Rapid Biomass Assessment for Dry Forest Monitoring

Christophe Sannier

Systèmes d'Information à Référence Spatiale (SIRS) SAS, France <u>christophe.sannier@sirs-fr.com</u>

3rd Expert workshop on lessons learned from Accuracy Assessments in the context of REDD+: Uncertainties of emission factors and biomass maps-Bilbao, 12-14 February 2018

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 685761.

ISPRS Journal of Photogrammetry and Remote Sensing 131 (2017) 77-91

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

Improving the prediction of African savanna vegetation variables using time series of MODIS products

PHOTOGRAMMETRY AND REMOTE SENSING

Miriam Tsalyuk^{a,*}, Maggi Kelly^a, Wayne M. Getz^{a,b}

^a Department of Environmental Sciences, Policy & Management, 130 Mulford Hall #3114, University of California Berkeley, CA 94720-3114, USA ^b School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa

NDVI response of Etosha main vegetation types

Vegetation mapping sampling strategy

- Randomly aligned systematic sample
- 1 Km² site
- 1% sampling rate

Vegetation classification scheme

- Physiognomic classification scheme based on height and density of ligneous component
- hierarchical classification making logical grouping of classes possible

Main vegetation types in Etosha

Field survey

- Ground and aerial survey
- Field document
 - geo-referenced TM imagery
 - 1:125,000 for navigation
 - 1:30,000 for accessing site
 - 1:10,000 for mapping
- Photo-interpretation of vegetation boundaries
- Identification of vegetation type in the field using handheld GPS for navigating

Digital classification

	_	REFERENCE								
		1	2	3	4	5	6	7	Total	User
С	1 Bare Ground	2454	21	1		1	11		2488	99%
L	2 Grassland	54	140	16	5	62	15	12	304	46%
А	3 Steppe	46	75	407	48	46	35		657	62%
S	4 Grass Savanna		2	13	50	74	46	4	189	26%
S	5 Shrub Savanna	17	23	34	21	1824	793	82	2794	65%
Ι	6 Low Tree Savanna	1	16	6	2	932	1539	151	2647	58%
F	7 High Tree Savanna		6			284	363	687	1340	51%
	Total	2572	283	477	126	3223	2802	936	10419	-
	Prod	95%	49%	85%	40%	57%	55%	73%		68%

Biomass Calibration Field Observations

Rapid methods of field biomass assessment were developed to quickly determine above ground green biomass over sites large enough to allow calibration of satellite imagery.

Estimation of grass biomass: the Disc Pasture Meter

(courtesy of Wynand du Plessis, EEI 1995)

Calibration of Leucosphaera Bainesii with plant crown area

Crown area (sq m)

Calibration of Colophospermum Mopane with plant volume

Colophospermum Mopane Dry leaf weight gm y = 88.578x $R^2 = 0.9032$ Volume cum D1 Н D2

Extraction of Tree canopy cover density from Drone imagery

Site sampling strategy

Biomass Assessment

Satellite Calibration

Ground observations are related to satellite images acquired at around the same date to derive a relationship between Green biomass and satellite data.

K ilo met er

ETOSHA NATIONAL PARK

Fire risk assessment

Biomass map

Levels of risk Very low risk <500kg/ha Low risk 500 to 1250kg/ha Moderate risk 1250 to 1750kg/ha High risk >1750kg/ha

Main findings

- Rapid methods to collect biomass data were developed
- Uncertainty of field data can be assessed
- Successful development of quantitative techniques for assessment of green biomass

int. J. Remote sensing, 2002, vol. 23, no. 1, 71-89

Real-time monitoring of vegetation biomass with NOAA-AVHRR in Etosha National Park, Namibia, for fire risk assessment

C. A. D. SANNIER and J. C. TAYLOR School of Agriculture Food and Environment Cranfield I

School of Agriculture Food and Environment, Cranfield University, Silsoe, Bedford, MK45 4DT, England, UK

and W. DU PLESSIS Etosha Ecological Institute, P.O. Okaukuejo, via Outjo, Namibia