusty color, giving the plant a characteristic appearance, hence the common name “rustyback” fern. It inhabits almost all of Europe, including the Mediterranean region, and Central Asia to the Himalayas, usually occurring in cracks in rocks. Rustyback fern is belonging to resurrection plants due to its ability to withstand desiccation and consequently completely recover after rehydration. It is thought that high concentrations of phenolic acids (mainly chlorogenic acid and caffeic acid) enable A. ceterach to reduce the damage of reactive oxygen species formed during dehydration. In addition to phenolic acids, the presence of other phenolic compounds is detected in A. ceterach including flavonoids, tannins, coumarins, and quinones. Phytochemical studies have shown that these phenolic compounds are mainly found in sporophytes of rustyback fern, while A. ceterach gametophyte is characterized predominantly by xanthones, primarily mangiferin and its glycoside. Additionally, rustyback fern represents a rich source of different volatile organic compounds, mainly lipid derivatives. Owing to the presence of various bioactive metabolites, it is not surprising that A. ceterach has long been known for its healing properties, and numerous studies have proven its various biological activities, including antimicrobial, antioxidant, cytotoxic, anticancer, diuretic, as well as anti-inflammatory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ABTS:

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay

AE:

Aqueous extract

ALP:

Alkaline phosphatase

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BHA:

Butylated hydroxyanisole

BHT:

Butylated hydroxytoluene

CAT:

Catalase

CC:

Column chromatography

COD:

Calcium oxalate dyhydrate

COM:

Calcium oxalate monohydrate

DdH2O:

Deionized water

DPPH:

1,1-diphenyl-2-picrylhydrazyl

DW:

Dry weight

EPR:

Electron paramagnetic resonance

Et2O:

Diethyl ether

EtOAc:

Ethyl acetate

EtOH:

Ethanol

FAs:

Fatty acids

FRAP:

Ferric reducing antioxidant power assay

FW:

Fresh weight

G:

Gametophyte

GAE:

Gallic acid equivalent

GC-MS:

Gas chromatography-mass spectrometry

HDL:

High-density lipoprotein

HPLC-DAD:

High-performance liquid chromatography with diode array detection

HS GC-MS:

Headspace gas chromatography-mass spectrometry

LDL:

Low-density lipoprotein

MeOH:

Methanol

MPLC:

Medium pressure liquid chromatography

N-BuOH:

Butanol

ORAC:

Oxygen radical absorbance capacity assay

PC:

Paper chromatography

PTR-MS:

Proton transfer reaction-mass spectrometry

PUFAs:

Polyunsaturated fatty acids

QE:

Quercetin equivalent

RBC:

Red blood cell count

ROS:

Reactive oxygen species

S:

Sporophyte

SEM:

Scanning electron microscopy

SOD:

Superoxide dismutase

STZ:

Streptozotocin

TE:

Trolox equivalent

TEMPONE:

2,2,6,6-tetramethyl-4-oxo-piperidin-1-oxyl

TF:

Total flavonoid content

TLC:

Thin layer chromatography

TPC:

Total phenolics content

UHPLC/HESI-MS2:

Ultra-high performance liquid chromatography/heated electrospray ionization mass spectrometry

UHPLC-DAD/HESI-MS2:

Ultra-high performance liquid chromatography-diode array detection/heated electrospray ionization mass spectrometry

UV:

Ultraviolet

UVS:

Ultraviolet spectroscopy

VLC:

Vacuum liquid chromatography

VOCs:

Volatile organic compounds

WBC:

White blood cell count

References

  1. Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428(6982):553–557. https://doi.org/10.1038/nature02361

    Article  CAS  PubMed  Google Scholar 

  2. The Pteridophyte Phylogeny Group I (2016) A community-derived classification for extant lycophytes and ferns. J Syst Evol 54(6):563–603. https://doi.org/10.1111/jse.12229

    Article  Google Scholar 

  3. Anderson OR (2021) Physiological ecology of ferns: biodiversity and conservation perspectives. Int J Biodivers Conserv 13(2):49–63. https://doi.org/10.5897/IJBC2021.1482

    Article  Google Scholar 

  4. Nitta JH, Meyer JY, Taputuarai R, Davis CC (2017) Life cycle matters: DNA barcoding reveals contrasting community structure between fern sporophytes and gametophytes. Ecol Monogr 87(2):278–296. https://www.jstor.org/stable/26358571

