Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


To clarify phylogenetic relationships among New Caledonian species of Diospyros, sequences of four plastid markers (atpB, rbcL, trnK-matK and trnS-trnG) and two low-copy nuclear markers (ncpGS and PHYA) were analysed. New Caledonian Diospyros species fall into three clades, two of which have only a few members (1 or 5 species); the third has 21 closely related species for which relationships among species have been mostly unresolved in a previous study. Although species of the third group (NC clade III) are morphologically distinct and largely occupy different habitats, they exhibit little molecular variability. Diospyros vieillardii is sister to the rest of the NC clade III, followed by D. umbrosa and D. flavocarpa, which are sister to the rest of this clade. Species from coastal habitats of western Grande Terre (D. cherrieri and D. veillonii) and some found on coralline substrates (D. calciphila and D. inexplorata) form two well-supported subgroups. The species of NC clade III have significantly larger genomes than found in diploid species of Diospyros from other parts of the world, but they all appear to be diploids. By applying a molecular clock, we infer that the ancestor of the NC clade III arrived in New Caledonia around 9 million years ago. The oldest species are around 7 million years old and the youngest ones probably much less than 1 million years.

Free full text 


Mol Phylogenet Evol. 2013 Dec; 69(3): 740–763.
PMCID: PMC3913082
PMID: 23850609

Molecular phylogenetics of New Caledonian Diospyros (Ebenaceae) using plastid and nuclear markers[star]

Associated Data

Supplementary Materials

Abstract

Keywords: Endemism, Genome size, Island flora, Low-copy nuclear markers, Molecular dating

Abstract

To clarify phylogenetic relationships among New Caledonian species of Diospyros, sequences of four plastid markers (atpB, rbcL, trnKmatK and trnStrnG) and two low-copy nuclear markers (ncpGS and PHYA) were analysed. New Caledonian Diospyros species fall into three clades, two of which have only a few members (1 or 5 species); the third has 21 closely related species for which relationships among species have been mostly unresolved in a previous study. Although species of the third group (NC clade III) are morphologically distinct and largely occupy different habitats, they exhibit little molecular variability. Diospyros vieillardii is sister to the rest of the NC clade III, followed by D. umbrosa and D. flavocarpa, which are sister to the rest of this clade. Species from coastal habitats of western Grande Terre (D. cherrieri and D. veillonii) and some found on coralline substrates (D. calciphila and D. inexplorata) form two well-supported subgroups. The species of NC clade III have significantly larger genomes than found in diploid species of Diospyros from other parts of the world, but they all appear to be diploids. By applying a molecular clock, we infer that the ancestor of the NC clade III arrived in New Caledonia around 9 million years ago. The oldest species are around 7 million years old and the youngest ones probably much less than 1 million years.

1. Introduction

New Caledonia is an island group located in the southwestern Pacific about 1300 km east of Australia, ranging from around 19° to 23° south with an land area of ca. 19,000 km2. It consists of the main island Grande Terre (ca. 16,000 km2), Iles Belep (in the north), Ile des Pins (in the south), Loyalty Islands (in the east) and several other smaller islands. The continental part of New Caledonia (mainly Grande Terre) separated from Gondwanan during late Cretaceous (ca. 80 million years ago, mya; McLoughlin, 2001). During the Palaeocene to late Eocene, this continental sliver was submerged for at least 20 million years (myr), and a thick layer of oceanic mantle accumulated (Pelletier, 2006). After Grande Terre re-emerged in the late Eocene (37 mya), this heavy-metal rich oceanic material covered most of the land. Today, around 1/3 of the main island is still covered with ultramafic substrates. Because Grande Terre was totally submerged, it is highly unlikely that lineages that were already present in this area before the split from Gondwanan could have survived locally. Current hypotheses suggest that biota present today are derived from elements/ancestors that reached New Caledonia via long distance dispersal (e.g. Morat et al., 2012; Pillon, 2012; Grandcolas et al., 2008) mainly from Australia, New Guinea and Malaysia. Hypotheses of other islands between Australia and New Caledonia having served as stepping stones or refuges for Gondwanan taxa now endemic (e.g. Amborella) have been proposed by a few authors (Ladiges and Cantrill, 2007), but there is no consensus of when they existed or how large and numerous they might have been. The New Caledonian climate is tropical to subtropical. The main island is split by a mountain range into a humid eastern portion (2000–4000 mm precipitation per year) and a dry western part (1000 mm precipitation per year) with prevailing winds and rain coming from the south east. New Caledonia is one of the 34 biodiversity hotspots (Mittermeier et al., 2004; Myers et al., 2000), and nearly 75% of the native flora is endemic (Morat et al., 2012), which is the fourth highest for an island (Lowry, 1998). Among these endemic taxa are 98 genera and three families, Amborellaceae, Oncothecaceae and Phellinaceae (Morat et al., 2012). One of the reasons hypothesised for the high level of endemism found in New Caledonia is the ultramafic substrates, which have acted as a filter for colonising species that were already pre-adapted to this special soil (Pillon et al., 2010).

Ebenaceae are pantropical and belong to the order Ericales (APG, 2009); the majority of species occur in Africa (incl. Madagascar) and the Indo-Pacific region. Duangjai et al. (2006) divided Ebenaceae into two sub families, Lissocarpoideae and Ebenoideae. Lissocarpoideae are monogeneric (Lissocarpa, 8 species in northwestern South America), and Ebenoideae include Diospyros, Euclea (18 species in Africa) and Royena (17 species in Africa). This classification of Ebenaceae in two subfamilies and four genera has been also supported by palynological data (Geeraerts et al., 2009).

In this paper, we use the circumscription of Diospyros as proposed by Duangjai et al. (2006). Diospyros is the largest genus of Ebenaceae with more than 500 species, making it also one of the largest angiosperm genera. The greatest species of diversity is in Asia and the Pacific region (~300 species). Fruits of some species (persimmons; e.g. D. kaki, D. lotus and D. virginiana) are edible, and ebony wood (e.g. D. ebenum) is one of the most expensive timbers. Species of Diospyros are shrubs or trees that occur in most tropical and subtropical habitats, where they are often important and characteristic elements. Duangjai et al. (2009) found 11 mostly well-resolved clades within Diospyros. In New Caledonia, there are 31 described Diospyros species, of which all but one are endemic, and they belong to three clades (Duangjai et al., 2009; Fig. 4, clades II, III and XI). The first clade (clade II) contains five species from New Caledonia that are related to Australian species of Diospyros. The second clade (clade III) includes species from Hawai‘i, Indian Ocean islands and 24 taxa from New Caledonia, within which the species from New Caledonia form a sublcade, here termed NC clade III. Although Duangjai et al. (2009) analysed more than 8000 base pairs of plastid DNA, low variability and little resolution was found among these endemic New Caledonian species. The third clade (clade XI), consisting of taxa from Asia, America, Pacific Islands and New Caledonia, includes two Diospyros species from New Caledonia, one endemic and the other found throughout the southern Pacific. These two species are not sister species, accounting for two more colonisations of New Caledonia (i.e. four in total). Similar, multiple colonisation events are also found among other organisms in New Caledonia (e.g. Murienne et al., 2005). Diospyros is observed in all types of New Caledonian vegetation except mangrove; the species range from sea level up to ca. 1250 m (New Caledonia’s highest point is 1628 m). There are several micro-endemics restricted to just a small area (White, 1992). Most New Caledonian Diospyros species from clade III are morphologically clearly defined and restricted by edaphic factors and occur on just one substrate type. For example, D. labillardierei (Fig. 1D) is distinctive with its long narrow leaves and Salix-like habit; it is a rheophyte on non-ultramafic substrates. Diospyros veillonii (Fig. 1F) is a remarkable species with coralloid inflorescence axes (unique among New Caledonian Diospyros) and large leaves, but is known from only a single locality in dry forest on black clay soil. Other species have broader distributions and ecologies, such as D. parviflora (Fig. 1J), which grows on both ultramafic and non-ultramafic substrates and is widespread throughout Grande Terre and Balabio Island in dense humid forests as well as in more open and dry vegetation. Some species can have similar ecological requirements, but are morphologically well differentiated; for example D. vieillardii (Fig. 1A) has a calyx narrower than its prune-like fruit, whereas D. glans (Fig. 1N) has a thick calyx much wider than its fruit, but both grow in maquis vegetation and co-occur at some sites.

An external file that holds a picture, illustration, etc.
Object name is gr1.jpg

Examples of Diospyros species from New Caledonia (A–N) and Map of New Caledonia with collection points (O). A: D. vieillardii; B: D. umbrosa; C: D. flavocarpa, D: D. labillardierei; E: D. pancheri, F: D. veillonii; G: D. minimifolia; H: D. pustulata; I: D. cherrieri; J: D. parviflora; K: D.perplexa; L: D. yaouhensis; M: D. revolutissima; N: D. glans; O: Map of New Caledonia with sampling localities. Photographs taken by: C. Chambrey (I), V. Hequet (F, K, L), J. Munzinger (A, B, C, E, G, H, J, M, N) and B. Turner (D).

An external file that holds a picture, illustration, etc.
Object name is gr4.jpg

One of 210 equally parsimonius trees of the plastid data set. Clades are named according to Duangjai et al. (2009). Bold branches have more than 70% support in all three analysis. New Caledonian taxa are coloured, red represents clade III NC.

For establishing phylogenetic relationships, sequences of low-copy nuclear genes are not as often used as regions from the plastid genome, often due to methodological difficulties. Low-copy genes are present in one or few copies in the genome, and primers are often highly specific for individual groups, requiring them therefore to be newly designed for each study. On the other hand, low-copy nuclear markers are normally highly informative and as they are biparentally inherited they may also help detect recent hybridization (e.g. Moody and Rieseberg, 2012). However, in a study of Hawaiian endemics in two unrelated genera, Pillon et al. (2013) found that although two low-copy nuclear loci displayed a high level of variability, they also exhibited heterozygosity, intraspecific variation, and retention of ancient alleles; allele coalescence was older than the species under study. Nonetheless, we hoped that inclusion of low-copy nuclear genes might provide additional insight into species relationships and thus included two such loci. Phytochrome A (PHYA) belongs to the gene family of the phytochromes, which has eight members across the seed plants (PHYAPHYE in angiosperms and PHYNPHYP in gymnosperms); PHYN/PHYA, PHYO/PHYC and PHYP/PHYBDE are orthologs, the rest being paralogs of the others (Mathews et al., 2010). Genes of this family encode photoreceptor proteins that mediate developmental responses to red and far red light. The three main paralogs (PHYA, PHYB and PHYC) are different enough to be amplified with specific primers (Zimmer and Wen, 2012). Sequences of phy genes have been used successfully across the flowering plants (e.g. Mathews et al., 2010; Nie et al., 2008; Bennett and Mathews, 2006) for phylogenetic reconstruction. The gene PHYA used in this study consists of four exons and three introns. Glutamine synthetase (GS), codes for a protein involved in nitrogen assimilation. There are two main types of GS genes, cytosolic- and chloroplast-expressed. Chloroplast-expressed glutamine synthetase (ncpGS) consists of 12 exons and 11 introns and has been shown to be a single-copy gene in plants (Emshwiller and Doyle, 1999). This combination of coding and non-coding regions has been shown to be highly informative for inferring phylogenetic trees of various groups (e.g. Oxalidaceae, Emshwiller and Doyle, 1999; Passiflora, Yockteng and Nadot, 2004; Spiraeanthemum, Pillon et al., 2009a; Codia, Pillon et al., 2009b; Achillea millefolium, Guo et al., 2012).

Beside phylogenetic relationships, the age of clades is of interest. In many cases, there are no fossils available for direct dating of a group of interest in a particular region, which is often the case for islands and is certainly true for New Caledonia (the few fossils recorded to date are older than the last emergence of the island and are not certain to be angiosperms; Salard and Avias, 1968). Rates of DNA divergence are generally consistent with a molecular clock (Zuckerkandl and Pauling, 1965), and therefore DNA data contain information about the relative ages of taxa. When substitution rates (e.g. Silvestro et al., 2011; Alba et al., 2000) or fossils belonging to defined clades (e.g. Pirie and Doyle, 2012; Magallón, 2010) are taken into consideration, the relative ages obtained can be transformed into absolute ages. Placement of fossils in the correct position in the phylogenetic tree is crucial for accurate interpretation (Forest, 2009). Some previous studies have has been published on the subject of the age of asterids (e.g. Millán-Martínez, 2010; Bell et al., 2010; Bremer et al., 2004) to which Ericales belong, and fossil Diospyros are known from some localities (mainly in India and North America), but none has been found in New Caledonia. Austrodiospyros cryptostoma (Basinger and Christophel, 1985), a fossil from Australia has many morphological similarities to D. australis of clade II (Duangjai et al., 2009). It is thus far the only fossil belonging to a clade that includes Diospyros species from New Caledonia. We treat A. cryptostoma as member of clade II in this study.

Genome sizes vary nearly 2400-fold across angiosperms (Pellicer et al., 2010). Most variation in DNA amount is caused by different amounts of non-coding, repetitive DNA, such as pseudogenes, retrotransposons, transposons and satellite repeats (Leitch, 2007; Bennett and Leitch, 2005; Parisod et al., 2009; Petrov, 2001). Genome sizes and chromosome numbers of Diospyros are within the range of those of other members of Ericales (Bennett and Leitch, 2010). Nuclear DNA amounts in Diospyros range from 0.78 pg (1C-value) in diploid D. rhodocalyx up to 4.06 pg in nonaploid D. kaki cultivars (Tamura et al., 1998). The basic chromosome number in Diospyros is 2= 2= 30, and most species seem to be diploid (e.g. Tamura et al., 1998; White, 1992). There are some reports of polyploid Diospyros, mostly from cultivated species (e.g. D. rhombifolia 4x, D. ebenum 6x, D. kaki 6x and 9x, D. virginiana 6x and 9x; Tamura et al., 1998). White (1992) provided chromosome counts for nine New Caledonian species of Diospyros (D. calciphila, D. fasciculosa, D. flavocarpa, D. minimifolia, D. olen, D. parviflora, D. umbrosa, D. vieillardii and D. yaouhensis), all of which are diploid.

