

THE SIGNIFICANCE OF GRASSLAND DIVERSITY ON FUNCTIONAL DRY SEASON FORAGE FOR GRAZING HERBIVORES

Edwin Mudongo, Richard Fynn, Casper Bonyongo

Background

- Forage quality and quantity varies spatially and temporally in savanna rangelands (Walker, 1993; Owen-Smith 2002)
- Wet season high quality and quantity of forage
 - Annuals highly nutritious, fast growing (high green leaf quantity)
 - Perennials less nutritious, slow growing
- Dry season severe declines in nutritional quality and quantity (Sinclair, 1975; Heitschmidt et al., 1982)
 - Critical time (protein & energy deficit), senesced grass
 - Annuals absent
 - Perennials →selective grazing →decline of palatable spps

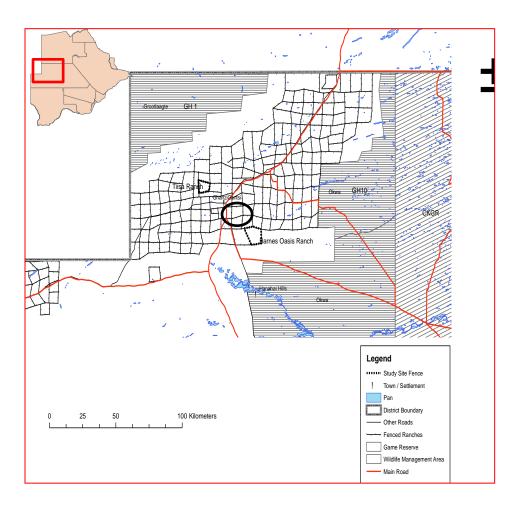
Temporal Variation

How do grazers overcome the dry season deficit?

- Several options:
 - 1. Diet expansion
 - adaptive foraging
 - 2. Movement or migration
 - large heterogeneous areas
 - 3. Mobilizing body storages
 - prolonged droughts?
 - 4. Supplementary feeds
 - costs!!

Observation

- Most rangeland mgt practices promote dominance of palatable species without consideration of their ability to respond to seasonal changes
- We hypothesized that a diversity of perennial grass species of different grazing value in a sward will provide more dry season foraging options than a sward dominated by few highly palatable species


- To determine and compare dry season performance (green leaf and stem cover) of 6 perennial grass species
- To determine relationship between grass morphology (root depth and tuft area) and performance
- To determine relationship between sand soil moisture and soil depth

Methods

- Location Barnes Oasis cattle ranch (western Botswana)
 - 18,808 ha, 64paddocks
 - 3554LSU
 - 1 wk grazing & 3mts rest
- Semi-arid climate
 - Mean annual rainfall 400mm
- Sandveld
 - Kalahari sand

Sampling

- October 2012 (late dry season)
- Previously grazed paddocks
- 6 common species (10 tufts of each spp)

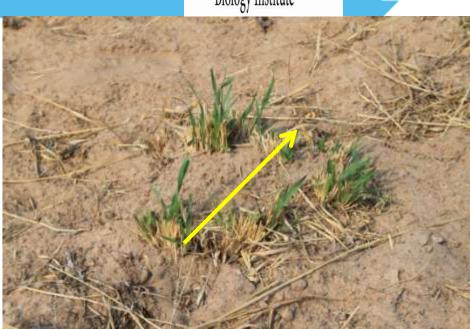
Species	Palatability
Anthephora pubescens	High
Brachiaria nigropedata	High
Eragrostis lehmanniana	Low
Eragrostis rigidior	Low
Schmidtia pappophoroides	High
Stipagrostis uniplumis	Low

Sampling...

•Root depth

Hole around tuft base (about 50cm wide)

Vertically growing from tuft base to root tip


Sampling...

Smithsonian Conservation Biology Institute

Green/brown leaf and stem cover

-Vissual percentage estimate

Tuft area

- Diameter at base

Soil moisture

- -5 sites
- 5 depth categories per site; 0-20, 20-40, 40-60, 60-80, 80-100cm
- i.e 5 samples per site
- Ziploc plastic bags & ice cooled
- Wet mass and dry mass taken

Data Analysis

- Non-parametric tests on grass morphology and performance
 - Kruskal-Wallis multiple comparisons
- ANOVA soil moisture per soil depth
 - Tukey's Post Hoc test multiple comparisosns
- Pearson's correlation and regression analysis for relationship between grass performance and morphology.