    Article  Google Scholar 

  5. Xu Z, Deng M (2017) Aspleniaceae. In: Identification and control of common weeds, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1157-7_11

    Chapter  Google Scholar 

  6. Xu KW, Zhang L, Rothfels CJ, Smith AR, Viane R, Lorence D, Wood KR, Chen CW, Knapp R, Zhou L, Lu NT, Zhou XM, Wei HJ, Fan Q, Chen SF, Cicuzza D, Gao XF, Liao WB, Zhang LB (2020) A global plastid phylogeny of the fern genus Asplenium (Aspleniaceae). Cladistics 36(1):22–71. https://doi.org/10.1111/cla.12384

    Article  PubMed  Google Scholar 

  7. Van den Heede CJ, Viane RL, Chase MW (2003) Phylogenetic analysis of Asplenium subgenus Ceterach (Pteridophyta: Aspleniaceae) based on plastid and nuclear ribosomal ITS DNA sequences. Am J Bot 90(3):481–495. https://www.jstor.org/stable/4124166

    Article  PubMed  Google Scholar 

  8. Trewick SA, Morgan-Richards M, Russell SJ, Henderson S, Rumsey FJ, Pinter I, Barrett JA, Gibby M, Vogel JC (2002) Polyploidy, phylogeography and Pleistocene refugia of the rockfern Asplenium ceterach: evidence from chloroplast DNA. Mol Ecol 11(10):2003–2012. https://doi.org/10.1046/j.1365-294X.2002.01583.x

    Article  CAS  PubMed  Google Scholar 

  9. Oliver MJ, Tuba Z, Mishler BD (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151(1):85–100. https://doi.org/10.1023/A:1026550808557

    Article  Google Scholar 

  10. Grantham M (1997) Desert ferns. Spring Newsletter 22(2):1–2

    Google Scholar 

  11. Schwab KB, Heber U (1984) Thylakoid membrane stability in drought-tolerant and drought-sensitive plants. Planta 161(1):37–45. https://doi.org/10.1007/BF00951458

    Article  CAS  PubMed  Google Scholar 

  12. Schwab KB, Schreiber U, Heber U (1989) Response of photosynthesis and respiration of resurrection plants to desiccation and rehydration. Planta 177(2):217–227. https://doi.org/10.1007/BF00392810

    Article  CAS  PubMed  Google Scholar 

  13. Živković S, Popović M, Dragišić-Maksimović J, Momčilović ID, Grubišić D (2010) Dehydration-related changes of peroxidase and polyphenol oxidase activity in fronds of the resurrection fern Asplenium ceterach L. Arch Biol Sci 62(4):1071–1081. https://doi.org/10.2298/ABS1004071Z

    Article  Google Scholar 

  14. Bogdanović M, Ilić M, Živković S, Sabovljević A, Grubišić D, Sabovljević M (2012) Comparative study on the effects of NaCl on selected moss and fern representatives. Aust J Bot 59(8):734–740. https://doi.org/10.1071/BT11059

    Article  CAS  Google Scholar 

  15. Živković S, Skorić M, Ristić M, Filipović B, Milutinović M, Perišić M, Puač N (2021) Rehydration process in rustyback fern (Asplenium ceterach L.): profiling of volatile organic compounds. Biology 10(7):574. https://doi.org/10.3390/biology10070574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Soare LC (2008) In vitro development of gametophyte and sporophyte in several fern species. Not Bot Hort Agrobot Cluj 36(1):13–19. https://doi.org/10.15835/nbha36183

    Article  Google Scholar 

  17. Sabovljević M, Vujičić M, Sekulić JŠ, Segarra-Moragues JG, Papp B, Skorić M, Dragačević L, Sabovljević A (2012) Reviving, in vitro differentiation, development, and micropropagation of the rare and endangered moss Bruchia vogesiaca (Bruchiaceae). HortScience 47(9):1347–1350

    Article  Google Scholar 

  18. Mannan MM, Maridass M, Victor B (2008) A review on the potential uses of ferns. Ethnobot leafl 2008(1):33. https://opensiuc.lib.siu.edu/ebl/vol2008/iss1/33

    Google Scholar 

  19. Živković S, Skorić M, Šiler B, Dmitrović S, Filipović B, Nikolić T, Mišić D (2017) Phytochemical characterization and antioxidant potential of rustyback fern (Asplenium ceterach L.). Lekovite sirovine 37:15–20. https://doi.org/10.5937/leksir1737015Z

