

Page 1 of 5 Wisconsin Department of Natural Resources – Aquatic Invasive Species Literature Review

c. Regulation		
Noxious/Regulated ² :	AL, CT, MA, ME, VT, WA	
Minnesota Regulations:	Prohibited; One may not possess, import, purchase, propagate, or	
	transport	
Michigan Regulations:	Restricted; One may not knowingly possess or introduce	
Washington Regulations:	Secondary Species of Concern; Class C Noxious Weed; State Wetland and	
	Aquatic or Noxious Weed Quarantine List	
II. Establishment Potential and Life History Traits		
a. Life History	Submersed, monocotyledonous, perennial forb ²	
Fecundity	High ⁶	
Reproduction	Sexual; Asexual	
Importance of Seeds:	Low ⁶	
Vegetative:	Rhizomes, turions; single turion can yield thousands of additional turions ⁶	
Hybridization	Hybridizes with several <i>Potamogeton</i> spp. ^{13, 14, 15, 16}	
Overwintering		
Winter Tolerance:	High ⁶ ; minimum temperature of $-33^{\circ}F^{2}$	
Phenology:	Emerges early relative to natives ⁶	
b. Establishment		
Climate		
Weather:	Undocumented	
Wisconsin-Adapted:	Yes	
Climate Change:	Earlier ice off may benefit spring growth; may limit summer growth	
Taxonomic Similarity		
Wisconsin Natives:	High; genus Potamogeton	
Other US Exotics:	Low	
Competition		
Natural Predators:	Undocumented	
Natural Pathogens:	None known ⁶	
Competitive Strategy:	Turions; cold tolerant; emerges early and shades natives ⁶	
Known Interactions:	Undocumented	
Reproduction		
Rate of Spread:	High	
Adaptive Strategies:	Persistent turions; high rate of vegetative spread ⁶	
Timeframe	Single turion yielded 23,520 additional turions in one season ⁶	
c. Dispersal		
Intentional:	Aquarium trade	
Unintentional:	Wind, water, animals, humans (boats, trailers), fishery releases,	
	horticultural mailings ^{6,17}	
Propagule Pressure:	High; fragments easily accidentally introduced	

Fig	ures 3 and 4: Courtesy of Frank Koshere, Wisconsin DNR
III. Damage Potential	
a. Ecosystem Impacts	10
Composition	Can grow in dense beds which outcompete native aquatic plants ¹⁰ ;
	summer die-back releases phosphorus and can cause dissolved oxygen crashes ^{10,18}
Structure	Can form dense monocultures ¹⁰ ; fish respond to changes in architecture
Function	Increased nutrient release from summer senescence ¹⁰
Allelopathic Effects	Undocumented
Keystone Species	Undocumented
Ecosystem Engineer	Yes; dense canopy decreases light penetration
Sustainability	Undocumented
Biodiversity	Decreases (sometimes no effect) ¹⁰
Biotic Effects	Plant decomposition can stimulate algal blooms
Abiotic Effects	Increased nutrient loading; dissolved oxygen crashes ^{10,18}
Benefits	Can provide some habitat or food for invertebrates and fish ^{10,19}
b. Socio-Economic Effects	20
Benefits	Can be used to revegetate degraded systems ²⁰
Caveats	Risk of release and population expansion outweighs benefits of use
Impacts of Restriction	Increase in monitoring, education, and research costs
Negatives	Impacts recreation, aesthetics, and causes ecological impairment; summer
Exportations	More negative impacts can be expected in outrophic systems ⁶
Cost of Impacts	Note negative impacts can be expected in eutropine systems
Cost of Impacts	increased research expenses
"Eradication" Cost	Expensive
IV. Control and Prevention	
a Detection	
Crypsis:	Medium: young/winter form confused with native Potamogeton spn
Benefits of Early Response:	High; decreased turion set

b. Control	
Management Goal 1	Eradication
Tool:	Herbicide (endothall)
Caveat:	Eradication is difficult due to turion persistence
Cost:	Expensive; multiple year treatment scheme that still may only provide
	nuisance relief ⁵
Efficacy, Time Frame:	Spring is the best time for treatment ²¹
Management Goal 2	Nuisance relief
Tool:	Small-scale chemical, mechanical harvest
Caveat:	Harvesting causes fragmentation ¹⁰ ; non-target plant species are negatively
	impacted
Cost:	Varies
Efficacy, Time Frame:	1-3 times per summer often necessary for control

¹ US Forest Service, Pacific Island Ecosystems at Risk (PIER). 2010. *Potamogeton crispus* L., Potamogetonaceae. Retrieved December 21, 2010 from: http://www.hear.org/pier/species/potamogeton_crispus.htm