Duangjai et al. (2009) found little sequence variation in the markers investigated among many species from NC clade III, which could indicate recent diversification. White (1992), who described most the New Caledonian Diospyros species, suspected some hybridization was taking place. The main aim of this study was to clarify relationships among New Caledonian Diospyros species, especially of those belonging to clade III (Duangjai et al., 2009). Furthermore, if we were able to find more variable than those previously studied, we wanted to elucidate potential factors underlying speciation (e.g. ecological speciation, hybrid speciation and introgression) and understand better differences in speciation rates of the clades that reached New Caledonia independently. We used low-copy nuclear markers, PHYA and ncpGS because they offered the prospect of resolving relationships within this clade and detecting possible hybrid species. We also included samples from nine additional species that were not available for the study of Duangjai et al. (2009). Moreover, we conducted dating analyses to obtain estimates of the ages for the lineages to which New Caledonian Diospyros species belong. We also present chromosome numbers and genome sizes of some additional New Caledonian species of Diospyros; we wished to examine further the hypothesis that polyploidy (perhaps involving hybridization) might have played a role in producing diversity in this comparatively species-rich clade.

2. Materials and methods

2.1. Material

Material from New Caledonian Diospyros species was collected by B. Turner (BT), J. Munzinger (JM), Yohan Pillon (YP) or Vanessa Hequet (VH). When fertile, a voucher was made with several duplicates sent to various herbaria. When sterile, one voucher per population was taken; this was compared to already existing collections in Noumea Herbarium (NOU) from the same location and referred to that species if similar. One putatively new species was detected while doing fieldwork for this project, here called D. sp. Pic N’ga. Other Ebenaceae samples are from previous studies (Duangjai et al., 2009). Outgroup taxa and a few Diospyros samples were taken from the Royal Botanic Gardens, Kew, DNA Bank (http://apps.kew.org/dnabank/homepage.html). Compared to the sampling of Duangjai et al. (2009), we added material of the following New Caledonian species: D. erudita, D. glans, D. impolita, D. inexplorata, D. margaretae, D. tireliae, D. tridentata, D. trisulca and D. veillonii (for details see Table 1). The three un-sampled species from New Caledonia (D. fastidiosa, D. nebulosa and D. neglecta) are rare and have not been seen after their description.

Table 1

Table of accessions; showing all individuals used in this study. Sequences provided by S. Duangjai are indicated.

