
J Veg Sci. 2019;00:1–11.	 wileyonlinelibrary.com/journal/jvs�  |  1

Journal of Vegetation Science

© 2019 International Association 
for Vegetation Science

1  | INTRODUC TION

Increasing evidence indicates that edaphic heterogeneity contrib‐
utes to plant community diversity in the tropics (John et al., 2007; 
Mori, Schietti, Poorter, & Piedade, 2019). In dry tropical woodlands 

and savannahs of Africa, dramatic edaphic heterogeneity is driven 
by the activity of termites, with a remarkably general pattern of 
higher concentrations in base cations and clay in termite mounds 
(Erpenbach & Wittig, 2016; Jouquet, Traore, Choosai, Hartmann, 
& Bignell, 2011; Muvengwi, Ndagurwa, Nyenda, & Mbiba, 2016; 
Sileshi, Arshad, Konaté, & Nkunika, 2010). Termite mound soil also 
has larger stores of available water compared to surrounding soil 
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Abstract
Question: Do functional traits vary in relation to affinity for termite mounds in trees 
of dry tropical woodlands?

Location: North of the Zambezian Region, Plain of Lubumbashi, Upper Katanga, 
DR Congo.

Methods: In four woodland sites, the occurrence of a total of 3,454 stems, on and 
off Macrotermes mounds has been recorded. Twenty‐one functional traits including 
foliar concentrations of nutrients, specific leaf area (SLA), and leaf dry matter content 
(LDMC) were determined in 36 species. Intraspecific variation of traits was examined 
in one species (Dalbergia boehmii) occurring both on and off mounds.

Results: Most species had a narrow niche, with 22 species (31%) showing a strong 
positive affinity for termite mounds (>90% of occurrences) (T species), and 43 species 
(61%) showing strong negative affinity (<10% of occurrences) (NT species). Strong di‐
vergence of traits was found between T and NT species. Affinity for termite mounds 
was positively correlated to SLA and foliar concentrations of B, Ca, Fe, K, Mg, and 
negatively correlated to LDMC and leaf thickness. Intraspecific variation in D. boehmii 
showed the same pattern, though with a smaller amplitude.

Conclusions: Strong environmental filters are structuring the vegetation of dry 
tropical woodlands, with termitophilous species expressing a syndrome of faster 
resource capture and use, in line with the higher nutrient and water availability of 
termite mound soil. Broad‐niched species are either more plastic, or have evolved 
locally adapted populations.
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(Bonachela et al., 2015; Jouquet, Dauber, Lagerlof, Lavelle, & Lepage, 
2006; Konaté, Le Roux, Tessier, & Lepage, 1999; Sileshi et al., 2010; 
Turner, 2006).

Early botanical surveys in different regions of tropical Africa 
have repeatedly reported the distinctiveness of the plant cover of 
termite mounds (e.g. Fanshawe, 1968; Wild, 1952). More recent veg‐
etation studies have confirmed that termite mounds harbour distinct 
plant communities, even though the degree of divergence in plant 
community composition depends on the regional climate and the 
geochemical context (Erpenbach, Bernhardt‐Romermann, Wittig, 
Thiombiano, & Hahn, 2013; Joseph, Seymour, Cumming, Cumming, 
& Mahlangu, 2012; Muvengwi, Witkowski, Davies, & Parrini, 2017; 
Sileshi et al., 2010; Van der Plas, Howison, Reinders, Fokkema, & 
Olff, 2013).

In Upper Katanga (i.e. the northernmost part of the Zambezian 
region), Macrotermes termite mounds reach unrivalled density (3–5/
ha) and size (up to 8 m high and 25 m in diameter), covering up to 8% 
of soil surface (Goffinet & Freson, 1972; Malaisse, 1978a, 1978b). 
Their soil has higher concentrations of base cations and clay (Erens 
et al., 2015; Mujinya et al., 2013), consistent with previous findings 
in other regions in Africa. Several authors have reported the original 
plant cover of Macrotermes mounds in Katanga (Duvigneaud, 1958; 
Malaisse, 1978a, 1985; Malaisse & Anastassiou‐Socquet, 1977; 
Schmitz, 1971), based on floristic inventories.

In the last decade, a growing number of studies have analysed 
the distinct species assemblages of termite mound plant communi‐
ties using ordination methods (Davies et al., 2014; Erpenbach et al., 
2013; Muvengwi et al., 2016; Seymour et al., 2016; Vander Plas et al., 
2013). However, to our knowledge, the affinity of individual species 
for termite mounds has not been tested based on large‐scale cen‐
suses on whole regional floras (but see Joseph, Seymour, Cumming, 
Cumming, & Mahlangu, 2014). Also, the mechanisms underlying 
the distinct plant cover of termite mounds are poorly understood. 
Recently, in a reciprocal transplant experiment, Cuma Mushagalusa 
et al. (2018) found evidence for local adaptation in termite mound 
species. Seedlings of termite mound species transplanted to the sur‐
rounding woodland soil experienced higher mortality during the dry 
season, suggesting that they are more susceptible to water stress 
(Cuma Mushagalusa et al., 2018).