⁴ Washington State Department of Ecology. Retrieved December 21, 2010 from: http://www.ecy.wa.gov/programs/wq/plants/plantid2/descriptions/potcri.html

² Untied States Department of Agriculture, Natural Resources Conservation Service. 2010. The PLANTS Database. National Plant Data Center, Baton Rouge, LA, USA. Retrieved December 21, 2010 from: http://plants.usda.gov/java/profile?symbol=POCR3

³ University of Wisconsin – Madison. 2005. Family - Potamogetonaceae. Wisconsin Botanical Information System Wisflora. Retrieved December 6, 2010 from: http://wisplants.uwsp.edu/scripts/detail.asp?SpCode=POTCRI

⁵ Herman, L. 2007. Personal communication.

⁶ Nichols, S.A. and B.H. Shaw. 1986. Ecological life histories of the three aquatic nuisance plants, *Myriophyllum spicatum, Potamogeton crispus* and *Elodea canadensis*. Hydrobiologia 131:3-21.

⁷ Les, D.H. and L.J. Mehrhoff. 1999. Introduction of nonindigenous aquatic vascular plants in southern New England: a historical perspective. Biological Invasions 1:281-300.

⁸ Bolduan, B.R., G.C. Van Eeckhout, H.W. Quade and J.E. Gannon. 1994. *Potamogeton crispus* – the other invader. Lake and Reservoir Management 10(2):113-125.

⁹ Champion, P.D. and C.C. Tanner. 2000. Seasonality of macrophytes and interaction with flow in a New Zealand lowland stream. Hydrobiologia 441:1-12.

¹⁰ Global Invasive Species Database. 2006. *Potamogeton crispus*. Retrieved December 21, 2010 from: http://www.invasivespecies.net/database/species/ecology.asp?si=447&fr=1&sts=sss

¹¹ Rogers, K.H. and C.M. Breen. 1980. Growth and reproduction of *Potamogeton crispus* in a South African Lake. Journal of Ecology 68:561-571.

¹² O'Hare, M.T., A. Baatrup-Pedersen, R. Nijboer, K. Szoszkiewicz and T. Ferreira. 2006. Macrophyte communities of European streams with altered physical habitat. Hydrobiologia 566:197-210.

¹³ Alix, M.S. and R.W. Scribailo. 2006. First report of *Potamogeton* x undulatus (*P. crispus* x *P. praelongus*, Potamogetonaceae) in North America, with notes on morphology and stem anatomy. Rhodora 108(936):329-346.

- ¹⁴ Kaplan, Z. and J. Fehrer. 2004. Evidence for the hybrid origin of *Potamogeton* x *cooperi* (Potamogetonaceae): traditional morphology-based taxonomy and molecular techniques in concert. Folia Geobotanica 39:431-453.
- ¹⁵ Neveceral, P. and F. Krahulec. 1994. Two *Potamogeton* species new to the flora of the Czech Republic: *P. polygonifolius* and *P. x lintonii* (*P. crispus x P. friesii*). Preslia 66(2):151-158.
- ¹⁶ Wolff, P., A. Ortscheit and M. Simon. 1997. *Potamogeton x bennetti* Fryer (=*P. crispus x trichoides*), a new hybrid for the European continent in Alsace, France, second occurrence in the world. Acta Botanica Gallica 144(2):269-283.
- ¹⁷ Maki, K. and S. Galatowitsch. 2004. Movement of invasive aquatic plants into Minnesota (USA) through horticultural trade. Biological Conservation 118(3):389-396.
- ¹⁸ Wisconsin Department of Natural Resources. Retrieved December 21, 2010 from: http://dnr.wi.gov/invasives/fact/curlyleaf_pondweed.htm
- ¹⁹ Jian, Y., B. Li, J. Wang and J. Chen. 2003. Control of turion germination in *Potamogeton crispus*. Aquatic Botany 75:59-69.
- ²⁰ Zhou, C., S. An, J. Jiang, D. Yin, Z. Wang, C. Fang, Z. Sun, and C. Qiuan. 2006. An in vitro propagation protocol of two submerged macrophytes for lake revegetation in east China. Aquatic Botany 85(1):44-52.
- ²¹ Woolf, T.E. and J.D. Madsen. 2003. Seasonal biomass and carbohydrate allocation patterns in southern Minnesota curlyleaf pondweed populations. Journal of Aquatic Plant Management 41:113-118.
- ²² Wisconsin Department of Natural Resources. Retrieved December 6, 2010 from: http://dnr.wi.gov/lakes/invasives/AISLists.aspx?species=CURLY_LEAF_PONDWEED