TaxonAcc.-nr.OriginVoucherHerbariumatpBrbcLmatK & trnK introntrnStrnGncpGSPHYA
D. abyssinica (Hiern) F. WhiteK1672AfricaGilbert & Sebseke 8803KDQ923883EU980646DQ923990EU981061
D. affinis ThwaitesDY03Sri LankaYakandawala 03PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291310
D. affinisDY05Sri LankaYakandawala 05PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291311
D. affinisDY18Sri LankaYakandawala 18PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291312
D. affinisEb179Sri LankaSamuel s.n.PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291313
D. affinisEb180Sri LankaSamuel s.n.PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291314
D. cf. affinisS09Sri LankaSamuel 09PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291315
D. andamanica (Kurz) Bakh.Eb002ThailandDuangjai 068KUFF, WDQ923884EU980645DQ923991EU981060KF291447KF291624
D. andamanicaEb104ThailandDuangjai 162KUFF, WDQ923950EU980755DQ924057EU981170KF291448KF291625
D. anisandra S.F. BlakeW68GuatemalaWallnöfer 6012WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291316
D. anisandraW80GuatemalaFrisch 2006-1WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291317
D. apiculata HiernEb006ThailandDuangjai 072KUFFEU980813EU980647EU980936EU981062KF291449KF291626
D. areolata King & GambleEb160BruneiDuangjai et al. 33BRUN, W, WUDuangjai unpublDuangjai unpublDuangjai unpublKF291318KF291450KF291627
D. artanthifolia Mart. ex Miq.W15PeruPirie 62WDQ923885EU980648DQ923992EU981063
D. australis (R.Br) HiernEb205AustraliaWallnöfer & Duangjai 13944WUDQ923887EU980650DQ923994EU981065
D. australisK22548AustraliaForster 7848KDQ923886EU980649DQ923993EU981064
D. balansae GuillauminM3556New CaledoniaMunzinger 3556NOU015466EU980814EU980651EU980937EU981066KF291451KF291628
D. batocana HiernK21210NamibiaSteyl 88KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291319
D. batocanaK22553ZambiaPope et al. 2196KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291320
D. bejaudii LecomteEb011ThailandDuangjai 075KUFF, WDQ923888EU980652DQ923995EU981067KF291452KF291629
D. bipindensis GürkeK22452GabonStone & Niangadouma 3554MODQ923889EU980653DQ923996EU981068
D. borbonica I. RichardsonK23682ReunionChase REU10042REU, WUEU980815EU980654EU980938EU981069KF291453KF291630
D. borneensis HiernEb015ThailandDuangjai 079KUFF, WDQ923890EU980655DQ923997EU981070KF291454KF291631
D. bourdillonii BrandisW82IndiaDeFranceschi 18.12.2006WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291321
D. brandisiana KurzEb017ThailandDuangjai & Sinbumrung 007KUFF, WDQ923891EU980656DQ923998EU981071KF291455KF291632
D. brassica F. WhiteM2898New CaledoniaMunzinger 2898NOU007949DQ923892EU980657DQ923999EU981072KF291456KF291633
D. buxifolia (Blume) HiernEb018ThailandDuangjai 081KUFF, WEU980816EU980658EU980939EU981073
D. buxifoliaW85IndiaDeFranceschi 18.12.2006WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291322
D. calciphila F. WhiteBT314New CaledoniaMunziner et al. 6650MPU, NOU, PKF291801KF291860KF291919KF291323KF291457KF291634
D. calciphilaBT316New CaledoniaMunziner et al. 6650MPU, NOU, PKF291802KF291861KF291920KF291324KF291458KF291635
D. calciphilaBT317New CaledoniaMunziner et al. 6653MPU, NOU, PKF291459KF291636
D. calciphilaYP124New CaledoniaPillon 124NOU006325KF291460KF291637
D. capreifolia Mart. ex HiernW09French GuianaPrévost & Sabatier 3476WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291325
D. carbonaria BenoistW10French GuianaPrévost & Sabatier 3470WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291326
D. caribaea (A.DC.) Standl.W65CubaAbbott 19004WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291327
D. castanea (Craib) FletcherEb020ThailandDuangjai 083KUFF, WDQ923893EU980660DQ924000EU981075
D. cauliflora BlumeEb024ThailandDuangjai 087KUFF, WDQ923894EU980661DQ924001EU981076KF291461KF291638
D. cavalcantei SothersW22French GuianaPrévost et al. 4671WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291328
D. cayennensis A.DC.W03French GuianaPrévost 3430WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291329
D. celebica Bakh.K1242IndonesiaChase 1242KDQ923897EU980664DQ924004EU981079
D. cherrieri F. WhiteBT262New CaledoniaChambrey & Turner 16NOU079551, WU062860KF291803KF291862KF291921KF291330KF291463KF291640
D. cherrieriBT297New CaledoniaChambrey & Turner 17NOU079547KF291804KF291863KF291922KF291331KF291464KF291641
D. cherrieriVH3510New CaledoniaHequet 3510NOU015245EU980818EU980665EU980941EU981080KF291465KF291642
D. cherrieriVH3516New CaledoniaHequet 3516NOU015251EU980819EU980666EU980942EU981081KF291466KF291643
D. cherrieriVH3610New CaledoniaHequet 3610NOU016962KF291467KF291644
D. cherrieriVH3640New CaledoniaHequet 3640NOU017014KF291468KF291645
D. chrysophyllos Poir.K25758MauritiusPage 45MAUDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291332
D. chrysophyllosK25769MauritiusPage 71MAUDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291333
D. clementium Bakh.Eb154BruneiDuangjai et al. 24BRUN, W, WUDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291334
D. confertiflora (Hiern) Bakh.Eb028ThailandDuangjai 091KUFF, WDQ923898EU980667DQ924005EU981082
D. consolatae Chiov.K1673AfricaBeentje 2168KDQ923899EU980668DQ924006EU981083
D. cooperi (Hutchinson & Dalziel) F. WhiteK20604GhanaMerello et al. 1350MODQ923900EU980669DQ924007EU981084
D. crassinervis (Krug & Urb.) Standl.W23CubaRainer s.n.WDQ923901EU980670DQ924008EU981085
D. curranii Merr.Eb031ThailandDuangjai 094KUFF, W, WUDQ923902EU980671DQ924009EU981086KF291469KF291646
D. dasyphylla KurzEb033ThailandDuangjai 096KUFF, WDQ923903EU980672DQ924010EU981087
D. defectrix FletcherEb097ThailandDuangjai 155KUFF, WUKF291805KF291864KF291923KF291335KF291470KF291647
D. dendo Welw. ex HiernK21197Central African RepublicHarris & Fay 1594KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291336
D. dichroa SandwithW13French GuianaSabatier et al. 4457WDQ923904EU980673DQ924011EU981088
D. dictyoneura HiernEb038ThailandDuangjai 100KUFF, WEU980674EU980820EU980943EU981089KF291471KF291648
D. diepenhorstii Miq.Eb042ThailandDuangjai 103KUFF, WDQ923905EU980675DQ924012EU981090KF291472KF291649
D. discolor Willd.Eb088ThailandDuangjai 146KUFF, WUDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291337KF291473KF291650
D. ebenum J. Koenig ex RetzDY06Sri LankaYakandawala 06PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291338
D. ebenumDY08Sri LankaYakandawala 08PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291339
D. ebenumEb174Sri LankaSamuel s.n.WUEU980677EU980821EU980944EU981092
D. ebenumW83IndiaRamesh Diosass-2WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291340
D. ebenumW84IndiaDeFranceschi 21.12.2006WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291341
D. egrettarum I. RichardsonK25788MauritiusPage 122MAUDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291342
D. ehretioides Wall. ex G. DonEb043ThailandDuangjai 104KUFF, WDQ923907EU980678DQ924014EU981093KF291474KF291651
D. eriantha Charmp. ex BenthW63TaiwanChung & Anderberg 1401HASTDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291343
D. erudita F. WhiteBT287New CaledoniaChambrey & Turner 20NOUKF291806KF291865KF291924KF291344KF291475KF291652
D. eruditaM2359New CaledoniaMunzinger et al. 2359NOU003840EU980845EU980739EU980968EU981154KF291476KF291653
D. erudita/pustulataM3010New CaledoniaMunziner et al. 3010NOU008358EU980841EU980735EU980964EU981150
D. fasciculosa (F. Muell.) F. Muell.BT014New CaledoniaMunzinger et al. 6617NOUKF291477KF291654
D. fasciculosaBT142New CaledoniaMacKee 27341NOU022840KF291478KF291655
D. fasciculosaBT165New CaledoniaKF291479KF291656
D. fasciculosaBT166New CaledoniaKF291480KF291657
D. fasciculosaBT335New CaledoniaKF291481KF291658
D. fasciculosaM2127New CaledoniaMunzinger 2127NOU003604DQ923908EU980679DQ924015EU981094KF291482KF291659
D. fasciculosaYP243New CaledoniaPillon et al. 243NOU010096EU980822EU980680EU980945EU981095KF291483KF291660
D. ferox Bakh.Eb146BruneiDuangjai et al. 012BRUN, W, WUDQ923909EU980681DQ924016EU981096KF291484KF291661
D. ferruginescens Bakh.Eb143BruneiDuangjai et al. 007BRUN, W, WUDQ923911EU980685DQ924018EU981100
D. filipendula Pierre ex LecomteEb048ThailandDuangjai 109KUFFDQ923912EU980686DQ924019EU981101KF291485KF291662
D. flavocarpa (Vieill. ex P. Parm.) F. WhiteBT126New CaledoniaMunzinger et al. 6625NOUKF291807KF291866KF291925KF291345KF291486KF291663
D. flavocarpaBT127New CaledoniaMunzinger et al. 6625NOUKF291808KF291867KF291926KF291346KF291487KF291664
D. flavocarpaBT156New CaledoniaMunzinger et al. 6632NOUKF291488KF291665
D. flavocarpaK20607New CaledoniaMcPherson & Lowry 18563NOU022877DQ923913EU980687DQ924020EU981102KF291489KF291666
D. flavocarpaK20614New CaledoniaLowry et al. 5783NOU023319EU980870EU980782EU980993EU981197
D. flavocarpaM2235New CaledoniaMunzinger 2235NOU006659EU980825EU980688EU980948EU981103KF291490KF291667
D. flavocarpaM2905New CaledoniaMunzinger et al. 2905NOU007977EU980826EU980689EU980949EU981104
D. fragrans GürkeK22454GabonSIMAB 010610MODQ923914EU980690DQ924021EU981105
D. frutescens BlumeEb049ThailandDuangjai 110KUFF, WEU980827EU980691EU980950EU981106
D. fulvopilosa FletcherEb052ThailandDuangjai 113KUFF, WDQ923915EU980692DQ924022EU981107KF291491KF291668
D. fuscovelutina BakerRF938MadagascarRF 938WDQ923979EU980803DQ924088EU981218
D. gabunensis GürkeK22560TanzaniaBidgood et al. 2890KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291347
D. gilletii De WildK21198CameroonHarris & Fay 884KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291348
D. glandulosa LaceEb053ThailandDuangjai 114KUFF, WDQ923916EU980693DQ924023EU981108KF291492KF291669
D. glans F. WhiteBT019New CaledoniaKF291809KF291868KF291927KF291349
D. glansBT093New CaledoniaTurner et al. 093MPUKF291810KF291869KF291928KF291350KF291493KF291670
D. glansBT094New CaledoniaTurner et al. 094MPUKF291811KF291870KF291929KF291351KF291494KF291671
D. glaucifolia MetcalfK14256ChinaChase 14256KDQ923917EU980694DQ924024EU981109
D. cf. gracilipes HiernRF978MadagascarRNF 978WDQ923918EU980695DQ924025EU981110
D. gracilis FletcherEb058ThailandDuangjai 019BK, BKF, KUFF, WUKF291812KF291871KF291930KF291352KF291495KF291672
D. greenweyi F. WhiteK21205SomaliaFriis et al. 4991KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291353
D. grisebachii (Heirn) Standl.W64CubaAbbott 18937WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291354
D. guianensis (Aubl.) GürkeW14French GuianaPrévost & Sabatier 4029WDQ923919EU980696DQ924026EU981111
D. guianensisW78French GuianaMori 25921NY, WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291355
D. hartmaniana S. KnappK22455PanamaMcPherson & Richardson 15959MODuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291356
D. impolita F. WhiteBT102New CaledoniaSchmid 5010NOU019538KF291813KF291872KF291931KF291357KF291496KF291673
D. impolitaBT105New CaledoniaSchmid 5010NOU019538KF291814KF291873KF291932KF291358KF291497KF291674
D. inconstans Jacq.W79EcuadorRainer 1682WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291359
D. inexplorata F. WhiteBT304New CaledoniaMacKee 22791NOU005818KF291815KF291874KF291933KF291360KF291498KF291675
D. inexplorataBT311New CaledoniaMacKee 22791NOU005818KF291816KF291875KF291934KF291361KF291499KF291676
D. insidiosa Bakh.Eb061ThailandDuangjai 120KUFF, WDQ923920EU980697DQ924027EU981112
D. iturensis (Gürke) Letouzey & F. WhiteK21204CameroonHarris & Fay 1513KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291362
D. kaki L.f.K920JapanChase 920KDQ923921EU980698DQ924028EU981113KF291500KF291677
D. kirkii HiernK22551ZimbabwePoilecot 7650KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291363
D. kupensis GoslineAR62CameroonRussell 62KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291501KF291678
D. labillardierei F. WhiteBT121New CaledoniaMunzinger et al. 6624NOUKF291817KF291876KF291935KF291364KF291502KF291679
D. labillardiereiBT122New CaledoniaMunzinger et al. 6624NOUKF291818KF291877KF291936KF291365KF291503KF291680
D. labillardiereiBT179New CaledoniaKF291504KF291681
D. labillardiereiK20763New CaledoniaMcPherson & Munzinger 18038MODQ923922EU980699DQ924029EU981114
D. labillardiereiM2219New CaledoniaMunzinger 2219NOU006657EU980828EU980700EU980951EU981115KF291505KF291682
D. labillardiereiM3053New CaledoniaMunzinger 3053NOU008407EU980829EU980701EU980952EU981116KF291506KF291683
D. lanceifolia Roxb.K1245IndonesiaChase 1245KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291366
D. leucomelas Poir.K25752MauritiusPage 16MAUDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291367
D. lotus L.D16Living coll. HBVTurner D16Living coll. HBVKF291507KF291684
D. lotusK965Living coll. Kew 1882-3501Chase 965KDQ923924EU980703DQ924031EU981118
D. macrocarpa (Vieill.) HiernBT043New CaledoniaKF291508KF291685
D. macrocarpaBT044New CaledoniaKF291509KF291686
D. macrocarpaBT048New CaledoniaKF291510KF291687
D. macrocarpaBT049New CaledoniaKF291511KF291688
D. macrocarpaBT050New CaledoniaKF291512KF291689
D. macrocarpaM2014New CaledoniaMunzinger 2014NOU003637EU980830EU980704EU980953EU981119
D. macrocarpaM2829New CaledoniaMunzinger 2829NOU008233DQ923925EU980705DQ924032EU981120
D. maingayi (Hiern) Bakh.Eb073ThailandDuangjai 131KUFF, WDQ923926EU980706DQ924033EU981121
D. malabarica (Desr.) Kostel.Eb066ThailandDuangjai 006KUFF, WEU980708DQ923928DQ924035EU981123
D. malabaricaK1247IndonesiaChase 1247KDQ923927EU980707DQ924034EU981122
D. malabaricaW47South East Asia, cult. USAAbbott 14325WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291368
D. mannii HiernK20597GhanaMerello et al. 1348MODQ923929EU980709DQ924036EU981124
D. margaretae F. WhiteYP1267New CaledoniaPillon 1267NOU049432, WU062863KF291819KF291878KF291937KF291369KF291513KF291690
D. maritima BlumeEb209MalaysiaWallnöfer 13948WDQ923930EU980710DQ924037EU981125
D. melanida Poir.K25786MauritiusPage 112MAUDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291370
D. melocarpa F. WhiteK22457GabonSIMAB 012319MODQ923931EU980711DQ924038EU981126
D. mespiliformis Hochst. Ex A.DC.Eb206Tropical AfricaWallnöfer & Duangjai 13945WDQ923932EU980712DQ924039EU981127KF291514KF291691
D. mespiliformisW60SenegalPrinz 2005-5WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291371
D. minimifolia F. WhiteBT131New CaledoniaDagostini 203NOU019556KF291820KF291879KF291938KF291372KF291515KF291692
D. minimifoliaBT133New CaledoniaDagostini 203NOU019556KF291821KF291880KF291939KF291373KF291516KF291693
D. minimifoliaBT231New CaledoniaVeillon 7206NOU019554KF291517KF291694
D. minimifoliaBT264New CaledoniaChambrey & Turner 24NOU079549, WU062872KF291518KF291695
D. minimifoliaM2214New CaledoniaMunzinger 2214NOU006263EU980831EU980714EU980954EU981129KF291519KF291696
D. minimifoliaM2374New CaledoniaMunzinger 2374NOU006677EU980832EU980715EU980955EU981130KF291520KF291697
D. minimifolia/pustulataBT143New CaledoniaKF291521KF291698
D. mollis Griff.Eb074ThailandDuangjai 132KUFF, WDQ923934EU980716DQ924041EU981131KF291522KF291699
D. montana Roxb.Eb078ThailandDuangjai 136KUFF, WDQ923935EU980717DQ924042EU981132
D. montanaEb130ThailandDuangjai & Sinbumrung 017KUFF, WDQ923943EU980733DQ924050EU981148
D. myriophylla (H. Perrier) G.E. Schatz & LowryW34MadagascarSieder 209WDQ923974EU980797DQ924083EU981212
D. natalensis (Harv.) BrenanK22554ZambiaBingham 10635KDQ923936EU980718DQ924043EU981133
D. nigra (J.F. Gmel.) PerrierK212Cult. MexicoChase 212NCUDQ923906EU980676DQ924013EU981091
D. nigraK1146Cult. MexicoChase 1146KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291374
D. obliquifolia (Hiern ex Gürke) F. WhiteW91CameroonRainer 6.3.2007WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291375
D. oblonga Wall. Ex G. Don.Eb083ThailandDuangjai 141KUFF, WDQ923937EU980719DQ924044EU981134
D. olen HiernBT001New CaledoniaMunzinger et al. 6609NOUKF291822KF291881KF291940KF291376KF291523KF291700
D. olenBT032New CaledoniaKF291524KF291701
D. olenBT034New CaledoniaKF291525KF291702
D. olenBT169New CaledoniaMunzinger et al. 6634NOUKF291526KF291703
D. olenBT302New CaledoniaKF291527KF291704
D. olenK20598New CaledoniaLowry et al. 5628MO, NOU004840DQ923938EU980720DQ924045EU981135
D. olenM2827New CaledoniaMunzinger 2827NOU008235EU980833EU980721EU980956EU981136
D. olenYP153New CaledoniaPillon 153NOU006438EU980834EU980722EU980957EU981137
D. oubatchensis Kosterm.BT160New CaledoniaLeCore et al. 768NOU079472KF291823KF291882KF291941KF291377KF291528KF291705
D. oubatchensisBT161New CaledoniaLeCore et al. 768NOU079472KF291824KF291883KF291942KF291378KF291529KF291706