    Article  Google Scholar 

  20. Sidhoum R, Bey MB, Halli L, Yalaoui O, Belkadi A (2020) Phenolic profile, anti-inflammatory and diuretic properties of Asplenium ceterach tested on albino mice and Wistar albino rats. Asian J Research Chem 13(6):449–454. https://doi.org/10.5958/0974-4150.2020.00080.2

    Article  Google Scholar 

  21. Froissard D, Rapior S, Bessière JM, Buatois B, Fruchier A, Sol V, Fons F (2015) Asplenioideae species as a reservoir of volatile organic compounds with potential therapeutic properties. Nat Prod Commun 10(6):1079–1083. https://doi.org/10.1177/1934578X1501000671

    Article  PubMed  Google Scholar 

  22. Tomou EM, Skaltsa H (2018) Phytochemical investigation of the fern Asplenium ceterach (Aspleniaceae). Nat Prod Commun 13(7):849–850. https://doi.org/10.1177/1934578X1801300715

    Article  Google Scholar 

  23. De Bellis R, Piacentini MP, Meli MA, Mattioli M, Menotta M, Mari M, Valentini L, Palomba L, Desideri D, Chiarantini L (2019) In vitro effects on calcium oxalate crystallization kinetics and crystal morphology of an aqueous extract from Ceterach officinarum: analysis of a potential antilithiatic mechanism. PLoS One 14(6):e0218734. https://doi.org/10.1371/journal.pone.0218734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pekgöz AK, Çinbilgel I (2019) Phytochemical contents and antioxidant activities of fern, Asplenium ceterach L. in different altitudes. Bangladesh J Bot 48(2):315–320. https://doi.org/10.3329/bjb.v48i2.47674

    Article  Google Scholar 

  25. Imperato F (1983) A flavanone glycoside from the fronds of Ceterach officinarum. Phytochemistry 22(1):312–313

    Article  CAS  Google Scholar 

  26. Petkov V, Slavova I, Teneva D, Mladenova T, Stoyanov P, Argirova M (2021) Phytochemical study and biological activity of three fern species of the Asplenium genus growing in Bulgaria. Nat Prod J 11:e120521193308. https://doi.org/10.2174/2210315511666210512024716

    Article  Google Scholar 

  27. Ismail AM, Hamdi BA, Maulood BK, Al-Khasrejy TO, Maythem AA (2021) Phytochemical study of Asplenium ceterach L. (Aspleniaceae) from Erbil province, Kurdistan of Iraq. ZJPAS 33(s1):187–191. https://doi.org/10.21271/ZJPAS.33.s1.20

  28. Imperato F (1981) New sulphate esters of hydroxycinnamic acid-sugar derivatives in ferns. Chem Ind 19:691–692

    Google Scholar 

  29. Iwashina T, Matsumoto S, Nishida M, Nakaike T (1993) The flavonoids from three Pakistani Asplenium subgenera Ceterach and Ceterachopsis species and their chemotaxonomic consideration. In: Nakaike T, Malik S (eds) Cryptogamic Flora of Pakistan, vol 2. National Science Museum Tokyo, Japan

    Google Scholar 

  30. Berti G, Bottari F (1968) Constituents of ferns. In: Rheinhold L, Liwschitz Y (eds) Progress in phytochemistry. Interscience, London

    Google Scholar 

  31. Gan RY, Chan CL, Yang QQ, Li HB, Zhang D, Ge YY, Gunaratne A, Ge J, Corke H (2019) 9-bioactive compounds and beneficial functions of sprouted grains. In: Feng H, Nemzer B, DeVries JW (eds) Sprouted grains, nutritional value, production and applications. AACC International Press & Elsevier Inc. https://doi.org/10.1016/B978-0-12-811525-1.00009-9

    Chapter  Google Scholar 

  32. Đurđević L, Mitrović M, Pavlović P, Bojović S, Jarić S, Oberan L, Gajić G, Kostić O (2007) Total phenolics and phenolic acids content in leaves, rhizomes and rhizosphere soil under Ceterach officinarum DC, Asplenium trichomanes L. and A. adiantum nigrum L. in the gorge of Sićevo (Serbia). Ekológia (Bratislava) 26(2):164–173