Functional traits have been increasingly popular to gain insight 
into the mechanisms of assemblage of plant communities (Kraft, 
Valencia, & Ackerly, 2008; McGill, Enquist, Weiher, & Westoby, 
2006). The analysis of trait value distribution within and between 
communities allows assessing the strength of different filters acting 
on the assembly of communities (Cornwell & Ackerly, 2009; Mori 
et al., 2019). Since termite mounds have higher water and nutrient 
availability compared to the surrounding woodland matrix, we an‐
ticipate that termitophilous (T) and non‐termitophilous (NT) species 
should exhibit divergent values of a number of functional traits. In 
particular, traits related to the leaf economics spectrum should be 
shifted to values reflecting higher rates of resource use (Grime et 
al., 1997; Wright et al., 2004). Only few previous studies have ex‐
plored correlations between species traits and affinity for termite 

mounds. Thus, Van der Plas et al. (2013), in the Acacia savannahs of 
South Africa, found larger concentrations of Na, Mg, and B in termite 
mound species but no difference for specific leaf area (SLA). Joseph 
et al. (2014) found larger foliar concentrations of N and P, larger 
SLA and higher frequency of evergreenness on mounds. Higher fre‐
quency of fleshy‐fruited species on mounds has also been reported 
(Fleming & Loveridge, 2003; Joseph et al., 2012). In DR Congo, 
Colonval‐Elenkov and Malaisse (1975) found higher frequency of 
spiny species in the woody flora of termite mounds.

In this paper, for the first time, we assessed the affinity of a large 
number of woody species for termite mounds in Upper Katanga, 
based on exhaustive population censuses on and off termite mounds 
at four different sites. We then measured functional traits in 36 spe‐
cies and tested whether species' trait values were correlated to af‐
finity for termite mounds. For one species with a broad ecological 
amplitude, i.e. occurring on and off mounds, we examined intraspe‐
cific variation in functional traits and tested whether populations on 
and off mounds show distinct trait values.

2  | MATERIAL S AND METHODS

2.1 | Study region

The study was conducted in the region of Lubumbashi (Province of 
Upper Katanga, DR Congo). The mean annual temperature is 20.3°C 
and the average annual precipitation is 1,200 mm, distributed mainly 
from November to April. The climate is Sudanian, corresponding to 
Cwa in Köppen's classification (Peel, Finlayson, & McMahon, 2007). 
Upper Katanga represents the northern part of the Zambezian cen‐
tre of endemism (Malaisse, 1996; White, 1983). The vegetation con‐
sists of dry tropophilous woodlands, locally known as miombo, from 
the name of the most characteristic trees, i.e. Brachystegia (Fabaceae 
Caesalpinioideae) (Duvigneaud, 1958; Malaisse, 1978b; Schmitz, 
1971; Werger & Coetzee, 1978). The miombo of Upper Katanga is 
of the wet type, corresponding to regions with rainfall >1,000 mm. 
Wet miombo is characterised by larger canopy height (ca. 20 m) and 
by a higher frequency of evergreen species (Malaisse, 1997). The 
landscape shows a flat topography, regularly punctuated (~3/ha) by 
termite mounds (up to 8 m high) (Goffinet & Freson, 1972; Mujinya et 
al., 2013). The geological substrate is dominated by dolomitic shales 
and siltstones from the Neoproterozoic Nguba and Roan Groups 
(Batumike, Kampunzu, & Cailteux, 2006). The soils are mostly haplic 
and xanthic Ferralsols characterised by low pH and nutrient content 
and a sandy loam to clay loam texture (Ngongo et al., 2009).

2.2 | Study sites

Four sites have been sampled in the Plain of Lubumbashi, i.e. 
Mikembo (11°28′36,43″ S, 27°39′58,00″ E, 1,181  m a.s.l.); 
Kiswishi (11°32′15,68″ S, 27°28′06,40″ E, 1,319 m a.s.l.); Kipopo 
(11°32′11,12″ S, 27°19′29,8″ E, 1,314  m a.s.l.) and Kaluwe 
(11°32′18,68″ S, 27°7′8,63″ E). These sites were selected due to 
their relatively well‐preserved miombo vegetation. In the four sites, 
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the vegetation consists of dry tropical woodland with Brachystegia 
but with differences in the relative frequency of dominant species, i.e. 
Kipopo: Brachystegia spiciformis, Julbernardia paniculata, J. globiflora; 
Kiswishi: Diplorhynchus condylocarpon, Strychnos spinosa; Mikembo: 
Marquesia macroura, Julbernardia paniculata; Kaluwe: Diplorhynchus 
condylocarpon, Combretum collinum (nomenclature after Meerts 
[2016]). These four sites represent the floristic variation of miombo 
woodlands in the Plain of Lubumbashi (Mesobrachystegion and 
Berlinio‐Marquesion in the phytosociological terminology of Schmitz 
[1971]).

2.3 | Species sampling

At each site, within a 12‐ha area, 40 termite mounds have been sam‐
pled. In the surrounding matrix, 40 circular plots 15 m in diameter 
(i.e. similar to the average diameter of termite mounds in Upper 
Katanga [Goffinet & Freson, 1972]) have been sampled. In each plot, 
all stems of woody species (diameter at breast height (DBH) > 5 cm; 
meso‐ and microphanerophytes, lianas excluded) have been counted 
and identified to species.