D. oubatchensisM3118New CaledoniaMunzinger 3118NOU009675EU980835EU980723EU980958EU981138
D. oubatchensisM3333New CaledoniaMunzinger 3333NOU011201EU980836EU980724EU980959EU981139
D. ovalifolia WightDY10Sri LankaYakandawala 10PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291379
D. pancheri Kosterm.BT027New CaledoniaMunzinger et al. 6619NOUKF291825KF291884KF291943KF291380KF291530KF291707
D. pancheriBT028New CaledoniaMunzinger et al. 6619NOUKF291826KF291885KF291944KF291381KF291531KF291708
D. pancheriBT029New CaledoniaMunzinger et al. 6619NOUKF291532KF291709
D. pancheriBT030New CaledoniaMunzinger et al. 6620NOUKF291533KF291710
D. pancheriBT031New CaledoniaMunzinger et al. 6620NOUKF291534KF291711
D. pancheriBT033New CaledoniaMunzinger et al. 6620NOUKF291827KF291886KF291945KF291382KF291535KF291712
D. pancheriBT035New CaledoniaMunzinger et al. 6620NOUKF291536KF291713
D. pancheriBT076New CaledoniaKF291537KF291714
D. pancheriM2138New CaledoniaMunzinger 2138NOU003868EU980837EU980725EU980960EU981140KF291538KF291715
D. pancheri/parvifloraM2338New CaledoniaMunzinger 2338NOU006586EU980838EU980726EU980961EU981141KF291539KF291716
D. parviflora (Schltr.) Bakh.BT038New CaledoniaKF291828KF291887KF291946KF291383
D. parvifloraBT039New CaledoniaKF291829KF291888KF291947KF291384KF291540KF291717
D. parvifloraBT040New CaledoniaKF291541KF291718
D. parvifloraBT042New CaledoniaKF291542KF291719
D. parvifloraBT187New CaledoniaMunzinger et al. 6636NOUKF291543KF291720
D. parvifloraM2037New CaledoniaMunzinger 2037NOU002519EU980839EU980727EU980962EU981142KF291544KF291721
D. parvifloraM2071New CaledoniaMunzinger 2071NOU002608EU980869EU980776EU980992EU981191KF291545KF291722
D. parvifloraM2708New CaledoniaMunzinger 2708NOU006658EU980728EU980840EU980963EU981143
D. parvifloraM3035New CaledoniaMunzinger 3035NOU008397EU980842EU980736EU980965EU981151
D. pentamera (Woolls & F. Muell.) F. Muell.K22549AustraliaForster & Booth 25525KDQ923939EU980729DQ924046EU981144
D. perplexa F. WhiteBT004New CaledoniaMunzinger et al. 6611NOUKF291830KF291889KF291948KF291385KF291546KF291723
D. perplexaBT005New CaledoniaMunzinger et al. 6611NOUKF291831KF291890KF291949KF291386KF291547KF291724
D. perplexaBT009New CaledoniaMunzinger et al. 6611NOUKF291832KF291891KF291950KF291387KF291548KF291725
D. perplexaBT147New CaledoniaMunzinger et al. 6630NOUKF291549KF291726
D. perplexaBT148New CaledoniaMunzinger et al. 6630NOUKF291550KF291727
D. perplexaVH3614New CaledoniaHequet et al. 3614NOU016957EU980873EU980786EU980996EU981201KF291551KF291728
D. philippinensis A.DC.K1248IndonesiaChase 1248KDQ923940EU980730DQ924047EU981145
D. philippinensisW62TaiwanChung & Anderberg 1400HASTDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291388
D. pilosanthera BlancoEb091ThailandDuangjai 149KUFF, WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291389
D. pilosiuscula G. DonEb092ThailandDuangjai 150KUFF, WDQ923941EU980731DQ924048EU981146
D. preussii GürkeLPJMO39CameroonLPJMO39YADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291390
D. pruriens DalzellW81IndiaDeFranceschi 18.12.2006WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291391
D. pseudomespilus Mildbr.K20606GabonWalters et al. 956MODQ923942EU980732DQ924049EU981147
D. puncticulosa Bakh.Eb150BruneiDuangjai et al. 018BRUN, W, WUDQ923944EU980734DQ924051EU981149
D. pustulata F. WhiteBT113New CaledoniaKF291833KF291892KF291951KF291392KF291552KF291729
D. pustulataBT114New CaledoniaKF291834KF291893KF291952KF291393KF291553KF291730
D. pustulataBT136New CaledoniaMunzinger et al. 6629NOUKF291554KF291731
D. pustulataBT137New CaledoniaMunzinger et al. 6629NOUKF291555KF291732
D. pustulataBT257New CaledoniaCambrey & Turner 21NOU079548, WU062871KF291556KF291733
D. pustulataM3580New CaledoniaMunzinger 3580NOU016720EU980843EU980737EU980966EU981152KF291557KF291734
D. pustulataM3584New CaledoniaMunzinger 3584NOU016734EU980844EU980738EU980967EU981153KF291558KF291735
D. pustulataVH3638New CaledoniaHequet et al. 3638NOU017016KF291559KF291736
D. pustulata/yahouensisBT259New CaledoniaChambrey & Turner 26WU062855KF291835KF291894KF291953KF291394KF291560KF291737
D. racemosa Roxb.Eb106ThailandDuangjai 164KUFFEU980856EU980759EU980979EU981174KF291561KF291738
D. revaughanii I. RichardsonK25760MauritiusPage 47MAUDuangjai unpublDuangjai unpublDuangjai unpublKF291395
D. revolutissima F. WhiteBT116New CaledoniaMacKee 22382NOU023189KF291836KF291895KF291954KF291396KF291562KF291739
D. revolutissimaBT117New CaledoniaMacKee 22382NOU023189KF291837KF291896KF291955KF291397KF291563KF291740
D. revolutissimaBT218New CaledoniaMunzinger et al. 6640NOUKF291564KF291741
D. revolutissimaBT219New CaledoniaMunzinger et al. 6640NOUKF291565KF291742
D. revolutissimaYP204New CaledoniaPillon 204NOU009155EU980846EU980740EU980969EU981155KF291566KF291743
D. rhodocalyx KurzEb096ThailandDuangjai 154KUFF, WUKF291838KF291897KF291956KF291398KF291567KF291744
D. rhombifolia Hemsl.Eb129ThailandDuangjai & Sinbumrung 016KUFF, WDQ923945EU980741DQ924052EU981156
D. cf. rhombifoliaW76Cult. USA, (South East Asia)Abbott 20824WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291399
D. ridleyi Bakh.Eb138BruneiDuangjai et al. 002BRUN, W, WUDQ923946EU980742DQ924053EU981157KF291568KF291745
D. rigida HiernEb140BruneiDuangjai et al. 004BRUN, W, WUDQ923947EU980743DQ924054EU981158
D. ropourea B. Walln.W20French GuianaWallnöfer 13459WDQ923948EU980744DQ924055EU981159
D. salicifolia Humb. & Bonpl. ex Willd.W66GuatemalaAbbott 19765WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291400
D. salicifoliaW67GuatemalaAbbott 19777WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291401
D. samoensis A. GrayEb176Cult. Hawaii Bot GardenKiehn s.n.WUEU980745EU980847EU980970EU981160
D. samoensisM3593VanuatuMunzinger 3593NOU080070EU980848EU980746EU980971EU981161
D. samoensisM3624VanuatuMunzinger 3624NOU080138, NOU080139EU980849EU980747EU980972EU981162KF291569KF291746
D. samoensisM3691VanuatuMunzinger 3691NOUEU980850EU980748EU980973EU981163
D. sandwicensis (A.DC.) FosbergEb175Cult. Hawaii Bot GardenKiehn s.n.WUEU980851EU980749EU980974EU981164KF291570KF291747
D. scabra (Chiov.) Cufod.K21206EthiopiaWondefrash & Tefera 9622KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291402
D. scalariformis FletcherEb172ThailandDuangjai & Sinbumrung s.n.KUFF, WEU980750EU980852EU980975EU981165
D. senensis KlotzschK22552ZambiaBingham 11092KEU980853EU980751EU980976EU981166
D. squarrosa KlotzschK21207SomaliaFriis et al. 4894KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291417
D. squarrosaK22555ZambiaBingham & Downie 11465KEU980854EU980752EU980977EU981167
D. styraciformis King & GambleEb149BruneiDuangjai et al. 017BRUN, W, WUDQ923949EU980753DQ924056EU981168
D. sumatrana Miq.Eb099ThailandDuangjai 157KUFF, WEU980855EU980754EU980978EU981169
D. tenuiflora A.C.Sm.W32BrazilMaas et al. 9186NY, WDQ923923EU980702DQ924030EU981117
D. tesselaria Poir.K25751MauritiusPage 15MAUDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291418
D. tetrandra HiernW31French GuianaPrévost & Sabatier 4713WDQ923951EU980756DQ924058EU981171
D. tetrasperma Sw.K14254MexicoChase 14254K, WDQ923952EU980757DQ924059EU981172
D. texana ScheeleEb208Middle AmericaWallnöfer & Duangjai 13946WDQ923953EU980758DQ924060EU981173KF291575KF291752
D. tireliae F. WhiteM5725New CaledoniaMunzinger 5725NOU051026KF291843KF291902KF291961KF291419KF291576KF291753
D. tridentata F. WhiteBT202New CaledoniaMunzinger et al. 6639NOUKF291844KF291903KF291962KF291420KF291577KF291754
D. tridentataBT203New CaledoniaMunzinger et al. 6639NOUKF291845KF291904KF291963KF291421KF291578KF291755
D. trisulca F. WhiteBT185New CaledoniaHequet (leg. Butin) 3820NOU031344KF291846KF291905KF291964KF291422KF291579KF291756
D. trisulcaBT189New CaledoniaHequet (leg. Butin) 3820NOU031344KF291847KF291906KF291965KF291423KF291580KF291757
D. trisulcaBT192New CaledoniaHequet (leg. Butin) 3820NOU031344KF291848KF291907KF291966KF291424KF291581KF291758
D. trisulcaBT197New CaledoniaMunzinger et al. 6637NOUKF291582KF291759
D. trisulcaM3179New CaledoniaMunzinger 3179NOU016896EU980871EU980784EU980994EU981199
D. trisulcaM3260New CaledoniaMunzinger 3260NOU016891, WU062868EU980872EU980785EU980995EU981200KF291583KF291760
D. cf. ulo Merr.Eb152BruneiDuangjai et al. 021BRUN, W, WUEU980857EU980760EU980980EU981175KF291462KF291639
D. umbrosa F. WhiteBT065New CaledoniaKF291849KF291908KF291967KF291425KF291584KF291761
D. umbrosaBT066New CaledoniaKF291585KF291762
D. umbrosaBT071New CaledoniaKF291586KF291763
D. umbrosaBT246New CaledoniaMcPherson 2144NOU023234KF291850KF291909KF291968KF291426KF291587KF291764
D. umbrosaBT247New CaledoniaMcPherson 2144NOU023234KF291851KF291910KF291969KF291427KF291588KF291765
D. umbrosaBT256New CaledoniaMcPherson 2144NOU023234KF291589KF291766
D. umbrosaM2265New CaledoniaMunzinger 2265NOU006679EU980858EU980761EU980981EU981176KF291590KF291767
D. umbrosaM2636New CaledoniaMunzinger 2636NOU006678EU980859EU980762EU980982EU981177KF291591KF291768
D. umbrosaM2771New CaledoniaMunzinger 2771NOU007912EU980860EU980763EU980983EU981178KF291592KF291769
D. undulata Wall. Ex G. DonEb112ThailandDuangjai 170KUFF, WDQ923954EU980764DQ924061EU981179
D. veillonii F. WhiteBT224New CaledoniaVeillon 7919NOU019582KF291852KF291911KF291970KF291428KF291593KF291770
D. veilloniiBT229New CaledoniaVeillon 7919NOU019582KF291853KF291912KF291971KF291429KF291594KF291771
D. veilloniiM.sn.New CaledoniaMunzinger s.n.Living coll. Hortus VeilloniiEU980861EU980765EU980984EU981180KF291595KF291772
D. venosa Wall ex A.DCEb119ThailandDuangjai 177KUFF, WDQ923955EU980767DQ924062EU981182KF291596KF291773
D. venosaEb131ThailandDuangjai 059KUFF, WEU980862EU980766EU980985EU981181
D. vera (Lour.) A. Chev.DY16Sri LankaYakandawala 16PDAEU980823EU980682EU980946EU981097
D. veraEb045ThailandDuangjai 106KUFFDQ923910EU980683DQ924017EU981098KF291597KF291774
D. veraK21193Central African RepublicHarris & Fay 2032KEU980824EU980684EU980947EU981099
D. vestita BenoistW01French GuianaMolino 1849WDQ923956EU980768DQ924063EU981183
D. vieillardii (Hiern) Kosterm.BT025New CaledoniaMunzinger et al. 6618NOUKF291854KF291913KF291972KF291430KF291598KF291775
D. vieillardiiBT026New CaledoniaMunzinger et al. 6618NOUKF291855KF291914KF291973KF291431KF291599KF291776
D. vieillardiiBT055New CaledoniaKF291600KF291777
D. vieillardiiBT057New CaledoniaKF291601KF291778
D. vieillardiiBT099New CaledoniaKF291602KF291779
D. vieillardiiBT100New CaledoniaKF291603KF291780
D. vieillardiiBT213New CaledoniaMacKee 25141NOU023242KF291604KF291781
D. vieillardiiBT214New CaledoniaMacKee 25141NOU023242KF291605KF291782
D. vieillardiiBT286New CaledoniaChambrey & Turner 13NOU054004, WU062859KF291606KF291783
D. vieillardiiBT325New CaledoniaMunzinger et al. 6657NOU, PKF291607KF291784
D. vieillardiiM2106New CaledoniaMunzinger 2106NOU006676EU980863EU980769EU980986EU981184KF291608KF291785
D. vieillardiiM2776New CaledoniaMunzinger 2776NOU008207EU980864EU980770EU980987EU981185
D. vieillardiiM3476New CaledoniaMunzinger 3476NOU012947KF291609KF291786
D. vieillardiiM3572New CaledoniaMunzinger 3572NOU016733EU980866EU980772EU980989EU981187KF291610KF291787
D. vieillardiiYP146New CaledoniaPillon 146NOU006400EU980867EU980773EU980990EU981052KF291611KF291788
D. virginiana L.K14255USAChase 14255KDQ923957EU980774DQ924064EU981189KF291612KF291789
D. wallichii King & Gamble ex KingEb122ThailandDuangjai 180KUFF, WEU980868EU980775EU980991EU981190KF291613KF291790
D. wallichiiEb165BruneiDuangjai et al. 41BRUN, W, WUKF291614KF291791
D. winitii FletcherEb123ThailandDuangjai 181KUFF, WUKF291615KF291792
D. yahouensis (Schltr.) Kosterm.BT237New CaledoniaSchlechter 15059P00057340KF291856KF291915KF291974KF291432KF291616KF291793
D. yahouensisBT238New CaledoniaSchlechter 15059P00057340KF291857KF291916KF291975KF291433KF291617KF291794
D. yahouensisBT239New CaledoniaSchlechter 15059P00057340KF291618KF291795
D. yahouensisVH3637New CaledoniaHequet et al. 3637NOU017017KF291858KF291917KF291976KF291434KF291619KF291796
D. yatesiana Standl.W27GuatemalaFrisch s.n.WDQ923958EU980777DQ924065EU981192
D. sp. Pic N’gaBT318New CaledoniaMunzinger 6065NOUKF291839KF291898KF291957KF291404KF291572KF291749
D. sp. Pic N’gaBT319New CaledoniaMunzinger 6065NOUKF291840KF291899KF291958KF291405KF291573KF291750
D. sp. Pic N’gaBT320New CaledoniaMunzinger 6065NOUKF291841KF291900KF291959KF291406KF291574KF291751
D. sp.FS1637MadagascarFischer & Sieder 1637WDQ923959EU980778DQ924066EU981193
D. sp.FS2217MadagascarFischer & Sieder 2217WDQ923960EU980779DQ924067EU981194
D. sp.K20600MadagascarRabenantoandro et al. 1246MODQ923961EU980780DQ924068EU981195
D. sp.K20601MadagascarRabevohitra et al. 3660MODQ923973EU980796DQ924082EU981211
D. sp.K20613ZambiaZimba et al. 893MODQ923962EU980781DQ924069EU981196
D. sp.K20616GhanaSchmidt et al. 2207MODQ923963EU980783DQ924070EU981198
D. sp.K25759MauritiusPage 46MAUDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291403
D. sp.RF958MadagascarRNF 958WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291407
D. sp.RF959MadagascarRNF 959WDQ923980EU980804DQ924089EU981219
D. sp.RF970MadagascarRNF 970WDQ923964EU980787DQ924071EU981202
D. sp.S10Sri LankaSamuel 10PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291408
D. sp.S12Sri LankaSamuel 12PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291409
D. sp.S18Sri LankaSamuel 18PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291410
D. sp.S22Sri LankaSamuel 22PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291411
D. sp.S25Sri LankaSamuel 25PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291412
D. sp.S26Sri LankaSamuel 26PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291413
D. sp.S28Sri LankaSamuel 28PDADuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291414
D. sp.W33MadagascarSieder 440WKF291842KF291901KF291960KF291415KF291571KF291748
D. sp.W36MadagascarSieder et al. 258WDQ923965EU980788DQ924072EU981203
D. sp.W77MadagascarSieder et al. 3079WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291416
Euclea crispa (Thunb.) GürkeEb202Living coll. HBV (EB 4/2)Wallnöfer 13949WDQ923966EU980789DQ924073EU981204
Euclea crispaK21188MalawiChapman & Chapman 8085KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291435
Euclea divinorum HiernEb201Cult. HBV (EB 2/1, Salisburg 69)Wallnöfer & Duangjai 13947WDQ923967EU980790DQ924074EU981205
Euclea natalensis A.DC.K21186ZimbabweTimberlake & Cunliffe 4389KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291436
Euclea natalensisW08South AfricaKurzweil E514WDQ923968EU980791DQ924075EU981206
Euclea pseudobenus E. Mey. ex A.DCK21190NamibiaWard 9205KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291437
Euclea racemosa L.K21183SomaliaThulin 10739KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291438
Euclea sp.W58TanzaniaKutalek 1-2001WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291439
Euclea sp.W59TanzaniaMbeyela 2-2001WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291440
Euclea undulata Thunb.Eb200Cult. HBV (EB 5/2, 1973)Wallnöfer 13897WEU980874EU980792DQ924076EU981207KF291620KF291797
Royena cordata E. Mey ex A.DCK1144South AfricaChase 1144KDQ923975EU980799DQ924084EU981214
Royena glabra L.W05South AfricaKurzweil 2097WDQ923976EU980800DQ924085EU981215
Royena lucida L.Eb203South AfricaWallnöfer & Duangjai 13943WDQ923977EU980801DQ924086EU981216
Royena lucidaW06South AfricaKurzweil E513WDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291442
Royena lycioides Desf. Ex A.DCK977South AfricaChase 977KDQ923978EU980802DQ924087EU981217
Royena sp.K1145South AfricaChase 1145KKF291859KF291918KF291977KF291444
Royena whyteana HiernEb177AfricaKiehn s.n.WUDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291443KF291622KF291799
Royena zombensis B.L. BurttK22558TanzaniaAbdallah & Vollesen 95/106KDuangjai unpubl.Duangjai unpubl.Duangjai unpubl.KF291445
Lissocarpa benthamii GürkeW61VenezuelaBerry et al. 7217PORTDQ923969EU980793DQ924077EU981208
Lissocarpa guianensis GleasonW04GuyanaArets s.n.UDQ923970EU980794DQ924078EU981209
Lissocarpa stenocarpa Steyerm.K20609PeruVásquez & Ortiz-Gentry 25233MODQ923971EU980795DQ924079EU981210
Argania spinosa (L.) SkeelsK978MoroccoChase 978KDQ923981EU980805DQ924090KF291308
Cleyera japonica Thunb.K1690JapanChase 1690KDQ923985EU980811DQ924094KF291309
Halesia carolina L.K910USAChase 910KKF291621KF291798
Madhuca macrophylla (Hassk.) H.J. LamK1363Cult. IndonesiaChase 1363KDQ923982EU980806DQ924091KF291441
Styrax benzoin Dryand.K1371IndonesiaChase 1371KDQ923989EU980809DQ924098KF291446
Styrax officinalis L.K872Living coll. RGB Kew 1973-14474Chase 872KKF291623KF291800