    Google Scholar 

  33. Kazazic M, Djapo M, Ademovic E (2016) Antioxidant activity of water extracts of some medicinal plants from Herzegovina region. Int J Pure App Biosci 4(2):85–90. https://doi.org/10.18782/2320-7051.2251

    Article  Google Scholar 

  34. Bewley JD, Krochko JE (1982) Desiccation-tolerance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Encyclopedia of plant physiology, vol 12/B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68150-9_11

    Chapter  Google Scholar 

  35. Oliver MJ, Farrant JM, Hilhorst HWM, Mundree S, Williams B, Bewley JD (2020) Desiccation tolerance: avoiding cellular damage during drying and rehydration. Annu Rev Plant Biol 71(1):435–460. https://doi.org/10.1146/annurev-arplant-071219-105542

    Article  CAS  PubMed  Google Scholar 

  36. Živković S, Popović Bijelić A, Mojović M (2012) EPR investigation of free radical formation in rustyback fern (Asplenium ceterach L.). Proceedings of the Regional Biophysics Conference, September 3–7, 2012 held at Kladovo, Serbia

    Google Scholar 

  37. Lisete-Torres P, Losada-Barreiro S, Albuquerque H, Sánchez-Paz V, Paiva-Martins F, Bravo-Díaz C (2012) Distribution of hydroxytyrosol and hydroxytyrosol acetate in olive oil emulsions and their antioxidant efficiency. J Agric Food Chem 60:7318–7325. https://doi.org/10.1021/jf301998s

    Article  CAS  PubMed  Google Scholar 

  38. Pratyusha S (2022) Phenolic compounds in the plant development and defense: an overview. In: Hasanuzzaman M, Nahar K (eds) Plant stress physiology-perspectives in agriculture. IntechOpen, London. https://doi.org/10.5772/intechopen.102873

    Chapter  Google Scholar 

  39. Murakami T, Tanaka N (1988) Occurrence, structure and taxonomic implications of fern constituents. In: Herz W, Grisebach H, Kirby GW, Tamm C (eds) Fortschritte der Chemie organischer Naturstoffe/progress in the chemistry of organic natural products, vol 54. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8999-3_1

    Chapter  Google Scholar 

  40. San Francisco M, Cooper-Driver G (1984) Anti-microbial activity of phenolic acids in Pteridium aquilinum. Am Fern J 74(3):87–96. https://doi.org/10.2307/1546543

    Article  Google Scholar 

  41. Petkov VH, Ardasheva RG, Prissadova NA, Kristev AD, Stoyanov PS, Argirova MD (2021) Receptor-mediated biological effects of extracts obtained from three Asplenium species. Z Naturforsch C J Biosci 76(9–10):367–373. https://doi.org/10.1515/znc-2020-0223

    Article  CAS  PubMed  Google Scholar 

  42. Mišić D, Šiler B, Gašić U, Avramov S, Živković S, Nestorović Živković J, Milutinović M, Tešić Ž (2015) Simultaneous UHPLC/DAD/(+/−)HESI-MS/MS analysis of phenolic acids and nepetalactones in methanol extract of Nepeta species: a possible application in chemotaxonomic studies. Phytochem Anal 26(1):72–85. https://doi.org/10.1002/pca.2538

    Article  CAS  PubMed  Google Scholar 

  43. Iwashina T, Matsumoto S (2011) Flavonoid properties of six Asplenium species in Vanuatu and New Caledonia, and distribution of flavonoid and related compounds in Asplenium. Bull Natl Mus Nat Sci Ser B 37(3):133–145

    Google Scholar 

  44. Živković S, Milutinović M, Maksimović V, Ćirić A, Ivanov M, Božunović J, Banjanac T, Mišić D (2020) Antioxidant and antimicrobial activity of two Asplenium species. S Afr J Bot 132:180–187. https://doi.org/10.1016/j.sajb.2020.03.034

    Article  CAS  Google Scholar 

  45. Cao H, Chai TT, Wang X, Morais-Braga MF, Yang JH, Wong FC, Wang R, Yao H, Cao J, Cornara L, Burlando B (2017) Phytochemicals from fern species: potential for medicine applications. Phytochem Rev 16(3):379–440. https://doi.org/10.1007/s11101-016-9488-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohlrogge J, Thrower N, Mhaske V, Stymne S, Baxter M, Yang W, Liu J, Shaw K, Shorrosh B, Zhang M, Wilkerson C (2018) PlantFAdb: a resource for exploring hundreds of plant fatty acid structures synthesized by thousands of plants and their phylogenetic relationships. Plant J 96(6):1299–1308. https://doi.org/10.1111/tpj.14102