Stem

Total

Brownness

Results

27.8^a 0.93

62.9^{bc} 4.9

52.5^{bc} 6.25

19.6^a 1.5

UNIVERSITY OF BOTSWANA					Biology Institute	
	Eragrostis lehmanniana	Anthephora pubescens	Schmidtia pappophoroi des	Eragrostis Rigidior	Stipagrostis uniplumis	Brachiaria nigropedata
Tuft area	17.6 ^a 2.19	19.7 ^{ab} 1.92	19.5 ^{ab} 1.98	18.9 ^a 1.88	20.7 ^{ab} 2.6	30.5 ^b 3.11
Root Depth	29.9 ^a 1.8	32.1 ^a 1.76	40.8 ^{ab} 2.9	48.8 ^b 3.17	50.3 ^b 2.28	58.4 ^b 4.03
% Green	19.8 ^a 4.01	0	0	39.5 ^a 6.56	17 ^a 4.29	21.8 ^a 5.9
Leaf						
%Green	17.2 ^{ab} 2.63	0	3.4 a 1.6	11.5 ab 1.5	31 ^b 4.52	0
Stem						
Total	37 ^b 4.9	0	3.4 ^a 1.6	51 ^b 6.5	48 ^b 6.3	21.8 ^b 5.9
Greenness						
% Brown	35.2 ^b 2.84	9.5 ^a 0.40	26.5 ^b 2.59	12.5 ^a 1.86	10 ^a 1.83	6.4 ^a 0.9
Leaf						
% Brown	27.7 ab 3.13	18.3 ^a 1.32	70.1 ° 3.24	36.5 ^{bc} 5.87	42.5 ^{bc} 5.28	13.2 ^a 1.4

96.6^c 1.65

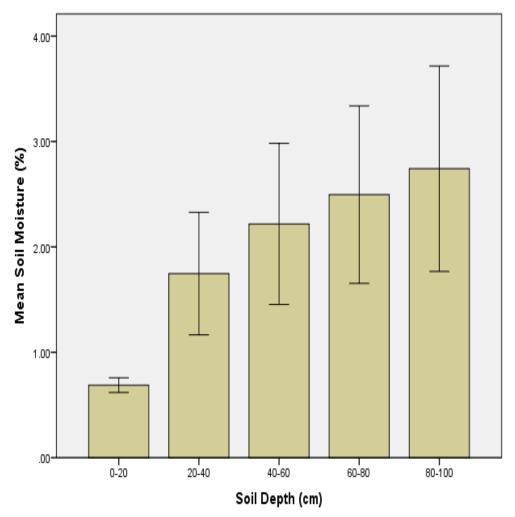
49^b 6.5

High palatability

Low palatability

Results...

- Green leaf production not influenced by root depth and tuft area within & between spp's
- Significant positive correlations between root depth and tuft area;


Species	Pearson's	\mathbb{R}^2	F _{1,8}	P –
	correlation			value
E. lehmaniana	0.93	0.86	47.9	0.0001
A.pubescens	0.88	0.76	26.0	0.001
S.pappophoroides	-0.07	7.7E-07	6.2E-06	1.00
E. rigidior	0.87	0.76	24.8	0.001
S. uniplumis	0.12	0.018	0.15	0.73
B.nigropedata	0.85	0.72	20.6	0.02

Results...

 Soil moisture lowest on top soil category BUT not significantly different between deeper categories

- All perennial species surveyed had deep root systems to access subsoil moisture
- Thus conversion of grassland to short-lived shallow rooted perennial species by overgrazing practices results in these species failing to access subsoil moisture
- Less palatable species retained green leaf and stem from previous wet season while highly palatable species did not retain either green or brown leaf

Discussion...

- This is a result of selective grazing as animals grazed down and depleted highly palatable spp's as shown by Illius et al. (1999)
- But less palatable species provide a lower quality bulk reserve forage supporting grazers for most of the dry season (Owen- Smith, 2002).
- Foraging theory; declining food supply means either increase search time or expansion of diet (O'Reagain et al., 1995; Owen-Smith, 2002)
- Thus absence of lower quality species eliminates the diet expansion option forcing animals to either move or starve to death.

Discussion...

- It shows therefore that declining palatable species would be substituted by less palatable spp's (e.g *E. rigidior*, *E. lehmanniana*, *S. uniplumis*) that carry large quantities of leaf and stem in to the dry season
- This maintains a more stable seasonal carrying capacity and reduces costs of supplementary feeding

Conclusions

- Our results suggest that managing rangelands for homogeneity of palatable spp's may not be beneficial come dry season
- Also conversion of perennial to annual or weak perennial grasslands will not benefit dry season foraging
- A grass sward that has an intermediate mix of high quality low fiber species and lower quality bulk species that persist in to the dry season provides a key dry season resource.