2.2. DNA extraction

For DNA extraction the sorbitol/high-salt CTAB method (Tel-Zur et al., 1999), modified for 2 ml micro-centrifuge tubes, was used. Tubes containing silica gel-dried material were frozen with liquid nitrogen (to keep material frozen during grinding to avoid enzymatic action) and then ground with glass-beads to a fine powder. Prior to extraction, ground material was washed three times with sorbitol buffer.

2.3. PCR and cycle sequencing

We sequenced four plastid regions: atpB, rbcL, trnKmatK (partial trnK intron and complete matK gene) and trnStrnG, which collectively represent approximately 6.5 kb. Primers and PCR conditions are those of Duangjai et al. (2009). We added 136 accessions to the matrix of Duangjai et al. (2009).

Chloroplast-expressed glutamine synthetase (ncpGS) was amplified with primers designed for this study (GScpDio1F and GScpDioR; Table 4). Initial Diospyros sequences for primer design were obtained with the primers and PCR protocol of Yockteng and Nadot (2004). Primers were situated at the end of exon 7 (forward) and beginning of exon 11 (reverse), amplifying a fragment between 700 and 715 bp (Fig. 2). Primers used for PCR were also used for cycle sequencing (Tables 2 and 3).

An external file that holds a picture, illustration, etc.
Object name is gr2.jpg

Schematic diagram of exon 7–exon 11 of ncpGS with primer positions and length of exons and introns. Numbers in parentheses give 5′ end of primers.

Table 2

PCR reactions.

ncpGS1st phyA2nd phyA
18 μl1.1xReddyMix (Thermo Scientific)18 μl1.1xReddyMix (Thermo Scientific)18 μl1.1xReddyMix (Thermo Scientific)
0.4 μlPrimer GScpDio1F (20 pM)0.4 μlPrimer PHYA upstream (20 pM)0.4 μlPrimer PhyADioF (20 pM)
0.4 μlPrimer GScpDioR (20 pM)0.4 μlPrimer PHYA down-stream (20 pM)0.4 μlPrimer PhyADioR (20 pM)
0.7 μlWater0.7 μlWater0.3 μlWater
0.4 μlBSA (20 mg/ml)
0.5 μlDNA0.5 μlDNA0.5 μlPCR product

BSA: bovine albumin serum (Thermo Scientific).

Table 3

PCR conditions.

ncpGS1st phyA2nd phyA
95 °C for 2 min95 °C for 2 min95 °C for 2 min
95 °C for 30 s95 °C for 30 s95 °C for 30 s
58 °C for 30 s35 cycles52 °C for 30 s35 cycles60 °C for 30 s35 cycles
72 °C for 2 min70 °C for 2 min72 °C for 1.5 min
72 °C for 7 min70 °C for 7 min72 °C for 7 min

Table 4

Primers used in this study.

Primer nameFragmentSequence (5’-3’)References
GScp839FncpGSCACCAATGGGGAGGTTATGCYockteng and Nadot (2004)
GScp1056RncpGSCATCTTCCCTCATGCTCTTTGTYockteng and Nadot (2004)
GscpDio1FncpGSCCAATGGGGAGGTTATGCCTGGACAGThis study
GScpDioRncpGSCATCTTCCCTCATGCTCTTTGTACTGThis study
PHYA upstreamphyAGACTTTGARCCNGTBAAGCCTTAYGMathews and Donoghue (1999)
PHYA downstreamphyAGDATDGCRTCCATYTCRTAGTCMathews and Donoghue (1999)
PhyADioFphyAGTBAAGCCTTAYGAAGTCCCGATGAThis study
PhyADioFiphyAGTCAAYGAGGGGGATGRAGAGGGAGThis study
PhyADioRphyAGCRTCCATYTCRTAGTCCTTCCAAGThis study
PhyADioRiphyACTGATTYTCCAAYTCTAACTCCTTGTTGACThis study

Initial PCR products and sequences of PHYA were obtained with the locus-specific primers of Mathews and Donoghue (1999; PHYA upstream [2nd] and PHYA downstream [1st]). As these primers were not specific enough, we cloned the PCR products (see Section 2.4) to be able to design Diospyros-specific PHYA PCR and sequencing primers (PhyADioF, PhyADioR, PhyADioFi and PhyADioRi; Table 4; Fig. 3). However, as the new PCR primers designed for Diospyros did not amplify consistently, we used a two-step amplification protocol. In the first PCR, the universal PHYA primers were used, and then a second nested PCR was performed with the newly designed primers and the product from the first PCR as template. All primers are located in exon 1 of PHYA flanking a region of 1187 bp in length. PCR conditions and composition are provided in Tables 2 and 3. For cycle-sequencing, we used the two internal primers and the external reverse primer.

An external file that holds a picture, illustration, etc.
Object name is gr3.jpg

Schematic diagram of exon 1 of phyA with primer positions and length of exon. Numbers in parentheses give 5′ end of primers.

PCR products were cleaned with a mixture of exonuclease I and alkaline phosphatase (10 units exo I and one unit FastAP, both from Thermo Scientific) and incubated at 37 °C for 45 min followed by 15 min at 80 °C to inactivate enzymes. Cycle sequencing reactions were performed with 0.8 μl BigDye Terminator v3.1 (AB, Live Technologies), 1.0 μl primer (3.2 μM), 1.6 μl 5× sequencing buffer and 6.6 μl cleaned-up PCR product using 35 cycles of 96 °C for 10 s, 50 °C for 5 s and 60 °C for 3 min. Sequences were produced on a capillary sequencer (3730 DNA Analyzer, AB, Life Technologies) following the manufacturer’s protocols.

2.4. Cloning

Cloning was needed to produce PHYA from some accessions; these where than used for development of more specific primers. In addition, cloning of samples was necessary when we failed to obtain good sequences with the Diospyros-specific primers. PCR products were obtained using the universal PHYA primers, and after gel purification (Inivsorb Spin DNA Extraction Kit, Invitek), cleaned products were cloned using the pGEM-T Easy cloning system (Promega), following the manufacturer’s protocol. Cloned fragments were amplified using M13-f47 and M13-r48 primers and the following PCR conditions: initial denaturation 94 °C for 3 min, 35 cycles of denaturation 94 °C for 30 s, annealing 62 °C for 30 s and extension 72 °C for 2 min followed by a final extension at 72 °C for 7 min.

2.5. Sequence assembly, and editing, and phylogenetic analyses

Assembly and editing of sequences was done with the SeqMan Pro of the Lasergene v8.1 software package (DNASTAR); alignment was conducted with MUSCLE v3.8 (Edgar, 2004) and inspected visually using BioEdit v7.0.4 (Hall, 1999). Discrimination between the two copies of PHYA that were recovered from some species was done based on the alignment, and the ‘wrong’ (highly divergent) copy was excluded from further analyses. To test congruence between the data sets, ILD (incongruence length difference) test (Farris et al., 1994) implemented in PAUP* v4b10 (Swofford, 2003; termed the “partition homogeny test”) was carried out with 100 replicates. To speed up this analysis, the neo-endemic clade (where resolution is low due to lack of variability and therefore congruence is unlikely to be detected) was reduced to two accessions (D. sp. Pic N’ga BT318 and D. vieillardii BT025). Results of the ILD test indicated congruence of the four plastid data sets, and therefore the plastid data sets were combined; jModeltest indicated the same model could be used in all analyses without partitioning. Phylogenetic analyses were performed using PAUP* v4b10 (Swofford, 2003) for maximum parsimony (MP) and RaxML (Stamatakis, 2006) for maximum likelihood (ML) analyses. For both methods, bootstrap with 1000 replicates was performed to estimate clade support. For Bayesian inference, the program BEAST v1.7.4 (Drummond et al., 2012) was used. Parsimony and Bayesian analyses were run on the Bioportal computer cluster of the University Oslo (www.bioportal.uio.no), and likelihood analyses were run on CIPRS Science Gateway (http://www.phylo.org/portal2/; Miller et al., 2010). Estimation of evolutionary models and values was conducted with jModeltest v2.0.1 (Darriba et al., 2012; Guindon and Gascuel, 2003). For the Bayesian analyses the general time reversible nucleotide substitution model (GTR; Tavaré, 1986) with among site rate variation modelled with a gamma distribution (GTR + Γ) was used for ncpGS, whereas for plastid data the same model was used but with a proportion of invariable sites (GTR + Γ + I). For PHYA the Hasegawa–Kishino–Yano nucleotide substitution model (HKY; Hasegawa et al., 1985) was used with among site rate variation modelled with a gamma distribution and a proportion of invariable sites (HKY + Γ + I). Base frequencies (uniform), substitution rates between bases (gamma shape 10), alpha (gamma shape 10), kappa (gamma shape 10) and p-inv (uniform) were inferred by Modeltest from each data set. We used a relaxed uncorrelated log-normal clock model (Drummond et al., 2006). As speciation model, we used a Yule model (Gernhard, 2008; Yule, 1925). For further details see Supplementary material S1. Two independent Metropolis-coupled Markov chain Monte Carlo (MCMC) analyses each with 20 million generations were run sampling each 1000th generation. The initial 10% of trees obtained from each MCMC run were removed as burn in; the remaining trees of both runs were used to calculate a maximum clade credibility tree.

2.6. Dating the tree

To obtain an overarching dated tree, we used parts (atpB and rbcL sequences of Cornales and Ericales) of the data set of Bell et al. (2010) and combined it with our matrix. This matrix consisted of two plastid markers (atpB and rbcL), which were analysed as two partitions. Dating analyses were run in BEAST with an uncorrelated log-normal relaxed clock under the GTR + Γ + I model. The tree was calibrated with two fossils, Paleoenkianthus sayrevillensis (90 myr; Nixon and Crepet, 1993) as minimum age for Ericales and A. cryptostoma (34 myr; Basinger and Christophel, 1985) as minimum age for Diospyros clade II. Both groups (Ericales and Diospyros calde II) were defined as monophyletic, including the stem. Following tmrca (time of most recent common ancestor) settings used were: log normal prior distribution with a mean of 1.5, log standard deviation of 0.5 and an offset of 89 (Ericales) and 33 (Diospyros clade II). Priors for the molecular clock were: ucld.stdev: log normal, mean 0.9, log stdev 1, initial value 0.5, mean in real space; ucld.mean: CTMC rate reference (Ferreira and Suchard, 2008, initial value 1. Details of settings for BEAST analysis are provided in Section 2.5 (above) and Supplementary material S2. In addition to the plastid marker dating, we also conducted an analysis with our combined data set. We used the same settings as for the Bayesian analysis, but we added two calibration points: A. cryptostoma at 34 myr (Basinger and Christophel, 1985) as minimum age for Diospyros clade II and the split of Diospyros and its sister clade, Euclea plus Royena, 42 myr, which is the minimum age of that node based on dating exercises with the plastid markers. All settings for the molecular clock were the same as those for the plastid data set. The input file used for dating the combined analysis is provided in Supplementary material S3.

2.7. Chromosome counts of Diospyros

Chromosome preparations were made using Feulgen staining following the protocol from Weiss-Schneeweiss et al. (2009). Root tips were collected from plant material growing in the Botanical Garden of the University of Vienna (HBV) and a private garden in New Caledonia. To arrest mitotic spindles, root tips were treated with 0.002 M 8-hydroxquinoline for 2 h at room temperature and 2 h at 4 °C (always in darkness because 8-hydroxquinoline is light sensitive). Pre-treated material was fixed for 12 h at room temperature in 3:1 ethanol:acetic acid and then stored at −20 °C until examined. Fixed root tips were washed in distilled water to remove fixative, hydrolysed in 5 N HCl for 30 min, washed again with distilled water and stained with Schiff’s reagent for approximately 2 h in the dark. Squash preparations were made under a coverslip in a drop of 45% acetic acid. Counts could only be made for few species because obtaining young, actively growing root-tips from New Caledonian Diospyros is difficult. Collecting root-tips from forest trees and shrubs is not possible because there are too many roots in the soil to determine which is from the plant of interest. An alternative method is to grow seedlings in the lab/greenhouse. Obtaining seeds from tropical plants is not easy because these species do not produce fruit at a specific time of the year and flowering is diffuse (only few flowers produced at a time), so one would have to visit the plants regularly for at least 1 year to collect seed material. The logistics of this in process in New Caledonia were difficult. In addition, we found germination of seeds and maintenance of Diospyros seedlings highly problematic. Fortunately, the material we were able to obtain is well distributed among the genome sizes obtained, so we can conclude more than would otherwise be possible.