    Article  CAS  PubMed  Google Scholar 

  47. He M, Ding NZ (2020) Plant unsaturated fatty acids: multiple roles in stress response. Front Plant Sci 11:562785. https://doi.org/10.3389/fpls.2020.5627851378

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tjellström H, Yang Z, Allen DK, Ohlrogge JB (2012) Rapid kinetic labeling of Arabidopsis cell suspension cultures: implications for models of lipid export from plastids. Plant Physiol 158(2):601–611. https://doi.org/10.1104/pp.111.186122

    Article  CAS  PubMed  Google Scholar 

  49. Bartels D, Hussain SS (2011) Resurrection plants: physiology and molecular biology. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. ecological studies, vol 215. Springer, Berlin, Heidelberg

    Google Scholar 

  50. Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13(5):236–246. https://doi.org/10.1016/j.tplants.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  51. Ho R, Teai T, Bianchini JP, Lafont R, Raharivelomanana P (2010) Ferns: from traditional uses to pharmaceutical development, chemical identification of active principles. In: Fernández H, Revilla MA, Kumar A (eds) Working with ferns: issues and applications. Springer, New York

    Google Scholar 

  52. Winter A (2003) Plant resources of South-East Asia no 15 (2). In: de Winter WP, Amoroso VB (eds) Cryptogams: ferns and fern allies. Backhuys Publishers, Leiden

    Google Scholar 

  53. Halliwell B (1996) Antioxidant in human health and diseases. Annu Rev Nutr 16:33–50. https://doi.org/10.1146/annurev.nu.16.070196.000341

    Article  CAS  PubMed  Google Scholar 

  54. Kumar N, Goel N (2019) Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnol Rep (Amst) 24:e00370. https://doi.org/10.1016/j.btre.2019.e00370

    Article  Google Scholar 

  55. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750. https://doi.org/10.1155/2013/162750

    Article  CAS  Google Scholar 

  56. Ahmad I (2016) Recent insight into the biological activities of synthetic xanthone derivatives. Eur J Med Chem 116:267–280. https://doi.org/10.1016/j.ejmech.2016.03.058

    Article  CAS  PubMed  Google Scholar 

  57. Baskaran XR, Geo Vigila AV, Zhang SZ, Feng SX, Liao WB (2018) A review of the use of pteridophytes for treating human ailments. J Zhejiang Univ Sci B 19(2):85–119. https://doi.org/10.1631/jzus.B1600344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bremner P, Heinrich M (2002) Natural products as targeted modulators of the nuclear factor-KB pathway. J Pharm Pharmacol 54(4):453–472. https://doi.org/10.1211/0022357021778637

    Article  CAS  PubMed  Google Scholar 

  59. Casillas-Vargas G, Ocasio-Malavé C, Medina S, Morales-Guzmán C, Del Valle RG, Carballeira NM, Sanabria-Ríos DJ (2021) Antibacterial fatty acids: an update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog Lipid Res 82:101093. https://doi.org/10.1016/j.plipres.2021.101093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kasote DM, Katyare SS, Hegde MV, Bae H (2015) Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci 11(8):982–991. https://doi.org/10.7150/ijbs.12096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Šamec D, Karalija E, Šola I, Vujčić Bok V, Salopek-Sondi B (2021) The role of polyphenols in abiotic stress response: the influence of molecular structure. Plan Theory 10(1):118. https://doi.org/10.3390/plants10010118

    Article  CAS  Google Scholar 

  62. Dvorakova M, Pumprova K, Antonínová Ž, Rezek J, Haisel D, Ekrt L, Vanek T, Langhansova L (2021) Nutritional and antioxidant potential of fiddleheads from European ferns. Foods 10(2):460. https://doi.org/10.3390/foods10020460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Berk S, Tepe B, Arslan S, Sarikurkcu C (2011) Screening of the antioxidant, antimicrobial and DNA damage protection potentials of the aqueous extract of Asplenium ceterach DC. Afr J Biotechnol 10(44):8902–8908. https://doi.org/10.5897/AJB11.1011