The affinity of each species for termite mounds has been ex‐
pressed as a “termitophily index” (IndT) calculated as IndT  =  Xt/ 
(Xt + Xm) where Xt and Xm are the number of occurrences of the spe‐
cies on and off termite mounds, respectively.

2.4 | Traits

For each individual, height has been measured with a clinometer 
(Suunto, Vantaa, Finland) after the method of Rondeux (1999) and 
girdle at breast height was determined with a measuring tape. 
Diameter at breast height was calculated as girdle/3.14.

Functional‐trait measurements were performed at the site 
Mikembo for which extensive soil analyses are available. For 36 
species (14 T, 22 NT) represented by at least 10 individuals, leaves 
were sampled in December 2016 and January 2017. For Dalbergia 
boehmii, a species present at the same frequency on and off ter‐
mite mounds (“neutral species”), traits were measured on 10 indi‐
vidual trees on and off mounds in order to explore intraspecific 
trait variation. Leaves were sampled on adult trees, on branches 
exposed to the sun, following Perez‐Harguindeguy et al. (2013). 
For each individual, two leaves were collected and weighed (fresh 
mass) and photographed. The leaves were oven‐dried at 50°C for 
48 h and their dry mass determined to the nearest 0.0001 g. Leaf 
area (LA) was determined from pictures using ImageJ (http://im‐
agej.nih.gov/ij/). SLA was determined as LA/dry mass. Dry matter 
content was determined as the ratio between dry and fresh mass. 
Leaf thickness was estimated as the ratio of fresh mass and LA, 
after Vile et al. (2005).

Mineral element concentrations in leaves were determined by 
dry ashing at 500°C. Ashes were dissolved in nitric acid 65%, and Al, 
B, Ca, Fe, K, Mg, Mn, P and Zn contents were determined by induc‐
tively coupled plasma–optical emission spectrometry (Vista MPX 
CCD Simultaneous; Varian).

Twig density was determined on 20‐cm long cuttings of twigs 
(20–30 mm in diam.). Diameter was determined with calipers to the 
nearest mm. Twig dry mass (oven‐dried at 50°C to constant weight) 
was determined at 0.0001 g. Assuming a cylindrical shape, twig den‐
sity was calculated as DM/(πr2L), where r is the radius, L is the length 
and DM the dry mass of the twig. Wood density could not be de‐
termined using standard protocols because we were not allowed to 
bore tree boles at the study site.

Finally, the following qualitative traits were recorded for each 
species: spinescence (present/absent), leaf phenology (evergreen, 
brevideciduous (leaves shed at the end of the dry season a few days 
before bud break), deciduous) and diaspore type (fleshy i.e. drupe or 
berry, dry i.e. achene or seed).

2.5 | Soil analyses

To determine soil chemical properties and texture, samples were 
collected at the site Mikembo Sanctuary, a reference site for mi‐
ombo ecology in DR Congo (Bauman et al., 2016; Ilunga Muledi et 
al., 2017). In the woodland matrix, soil was sampled in 102 plots of 
25 m × 25 m, randomly selected from a grid of 160 plots as explained 
by Ilunga Muledi et al. (2017). In each plot, five cores were sampled 
at 0–15 cm depth (one core at the centre and four cores on the two 
diagonals, 5 m from each corner). In 48 termite mounds, one sample 
was collected at mid‐height of the slope (0–15 cm depth; see Cuma 
Mushagalusa et al. [2018] for soil analysis methods). To determine 
the water holding capacity, we used samples collected from two ter‐
mite mounds (Kasapa and Kimbeimbe) described by Mujinya et al. 
(2011, 2013) and Erens et al. (2015) (see details of sampling design 
therein). See Cuma Mushagalusa et al. (2018) for water holding ca‐
pacity determination methods.

2.6 | Data analysis

The total stem counts on the termite mounds and matrix plots were 
1743 and 1711, respectively. We used a Fisher exact test to evaluate 
whether the count ratio of species X on and off termite mounds (i.e., 
Xt/Xm) differed significantly from the count ratio computed for the 
whole woody community (after exclusion of species X), that is, (Nt − 
Xt)/(Nm − Xm). A significantly higher ratio of the species of interest 
with respect to that of the rest of the community indicates a posi‐
tive association of species X with termite mounds, compared to the 
rest of the community. Such species can conveniently be referred to 
as “termitophilous” (T). A significantly lower ratio indicates a nega‐
tive association of the species with termite mounds, which can be 
referred to as “not termitophilous” (NT). Species neither associated 
to the matrix nor to termite mounds are referred to as “neutral”. The 
Fisher exact test was performed in each site separately and for all 
sites pooled. Only species represented by at least five individuals 
were considered in the study.