2.8. Genome size estimations of Diospyros

Genome size was determined using flow cytometry performed on leaf material. Fresh tissue was used from plants growing in the HBV. In addition, recently collected silica-gel dried material from New Caledonia was used for several measurements because it was not possible to transport fresh leaf material from New Caledonia to the laboratory. Samples were chopped in Otto I buffer (Otto et al., 1981) together with leaves of the internal standard species, Solanum pseudocapsicum, 1C = 1.30 pg (Temsch et al., 2010) or Pisum sativum ´Kleine Rheinländeriń, 1C = 4.42 pg (Greilhuber and Ebert, 1994), according to the method of Galbraith et al. (1983). The isolate was filtered through a 30 μm nylon mesh, and RNA was digested with 15 mg/l RNase A for 30 min at 37 °C. Subsequently, DNA was stained in propidium iodide (50 mg/l) supplemented with Otto II buffer (Otto et al., 1981). Mean fluorescence intensity of a total of 15,000 particles was measured with a CyFlow cytometer (Partec, Münster, Germany) equipped with a green laser (Cobolt Samba, Cobolt AB, Stockholm, Sweden); the 1C-value was calculated according to the formula: (MFIobject/MFIStandard) × 1C-valueStandard, where MFI is the mean fluorescence intensity of the G1 nuclei population. Statistical significance of asymmetry between the results obtained from Diospyros species belonging to clade III and those from clades VII–XI was tested using SPSS 15.0 (SPSS, Chicago; IL, USA) and the non-parametric Mann–Whitney U-test because of non-homogeneity of variances between the two groups of variables (Levene’s test for equality of variances, < 0.05).

3. Results

The data characteristics and statistics from the maximum parsimony analyses of all three individual and the combined data sets are provided in Table 5. Since the focus of this paper is the New Caledonian Diospyros species from clade III, only results pertaining to this group will be discussed in detail. The other species have been included to (i) investigate the utility of these markers for resolving phylogenetic relationships within Diospyros and (ii) further evaluate the hypothesis (proposed by Duangjai et al., 2009) that not all New Caledonian Diospyros resulted from a single colonisation event.

Table 5

Data characteristics and statistics from the maximum parsimony analyses of all three individual and the combined data sets.

Combined plastid markersncpGSphyACombined data set
Total no. of accessions294177177129
No. of outgroup accessions other than Ebenaceae4221
No. of outgroup accessions from Ebenaceae21222
No. of Diospyros accessions269173173126
No. of Diospyros species149646464
No. of New Caledonian accessions9813413486
No. of New Caledonian species28282828
No. of New Caledonian neoendemic accessions8311211274
No. of New Caledonian neoendemic species21212121
Length of alignment6556103911878542
No. of variable characters18805323741845
No. of parsimony informative characters1126 (17.2%)341 (32.8%)223 (18.8%)863 (10%)
No. of parsimony informative characters NCnc44 (0.7%)28 (2.7%)14 (1.2%)79 (0.9%)
Tree length of best parsimony tree (steps)380811716893259
Trees saved (parsimony analysis)21048101870930
Consistency index0.6030.6630.6850.692
Retention index0.8570.8570.8930.848
Best fitting modelGTR + Γ + IGTR + ΓHKY + Γ + I

3.1. Plastid markers

Parsimony analysis of the plastid data set produced 210 equally parsimonious trees, one of which (randomly selected) is shown to demonstrate comparative levels of divergence (Fig. 4). Clade names correspond to those of Duangjai et al. (2009). Resolution among the New Caledonian taxa of clade III is low, but monophyly of these taxa is strongly supported: bootstrap percentage MP (BMP) 88; bootstrap percentage ML (BML) 97; Bayesian posterior probability (BPP) 0.95. Furthermore, D. vieillardii (BMP 99, BML 98, BPP 1.00) and its position as sister (BMP 97, BML 96, BPP 1.00) to the rest of the clade are well supported. Within the NC clade III, only one group of three taxa (D. calciphila, D. inexplorata and D. sp. Pic N’ga) is supported in all three analyses (BMP 91, BML 92, BPP 1.00); this includes all accessions of each species forming unique clusters. There are a few more, weakly supported small groups in which individuals of one population fall together, but they are not consistent among the three analyses and fail to include all accessions of these species.

3.2. Low-copy nuclear markers

Nuclear markers contained proportionally more parsimony informative characters (ncpGS 2.7%, PHYA 1.2%) than the plastid markers (0.7%), but variation was still low. Some species form groups (Fig. 5), but they lack bootstrap and Bayesian posterior probability support. Among the three methods of analysis used for the ncpGS data set, Bayesian inference provides the best resolution (tree not shown), placing D. vieillardii (BBP 0.99) sister (BPP 1.00) to the rest of the NC clade. The relationship between D. veillonii and D. cherrieri (BPP 0.84) is weakly supported, but their position as subsequent sister of the rest of this clade is well supported (BPP 0.99). All individuals of D. umbrosa form a group with two individuals of D. trisulca (BBP 0.91). This set of accessions is subsequently sister (BBP 0.95) to the rest of the clade, within which there is no resolution. In the PHYA tree, there are only a few clades with strong support regardless of method of analysis. Clade III (BMP 100, BML 100, BPP 1.00) as monophyletic unit is confirmed, as well as the monophyly of NC clade III within it (BMP 77, BML 78, BPP 1.00). All included individuals of D. cherrieri fall together (BMP 84, BML 81, BPP 1.00) in the PHYA analyses. Only a single copy of ncpGS was recovered from all accessions investigated, as well as from most of the accessions of PHYA. Species from which two copies of PHYA were obtained when cloned are found in clades IX, X and XI (Fig. 4). The paralogous (divergent) copies of PHYA were easily detected and excluded from the phylogenetic analyses.

An external file that holds a picture, illustration, etc.
Object name is gr5.jpg

Maximum parsimony trees inferred from the nuclear data sets, branch length scaled to same value on both trees. Bold branches have more than 70% support in all three analysis. New Caledonian taxa are coloured, red represents clade III NC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.3. Combined data set

The ILD test found the trees of the plastid and low-copy nuclear markers to be congruent with p-values of 0.01, which indicates that combined analysis was appropriate. In trees inferred from the combined data set (Fig. 6), species of clade III were highly supported (BMP 100, BML 100, BPP 1.00); they include the species of NC clade III, Indian Ocean islands, Thailand and Hawai‘i. Diospyros vera is sister to D. sandwicensis (BMP 100, BML 100, BPP 1.00) and then the NC clade III. NC clade III is moderately to well supported (BMP 83, BML 96, BPP 0.96). The position of D. vieillardii (BMP 100, BML 99, BPP 1.00) as sister to the rest of the clade is strongly supported (BMP 92, BML 98, BPP 1.00). All accessions of each of the two species, D. umbrosa (BMP < 70, BML 75, BPP 1.00) and D. flavocarpa (BMP < 70, BML < 70, BPP 0.99), form unique groups, which together are sister (BMP 100, BML 100, BPP 1.00) to the rest of the group. A sister relationship between D. cherrieri (BMP 96, BML 99, BPP 1.00) and D. veillonii (BMP 78, BML 86, BPP 1.00) is supported (BMP 75, BML 88, BPP 1.00). A clade comprising D. calciphila, D. inexplorata (both on coralline substrates) and D. sp. Pic N’ga (ultramafic substrate) is well supported (BMP 97, BML 99, BPP 1.00).

An external file that holds a picture, illustration, etc.
Object name is gr6.jpg

Baysian maximum clade credibility tree inferred from the combined data set. Bold branches have more than 70% support in all three analysis, nodes with at least one support value [gt-or-equal, slanted]70% are indicated with blue dots (BPP/BMP/BML). New Caledonian taxa are coloured, red represents clade III NC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.4. Dating analysis

We performed two dating analyses. The first one was based on a joint matrix of our plastid sequences together with the data set of Bell et al. (2010), which included many families across the whole Ericales with Cornales as outgroup. This dating analysis was used to get age estimates for the crown node of Ebenaceae, the two subfamilies Ebenoideae and Lissocarpoideae, the split of the three genera of Ebenoideae (Diospyros versus Euclea/Royena) and the main clades of Diospyros. The second dating analysis was based on our combined data set, which was used to infer ages of clades and species within Diospyros. The dating analysis of the over-arching matrix of plastid markers (Fig. S4, Supplementary material) indicates that the two subfamilies of Ebenaceae, Lissocarpoideae and Ebenoideae, diverged around 54 mya (42–65; 95% highest posterior density interval). The split of Diospyros from its sister genera, Euclea plus Royena occurred around 42 mya (35–50). The following conclusions are based on the dating analysis of the combined data set (Fig. 7). The Australian clade of Diospyros (clade II, Fig. 4), including five species from New Caledonia, separated from the rest of the genus around 34 mya (33–36), the New Caledonian and Australian members of this clade diverged around 20 mya (11–29). Divergence among the New Caledonian members began only about 6 mya (3–10). The two large main groups (clades V–XI and clade III, Fig. 4) diverged about 32 mya (25–35). The last common ancestor of D. fasciculosa and D. olen existed around 15 mya (11–19). Diospyros olen is around 5 myr (3–9) old and D. fasciculosa about 6 myr (3–10). Lineages of clade III started to diversify about 19 mya (13–21). Lineages forming NC clade III arrived in New Caledonia around 9 mya (6–13). Diospyros vieillardii is around 7 myr (5–10) old. The clade comprising D. cherrieri and D. veillonii is around 5 myr (3–8) old, and the two species separated around 3 mya (1–5). The clade including D. flavocarpa, D. umbrosa and one accession of D. trisulca is 5 myr (3–7) old. Diospyros flavocarpa is around 4 myr (3–6) old. The relationship between D. umbrosa and D. trisulca is not highly supported, but suggests an age of around 3 myr (2–5) for D. umbrosa. The group comprising D. calciphila, D. inexplorata and D. sp. Pic N’ga appears to be around 2 myr (1–3) old and started to diversify around 0.9 mya (0.5–2). Resolution between other species is too limited to say anything about their ages.

An external file that holds a picture, illustration, etc.
Object name is gr7.jpg

Chronogram based on the combined data set. Ages are given (in million years) for nodes with more than 0.85 BPP. Nodes which were calibrated are marked with a black dot. Yellow bars represent the 95% highest posterior density interval. New Caledonian taxa are coloured, red represents clade III NC.

3.5. Chromosome counts and genome size

Chromosome counts made for Diospyros fasciculosa, D. inconstans, D. macrocarpa, D. minimifolia, D. pentamera, D. pustulata, D. texana, D. veillonii and D. yatesiana indicate that they are all diploid, 2= 30. The counts from the underlined species are here reported for the first time in literature. The other counts confirm results of White (1992).

Measurements of genome size showed differences among the New Caledonian species of Diospyros. Diospyros olen has with 1C = 0.86 pg, the smallest genome of the New Caledonian Diospyros species examined, followed by D. fasciculosa with 1C = 1.13 pg (both clade XI). The investigated species from the NC clade III have larger genomes (mean value 1C = 1.90 pg) than the two mentioned above (Table 6). We were not able to examine New Caledonian species from clade II. Finally, across whole genus Diospyros there is a significant difference (Mann Whitney U test, < 0.001) in genome size between clade III on the one hand and clades VI–XI on the other (Fig. 8). However, D. pentamera of clade II has a comparatively large genome (1C = 1.97 pg).

An external file that holds a picture, illustration, etc.
Object name is gr8.jpg

Boxplot of genome size differences between taxa from clade III and those from clades VII–XI.

Table 6

Genome size of Diospyros and other genera from Ebenoideae. S.D.: standard deviation, N: number of measurements (replicates), S.p.: Solanum pseudocapsicum, P.s.: Pisum sativum ‘Kleine Rheinländerin’.

NameAcc. nr1C-valueS.D.NStandardMaterial
D. calciphilaBT3131.991S.p.Dry
D. calciphilaBT3161.971P.s.Silicagel
D. cherrieriBT2621.650.00925S.p.Dry
D. cherrieriBT2931.570.01172S.p.Silicagel
D. discolorEBE1000260.920.00203S.p.Fresh
D. eruditaBT2602.171S.p.Dry
D. eruditaBT2612.130.03673S.p.Dry
D. eruditaBT2801.880.02533S.p.Silicagel
D. fasciculosaBT0121.190.00313P.s.Silicagel
D. fasciculosaBT1061.130.00643P.s.Silicagel
D. fasciculosaBT1441.220.00323P.s.Silicagel
D. fasciculosaBT1671.020.03184P.s.Silicagel
D. fasciculosaBT2121.090.02272P.s.Silicagel
D. fasciculosaBT3351.140.03003P.s.Silicagel
D. glansBT0192.031S.p.Silicagel
D. glansBT0932.020.01533S.p.Dry
D. impolitaBT1011.791P.s.Silicagel
D. impolitaBT1051.900.01323P.s.Silicagel
D. inconstans1.130.00193S.p.Fresh
D. inexplorataBT3041.940.06933P.s.Silicagel
D. kakiSharon2.290.01213S.p.Dry
D. lotusEBE0.870.00758S.p.Fresh
D. lotusEBE030020.860.00123S.p.Fresh
D. mespiliformisEBE0000011.240.00293P.s.Fresh
D. mespiliformisEBE1000271.270.00353P.s.Fresh
D. minimifoliaBT2301.570.04453P.s.Silicagel
D. olenBT0010.820.00623S.p.Silicagel
D. olenBT0360.870.04753S.p.Silicagel
D. olenBT0960.860.00423S.p.Dry
D. olenBT1860.900.00413S.p.Dry
D. pancheriBT0772.280.01293S.p.Dry
D. parvifloraBT0852.160.04933P.s.Dry
D. pentameraEBE0300201.970.00203S.p.Fresh
D. perplexaBT0022.271S.p.Silicagel
D. pustulataBT1371.540.04902P.s.Silicagel
D. revolutissimaBT2222.050.01484P.s.Dry
D. texanaEBE0200150.890.88493S.p.Fresh
D. texanaEBE1000290.890.00193S.p.Fresh
D. tridentataBT2052.210.02462S.p.Dry
D. tridentataBT2062.091P.s.Dry
D. umbrosaBT1711.611P.s.Silicagel
D. umbrosaBT2471.510.08943P.s.Silicagel
D. vieillardiiBT1001.551P.s.Dry
D. vieillardiiBT2161.570.02383P.s.Dry
D. yatesiana0.600.00105S.p.Fresh
E. divinorumEBE0000021.980.00143S.p.Fresh
E. undulataEBE1000020.740.02203S.p.Fresh
R. whyteanaEBE0300210.790.00313S.p.Fresh
R. whyteanaEBE0300220.780.00073S.p.Fresh

4. Discussion

Previous phylogenetic studies of Diospyros based on plastid markers demonstrated low levels of sequence divergence among New Caledonian species belonging to clade III (Duangjai et al., 2009), and inclusion of additional species in our investigation did not improve resolution in this group. Low-copy nuclear markers have been shown to be highly informative and useful for resolving phylogenetic relationships at lower taxonomic levels in some taxa (e.g. Passiflora: Yockteng and Nadot, 2004; Paeonia: Tank and Sang, 2001). The low-copy markers ncpGS and PHYA used here, however, did not improve resolution in this clade of 21 closely related species, thus preventing detection of hybrids and elucidation of geographical patterns (Fig. 5). There are also examples where low-copy nuclear markers were not able to fully resolve phylogenetic relationships between closely related species, especially on islands (e.g. Pillon et al., 2009a, 2013; Green et al., 2011). Nonetheless, the analysis based on combined plastid and nuclear data provides some resolution of relationships within the NC clade III. Of the 21 entities included in the analyses, seven species and one unidentified taxon formed well defined and inclusive clusters (Fig. 6). The remaining 14 species failed to form groups including all individuals of a particular species, but in many cases it was simply that some accessions were part of a polytomy and did not cluster consistently with any group.