    Article  CAS  Google Scholar 

  64. Karadeniz A, Çinbilgel I, Gün SŞ, Çetin A (2015) Antioxidant activity of some Turkish medicinal plants. Nat Prod Res 29(24):2308–2312. https://doi.org/10.1080/14786419.2015.1005618

    Article  CAS  PubMed  Google Scholar 

  65. Fatima A, Laila O, Murtaza I, Masoodi K (2020) Nutraceutical composition and anti-cancerous potential of an unexplored herb Asplenium ceterach from Kashmir region. Indian J Pure Appl Biosci 8(2):289–297. https://doi.org/10.18782/2582-2845.8036

    Article  Google Scholar 

  66. Xie J, Schaich KM (2014) Re-evaluation of the 2, 2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J Agric Food Chem 62(19):4251–4260. https://doi.org/10.1021/jf500180u

    Article  CAS  PubMed  Google Scholar 

  67. Farràs A, Cásedas G, Les F, Terrado EM, Mitjans M, López V (2019) Evaluation of anti-tyrosinase and antioxidant properties of four fern species for potential cosmetic applications. Forests 10(2):179. https://doi.org/10.3390/f10020179

    Article  Google Scholar 

  68. Savoia D (2012) Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol 7(8):979–990. https://doi.org/10.2217/fmb.12.68

    Article  CAS  PubMed  Google Scholar 

  69. Khameneh B, Iranshahy M, Soheili V, Bazzaz BS (2019) Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control 8:118. https://doi.org/10.1186/s13756-019-0559-6

    Article  PubMed  PubMed Central  Google Scholar 

  70. Petkov V, Batsalova T, Stoyanov P, Mladenova T, Kolchakova D, Argirova M, Raycheva T, Dzhambazov B (2021) Selective anticancer properties, proapoptotic and antibacterial potential of three asplenium species. Plan Theory 10(6):1053. https://doi.org/10.3390/plants10061053

    Article  CAS  Google Scholar 

  71. Radulovic NS, Blagojevic PD, Stojanovic-Radic ZZ, Stojanovic NM (2013) Antimicrobial plant metabolites: structural diversity and mechanism of action. Curr Med Chem 20(7):932–952

    CAS  PubMed  Google Scholar 

  72. Gorlenko CL, Kiselev HY, Budanova EV, Zamyatnin AA, Ikryannikova LN (2020) Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: new heroes or worse clones of antibiotics? Antibiotics 9(4):170. https://doi.org/10.3390/antibiotics9040170

    Article  CAS  PubMed Central  Google Scholar 

  73. Skorić M, Gligorijević N, Čavić M, Todorović S, Janković R, Ristić M, Mišić D, Radulović S (2017) Cytotoxic activity of Nepeta rtanjensis Diklić & Milojević essential oil and its mode of action. Ind Crop Prod 100:163–170. https://doi.org/10.1016/j.indcrop.2017.02.027

    Article  CAS  Google Scholar 

  74. Dierge E, Debock E, Guilbaud C, Corbet C, Mignolet E, Mignard L, Bastien E, Dessy C, Larondelle Y, Feron O (2021) Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab 33(8):1701–1715.e5. https://doi.org/10.1016/j.cmet.2021.05.016

    Article  CAS  PubMed  Google Scholar 

  75. Teodor DE, Ungureanu O, Gatea F, Radu LG (2020) The potential of flavonoids and tannins from medicinal plants as anticancer agents. Anti Cancer Agents Med Chem 20(18):2216–2227. https://doi.org/10.2174/1871520620666200516150829

    Article  CAS  Google Scholar 

  76. Lu HP, Jia YN, Yu Y, Xu L (2017) DNA protective activity of a hydroethanol extract and six polyphenol monomers from Morus alba L. (mulberry) twig. Int J Food Prop 20(sup2):2207–2219. https://doi.org/10.1080/10942912.2017.1368554

    Article  CAS  Google Scholar 

  77. Zangeneh MM, Zangeneh A, Bahrami E, Almasi M, Amiri-Paryan A, Tahvilian R, Moradi R (2018) Evaluation of hematoprotective and hepatoprotective properties of aqueous extract of Ceterach officinarum DC against streptozotocin-induced hepatic injury in male mice. Comp Clin Path 27(6):1427–1436. https://doi.org/10.1007/s00580-018-2754-x

    Article  CAS  Google Scholar 

  78. Simpson MG (2010) Evolution and diversity of vascular plants. In: Simpson MG (ed) Plant systematics, 2nd edn. Academic Press, Elsevier Inc. https://doi.org/10.1016/C2009-0-02260-0