Trait comparisons were performed in the subsample of species 
that were significantly NT or T in all four study sites (T: 13 spe‐
cies, NT: 14 species). First, a permutational multivariate analysis of 
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variance (PERMANOVA) was performed in order to assess whether 
T and NT species are functionally different, when using all the traits 
together. This approach has the advantage that it explicitly consid‐
ers among‐trait covariation, therefore capturing potential signals 
related to the well‐documented evolutionary functional trade‐offs 
(e.g. Chave et al., 2009; Díaz et al., 2015; Dwyer & Laughlin, 2017; 
Westoby, Falster, Moles, Vesk, & Wright, 2002; Wright et al., 2004). 
Secondly, χ2 tests and Wilcoxon rank sum tests were used to com‐
pare qualitative and quantitative traits between T and NT species, 
respectively. The corresponding p‐values were adjusted for multiple 
tests using Benjamini and Hochberg's false discovery rate correc‐
tion (Benjamini & Hochberg, 1995). Thirdly, a Principal Components 
Analysis was done based on all quantitative traits (including the ter‐
mitophily index) for the 36 species (14 T, 22 NT) for which functional 
traits were measured, in order to visually assess whether T and NT 
species occupy distinct multidimensional functional trait spaces and 
to assess multivariate correlation patterns between functional traits 
and the termitophily index.

Finally, in order to explore the intraspecific trait variation of 
Dalbergia boehmii (Fabaceae subfam. Faboideae), a neutral species, 
the quantitative functional traits of the individuals on and off ter‐
mite mounds were compared using Wilcoxon rank sum tests. The 
p‐values were adjusted using the false discovery rate correction 
(Benjamini & Hochberg, 1995).

All analyses were performed using the R statistical environment 
(R Core Team, 2018), except PCA and PERMANOVA which were 
performed using PAST (Hammer, Harper, & Ryan, 2001).

3  | RESULTS

3.1 | Soil

Soil data were reported extensively by Cuma Mushagalusa et al. 
(2018). We here give only a brief overview of the differences be‐
tween mounds and matrix (Appendix S1). Soils from termite mounds 
and matrix were significantly different for all parameters (p < 0.01, 
except K: p > 0.05). Termite mounds had higher concentrations of 
available Ca (10‐fold difference), Mg (6‐fold), Mn (5‐fold), and or‐
ganic matter (1.5‐fold). In contrast, the matrix soil had higher con‐
centrations of Al (3‐fold), P (2‐fold), and Fe (1.3‐fold). The pH was 
higher in termite mound soils (6.0 vs 5.0) and so were clay (37.5% vs 
24.6%) and silt (25.1% vs 18.6%) contents.

At both sites, available water content was much higher (2–4 
times) for the termite mound samples than for the surrounding ma‐
trix soils (0.067–0.125 m3/m3 vs 0.035–0.042 m3/m3, respectively). 
For pF curves and bulk density data, see Cuma Mushagalusa et al. 
(2018).

3.2 | Species affinity for termite mounds

A total of 3,454 stems representing 96 woody species (micro‐ and 
mesophanerophytes, lianas excluded) were recorded in the four 
study sites (1743 on termite mounds and 1711 in the surrounding 

matrix). The termitophily index (It) defined as the frequency of oc‐
currence on termite mounds, was calculated for 70 species repre‐
sented by five individuals or more (four sites pooled) (Appendix S2). 
It showed a markedly bimodal distribution (Figure 1). Based on the 
Fisher exact test, 22 species were significantly positively associated 
to termite mounds (“termitophilous” species), 43 were negatively 
associated to mounds, and five species were neutral, i.e. neither 
positively nor negatively associated to mounds. The affinity for ter‐
mite mounds was remarkably consistent across sites (Table 1).

3.3 | Comparison of traits between T and 
NT species

The comparison of traits was performed on the subsample of species 
significantly T or NT in each of the four study sites (T: n = 13; NT: 
n = 14) (Table 1).

PERMANOVA (17 traits) shows a very highly significant func‐
tional divergence between the two groups of species (F  =  4.525; 
p = 0.0006).

A significant difference was found in eight of the 17 traits exam‐
ined (Table 2). Termitophilous species had significantly larger foliar 
concentrations of B (ca. 45% larger), Ca (+48%), Fe (+49%), K (+29%) 
and Mg (+35%), had larger SLA (+30%, only marginally significant), 
and thinner leaves (−20%). No significant difference was found for 
Al, Cu, P, Mn, Zn, height, DBH, and twig density. Regarding the qual‐
itative traits, the proportion of species with fleshy propagules was 
significantly higher among T species (10/13) compared to NT species 
(5/14) (Table 3).

Figure 2 shows the first two axes of the PCA computed from 
the quantitative traits. The first and second axes described 26% and 
15% of the overall trait variability. The first axis is positively cor‐
related to the termitophily index, SLA, and foliar concentrations of 
Ca, Mg, K, and B, and negatively correlated to leaf thickness and 

F I G U R E  1  Distribution of the termitophily index values (i.e. 
the percentage of occurrences on termite mounds) among woody 
species in four dry tropical woodlands in Upper Katanga, DR Congo
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TA B L E  1   Affinity of woody species for termite mounds in four sites in the Plain of Lubumbashi (DR Congo)

Species Kipopo Kiswishi Kaluwe Mikembo Four sites pooled

Albizia antunesiana ‐ ‐ NT* ‐ NT** (8%)

Allophylus africanus T*** T*** T** T*** T*** (99%)

Anisophyllea boehmii ‐ ‐ ‐ NT** NT*** (5%)

Balanites aegyptiaca   ‐   T** T** (100%)

Baphia bequaertii   NT*     NT* (0%)