In light of our results, members of the NC clade III appear little diverged but still form a strongly supported clade, which our dating analyses indicate are the result of recent rapid radiation. Only a few studies have examined the adaptive basis and processes involved in speciation in New Caledonia (e.g. Pillon et al., 2009b; Murienne et al., 2009). Rapid radiation has been observed in isolated areas such as islands (e.g. Givnish et al., 2009; Knope et al., 2012), high mountains (e.g. Hughes and Eastwood, 2006) and valleys (e.g. Givnish et al., 2007, 2011; Richardson et al., 2001). Island floras often show high levels of endemism and closely related species groups that result from a single colonisation event followed by rapid speciation, some of which have been hypothesised to represent adaptive radiations (e.g. Hawaiian silverswords, Baldwin and Sanderson, 1998; Hawaiian Bidens, Knope et al., 2012; Araucaria in New Caledonia, Gaudeul et al., 2012). The low levels of variation and resolution detected in the NC clade III prevent us from examining factors that may be promoting speciation on New Caledonia.

As all lineages of New Caledonian Diospyros seem to have arrived relatively recent on this island, the terms paleo-endemics and neo-endemics used by Duangjai et al. (2009) were not used here. The common ancestor of clade III diverged about 19 mya (Fig. 7), and the earlier diverging species occur mainly in Africa and on islands of the western Indian Ocean (e.g. Madagascar). Our results in combination with the DIVA analysis from Duangjai et al. (2009) indicate that, from there, this group spread eastwards via Southeast Asia, where it arrived around 15 mya, and then reached the Hawaiian Archipelago and New Caledonia around 9–10 mya. This time of colonisation is consistent with that found for other plant groups (reviewed in Pillon, 2012) and animals (e.g. Nattier et al., 2011). The close relationship of New Caledonian and Hawaiian endemic Diospyros shows that migration around the Pacific Ocean has taken place, but to make more definite conclusions about the direction of dispersal, data from species present on other islands between New Caledonia and Hawai‘i are needed. In contrast to long-held hypotheses that many taxa are Gondwanan relicts (e.g. Lowry II, 1998; Swenson et al., 2001), our results suggest that all groups of New Caledonian Diospyros are much younger than 37 myr (when New Caledonia re-emerged) and arrived, like many others, via long-distance dispersal (e.g. Bartish et al., 2011; Espeland and Murienne, 2011; Murienne, 2009).

The closely related species of the NC clade III are distinguishable from one another by morphological characters (e.g. leaf, flower, fruit and calyx characters), and many of them are found in different habitats (e.g. humid/dry, different substrate types, different elevations, etc.). Leaf morphology shows adaptation to the environment in which a species occurs (e.g. species found in dry habitats have sclerophyllous leaves; for details of species descriptions see White, 1992, 1993). In most plant groups, closely related species rarely occur in sympatry, but not in New Caledonia where this seems to be a common pattern in several groups (J. Munzinger pers. obs.), including Diospyros. However, Diospyros has been reported to be one of the few genera outside New Caledonia (e.g. Madagascar) with several co-occurring species (pers. comm. P.S. Ashton). The habitats occupied by the New Caledonian Diospyros species belonging to clade III can be roughly divided into seven groups (Table 7). D. vieillardii, a common species found all over Grande Terre and the islands north of the main island in maquis vegetation, occurs on a variety of substrates, including ultramafic. Diospyros umbrosa/D. flavocarpa are sister to the remainder of the clade excluding D. vieillardii (Fig. 6). D. umbrosa occurs only on ultramafic substrates in comparatively humid forests mainly consisting of Nothofagus and Araucaria. D. flavocarpa is found on schist in middle elevation forests in northeastern Grande Terre. Diospyros cherrieri (a local endemic in dry forests on basalts at the western coast of Grande Terre, Fig. 1I) and D. veillonii (a local endemic in dry coastal forests on black clay on the western side of Grande Terre, Fig. 1F) are together sister to the rest of the clade (minus those mentioned above). The clade comprising D. calciphila, D. inexplorata (littoral forests on coralline substrates) and D. sp. from Pic N’ga (maquis on ultramafic substrate on Ile des Pins) is well supported. Relationships among all other members of the clade could not be resolved with the markers used, although most of them are morphologically and ecologically well defined. This phenomenon (morphological and ecological distinctiveness, but no resolution) is found, for example, in D. labillardieri (lanceolate leaves, hanging branches; river edges in middle elevation forests on schist, Fig 1D), D. pancheri (obcordate pubescent leaves, hanging branches, humid forests at low elevation on ultramafic soils, Fig. 1E) and many others. Due to the poor resolution of the phylogenetic trees, possible grouping of New Caledonian Diospyros species according to their ecological niches remains untested.

Table 7

Main habitats of New Caledonian neoendemic Diospyros species.

HabitatSpecies
Maquis on ultramafic substratesD. erudita, D. pancheri, D. parviflora, D. tireliae, D. vieillardii
Dry forests on non-ultramafic substratesD. cherrieri, D. perplexa, D. yahouensis


Humid forests at low elevationsUltramafic substratesD. pancheri, D. parvilfora, D. umbrosa
Calcareous rocksD. tridentata
Humid mountain forests on schistD. flavocarpa, D. labillardierei, D. trisulca


Dry coastal forestsBlack claysD. veillonii, D. minimifolia, D. pustulata (the latter two can also occur on calcareous substrates)
SchistD. impolita
Ultramafic substratesD. revolutissima
Various substratesD. pancheri
Coastal forests on coralline substratesD. calciphila, D. impolita
Humid forests on the east coastD. glans

A greater than threefold variation within the genome size of Diospyros is observed, although the chromosome counts performed here and elsewhere indicates that they are diploid with 2= 30, and we hypothesize that the most recent common ancestor of Diospyros had a large genome because species belonging to earlier diverging clades (e.g. E. divinorum and D. pentamera) have large genomes. Developing firmer ideas about evolution of genome size in Diospyros would require many more measurements of species from throughout the phylogenetic tree, especially species from islands in the Indian and Pacific Ocean, which will be key to assessing evolution of genome size in NC clade III. The limited data available today suggest that polyploidy seems to be rare among wild Diospyros species. The diversification of species of the NC clade III remains an overall poorly understood subject, despite our extensive efforts to find variation relevant to addressing these questions. It seems that we can eliminate polyploidy as one feature of their evolution, but the question of the involvement of hybridization cannot be eliminated without the use of more variable markers. To address patterns of speciation and factors promoting divergence, we will have to turn more markers used in population genetic studies, such as AFLPs, microsatellites or fingerprinting methods based on next generation sequencing methods.

Acknowledgments

This work was funded by a grant from the Austrian Science Fund (FWF, Project-Number: P 22159-B16) awarded to R. Samuel. The authors thank the team of the Department of Systematic and Evolutionary Botany as well as the team of the Botanic Department of IRD Noumea for support with this study. Special thanks go to V. Klenja for the lab work. Thanks to the following persons for their help with lab work, field work and ideas to improve our manuscript: J.-P. Butin, C. Chambrey, G. Dagostini, E. Grasserbauer, V. Hequet, G. Kohl, D. & I. Létocart, F. Maghuly, W. Nigote, O. Paun, G. Schneeweiss, J. Schönenberger, H. Vandrot, Fam. Villegente, B. Wallnöfer and H. Weiss-Schneeweiss.

Footnotes

[star]This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

Appendix ASupplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ympev.2013.07.002.

Appendix A. Supplementary material

Supplementary Figure 1

An external file that holds a picture, illustration, etc.
Object name is fx2.jpg

Dated phylogeny of Ericales based on the a joint matrix the data set of Bell et al. (2010) together with our plastid sequences. Taxa from families other than Ebenaceae are collapsed to family level, taxa other than Diospyros are collapsed to generic level. Multiple accessions of a species are collapsed to species level. The NC clade III part of the tree is mostly collapsed due to lack of support of respective nodes. Nodes which were calibrated with fossils are marked with a black dot. Yellow bars represent the 95% highest posterior density interval. New Caledonian taxa are coloured, red represents clade III NC.

Supplementary data 1:

BEAST input file for the Bayesian analysis of the combined data set. For Bayesian analyses of the individual data sets we used the same settings as in the combined analysis for the respective data set.

Supplementary data 2:

BEAST input file for dating analysis of the plastid marker data set from Bell et al. (2010) merged with our data.

Supplementary data 3:

BEAST input file for dating analysis of the combined data set.