    Chapter  Google Scholar 

  79. Muhammad M, Ismail ZS, Schneider H, Hawkins JA (2020) Medicinal use of ferns: an ethnobotanical review. Sains Malays 49(5):1003–1014. https://doi.org/10.17576/jsm-2020-4905-05

    Article  Google Scholar 

  80. Malamas M, Marselos M (1992) The tradition of medicinal plants in Zagori, Epirus (northwestern Greece). J Ethnopharmacol 37(3):197–203. https://doi.org/10.1016/0378-8741(92)90034-o

    Article  CAS  PubMed  Google Scholar 

  81. May LW (1978) The economic uses and associated folklore of ferns and fern allies. Bot Rev 44(4):491–528. https://www.jstor.org/stable/4353942

    Article  Google Scholar 

  82. Grieve M (1971) A modern herbal: the medicinal, culinary, cosmetic and economic properties, cultivation and folk-lore of herbs, grasses, fungi, shrubs, & trees with all their modern scientific uses, vol I. Courier Corporation, Chelmsford

    Google Scholar 

  83. Guarrera PM, Lucia LM (2007) Ethnobotanical remarks on central and southern Italy. J Ethnobiol Ethnomedicine 3:23. https://doi.org/10.1186/1746-4269-3-23

    Article  Google Scholar 

  84. Brussell DE (2004) Medicinal plants of Mt. Pelion, Greece. Econ Bot 58(1):S174–S120. https://www.jstor.org/stable/4256917

    Article  Google Scholar 

  85. Bulut G, Tuzlacı E (2015) An ethnobotanical study of medicinal plants in Bayrami̇ç. Marmara Pharm J 19(3):268–282. https://doi.org/10.12991/mpj.201519392830

    Article  CAS  Google Scholar 

  86. Kültür Ş, Gürdal B, Sari A, Melikoğlu G (2021) Traditional herbal remedies used in kidney diseases in Turkey: an overview. Turk J Bot 45(4):269–287. https://doi.org/10.3906/bot-2011-32

    Article  CAS  Google Scholar 

  87. Hanlidou E, Karousou R, Kleftoyanni V, Kokkini S (2004) The herbal market of Thessaloniki (N Greece) and its relation to the ethnobotanical tradition. J Ethnopharmacol 91(2–3):281–299. https://doi.org/10.1016/j.jep.2004.01.007

    Article  CAS  PubMed  Google Scholar 

  88. González-Tejero MR, Casares-Porcel M, Sánchez-Rojas CP, Ramiro-Gutiérrez JM, Molero-Mesa J, Pieroni A, Giusti ME, Censorii E, de Pasquale C, Della A, Paraskeva-Hadijchambi D, Hadjichambis A, Houmani Z, El-Demerdash M, El-Zayat M, Hmamouchi M, Eljohrig S (2008) Medicinal plants in the Mediterranean area: synthesis of the results of the project Rubia. J Ethnopharmacol 116(2):341–357. https://doi.org/10.1016/j.jep.2007.11.045

    Article  PubMed  Google Scholar 

  89. Tuzlacı E, Erol MK (1999) Turkish folk medicinal plants. Part II: Eğirdir (Isparta). Fitoterapia 70(6):593–610. https://doi.org/10.1016/S0367-326X(99)00074-X

    Article  Google Scholar 

  90. Guarrera PM, Salerno G, Caneva G (2005) Folk phytotherapeutical plants from Maratea area (Basilicata, Italy). J Ethnopharmacol 99(3):367–378. https://doi.org/10.1016/j.jep.2005.01.039

    Article  PubMed  Google Scholar 

  91. Polat R, Satıl F (2012) An ethnobotanical survey of medicinal plants in Edremit Gulf (Balıkesir-Turkey). J Ethnopharmacol 139(2):626–641. https://doi.org/10.1016/j.jep.2011.12.004

    Article  PubMed  Google Scholar 

  92. Pieroni A, Sõukand R (2017) The disappearing wild food and medicinal plant knowledge in a few mountain villages of North-Eastern Albania. J Appl Bot Food Qual 90:58–67. https://doi.org/10.5073/JABFQ.2017.090.009