Bobgunnia madagascariensis     ‐ ‐ NT** (0%)

Boscia mossambicensis T*** T*** T*** T*** T*** (100%)

Brachystegia boehmii NT*** NT** NT*** NT*** NT*** (0%)

Brachystegia longifolia     NT* ‐ NT** (0%)

Brachystegia spiciformis NT*** NT*** NT*** NT*** NT*** (0%)

Brachystegia taxifolia   NT*   NT** NT*** (0%)

Brachystegia wangermeeana NT*** NT*** NT*** NT*** NT*** (0%)

Bridelia duvigneaudii ‐ ‐   ‐ N (56%)

Cassia abbreviata T*** T* T* T*** T*** (100%)

Combretum adenogonium   ‐     NT* (0%)

Combretum collinum NT** ‐ NT*** NT*** NT*** (1%)

Combretum molle T*** T*** T*** T*** T*** (99%)

Commiphora glandulosa T* ‐ T* T** T*** (100%)

Dalbergia boehmii N N   N N (44%)

Dichrostachys cinerea     ‐ N N (50%)

Diospyros lycioides   ‐ ‐ T* T** (100%)

Diospyros mespiliformis T*** T* T* T*** T*** (98%)

Diplorhynchus condylocarpon NT*** NT*** NT*** NT*** NT*** (5%)

Ekebergia benguelensis       ‐ NT* (0%)

Erythrina abyssinica N ‐ N N N (47%)

Erythrophleum africanum     ‐ ‐ NT* (0%)

Euclea racemosa T*** T*** T** T*** T*** (100%)

Feretia aeruginescens     ‐ T** T** (100%)

Ficus thonningii   N ‐   N (60%)

Friesodielsia obovata       T* T* (100%)

Garcinia huillensis ‐ ‐ ‐   NT* (13%)

Gymnosporia senegalensis     ‐ T** T** (100%)

Haplocoelum foliolosum T*** T*** T*** T*** T*** (99%)

Harungana madagascariensis     NT*   NT* (0%)

Hexalobus monopetalus ‐ NT** NT* ‐ NT*** (0%)

Hymenocardia acida ‐ ‐   NT*** NT*** (0%)

Hymenodictyon parvifolium ‐ ‐   T*** T*** (100%)

Julbernardia globiflora NT*** NT*** NT*** NT*** NT*** (1%)

Julbernardia paniculata NT*** NT*** NT*** NT*** NT*** (1%)

Lannea discolor T*** T*** T** T*** T*** (87%)

Markhamia obtusifolia T*** T*** T*** T*** T*** (99%)

Marquesia macroura NT*** NT*** NT*** NT** NT*** (0%)

Monotes katangensis NT*** NT* NT*** NT*** NT*** (2%)

Multidentia crassa     ‐ ‐ NT* (0%)

Pappea capensis     ‐ T** T*** (100%)

(Continues)
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LDMC. The second axis is positively correlated to foliar concentra‐
tions of Al, Cu, Fe, and Zn. The two groups of species (T, NT) form 
two almost non‐overlapping scatter plots, T species being shifted 
towards positive scores on PC1.

3.4 | Intraspecific variation in a broad‐
niched species

Dalbergia boehmii (Fabaceae), a “neutral” species, was represented 
across the four sites by 62 occurrences on termite mounds and 80 
occurrences in the matrix. Its traits were compared between popula‐
tions in the two types of habitats. Individuals on termite mounds had 
significantly larger values of B (+27%), Ca (+37%), Mg (+19%, only mar‐
ginally significant), SLA (+11%), LA (+22%) and smaller values of Mn 
content (−43%), twig density (−10%), leaf thickness (−10%), and LDMC 
(−11%) (Table 4). The other traits did not show significant differences.

4  | DISCUSSION

4.1 | Two groups of species with non‐overlapping 
realised niches

Termite mounds offer a striking example of dramatic short‐distance 
variation in soil conditions in tropical Africa. Termite mounds har‐
bour original plant communities, contrasting with the surround‐
ing matrix (Erpenbach et al., 2013, 2017; Muvengwi et al., 2017; 
Seymour et al., 2016; Van der Plas et al., 2013). However, the 
mechanisms underlying that pattern are unclear. Functional traits 
can provide key insights into the mechanisms shaping species niche 
(McGill et al., 2006). Here for the first time we have assessed affin‐
ity for termite mounds in a whole regional flora, in order to explore 
the relations between the realised niche and species' functional 
traits. A striking result is the existence in the dry tropical woodlands 

Species Kipopo Kiswishi Kaluwe Mikembo Four sites pooled

Parinari curatellifolia NT* NT* ‐ NT* NT*** (8%)

Pericopsis angolensis NT***   NT** NT** NT*** (12%)

Philenoptera katangensis NT*** NT** NT*** NT** NT*** (2%)

Pseudolachnostylis maprouneifolia NT** NT*** NT** NT*** NT*** (7%)

Psorospermum febrifugum     ‐ ‐ NT** (0%)

Pterocarpus angolensis NT*** NT*** NT** NT*** NT*** (0%)

Pterocarpus tinctorius       NT*** NT*** (5%)

Strychnos cocculoides   NT* ‐ ‐ NT*** (0%)

Strychnos innocua NT*     ‐ NT*** (0%)

Strychnos potatorum T***   T*** T*** T*** (100%)

Strychnos spinosa NT*** NT*** NT*** NT*** NT*** (0%)

Syzygium guineense ‐ NT* NT* ‐ NT*** (0%)

Terminalia mollis       ‐ NT* (0%)

Thespesia garckeana   T* ‐ T* T*** (100%)

Uapaca kirkiana NT* NT*** ‐   NT*** (0%)

Uapaca nitida NT*** NT* NT*** NT*** NT*** (0%)

Uapaca pilosa NT*** NT** NT*** NT*** NT*** (0%)

Uapaca sansibarica     NT* ‐ NT** (0%)

Uvariastrum hexaloboides   ‐   ‐ NT** (0%)

Vitex doniana ‐   ‐   NT* (0%)

Vitex fischeri T*** T** T*** T** T*** (97%)

Vitex mombassae NT** NT** NT** NT* NT*** (0%)

Zanthoxylum chalybeum T*** T*** T*** T*** T*** (100%)

Ziziphus abyssinica NT***   NT*** NT*** NT*** (2%)

Ziziphus mucronata T*** T*** T*** T*** T*** (100%)

For each species, a Fisher exact test was used to compare the ratio of the number of occurrences on mounds (Xt) and in the matrix (Xm) to this same 
ratio computed over the whole community, regardless of species (Nt, Nm). A non‐significant test indicates a neutral species (N), a significant test with 
Nt > Nm indicates a termitophilous species (T) and a significant test with Nt < Nm indicates a termitofuge species (NT). *, p ≤ 0.05; **, p ≤ 0.01; ***, 
p ≤ 0.001). The test is performed at each site and for the four sites pooled. The percentage in brackets is the “termitophily index”, i.e., the proportion 
of occurrences of the species on termite mounds. Empty cells indicate the absence of the species in the corresponding site; (‐) indicates that the spe‐
cies is present with less than five occurrences. Nomenclature follows Meerts and Hasson (2016) and Meerts (2016). For species occurrence counts, 
see Appendix S2

TA B L E  1   (Continued)
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of Upper Katanga of two groups of species with almost non‐over‐
lapping realised niches. Here, 43 of 70 species occurred on termite 
mounds at frequencies <10%, and 22 species occurred on termite 
mounds at frequencies >90%. The scarcity of broad‐niched species 
(i.e. with intermediate frequency of occurrence) is particularly strik‐
ing (only eight of 70 species). We are aware of only one previous 
study (Joseph et al., 2014) reporting that only a minority of species 
(three of 36 in their study) are present both on mounds and in the 
matrix.

4.2 | Trait divergence

The bimodal distribution frequency of the termitophily index sug‐
gests that very strong filters determine the structuring of that 
vegetation pattern. This is confirmed by the strong divergence in 
functional traits between the two species groups. T and NT species 
do indeed occupy distinct positions in the leaf economics spectrum 
as defined by Wright et al. (2004) and McGill et al. (2006). Thus, T 
species tend to have larger SLA, lower LDMC, thinner leaves and 
larger foliar concentrations of nutrients. This suite of traits points 
to a syndrome of faster resource capture and faster growth rate, 
typical of species adapted to resource‐rich habitats (Colgan, Martin, 
Baldeck, & Asner, 2015; Grime et al., 1997; Wright et al., 2004). Only 
few previous studies compared functional traits of termitophilous 
and non‐termitophilous species (Holdo & McDowell, 2004; Joseph 
et al., 2014; Van der Plas et al., 2013). Termitophilous species gen‐
erally had higher foliar mineral element concentrations. Higher SLA 
was found by Joseph et al. (2014) but not by Vander Plas et al. (2013). 
In Upper Katanga as well as across all tropical Africa, termite mound 
soil has higher concentrations of base cations (Ca, Mg, K) and larger 
stores of available water compared to the surrounding matrix (Garba, 
Cornelis, & Steppe, 2011; Konaté et al., 1999; Turner, 2006). Miombo 
woodlands are limited both by soil nutrients and by water, especially 
in the dry season (Frost, 1996). The low SLA values of matrix species 
in our study are accounted for both by thicker leaves and by higher 
LDMC. Thus, NT species apparently express foliar traits conferring 
more conservative resource use.

The foliar traits of termitophilous species point to a faster growth 
rate and higher uptake rate of water and nutrients. Such traits might 
incur a cost in terms of poor survival in resource‐limited conditions, 
i.e. in the matrix. Recently, in a reciprocal transplant experiment, 
Cuma Mushagalusa et al. (2018) found that drought stress in the dry 
season was the main factor explaining poor survival of termitophilous 
species away from their native habitat. Thus, our results on func‐
tional traits are consistent with the contrasting niche affinities of the 
two species groups. Due to the larger frequency of evergreens, the 
environment on termite mounds might not only be determined by 
substrate, but also by shading, reducing temperatures and so reduc‐
ing evaporation and water stress (Joseph et al., 2016).

The differences in foliar concentrations of nutrients parallel the dif‐
ferences in nutrients concentrations in the soil. Therefore, it is unclear 
if foliar mineral element composition tracks the composition of the soil 
(i.e. phenotypic plasticity) or if part of the difference is constitutive, 

reflecting contrasting leaf structures. In principle, reciprocal transplant 
experiments are a suitable strategy to address this issue. However, 
such experiments could be strongly limited in practice due to the high 
mortality rate suffered by seedlings of termitophilous species grown 
on the soil matrix, and vice versa (Cuma Mushagalusa et al., 2018).

Apart from traits related to the leaf economics spectrum, we found 
only few consistent differences between T and NT species. Propagules 
of T species were more often fleshy compared to NT species, con‐
sistent with an earlier report by Joseph et al. (2014). This difference 
reflects the larger contribution of a few families with dry propagules 
in the matrix, i.e. Fabaceae and Dipterocarpaceae. Interestingly, ter‐
mitophilous species are not a homogeneous group for leaf phenology, 
comprising both deciduous (Cassia abbreviata, Commiphora glandu‐
losa, Lannea discolor, Zanthoxylum chalybeum) and evergreen species 
(Allophylus africanus, Boscia mossambicensis, Diospyros mespiliformis, 
Euclea racemosa). The mechanisms allowing for coexistence of these 
two strategies on termite mounds deserve further investigation.

TA B L E  2   Comparison of functional traits and foliar mineral 
element concentrations between termitophilous and non‐
termitophilous species

  T (n = 13) NT (n = 14) W p

Leaf area 
(cm2)

124 ± 148 85.5 ± 66.8 87 ns

LDMC (%) 37.2 ± 4.5 39.6 ± 3.4 131.5 ns

Leaf thick‐
ness (g cm2)

0.021 ± 0.004 0.028 ± 0.008 146.5 *

SLA (cm2 g−1) 132 ± 37 101 ± 20 46 •

DBH (cm) 32.0 ± 7.1 30.9 ± 13.7 80.5 ns

Height (m) 14.7 ± 6.4 16.8 ± 5.5 118 ns

Twig density 
(m3 kg−1)

0.67 ± 0.20 0.66 ± 0.07 88 ns

Al (µg g−1) 309 ± 356 142 ± 155 58 ns

B (µg g−1) 33.2 ± 15.5 18.0 ± 9.8 36 *

Ca (µg g−1) 13,278 ± 6,054 6,857 ± 4,434 26 **

Cu (µg g−1) 12.9 ± 8.9 8.8 ± 4.5 66 ns

Fe (µg g−1) 116 ± 99 59.4 ± 39.5 42 *

K (µg −1) 11,640 ± 2,160 8,244 ± 2,923 27 **

Mg (µg g−1) 4,628 ± 1,322 2,979 ± 1,007 30 *

Mn (µg g−1) 187 ± 88 186 ± 88 90 ns

P (µg g−1) 1,223 ± 257 1,240 ± 385 92 ns

Zn (µg g−1) 32.8 ± 22.2 21.2 ± 11.2 60 ns

Species included: T: Allophylus africanus, Boscia mossambicensis, Cassia 
abbreviata, Combretum molle, Diospyros mespiliformis, Euclea racemosa, 
Haplocoelum foliolosum, Lannea discolor, Markhamia obtusifolia, Vitex fis‐
cheri, Zanthoxylum chalybeum, Ziziphus mucronata; NT: Brachystegia boe‐
hmii, Brachystegia spiciformis, Diplorhynchus condylocarpon, Julbernardia 
globiflora, Julbernardia paniculata, Marquesia macroura, Monotes 
katangensis, Philenoptera katangensis, Pseudolachnostylis maprouneifolia, 
Pterocarpus angolensis, Strychnos spinosa, Uapaca nitida, Uapaca pilosa, 
Vitex mombassae.
Mean ± SD. W: Wilcoxon test. See Appendix S4 for species trait value 
data. Significance after Benjamini–Hochberg correction for multiple 
tests: ***p < .001; **p < .01; *p < 0.05; •p < .1; nsp > .1.
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Traits not considered in this study may also contribute to the dif‐
ferent ecological niche of T and NT species. In particular, mutualis‐
tic interactions with mycorrhizae might be involved. The dominant 

trees in the woodland matrix belong to three families, i.e. Fabaceae, 
Dipterocarpaceae and Phyllanthaceae, which are ectomycorrhizal 
(Högberg & Piearce, 1986). In contrast, among the T group, no species 

Trait  

Number of species

χ2 pT (n = 13) NT (n = 14)

Spinescence Present 3 1 1.356 (df = 1) ns

Absent 10 13    

Propagule Fleshy 10 5 4.636 (df = 1) •

Dry 3 9    

Leaf phenology Evergreen 4 2 2.967 (df = 2) ns

Brevideciduous 5 10    

Deciduous 4 2    

See Appendix S4 for species trait value data. Significance after Benjamini–Hochberg correction for 
multiple tests: ***p < .001; **p < .01; *p < .05; •p < .1; nsp > .1.

TA B L E  3   Comparison of three 
qualitative traits between termitophilous 
and non‐termitophilous species. χ2 test 
(df = degrees of freedom)

F I G U R E  2   Principal Components 
analysis on 18 variables (17 functional 
traits, and termitophily index) based on 
36 species present in all four study sites. 
Projection of variables and species on PC1 
and 2. DBH: diameter at breast height, 
H: height, LA: leaf area, LDMC: leaf dry 
matter content, SLA: specific leaf area, 
Thick: leaf thickness, T index: termitophily 
index, WD: twig density

Traits On mounds (n = 20) Off mounds (n = 20) W p

Leaf area (cm2) 134 ± 24 104 ± 15 21 *

LDMC (%) 37.7 ± 2.9 42.1 ± 1.8 125.5 **

Leaf thickness (g cm−2) 0.018 ± 0.001 0.021 ± 0.002 122.5 **

SLA (cm2 g−1) 142 ± 9 126 ± 78 13 **

Twig density (m3 kg−1) 0.53 ± 0.03 0.59 ± 0.05 126 ***

Al (µg g−1) 40.9 ± 18.7 41.8 ± 16.1 86 ns

B (µg g−1) 30.4 ± 6.1 22.2 ± 8.8 32 *

Ca (µg g−1) 6,344 ± 1721 3,990 ± 1,452.4 29.5 *

Cu (µg g−1) 16.1 ± 3.6 15.4 ± 5.3 62 ns

Fe (µg g−1) 58.1 ± 9.5 58.5 ± 20.7 62 ns

K (µg g−1) 7,150 ± 1,467 6,421 ± 1,375 55 ns

Mg (µg g−1) 3,153 ± 795 2,532 ± 465 35 •

Mn (µg g−1) 115 ± 32 202 ± 130 109 *

P (µg g−1) 1,151 ± 139 1,448 ± 452 103.5 •

Zn (µg g−1) 34.0 ± 9.7 36.7 ± 11.1 85 ns

Comparison of functional traits and foliar mineral element concentrations between individuals on 
and off mounds. Mean ± SD. See Appendix S5 for trait data. W: Wilcoxon test. Significance sym‐
bols after Benjamini–Hochberg correction for multiple tests: ***p < .001; **p < .01; *p < .05; •p < .1; 
nsp > .1.

TA B L E  4   Intraspecific variation of 
traits in Dalbergia boehmii, a species 
present both on and off termite mounds
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is known to host ectomycorrhizae, while several are documented 
to have endomycorrhizae (e.g. Cassia abbreviata, Combretum molle, 
Commiphora glandulosa, Diospyros lycioides, Diospyros mespiliformis, 
Lannea discolor, Markhamia obtusifolia, Strychnos potatorum, Ziziphus 
mucronata [Bâ, Duponnois, Diabaté, & Dreyfus, 2011; Högberg, 
1982]). Further work is needed to test whether matrix species are ex‐
cluded from termite mounds due to their failure to form mycorrhizae.

4.3 | Intraspecific variation in a broad‐
niched species

Surprisingly few species were equally frequent both on and off 
mounds. Dalbergia boehmii is such a “neutral species”, and presented 
clear intraspecific trait differences between populations established 
in the two types of habitats. Interestingly, the intraspecific trait pat‐
tern matches the differences found between the two groups of spe‐
cies. Termite mound populations of D. boehmii had higher foliar mineral 
nutrient concentrations (especially Ca, B, Mg), larger SLA, and thinner 
leaves. Thus, the traits of the T population are shifted towards a syn‐
drome of enhanced nutrient capture rate. Very few previous studies 
have examined intraspecific variation in relation to affinity for termite 
mounds. Van der Plas et al. (2013) found only small variation within 
species, while Muvengwi, Ndagurwa, Nyenda, and Mlambo (2014) 
found larger foliar P, K, and Ca in individuals growing on mounds (av‐
erage of 15 species), i.e. a pattern similar to our results. Interestingly, 
the amplitude of the intraspecific variation is smaller compared to the 
amplitude in interspecific comparisons. This could indicate that the 
within‐species difference is mostly accounted for by the direct influ‐
ence of soil (i.e. phenotypic plasticity), while the difference between 
species is in part constitutive (genetically fixed) in addition to a direct 
effect of growth conditions. “Neutral” species in miombo woodlands 
may occupy a broad niche either by extensive phenotypic plasticity, 
or by local adaptation, or a combination of both mechanisms. The 
existence of short‐distance adaptation to local soil conditions within 
a species cannot be formally excluded. However, due to the spatial 
distribution of the termite mounds scattered in the matrix (3 mounds/
ha, covering ca. 8% of soil surface), very steep selection gradients 
acting on functional‐trait values are needed to counteract gene flow. 
Reciprocal transplant experiments between the two types of popula‐
tions are needed to address this question.

5  | CONCLUSION

Strong ecological filters are structuring the woody vegetation of dry 
tropical woodlands in Katanga. Short‐distance variation in soil nu‐
trients and moisture due to the activity of termites determine the 
existence of two mutually exclusive groups of narrow‐niched spe‐
cies, with positive and negative affinity for termite mounds, respec‐
tively. Strong trait divergence is observed between the two groups, 
pointing to different resource use strategies. Interestingly, the few 
broad‐niched species show large intraspecific variation in functional 
traits, with the same pattern as the interspecific variation. Future 

work is needed to examine whether broad‐niched species are more 
plastic than narrow‐niched ones or, alternatively, whether they have 
evolved locally adapted populations on termite mounds.
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