References

Alba R., Kelmsnson P.M., Cordonnier-Pratt M.-M., Pratt L.H. The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms. Molecular Biology and Evolution. 2000;17:362–373. [Abstract] [Google Scholar]
APG III An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society. 2009;161:105–121. [Google Scholar]
Baldwin B.G., Sanderson M.J. Age and rate of diversification of the Hawaiian silversword alliance (Compositae) Proceedings of the National Academy of Sciences USA. 1998;95:9402–9406. [Europe PMC free article] [Abstract] [Google Scholar]
Bartish I.V., Antonelli A., Richardson J.E., Swenson U. Vicariance or long-distance dispersal: historical biogeography of the pantropical subfamily Chrysophylloideae (Sapotaceae) Journal of Biogeography. 2011;38:177–190. [Google Scholar]
Basinger J.F., Christophel D.C. Fossil flowers and leaves of the Ebenaceae from the Eocene of southern Australia. Canadian Journal of Botany. 1985;63:1825–1843. [Google Scholar]
Bell C.D., Soltis D.E., Soltis P.S. The age and diversification of the angiosperms re-revisited. American Journal of Botany. 2010;97:1296–1303. [Abstract] [Google Scholar]
Bennett M.D., Leitch I.J. Genome size evolution in plants. In: Gregory T.R., editor. The Evolution of the Genome. Elsevier; San Diego: 2005. pp. 90–151. [Google Scholar]
Bennett, M.D., Leitch, I.J., 2010. Angiosperm DNA C-Values Database (Release 7.0, December 2010). <http://www.kew.org/cvalues/>.
Bennett J.R., Mathews S. Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A1. American Journal of Botany. 2006;93:1039–1051. [Abstract] [Google Scholar]
Bremer K., Friis E.M., Bremer B. Molecular phylogenetic dating of asterid flowering plants shows early Cretaceous diversification. Systematic Biology. 2004;53:496–503. [Abstract] [Google Scholar]
Darriba D., Taboada G.L., Doallo R., Posada D. JModelTest 2: more models, new heuristics and parallel computing. Nature Methods. 2012;9:772. [Europe PMC free article] [Abstract] [Google Scholar]
Drummond A.J., Ho S.Y.W., Phillips M.J., Rambaut A. Relaxed phylogenetics and dating with confidence. Molecular Biology and Evolution. 2006;29:1969–1973. (PLoS Biology 4, 699–710) [Europe PMC free article] [Abstract] [Google Scholar]
Drummond A.J., Suchard M.A., Xie D., Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution. 2012;29:1969–1973. [Europe PMC free article] [Abstract] [Google Scholar]
Duangjai S., Wallnöfer B., Samuel R., Munzinger J., Chase M.W. Generic delimitation and relationships in Ebenaceae sensu lato: evidence from six plastid DNA regions. American Journal of Botany. 2006;93:1808–1827. [Abstract] [Google Scholar]
Duangjai S., Samuel R., Munzinger J., Forest F., Wallnöfer B., Barfuss M.H.J., Fischer G., Chase M.W. A multi-locus plastid phylogenetic analysis of the pantropical genus Diospyros (Ebenaceae), with an emphasis on the radiation and biogeographic origins of the New Caledonian endemic species. Molecular Phylogenetics and Evolution. 2009;52:602–620. [Abstract] [Google Scholar]
Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004;32:1792–1797. [Europe PMC free article] [Abstract] [Google Scholar]
Emshwiller E., Doyle J.J. Chloroplast-expressed glutamine synthetase (ncpGS): potential utility for phylogenetic studies with an example from Oxalis (Oxalidaceae) Molecular Phylogenetics and Evolution. 1999;12:310–319. [Abstract] [Google Scholar]
Espeland M., Murienne J. Diversity dynamics in New Caledonia: towards the end of the museum model? BMC Evolutionary Biology. 2011;11:254. [Europe PMC free article] [Abstract] [Google Scholar]
Farris J.S., Källersjö M., Kluge A.G., Bult C. Testing significance of incongruence. Cladistics. 1994;10:315–319. [Google Scholar]
Ferreira M.A.R., Suchard M.A. Bayesian analysis of elapsed times in continuous-time Markov chains. The Canadian Journal of Statistics. 2008;36:355–368. [Google Scholar]
Forest F. Calibrating the Tree of Life: fossils, molecules and evolutionary timescales. Annals of Botany. 2009;104:789–794. [Europe PMC free article] [Abstract] [Google Scholar]
Galbraith D.W., Harkins K.R., Maddox J.M., Ayres N.M., Sharma D.P., Firoozabady E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science. 1983;220:1049–1051. [Abstract] [Google Scholar]
Gaudeul M., Rouhan G., Gardner M.F., Hollingsworth P.M. AFLP markers provide insights into the evolutionary relationships and diversification of New Caledonian Araucaria species (Araucariaceae) American Journal of Botany. 2012;99:68–81. [Abstract] [Google Scholar]
Geeraerts A., Raeymaekers J.A.M., Vinckier S., Pletsers A., Smets E., Huysmans S. Systematic palynology in Ebenaceae with focus on Ebenoideae: morphological diversity and character evolution. Review of Palaeobotany and Palynology. 2009;153:336–353. [Google Scholar]
Gernhard T. The conditioned reconstructed process. Journal of Theoretical Biology. 2008;253:769–788. [Abstract] [Google Scholar]
Givnish T.J., Millam K.C., Berry P.E., Sytsma K.J. Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred form ndhF sequence data. Aliso. 2007;23:3–26. [Google Scholar]
Givnish T.J., Millam K.C., Mast A.R., Paterson T.B., Theim T.J., Hipp A.L., Henss J.M., Smith J.F., Wood K.R., Sytsma K.J. Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae) Proceedings of the Royal Society B. 2009;276 407–146. [Europe PMC free article] [Abstract] [Google Scholar]
Givnish T.J., Barfuss M.H.J., Van Ee B., Riina R., Schulte K., Horres R., Gonsiska P.A., Jabaily R.S., Crayn D.M., Smith J.A.C., Winter K., Brown G.K., Evans T.M., Holst B.K., Luther H., Till W., Zizka G., Berry P.E., Sytsma K.J. Phylogeny, adaptive radiation, and historical biogeography in Bromeliacae: insight from an eight-locus plastid phylogeny. American Journal of Botany. 2011;98:872–895. [Abstract] [Google Scholar]
Grandcolas P., Murienne J., Robillard T., Desutter-Grandcolas L., Jourdan H., Guilbert E., Deharveng L. New Caledonia: a very old Darwinian island? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences. 2008;363:3309–3317. [Europe PMC free article] [Abstract] [Google Scholar]
Green A.F., Ramsey T.S., Ramsey J. Phylogeny and biogeography of ivies (Hedera spp., Araliaceae), a polyploid complex of woody vines. Systematic Botnay. 2011;36:1114–1127. [Google Scholar]
Greilhuber J., Ebert I. Genome size variation in Pisum sativum. Genome. 1994;37:646–655. [Abstract] [Google Scholar]
Guindon S., Gascuel O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology. 2003;52:696–704. [Abstract] [Google Scholar]
Guo Y.-P., Wang S.-Z., Vogl C., Ehrendorfer F. Nuclear and plastid haplotypes suggest rapid diploid and polyploid speciation in the N Hemisphere Achillea millefolium complex (Asteraceae) BMC Evolutionary Biology. 2012;12:2. [Europe PMC free article] [Abstract] [Google Scholar]
Hall T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95–98. [Google Scholar]
Hasegawa M., Kishino H., Yano T.-A. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution. 1985;22:160–174. [Abstract] [Google Scholar]
Hughes C., Eastwood R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. PNAS. 2006;103:10334–10339. [Europe PMC free article] [Abstract] [Google Scholar]
Knope M.L., Morden C.W., Funk V.A., Fukami T. Area and the rapid radiation of Hawaiian Bidens (Asteraceae) Journal of Biogeography. 2012;39:1206–1216. [Google Scholar]
Ladiges P.Y., Cantrill D. New Caledonia–Australian connections: biogeographic patterns and geology. Australian Systematic Botany. 2007;20:383–389. [Google Scholar]
Leitch I.J. Genome size through the ages. Heredity. 2007;99:121–122. [Abstract] [Google Scholar]
Lowry P.P., II . Diversity, endemism and extinction in the flora of New Caledonia: a review. In: Peng C.F., Lowry P.P. II, editors. Rare, Threatened, and Endangered Floras of Asia and the Pacific Rim. Institute of Botany; Taipei, Taiwan: 1998. pp. 181–206. [Google Scholar]
Magallón S. Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. Systematic Biology. 2010;59:384–399. [Abstract] [Google Scholar]
Mathews S., Donoghue M.J. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science. 1999;286:947–950. [Abstract] [Google Scholar]
Mathews S., Clements M.D., Beilstein M.A. A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants. Philosophical Transaction of the Royal Society B Biological Sciences. 2010;365:383–395. [Europe PMC free article] [Abstract] [Google Scholar]
McLoughlin S. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany. 2001;49:271–300. [Google Scholar]
Millán-Martínez M. Fossil record and age of the Asteridae. Botanical Reviews. 2010;76:83–135. [Google Scholar]
Miller, M.A., Pfeiffer, W., Schwarz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, Louisiana, 14 November, 2010, pp. 1–8.
Mittermeier R.A., Gil P.R., Hoffmann M., Pilgrim J., Brooks T., Mittermeier C.G., Lamoreux J., da Fonseca G.A.B. CEMEX; Mexico City: 2004. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions. [Google Scholar]
Moody M.L., Rieseberg L.H. Sorting through the chaff, nDNA gene trees for phylogenetic inference and hybrid identification of annual sunflowers (Helianthus sect. Helianthus) Molecular Phylogenetics and Evolution. 2012;64:145–155. [Abstract] [Google Scholar]
Morat P., Jaffré T., Tronchet F., Munzinger J., Pillon Y., Veillon J.-M., Chalopin M. Le référentiel taxonomique Florical et les caractéristiques de la flore vasculaire indigène de la Nouvelle-Calédonie. Adansonia. 2012;34:177–219. [Google Scholar]
Murienne J. Testing biodiversity hypothesis in New Caledonia using phylogenetics. Journal of Biogeography. 2009;36:1433–1434. [Google Scholar]
Murienne J., Grandcolas P., Piulachs M., Bellés X., D’Haese C., Legendre F., Pellens R., Guilbert E. Evolution on a shaky piece of Gondwana: is local endemism recent in New Caledonia? Cladistics. 2005;21:2–7. [Abstract] [Google Scholar]
Murienne J., Guilbert E., Grandcolas P. Species’ diversity in the New Caledonian endemic genera Cephalidiosus and Nobarnus (Insecta: Heteroptera: Tingidae), an approach using phylogeny and species’ distribution modelling. Biological Journal of the Linnean Society. 2009;97:177–184. [Google Scholar]
Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B., Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–858. [Abstract] [Google Scholar]
Nattier R., Robillard T., Desutter-Grandcolas L., Couloux A., Grandcolas P. Older than New Caledonia emergence? A molecular phylogenetic study of the eneopterine crickets (Orthoptera: Grylloidea) Journal of Biogeography. 2011;38:2195–2209. [Google Scholar]
Nie Z.-L., Wen J., Azuma H., Qui Y.-L., Sun H., Meng Y., Sun W.-B., Zimmer E.A. Phylogenetic and biogeographic complexity of Magnoliaceae in the Northern Hemisphere inferred from three nuclear data sets. Molecular Phylogenetics and Evolution. 2008;48:1027–1040. [Abstract] [Google Scholar]
Nixon K.C., Crepet W.L. Late cretaceous fossil flowers with ericalean affinity. American Journal of Botany. 1993;80:616–623. [Google Scholar]
Otto F., Oldiges H., Göhde W., Jain V.K. Flow cytometric measurement of nuclear DNA content variations as a potential in vivo mutagenicity test. Cytometry. 1981;2:189–191. [Abstract] [Google Scholar]
Parisod C., Alix K., Just J., Petit M., Sarilar V., Mhiri C., Ainouche M., Chalhoub B., Grandbastien M.A. Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytologist. 2009;186:37–45. [Abstract] [Google Scholar]
Pelletier B. Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity. In: Payri C., Richer de Forges B., editors. Compendium of marine species from New Caledonia, Documents Scientifiques et Techniques II4. Institut de Recherche pour le Développement Nouméa; 2006. pp. 17–30. [Google Scholar]
Pellicer J., Fay M.F., Leitch I.J. The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society. 2010;164:10–15. [Google Scholar]
Petrov D.A. Evolution of genome size: new approaches to an old problem. Trends in Genetics. 2001;17:23–28. [Abstract] [Google Scholar]
Pillon Y. Time and tempo of diversification in the flora of New Caledonia. Botanical Journal of the Linnean Society. 2012;170:288–298. [Google Scholar]
Pillon Y., Hopkins H.C., Munzinger J., Amir H., Chase M.W. Cryptic species, gene recombination and hybridization in the genus Spiraeanthemum (Cunoniaceae) from New Caledonia. Botanical Journal of the Linnean Society. 2009;161:137–152. [Google Scholar]
Pillon Y., Munzinger J., Amir H., Hopkins H.C., Chase M.W. Reticulate evolution on a mosaic of soils: diversification of the New Caledonian endemic genus Codia (Cunoniaceae) Molecular Ecology. 2009;18:2263–2275. [Abstract] [Google Scholar]
Pillon Y., Munzinger J., Amir H., Lebrun M. Ultramafic soils and species sorting in the flora of New Caledonia. Journal of Ecology. 2010;98:1108–1116. [Google Scholar]
Pillon Y., Johansen J., Sakishima T., Chamala S., Barbazuk W.B., Roalson E.H., Price D.K., Stacy E.A. Potential use of low-copy nuclear genes in DNA barcoding: a comparison with plastid genes in two Hawaiian plant radiations. BMC Evolutionary Biology. 2013;13:35. [Europe PMC free article] [Abstract] [Google Scholar]
Pirie M.D., Doyle J.A. Dating clades with fossils and molecules: the case of Annoaceae. Botanical Journal of the Linnean Society. 2012;169:84–116. [Google Scholar]
Richardson J.E., Pennington R.T., Pennington T.D., Hollingsworth P.M. Rapid diversification of a species-rich genus of Neotropical rain forest trees. Science. 2001;293:2242–2245. [Abstract] [Google Scholar]
Salard M., Avias J. Contribution à la connaissance de la flore fossile de la Nouvelle-Calédonie. Palaeontographica, Abteilung B, Paläophytologie. 1968;124:1–44. [Google Scholar]
Silvestro D., Schnitzler J., Zizka G. A Bayesian framework to estimate diversification rates and their variation through time and space. BMC Evolutionary Biology. 2011;11:311–325. [Europe PMC free article] [Abstract] [Google Scholar]
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. [Abstract] [Google Scholar]
Swenson U., Hill R.S., McLoughlin S. Biogeography of Nothofagus supports the sequence of Gondwana break-up. Taxon. 2001;50:1025–1041. [Google Scholar]
Swofford, D.L., 2003. PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
Tamura M., Tao R., Yonemori K., Utsunomiya N., Sugiura A. Ploidy level and genome size of several Diospyros species. Journal of the Japanese Horticultural Society. 1998;67:306–312. [Google Scholar]
Tank D.C., Sang T. Phylogenetic utility of the glycerol-3-phosphate acyltransferase gene: evolution and implications in Paeonia (Paeoniaceae) Molecular Phylogenetics and Evolution. 2001;19:421–429. [Abstract] [Google Scholar]
Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences. 1986;17:57–86. [Google Scholar]
Tel-Zur N., Abbo S., Myslabodsky D., Mizrahi Y. Modified CTAB procedure for DNA isolation from ephiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae) Plant Molecular Biology Reporter. 1999;17:249–254. [Google Scholar]
Temsch E.M., Greilhuber J., Krisai R. Genome size in liverworts. Preslia. 2010;82:63–80. [Google Scholar]
Weiss-Schneeweiss H., Villaseñor J.L., Stuessy T.F. Chromosome numbers, karyotypes, and evolution in Melampodium (Asteraceae) International Journal of Plant Science. 2009;170:1168–1182. [Google Scholar]
White F. Twenty-two new and little known species of Diospyros (Ebenaceae) from New Caledonia with comments on section Maba. Bulletin du Muséum National d’Histoire naturelle 4ème série – Section B. Adansonia. 1992;2:179–222. [Google Scholar]
White F. Muséum National d’Histoire Naturelle; Paris: 1993. Flore de la Nouvelle-Calédonie et Dépendances. 19. Ébénacées. [Google Scholar]
Yockteng R., Nadot S. Phylogenetic relationships among Passiflora species based on the glutamine synthetase nuclear gene expressed in chloroplast (ncpGS) Molecular Phylogenetics and Evolution. 2004;31:379–396. [Abstract] [Google Scholar]
Yule G.U. A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis, FRS. Philosophical Transactions of the Royal Society of London Series B. 1925;213:21–87. [Google Scholar]
Zimmer E.A., Wen J. Using nuclear gene data for plant phylogenetics: progress and prospects. Molecular Phylogenetics and Evolution. 2012;65:774–785. [Abstract] [Google Scholar]
Zuckerkandl H., Pauling L. Evolutionary divergence and convergence in proteins. In: Bryson G., Vogel H.J., editors. Evolving Genes and Proteins. Academic Press; New York: 1965. pp. 97–166. [Google Scholar]

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1016/j.ympev.2013.07.002

Supporting
Mentioning
Contrasting
4
41
0

Article citations


Go to all (14) article citations

Data 


Data behind the article

This data has been text mined from the article, or deposited into data resources.

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.


Funding 


Funders who supported this work.

Austrian Science Fund FWF (2)