    Article  Google Scholar 

  93. Meddour R, Sahar O, Abdoune N, Dermouche M (2022) Quantitative ethnobotanical investigation of medicinal plants used by the local population in the rural municipalities of Haizer and El Asnam, province of Bouira. Northern Algeria Mediterr Bot 43:e72688. https://doi.org/10.5209/mbot.71190

    Article  Google Scholar 

  94. Abu-Rabia A (2005) Palestinian plant medicines for treating renal disorders: an inventory and brief history. Altern Complement Ther 11(6):295–300. https://doi.org/10.1089/act.2005.11.295

    Article  Google Scholar 

  95. Guarrera P, Lucchese F, Medori S (2008) Ethnophytotherapeutical research in the high Molise region (Central-Southern Italy). J Ethnobiol Ethnomed 4:7. https://doi.org/10.1186/1746-4269-4-7

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pieroni A, Quave CL, Santoro RF (2004) Folk pharmaceutical knowledge in the territory of the Dolomiti Lucane, in land southern Italy. J Ethnopharmacol 95(2–3):373–384. https://doi.org/10.1016/j.jep.2004.08.012

    Article  PubMed  Google Scholar 

  97. Said O, Khalil K, Fulder S, Azaizeh H (2002) Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the West Bank region. J Ethnopharmacol 83(3):251–265. https://doi.org/10.1016/s0378-8741(02)00253-2

    Article  CAS  PubMed  Google Scholar 

  98. Bulut G, Tuzlaci E (2013) An ethnobotanical study of medicinal plants in Turgutlu (Manisa—Turkey). J Ethnopharmacol 149(3):633–647. https://doi.org/10.1016/j.jep.2013.07.016

    Article  PubMed  Google Scholar 

  99. Passalacqua NG, Guarrera PM, De Fine G (2007) Contribution to the knowledge of the folk plant medicine in Calabria region (Southern Italy). Fitoterapia 78(1):52–68. https://doi.org/10.1016/j.fitote.2006.07.005

    Article  CAS  PubMed  Google Scholar 

  100. De Natale A, Pollio A (2007) Plants species in the folk medicine of Monte corvino Rovella (inland Campania, Italy). J Ethnopharmacol 109(2):295–303. https://doi.org/10.1016/j.jep.2006.07.038

    Article  PubMed  Google Scholar 

  101. Dall’Acqua S, Tomè F, Vitalini S, Agradi E, Innocenti G (2009) In vitro estrogenic activity of Asplenium trichomanes L. extracts and isolated compounds. J Ethnopharmacol 122(3):424–429. https://doi.org/10.1016/j.jep.2009.02.012

    Article  CAS  PubMed  Google Scholar 

  102. Irfan M, Jan G, Murad W, Jan FG, Rauf A, Alsayari A, Almarhoon ZM, Mabkhot YN (2021) Ethnomedicinal and traditional uses of the ferns of Khyber Pakhtunkhwa. Pakistan Braz J Biol 84:e250256. https://doi.org/10.1590/1519-6984.250256

    Article  CAS  PubMed  Google Scholar 

  103. Gul A, Alam J, Ahmad H, Shah GM, Hussain M, Dogan Y, Rahman KU (2016) Traditional, medicinal and food uses of Pteridophytes of district Mansehra (Pakistan) and their some adjacent areas. Int J Biosci 9:116–133. https://doi.org/10.12692/ijb/9.5.116-133

    Article  Google Scholar 

  104. Viegi L, Pieroni A, Guarrera PM, Vangelisti R (2003) A review of plants used in folk veterinary medicine in Italy as basis for a databank. J Ethnopharmacol 89(2–3):221–244. https://doi.org/10.1016/j.jep.2003.08.003

  105. Petropoulos SA, Karkanis A, Martins N, Ferreira IC (2018) Halophytic herbs of the Mediterranean basin: an alternative approach to health. Food Chem Toxicol 114:155–169. https://doi.org/10.1016/j.fct.2018.02.031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, grant numbers OI173024, 451-03-9/2021-14/200007, and 451-03-68/2022-14/200007. The authors would like to thank Dr. Uroš Gašić (University of Belgrade, Serbia) for preparing chemical structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Živković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Živković, S., Milutinović, M., Skorić, M. (2022). Phytochemicals and Biological Activities of Asplenium ceterach. In: Murthy, H.N. (eds) Bioactive Compounds in Bryophytes and Pteridophytes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-97415-2_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97415-2_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97415-2

  • Online ISBN: 978-3-030-97415-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics